

embOS

Real Time Operating System

CPU & Compiler specifics for

ARM core with ARM Software

Development Toolkit 2.50

Document Rev. 1

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/16 embOS for ARM and ARM Software Development Toolkit

  1996-2002 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM Software Development Toolkit 3/16

 1996- 2002 Segger Microcontroller Systeme GmbH

Contents

Contents .. 3
1. About this document.. 4

1.1. How to use this manual.. 4
2. Using embOS with ARM Software Development Toolkit .. 5

2.1. Installation.. 5
2.2. First steps... 6
2.3. The sample application Main.c... 7
2.4. Stepping through the sample application Main.c using ARM Debugger 7

3. ARM specifics.. 11
3.1. CPU modes.. 11
3.2. Available libraries ... 11
3.3. Entry point for C code .. 11

4. Stacks.. 12
4.1. Task stack for ARM 7 and ARM 9.. 12
4.2. System stack for ARM 7 and ARM 9.. 12
4.3. Interrupt stack for ARM 7 and ARM 9 .. 12
4.4. Stack specifics of the ARM 7 and ARM 9 family .. 12

5. Interrupts ... 13
5.1. What happens when an interrupt occurs?.. 13
5.2. Defining interrupt handlers in "C" ... 13
5.3. Interrupt-stack .. 14
5.4. Special considerations for the ARM 7 and ARM 9 ... 14

6. STOP / WAIT Mode... 15
7. Technical data ... 15

7.1. Memory requirements .. 15
8. Files shipped with embOS .. 15
9. Index.. 16

4/16 embOS for ARM and ARM Software Development Toolkit

  1996-2002 Segger Microcontroller Systeme GmbH

1. About this document
This guide describes how to use embOS Real Time Operating System for the
ARM series of microcontrollers using ARM Software Development Toolkit.

1.1. How to use this manual
This manual describes all CPU and compiler specifics for embOS using ARM
based controllers with ARM Software Development Toolkit. Before actually us-
ing embOS, you should read or at least glance through this manual in order to
become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using ARM Software Development Toolkit. If you have no experience using
embOS, you should follow this introduction, because it is the easiest way to
learn how to use embOS in your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the ARM
based controllers using ARM Software Development Toolkit.

embOS for ARM and ARM Software Development Toolkit 5/16

 1996- 2002 Segger Microcontroller Systeme GmbH

2. Using embOS with ARM Software Development
Toolkit

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using ARM Software Development Toolkit project man-
ager to develop your application, no further installation steps are required. You
will find a prepared sample start application, which you should use and modify
to write your application. So follow the instructions of the next chapter �First
steps�.

You should do this even if you do not intend to use the project manager for your
application development in order to become familiar with embOS.

If for some reason you will not work with the project manager, you should:
Copy either all or only the library-file that you need to your work-directory. This
has the advantage that when you switch to an updated version of embOS later
in a project, you do not affect older projects that use embOS also.
embOS does in no way rely on ARM Software Development Toolkit project
manager, it may be used without the project manager using batch files or a
make utility without any problem.

6/16 embOS for ARM and ARM Software Development Toolkit

  1996-2002 Segger Microcontroller Systeme GmbH

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received a ready to go sample start project and it
is a good idea to use this as a starting point of all your applications.

To get your new application running, you should proceed as follows:

Create a work directory for your application, for example c:\work
Copy the whole folder �Start� which is part of your embOS distribution into your
work directory
Clear the read only attribute of all files in the new �start� folder.
Open the sample project start\start.apj with ARM Software Development Toolkit
project manager (e.g. by double clicking it)
Build the start project

Your screen should look like follows:

For latest information you should open the file start\ReadMe.txt.

embOS for ARM and ARM Software Development Toolkit 7/16

 1996- 2002 Segger Microcontroller Systeme GmbH

2.3. The sample application Main.c
The following is a printout of the sample application main.c. It is a good starting-
point for your application. (Please note that the file actually shipped with your
port of embOS may look slightly different from this one)
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The 2 tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : Main.c
Purpose : Skeleton program for embOS
--------------END-OF-HEADER----------------------------*/

