

embOS

Real Time Operating System

CPU & Compiler specifics for

ARM core with

ARM RealView Developer Kit 2.1

for STMicroelectronics

Document Rev. 1

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 3/29

 1996- 2005 Segger Microcontroller Systeme GmbH

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. Using embOS with ARM RealView Developer Kit .. 5

2.1. Installation.. 5
2.2. First steps .. 6
2.3. Stepping through the sample application Main.c using the integrated debugger. 9

3. Build your own application... 15
3.1. Required files for an embOS application .. 15
3.2. Change library mode.. 15

4. ARM specifics.. 17
4.1. CPU modes ... 17
4.2. Available libraries... 17

5. Stacks ... 18
5.1. Task stack for ARM 7 and ARM 9.. 18
5.2. System stack for ARM 7 and ARM 9 ... 18
5.3. Interrupt stack for ARM 7 and ARM 9 .. 18
5.4. Stack specifics of the ARM family.. 18

6. Heap.. 19
6.1. Heap management .. 19

7. Interrupts ... 20
7.1. What happens when an interrupt occurs? ... 20
7.2. Defining interrupt handlers in "C"... 20
7.3. Interrupt handling with vectored interrupt controller ... 21
7.4. Interrupt-stack switching .. 26
7.5. Fast Interrupt FIQ .. 26

8. STOP / WAIT Mode .. 27
9. Technical data... 27

9.1. Memory requirements .. 27
10. Files shipped with embOS.. 28
11. Index ... 29

4/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

1. About this document
This guide describes how to use embOS Real Time Operating System for the
STMicroelectronics ARM series of microcontrollers using ARM RealView
Developer Kit.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using ARM
based controllers with ARM RealView Developer Kit. Before actually
using embOS, you should read or at least glance through this manual in order
to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using ARM RealView Developer Kit. If you have no experience using embOS,
you should follow this introduction, because it is the easiest way to learn how to
use embOS in your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the ARM
based controllers using ARM RealView Developer Kit.

embOS for ARM and ARM RealView Developer Kit 5/29

 1996- 2005 Segger Microcontroller Systeme GmbH

2. Using embOS with ARM RealView Developer
Kit

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub
directories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice,
preserving the directory structure of the zip-file.

Assuming that you are using RealView Debugger to develop your application,
no further installation steps are required. You will find a prepared sample start
application, which you should use and modify to write your application. So
follow the instructions of the next chapter ‘First steps’.

You should do this even if you do not intend to use the project manager for your
application development in order to become familiar with embOS.

If for some reason you will not work with the project manager, you should:
Copy either all or only the library-file that you need to your work-directory. This
has the advantage that when you switch to an updated version of embOS later
in a project, you do not affect older projects that use embOS also.
embOS does in no way rely on ARM RealView Debugger project manager, it
may be used without the project manager using batch files or a make utility
without any problem.

6/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received several ready to go sample start projects
and it is a good idea to use one of these as a starting point of all your
applications.

To get your new application running, you should proceed as follows:

• Create a work directory for your application, for example c:\work
• Copy the whole folder ‘Start’ which is part of your embOS distribution into

your work directory
• Clear the read only attribute of all files in the new ‘start’ folder.
• Create a new workspace file (Menu File\New\Workspace)
• For a better overview setup the right panel window to be a “Process Control”

(Menu View\Pane Views\Process Control Pane)
• open the project file “Start_STR7xx.prj” for the STR7xx Starterkit with ARM

RealView Developer Kit “RealView Debugger (Menu
Project\Open Project…)

embOS for ARM and ARM RealView Developer Kit 7/29

 1996- 2005 Segger Microcontroller Systeme GmbH

• Now open a connection to your target (Menu: File\Connection\Connect To
Target) and select the appropriate device.

• Build the start project

Your screen should look like follows:

For latest information you should open the file start\ReadMe.txt.

8/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

2.2.1. The sample application Main.c
The following is a printout of the sample application main.c. It is a good starting-
point for your application. (Please note that the file actually shipped with your
port of embOS may look slightly different from this one)
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The 2 tasks are activated and execute until they run into the delay, then
suspend for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : Main.c
P urpose : Skeleton program for embOS
--------- END-OF-HEADER ---------------------------------*/

#include "RTOS.h"
#include "LED.h"

OS_STACKPTR int Stack0[128], Stack1[128]; /* Task stacks */
OS_TASK TCB0, TCB1; /* Task-control-blocks */

void Task0(void) {
 while (1) {
 LED_ToggleLED0();
 OS_Delay (50);
 }
}

void Task1(void) {
 while (1) {
 LED_ToggleLED1();
 OS_Delay (200);
 }
}

/**
*
* main
*
**/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 LED_Init(); /* initialize LED ports */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0);
 OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1);
 OS_Start(); /* Start multitasking */
 return 0;
}

embOS for ARM and ARM RealView Developer Kit 9/29

 1996- 2005 Segger Microcontroller Systeme GmbH

2.3. Stepping through the sample application Main.c using the
integrated debugger

To start the debugger click the checkbox “Load” in the Process Control Window
to download the image to target. You will usually see the main function (very
similar to the screenshot below). You may look at the startup code and have to
set a breakpoint at main. Now you can step through the program.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library; you can therefore only step into
it in disassembly mode. It initializes the relevant OS-Variables. Because of the
previous call of OS_IncDI(), interrupts are not enabled during execution of
OS_InitKern().
OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.
OS_Start() should be the last line in main, since it starts multitasking and
does not return.

10/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

Before you step into OS_Start(), you should set two break points in the two
tasks as shown below.

As OS_Start() is part of the embOS library, you can step through it in
disassembly mode only. You may press GO, step over OS_Start(), or step
into OS_Start() in disassembly mode until you reach the highest priority task.

embOS for ARM and ARM RealView Developer Kit 11/29

 1996- 2005 Segger Microcontroller Systeme GmbH

If you continue stepping, you will arrive in the task with lower priority:

12/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

Continuing to step through the program, there is no other task ready for
execution. embOS will therefore start the idle-loop, which is an endless loop
which is always executed if there is nothing else to do (no task is ready, no
interrupt routine or timer executing).
You will arrive there when you step into the OS_Delay() function in
disassembly mode. OS_Idle() is part of RTOSInit*.c. You may also set a
breakpoint there before you step over the delay in Task1.

embOS for ARM and ARM RealView Developer Kit 13/29

 1996- 2005 Segger Microcontroller Systeme GmbH

If you set a breakpoint in one or both of our tasks, you will see that they
continue execution after the given delay.

14/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

As can be seen by the value of embOS embOS embOS embOS timer variable OS_Time, shown in the
watch window, Task0 continues operation after expiration of the 50 ms delay.

embOS for ARM and ARM RealView Developer Kit 15/29

 1996- 2005 Segger Microcontroller Systeme GmbH

3. Build your own application
To build your own application, you should always start with a copy of the
sample start workspace and project. Therefore copy the entire folder “Start”
from your embOS distribution into a working folder of your choice and then
modify the start project there. This has the advantage, that all necessary files
are included and all settings for the project are already done.

3.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS
distribution are required and have to be included in your project:

• RTOS.h from sub folder Inc\
This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.
• RTOSInit_*.c from one CPU subfolder.
It contains hardware dependent initialization code for embOS timer and
optional UART for embOSView.
• init_*.s from one of the CPU subfolder.
It contains the low level initialization of the hardware and setup of the various
stack pointer.
• scat_*.scf from one of the CPU subfolder.
It contains the linker settings.
• One embOS library from the Lib\ subfolder
• RTOSVect.s from the Src\ subfolder.
It contains the low level interrupt handler entry for ARM CPUs running with
embOS.
• OS_Error.c from subfolder Src\ The error handler is used if any library other
than Release build library is used in your project.
• vector.s from the Src\ subfolder.
This file contains the ARM vector table
• retarget.c from the Src\ subfolder.
Since you use your own linker file (scatter file) some functions need to be
rewritten for the ARM RealView Developer Kit’s runtime library. The delivered
retarget.c file is already prepared for usage with embOS. If you want to modify
this file, please refer to the ARM Compilers and Libraries Guide
• Additional low level init code may be required according to CPU.

When you decide to write your own startup code, please use one of the init_*.s
as template. Also ensure, that main is called with CPU running in supervisor or
system mode.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions are called.
You should then modify or replace the main.c source file in the subfolder src\.