#include "RTOS.H"

OS_STACKPTR int Stack0[128], Stack1[128]; /* Stack-space */
OS_TASK TCB0, TCB1; /* Task-control-blocks */

void Task0(void) {
while (1) {

OS_Delay (10);
}

}

void Task1(void) {
while (1) {

OS_Delay (50);
}

}

/**
*
* main
*
**/

void C_Entry(void) {
OS_InitKern(); /* initialize OS */
OS_InitHW(); /* initialize Hardware for OS */
/* You need to create at least one task here ! */
OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0);
OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1);
OS_SendString("Start project will start multitasking !\n");
OS_Start(); /* Start multitasking */

}

2.4. Stepping through the sample application Main.c using ARM
Debugger

When starting the debugger, you will usually see the C_Entry function (very
similar to the screenshot below). In some debuggers, you may look at the
startup code and have to set a breakpoint at C_Entry. Now you can step thru
the program.
OS_InitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes the relevant OS-Variables and enables
interrupts. If you do not like this behavior, you are free to change it by incre-
menting the interrupt-disable counter using OS_IncDI() before the call to
OS_InitKern().

8/16 embOS for ARM and ARM Software Development Toolkit

  1996-2002 Segger Microcontroller Systeme GmbH

OS_InitHW() is part of RTOSINIT.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step thru it to see what is done.
OS_COM_Init() is optional. It is required if embOSView shall be used. In this
case it should initialize the UART used for communication.
OS_Start() should be the last line in C_Entry, since it starts multitasking and
does not return.

Before you step into OS_Start(), set one break point in Task0 and one in
Task1. When you step into OS_Start(), you will only step into it in disassembly
mode, because this function is part of the embOS library. However, you can
press GO now or step in disassembly mode until you reach the highest priority
task.

embOS for ARM and ARM Software Development Toolkit 9/16

 1996- 2002 Segger Microcontroller Systeme GmbH

If you continue stepping, you will arrive in the task with the second highest prior-
ity:

10/16 embOS for ARM and ARM Software Development Toolkit

  1996-2002 Segger Microcontroller Systeme GmbH

Continuing to step thru the program, there is no other task ready for execution.
embOS will therefore start the idle-loop, which is an endless loop which is al-
ways executed if there is nothing else to do (no task is ready, no interrupt rou-
tine or timer executing).

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay. If you inspect system variable OS_Time,
you can see how much time has expired in the target system. However, when
using the ARMULATOR or any other simulator, OS_Time will not increment,
because no timer interrupt is generated. As a result, the program will stick in the
idle loop instead of stopping in one of the tasks again.

embOS for ARM and ARM Software Development Toolkit 11/16

 1996- 2002 Segger Microcontroller Systeme GmbH

3. ARM specifics

3.1. CPU modes

embOS supports THUMB and ARM mode of the ARM 7/9 CPU. In THUMB
mode, all OS modules have been compiled with option �-apcs /interwork� to en-
able an easy interface between ARM modules and THUMB modules of your
application.