3.2. Change library mode

For your application you may wish to choose an other library. For debugging
and program development you should use an embOS -debug library. For your
final application you may wish to use an embOS -release library or a stack
check library.

16/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

Therefore you have to select or replace the embOS library in your project or
target:
• Replace the Linker options (Menu Project\Project Settings *BUILD) and

replace the OS*.a string with the desired library.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor

option. (Menu Project\Project Settings *Compile_arm*\Preprocessor)

embOS for ARM and ARM RealView Developer Kit 17/29

 1996- 2005 Segger Microcontroller Systeme GmbH

4. ARM specifics

4.1. CPU modes

embOS supports nearly all memory and code model combinations that ARM
RealView Developer Kit’s C-Compiler supports.
embOS was compiled with interwork options. Therefore it is required to compile
the projects with interwork option too.

4.2. Available libraries

embOS for ARM for ARM RealView Developer Kit is shipped with 6 different
libraries, one for each library type.
The libraries are named as follows:

OS<Mode>4L<LibMode>.a

Parameter Meaning Values

A: ARM mode Mode Specifies the CPU mode
T: THUMB mode

4 Specifies the CPU variant 4: core type4: ARM 7/9
L Endian mode L: Little

R: Release
S: Stack check
D: Debug
SP: Stack check + profiling
DP: Debug + profiling

LibMode Library mode

DT: Debug + trace

Example:
osT4LR.a the library for a project using THUMB mode, ARM 7/9 core, little
endian mode and release build library type.

18/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

5. Stacks

5.1. Task stack for ARM 7 and ARM 9

All embOS tasks execute in system mode. The stack-size required is the sum
of the stack-size of all routines plus basic stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the ARM 7/9, this minimum task stack size is about 68 bytes.

5.2. System stack for ARM 7 and ARM 9

The embOS system executes in supervisor mode. The minimum system stack
size required by embOS is about 136 bytes (stack check & profiling build)
However, since the system stack is also used by the application before the start
of multitasking (the call to OS_Start()), and because software-timers and
“C”-level interrupt handlers also use the system-stack, the actual stack
requirements depend on the application.
The size of the system stack can be changed by modifying value of
Len_SVC_Stack in the file init_*.s.

5.3. Interrupt stack for ARM 7 and ARM 9

If a normal hardware exception occurs, the ARM core switches to IRQ mode,
which has a separate stack pointer. To enable support for nested interrupts,
execution of the ISR itself in a different CPU mode than IRQ mode is
necessary. embOS switches to supervisor mode after saving scratch registers,
LR_irq and SPSR_irq onto the IRQ stack.
As a result, only registers mentioned above are saved on the IRQ stack. For the
interrupt routine itself, the supervisor stack is used.
The size of the interrupt stack can be changed by modifying value of
Len_IRQ_Stack in the file init_*.s. We recommend at least 128 bytes.

5.4. Stack specifics of the ARM family

Exceptions require space on the supervisor and interrupt stack. The interrupt
stack is used to store contents of scratch registers, the ISR itself uses
supervisor stack.

embOS for ARM and ARM RealView Developer Kit 19/29

 1996- 2005 Segger Microcontroller Systeme GmbH

6. Heap

6.1. Heap management

If you intend to use heap for dynamic memory allocation, the scatter file
(scat_*.scf) needs to be modified. Per default a heap of 4 kBytes are resevered:

Example

;;**
;;* SEGGER MICROCONTROLLER SYSTEME GmbH *
;;* Solutions for real time microcontroller applications *
;;**
;;* *
;;* (C) 2002-2005 SEGGER Microcontroller Systeme GmbH *
;;* *
;;* www.segger.com Support: support@segger.com *
;;* *
;;**
;;
;;--
;;File : scat_STR71x_ROM.scf
;;Purpose : Scatter file for use with ST STR71x to run with
;; internal ROM/RAM
;;---------------------------END-OF-HEADER------------------------------
;;
;
; This scatterloading descriptor file defines:
; one load region (STR71x) and a number of execution regions
; (FLASH & XRAM etc.)
;
; The region HEAP is used to locate the bottom of the heap
; The heap will grow up from this address
;
; The region STACKS is used to locate the top of the memory used to store
; the stacks for each mode. The stacks will grow down from this address
;