3.2. Available libraries

Core Mode Endianess Library type Library
ARM 7 ARM little Release OsA7LR.alf
ARM 7 ARM little Stack-check OsA7LS.alf
ARM 7 ARM little Stack-check + Profiling OsA7LSP.alf
ARM 7 ARM little Debug OsA7LD.alf
ARM 7 ARM little Debug + Profiling OsA7LDP.alf
ARM 7 ARM little Debug + Trace OsA7LDT.alf
ARM 9 ARM little Release OsA9LR.alf
ARM 9 ARM little Stack-check OsA9LS.alf
ARM 9 ARM little Stack-check + Profiling OsA9LSP.alf
ARM 9 ARM little Debug OsA9LD.alf
ARM 9 ARM little Debug + Profiling OsA9LDP.alf
ARM 9 ARM little Debug + Trace OsA9LDT.alf
ARM 7 THUMB little Release OsT7LR.alf
ARM 7 THUMB little Stack-check OsT7LS.alf
ARM 7 THUMB little Stack-check + Profiling OsT7LSP.alf
ARM 7 THUMB little Debug OsT7LD.alf
ARM 7 THUMB little Debug + Profiling OsT7LDP.alf
ARM 7 THUMB little Debug + Trace OsT7LDT.alf
ARM 9 THUMB little Release OsT9LR.alf
ARM 9 THUMB little Stack-check OsT9LS.alf
ARM 9 THUMB little Stack-check + Profiling OsT9LSP.alf
ARM 9 THUMB little Debug OsT9LD.alf
ARM 9 THUMB little Debug + Profiling OsT9LDP.alf
ARM 9 THUMB Little Debug + Trace OsT9LDT.alf

3.3. Entry point for C code
Due to the fact, that the ARM linker does link a special version of the C library
in case a symbol main is detected, embOS does not use a main function. The
function C_Entry is used instead, so that an embOS application does not rely
on any debug environment and can execute in ROM also. For details, please
see also

ARM Software Development Toolkit
USER GUIDE
Chapter 10 - Writing Code for ROM
10.3.11 Entering C code

12/16 embOS for ARM and ARM Software Development Toolkit

  1996-2002 Segger Microcontroller Systeme GmbH

4. Stacks

4.1. Task stack for ARM 7 and ARM 9

All embOS tasks execute in system mode. The stack-size required is the sum
of the stack-size of all routines plus basic stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the ARM 7/9, this minimum task stack size is about 56 bytes.

4.2. System stack for ARM 7 and ARM 9

The embOS system executes in supervisor mode. The minimum system stack
size required by embOS is about 128 bytes (stack check & profiling build)
However, since the system stack is also used by the application before the start
of multitasking (the call to OS_Start()), and because software-timers also use
the system-stack, the actual stack requirements depend on the application.
The size of the system stack can be changed by modifying value of
SVC_STACK_SIZE in the file boot.s.

4.3. Interrupt stack for ARM 7 and ARM 9
If a normal hardware exception does occur, the ARM core switches to IRQ
mode, which has a separate stack pointer. To enable support for nested inter-
rupts, execution of the ISR itself in a different CPU mode than IRQ mode is
necessary. embOS does switch to supervisor mode after saving scratch regis-
ters, LR_irq and SPSR_irq onto the IRQ stack.
As a result, only registers mentioned above are saved on the IRQ stack. For the
interrupt routine itself, the supervisor stack is used.
The size of the interrupt stack can be changed by modifying value of
IRQ_STACK_SIZE in the file boot.s. We recommend at least 128 bytes.

4.4. Stack specifics of the ARM 7 and ARM 9 family
Exceptions require space on the supervisor and interrupt stack. The interrupt
stack is used to store contents of scratch registers, the ISR itself uses supervi-
sor stack.

embOS for ARM and ARM Software Development Toolkit 13/16

 1996- 2002 Segger Microcontroller Systeme GmbH

5. Interrupts

5.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as the interrupts are enabled, the interrupt is executed
• the CPU switches to the Interrupt stack
• the CPU saves PC and flags in registers LR_irq and SPSR_irq
• the CPU jumps to the vector address 0x18
• embOS OS_IRQ_SERVICE: save scratch registers
• embOS OS_IRQ_SERVICE: save LR_irq and SPSR_irq
• embOS OS_IRQ_SERVICE: switch to supervisor mode
• embOS OS_IRQ_SERVICE: execute OS_irq_handler (defined in

RTOSINIT.C)
• embOS OS_irq_handler: check for interrupt source and execute timer inter-

rupt, serial communication or user ISR (OS_USER_irq_func).
• embOS OS_IRQ_SERVICE: switch to IRQ mode
• embOS OS_IRQ_SERVICE: restore LR_irq and SPSR_irq
• embOS OS_IRQ_SERVICE: pop scratch registers
• return from interrupt

5.2. Defining interrupt handlers in "C"

The default C interrupt handler checks for all internal embOS related interrupts,
such as timer and serial communication. In case none of these sources is re-
sponsible for the exception, a user defined function OS_USER_irq_func (usu-
ally defined in module UserIRQ.C) is called. Unless there are good reasons to
do so, you should modify the code in OS_USER_irq_func only and leave the
handler in RTOSINIT.C as it is. The advantage is an easier migration in case
you get an update for embOS; there might be modifications in the embOS
module RTOSINIT.C.