FLASH 0x40000000 0x01000000
{
; Addr. Flags Len
 FLASH 0x40000000 0x1FFFF
 {
 vectors.o (Vect, +First)
 init*.o (Init)
 * (+RO)
 }
; Addr. Flags Len
 XRAM 0x20000000 0x2D00
 {
 * (+RW,+ZI)
 }
; Addr. Flags Len
 STACK +0x0000 EMPTY 0x0300
 {
 }
; Addr. Flags Len
 HEAP +0x0 EMPTY 0x1000
 {
 }

}

20/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

7. Interrupts

7.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as the interrupts are enabled, the interrupt is executed
• the CPU switches to the Interrupt stack
• the CPU saves PC and flags in registers LR_irq and SPSR_irq
• the CPU jumps to the vector address 0x18
• embOS OS_IRQ_SERVICE: save scratch registers
• embOS OS_IRQ_SERVICE: save LR_irq and SPSR_irq
• embOS OS_IRQ_SERVICE: switch to supervisor mode
• embOS OS_IRQ_SERVICE: execute OS_irq_handler (defined in

RTOSINIT_*.C)
• embOS OS_irq_handler: check for interrupt source and execute timer

interrupt, serial communication or user ISR.
• embOS OS_IRQ_SERVICE: switch to IRQ mode
• embOS OS_IRQ_SERVICE: restore LR_irq and SPSR_irq
• embOS OS_IRQ_SERVICE: pop scratch registers
• return from interrupt

When using an ARM derivate with vectored interrupt controller, please ensure
that OS_IRQ_SERVICE is called from every interrupt. The interrupt vector itself
may then be examined by the “C”-level interrupt handler in RTOSInit*.c.

7.2. Defining interrupt handlers in "C"

Interrupt handlers called from embOS interrupt handler in RTOSInit*.c are
just normal “C”-functions which do not take parameters and do not return any
value.
The default C interrupt handler OS_irq_handler() in RTOSInit*.c first calls
OS_Enterinterrupt() or OS_EnterNestableInterrupt() to inform
embOS that interrupt code is running. Then this handler examines the source
of interrupt and calls the related interrupt handler function.
Finally the default interrupt handler OS_irq_handler() in RTOSInit*.c calls
OS_LeaveInterrupt() or OS_LeaveNestableInterrupt() and returns
to the primary interrupt handler OS_IRQ_SERVICE().
Depending on the interrupting source, it may be required to reset the interrupt
pending condition of the related peripherals.

Example

"Simple" interrupt-routine

void Timer_irq_func(void) {
 if (__INTPND & 0x0800) { // Interrupt pending ?
 __INTPND = 0x0800; // reset pending condition
 OSTEST_X_ISR0(); // handle interrupt
 }
}

embOS for ARM and ARM RealView Developer Kit 21/29

 1996- 2005 Segger Microcontroller Systeme GmbH

7.3. Interrupt handling with vectored interrupt controller

For ARM derivates with built in vectored interrupt controller, embOS uses a
different interrupt handling procedure and delivers additional functions to install
and setup interrupt handler functions.
When using an ARM derivate with vectored interrupt controller, please ensure
that OS_IRQ_SERVICE() is called from every interrupt. This is default when
startup code and hardware initialization delivered with embOS is used.
The interrupt vector itself will then be examined by the “C”-level interrupt
handler OS_irq_handler() in RTOSInit*.c.
You should not program the interrupt controller for IRQ handling directly. You
should use the functions delivered with embOS.

The reaction to an interrupt with vectored interrupt controller is as follows:

• embOS OS_IRQ_SERVICE() is called by CPU or interrupt controller.
• OS_IRQ_SERVICE() saves registers and switches to supervisor mode.
• OS_IRQ_SERVICE() calls OS_irq_handler()(in RTOSInit*.c).
• OS_irq_handler() examines the interrupting source by reading the

interrupt vector from the interrupt controller.
• OS_irq_handler() informs embOS that interrupt code is running by a call

of OS_EnterNestableInterrupt() which re-enables interrupts.
• OS_irq_handler() calls the interrupt handler function which is addressed

by the interrupt vector.
• OS_irq_handler() resets the interrupt controller to re-enable acceptance

of new interrupts.
• OS_irq_handler() calls OS_LeaveNestableInterrupt() which

disables interrupts and informs embOS that interrupt handling finished.
• OS_irq_handler() returns to OS_IRQ_SERVICE().
• OS_IRQ_SERVICE() restores registers and performs a return from interrupt.