Example

"Simple" interrupt-routine

void OS_USER_irq_func(void) {

#if defined(CPU_KS32C50100)
if (__INTPND&0x0800) {

__INTPND = 0x0800;
OSTEST_X_ISR0();

}
#elif defined(CPU_LH79531)

if (IRQ_STATUS & OSTEST_TIMER_IRQ_MASK) {
OSTEST_TIMER_IRQ_CLEAR = OSTEST_TIMER_IRQ_MASK;
OSTEST_X_ISR0();

}
#else

#error "Please define a CPU"
#endif

}

14/16 embOS for ARM and ARM Software Development Toolkit

  1996-2002 Segger Microcontroller Systeme GmbH

5.3. Interrupt-stack
Since ARM core based controllers have a separate stack pointer for interrupts,
there is no need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source
compatibility to other processors only and have no functionality.

5.4. Special considerations for the ARM 7 and ARM 9
None.

embOS for ARM and ARM Software Development Toolkit 15/16

 1996- 2002 Segger Microcontroller Systeme GmbH

6. STOP / WAIT Mode
In case your controller does support some kind of power saving mode, it should
be possible to use it also with embOS, as long as the timer keeps working and
timer interrupts are processed. To enter that mode, you usually have to imple-
ment some special sequence in function OS_Idle(), which you can find in
embOS module RTOSINIT.c.

7. Technical data

7.1. Memory requirements
These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. Using ARM mode, the minimum ROM requirement for the kernel itself
is about 2.500 bytes. In THUMB mode kernel itself does have a minimum ROM
size of about 1.700 bytes.
In the table below, you can find minimum RAM size for embOS resources.
Please note, that sizes depend on selected embOS library mode; table below
is for a release build.

embOS resource RAM [bytes]
Task control block 32
Resource semaphore 8
Counting semaphore 4
Mailbox 20
Software timer 20

8. Files shipped with embOS

Directory File Explanation
INC RTOS.H Include file for RTOS, to be included in every "C"-file

using RTOS-functions
LIB OS*.alf Libraries for all memory models and debug options
SRC Boot.s Low level assembler startup code
SRC RtosVect.s Assembler part of interrupt handler
SRC UserIRQ.c Frame for user interrupt function
SRC RtosInit.c Initializes the hardware, can be modified if required
SRC Main.c Frame program to serve as a start; C_Entry is the C

level entry point.

Any additional file shipped as example.

16/16 embOS for ARM and ARM Software Development Toolkit

  1996-2002 Segger Microcontroller Systeme GmbH

9. Index
H
Halt-mode.....................................15
I
Idle-task-mode..............................15
Installation......................................5
Interrupts13

Interrupt-stack.............................. 14
M
memory models 11
memory requirements 15
S
Stacks... 12

Stop-mode.................................... 15
T
target hardware 15
W
Wait-mode 15

	Contents
	About this document
	How to use this manual

	Using embOS with ARM Software Development Toolkit
	Installation
	First steps
	The sample application Main.c
	Stepping through the sample application Main.c using ARM Debugger

	ARM specifics
	CPU modes
	Available libraries
	Entry point for C code

	Stacks
	Task stack for ARM 7 and ARM 9
	System stack for ARM 7 and ARM 9
	Interrupt stack for ARM 7 and ARM 9
	Stack specifics of the ARM 7 and ARM 9 family

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt-stack
	Special considerations for the ARM 7 and ARM 9

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