Please note, that different ARM CPUs may have different versions of
vectored interrupt controller hardware and usage of embOS supplied
functions varies depending on the type of interrupt controller. Please refer
to the samples delivered with embOS which are used in the CPU specific
RTOSInit module.

To handle interrupts with vectored interrupt controller, embOS offers the
following functions:

22/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

7.3.1. OS_ARM_InstallISRHandler(): Install an interrupt handler

Description
OS_ARM_InstallISRHandler() is used to install a specific interrupt vector when
ARM CPUs with vectored interrupt controller are used.

Prototype
OS_ISR_HANDLER* OS_ARM_InstallISRHandler (int ISRIndex,
 OS_ISR_HANDLER* pISRHandler);

Parameter Meaning

ISRIndex Index of the interrupt source, normally the interrupt vector
number.

pISRHandler Address of the interrupt handler function.

Return value
OS_ISR_HANDLER*: the address of the previous installed interrupt function,
which was installed at the addressed vector number before.

Add. information
This function just installs the interrupt vector but does not modify the priority
and does not automatically enable the interrupt.

embOS for ARM and ARM RealView Developer Kit 23/29

 1996- 2005 Segger Microcontroller Systeme GmbH

7.3.2. OS_ARM_EnableISR(): Enable specific interrupt

Description
OS_ARM_EnableISR() is used to enable interrupt acceptance of a specific
interrupt source in a vectored interrupt controller.

Prototype
void OS_ARM_EnableISR(int ISRIndex)

Parameter Meaning
ISRIndex Index of the interrupt source which should be enabled.

Return value
NONE.

Add. information
This function just enables the interrupt inside the interrupt controller. It does not
enable the interrupt of any peripherals. This has to be done elsewhere.
For ARM CPUs with VIC type interrupt controller, this function just
enables the interrupt vector itself. To enable the hardware assigned to
that vector, you have to call OS_ARM_EnableISRSource() also.

24/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

7.3.3. OS_ARM_DisableISR(): Disable specific interrupt

Description
OS_ARM_DisableISR() is used to disable interrupt acceptance of a specific
interrupt source in a vectored interrupt controller which is not of the VIC type.

Prototype
void OS_ARM_DisableISR(int ISRIndex);

Parameter Meaning
ISRIndex Index of the interrupt source which should be disabled.

Return value
NONE.

Add. information
This function just disables the interrupt controller. It does not disable the
interrupt of any peripherals. This has to be done elsewhere.
When using an ARM CPU with built in interrupt controller of VIC type,
please use OS_ARM_DisableISRSource() to disable a specific interrupt.

embOS for ARM and ARM RealView Developer Kit 25/29

 1996- 2005 Segger Microcontroller Systeme GmbH

7.3.4. OS_ARM_ISRSetPrio(): Set priority of specific interrupt

Description
OS_ARM_ISRSetPrio () is used to set or modify the priority of a specific
interrupt source by programming the interrupt controller.

Prototype
int OS_ARM_ISRSetPrio(int ISRIndex, int Prio);

Parameter Meaning
ISRIndex Index of the interrupt source which should be modified.
Prio The priority which should be set for the specific interrupt.

Return value
Previous priority which was assigned before the call of OS_ARM_ISRSetPrio().

Add. information
This function sets the priority of an interrupt channel by programming the
interrupt controller. Please refer to CPU specific manuals about allowed priority
levels.
This function can not be used to modify the interrupt priority for interrupt
controllers of the VIC type. The interrupt priority with VIC type controllers
depends on the interrupt vector number and can not be changed.

26/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

7.4. Interrupt-stack switching

Since ARM core based controllers have a separate stack pointer for interrupts,
there is no need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source
compatibility to other processors only and have no functionality.
The ARM interrupt stack is used for primary interrupt handler in RTOSVect.s
only.

7.5. Fast Interrupt FIQ

FIQ interrupt can not be used with embOS functions, it is reserved for high
speed user functions.
FIQ is never disabled by embOS.
Never call any embOS function from an FIQ handler.
Do not assign any embOS interrupt handler to FIQ.

When you decide to use FIQ, please ensure that FIQ stack is initialized during
startup and an interrupt vector for FIQ handling is included in your application.

embOS for ARM and ARM RealView Developer Kit 27/29

 1996- 2005 Segger Microcontroller Systeme GmbH

8. STOP / WAIT Mode
In case your controller does support some kind of power saving mode, it should
be possible to use it also with embOS, as long as the timer keeps working and
timer interrupts are processed. To enter that mode, you usually have to
implement some special sequence in function OS_Idle(), which you can find in
embOS module RTOSINIT.c.

9. Technical data

9.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. Using ARM mode, the minimum ROM requirement for the kernel itself
is about 2.500 bytes. In THUMB mode kernel itself does have a minimum ROM
size of about 1.700 bytes.
In the table below, you can find minimum RAM size for embOS resources.
Please note, that sizes depend on selected embOS library mode; table below
is for a release build.

embOS resource RAM [bytes]
Task control block 32
Resource semaphore 16
Counting semaphore 8
Mailbox 20
Software timer 20

28/29 embOS for ARM and ARM RealView Developer Kit

  1996-2005 Segger Microcontroller Systeme GmbH

10. Files shipped with embOS
Directory File Explanation
root *.pdf Generic API and target specific

documentation.
root Release.html Version control document.
root embOSView.exe Utility for runtime analysis, described in

generic documentation.
START Start*.prj Sample project files for ARM RealView

Debugger IDE.
START\INC RTOS.H Include file for embOS, to be included in

every "C"-file using embOS –functions.
START\LIB os*.a embOS libraries
START\SRC main.c Sample frame program to serve as a

start.
START\SRC OS_Error.c embOS runtime error handler used in

stack check or debug builds.
START\SRC retarget.c ARM runtime library initialization
START\SRC RTOSVect.s embOS interrupt handler
START\SRC Vector.s ARM vector table.
START\CPU_* *.* CPU specific hardware routines for

various CPUs.

Any additional file shipped as example.

embOS for ARM and ARM RealView Developer Kit 29/29

 1996- 2005 Segger Microcontroller Systeme GmbH

11. Index
F
First steps 6
H
Halt-mode 27
Heap... 19
I
Idle-task-mode 27
Installation 5
Interrupt stack 18, 26
Interrupts...................................... 20
Interrupts, FIQ 26
L
Len_SVC_Stack........................... 18
Libraries

available17
change16

M
Memory models............................17
memory requirements27
O
OS_ARM_DisableISR()...............24
OS_ARM_EnableISR()................23
OS_ARM_InstallISRHandler()22
OS_ARM_ISRSetPrio()25
OS_irq_handler()20
OS_IRQ_SERVICE()20
R
Required files15

S
Sample

main() 8
Stacks .. 18
Stacks, interrupt stack.................. 18
Stacks, system stack..................... 18
Stop-mode 27
System stack 18
T
target hardware 27
W
Wait-mode 27

	Contents
	About this document
	How to use this manual

	Using embOS with ARM RealView Developer Kit
	Installation
	First steps
	The sample application Main.c

	Stepping through the sample application Main.c using the integrated debugger

	Build your own application
	Required files for an embOS application
	Change library mode

	ARM specifics
	CPU modes
	Available libraries

	Stacks
	Task stack for ARM 7 and ARM 9
	System stack for ARM 7 and ARM 9
	Interrupt stack for ARM 7 and ARM 9
	Stack specifics of the ARM family

	Heap
	Heap management

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt handling with vectored interrupt controller
	OS_ARM_InstallISRHandler(): Install an interrupt handler
	OS_ARM_EnableISR(): Enable specific interrupt
	OS_ARM_DisableISR(): Disable specific interrupt
	OS_ARM_ISRSetPrio(): Set priority of specific interrupt

	Interrupt-stack switching
	Fast Interrupt FIQ

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

