embOS

Real Time Operating System

CPU & Compiler specifics for
ARM core with
ARM RealView Developer Kit 2.1

for STMicroelectronics

Document Rev. 1

) E—
/SEGGER

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/29 embOS for ARM and ARM RealView Developer Kit

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 3/29

Contents
L0 1 (=T 01 £ PP 3
1. ADOUL thiS AOCUMENT ...t e et e e e e e e e e e eaab e e e e e eeeeeees 4
1.1. HOW t0 USE thiS MANUAL........ceiiiiiiiiiiiiiiiiiiiiieii it 4
2. Using embOS with ARM RealView Developer Kit ... 5
2.0 INSTAIALION. ... 5
A e | €5 B = 1T 6
2.3. Stepping through the sample application Main.c using the integrated debugger. 9
3. Build your oWn appliCatiON........coiieiiiiiiie e aaeaa 15
3.1. Required files for an embOS applicationccceeiiiiiiiiiiiiiiiiii e, 15
3.2. Change lIbrary MOde.........oouuuiiiii e 15
N 1Y/ IS =T o 1 o0 17
o I O U I 0T To [PP S 17
4.2. Available lIDraries. ... 17
TS = T P SUUPPPPPRRTPPIN 18
5.1. Task stack for ARM 7 and ARM O........uuuuuuuimmiiiiiiiiiiiiiiii s 18
5.2. System stack for ARM 7 and ARM 9ouuiiiiiiii e 18
5.3. Interrupt stack for ARM 7 and ARM Q......ouiiiiiiiiiecie e 18
5.4. Stack specifics of the ARM family..........ccoooiiiiiiiiii e 18
LT o [T T o PP PPRRTRN 19
6.1. Heap ManagemENTu ettt e et e et e e e e e e e e e e e e eaa e 19
A L1 (=] ¢ (0] o) £ PPN 20
7.1. What happens when an interrupt OCCUIS?ooeeiieieiiiiiiii et e e 20
7.2. Defining interrupt handlers in "C" ..o e 20
7.3. Interrupt handling with vectored interrupt controller..............cccoieiiiiiiiiiiiiiinnnnn. 21
7.4. Interrupt-Stack SWILCHINGuuiii i e s 26
7.5. Fast INterrupt FIQ ...t r e e s 26
8. STOP I/ WAIT MOAE ... 27
S B I =Tod o g o= | e F= = W TSRPPPP 27
S 0 I \V =T g T YA (=0 (81T =] L S 27
10. Files shipped with @mbOSo 28
5 R 0T [G RR 29

O 1996- 2005 Segger Microcontroller Systeme GmbH

4/29 embOS for ARM and ARM RealView Developer Kit

1. About this document

This guide describes how to use embOS Real Time Operating System for the
STMicroelectronics ARM series of microcontrollers using ARM RealView
Developer Kit.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using ARM
based controllers with ARM RealView Developer Kit. Before actually
using embOS, you should read or at least glance through this manual in order
to become familiar with the software.

Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using ARM RealView Developer Kit. If you have no experience using embQOS,
you should follow this introduction, because it is the easiest way to learn how to
use embOS in your application.

Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the ARM
based controllers using ARM RealView Developer Kit.

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 5/29

2. Using embOS with ARM RealView Developer

Kit

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.
In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub
directories. Make sure the files are not read only after copying.

If you received a zip-file, please extract it to any folder of your choice,
preserving the directory structure of the zip-file.

Assuming that you are using RealView Debugger to develop your application,
no further installation steps are required. You will find a prepared sample start
application, which you should use and modify to write your application. So
follow the instructions of the next chapter ‘First steps’.

You should do this even if you do not intend to use the project manager for your
application development in order to become familiar with embOS.

If for some reason you will not work with the project manager, you should:

Copy either all or only the library-file that you need to your work-directory. This
has the advantage that when you switch to an updated version of embOS later
in a project, you do not affect older projects that use embOS also.

embOS does in no way rely on ARM RealView Debugger project manager, it
may be used without the project manager using batch files or a make utility
without any problem.

O 1996- 2005 Segger Microcontroller Systeme GmbH

6/29 embOS for ARM and ARM RealView Developer Kit

2.2. First steps

After installation of embOS (- Installation) you are able to create your first
multitasking application. You received several ready to go sample start projects
and it is a good idea to use one of these as a starting point of all your
applications.

To get your new application running, you should proceed as follows:

» Create a work directory for your application, for example c:\work

* Copy the whole folder ‘Start’ which is part of your embOS distribution into
your work directory

e Clear the read only attribute of all files in the new ‘start’ folder.

» Create a new workspace file (Menu File\New\Workspace)

* For a better overview setup the right panel window to be a “Process Control”
(Menu View\Pane Views\Process Control Pane)

* open the project file “Start STR7xx.prj” for the STR7xx Starterkit with ARM
RealView Developer Kit “RealView Debugger (Menu
Project\Open Project...)

& R¥YDEBUG<Start_STR71x>
File Edit Find Wiew Project Tools Debug Help

Dle | & BiE e ol o=
File: Imain_led.c Find; I j Lire: I | @ -

rocess Conkro
fKTW*TW*TWRK*X*WXKTXKTWKTWRTWRKWXKTXKTWKTW*TWRK?K*WRKTK*TW* TUDE I Ualue

*

i main
*
ﬁwwwwwwwwwﬁwwﬁwwﬁww*wwwwwwﬁwwﬁwwﬁwwﬁwwwwwwwwwﬁwwﬁwwﬁww*www;

int main(woid) {

05 _IncDIi): A% Initially disable interrupts */F
05_InitKerni): /% dnitialize 03 7
05_InitHW(): /% initialize Hardware for 03 i
LED_Init(j; S% dnitialize LED ports e
/% ¥ou need to create at least one task here ! 7

05_CREATETASE («TCEQ, "HF Task™, Task0, 100, Stack0):

03 CREATETASK(cTCEL, "LP Task™, Taskl, G50, 3tackl):
05_Starti): f* Start multitasking 7
return 0;

}

I » I- Src main_led.c ﬂ

4|2 process {ep /|]

-

>|v|
=| Name | value B Hame | value = -l
. [— .
=
|| 4| > [\ con stack {Locals fstati 4] | 0| |ES)] watent Svestenz fwvaten <] | B2 =l
= > connect,route 1 ;I
& |7 connect 4
Advanced info searched in: Local Advanced info, CHIP=STRVLOFZIZ, CHIP=3TRYLOFZZ, CHIP=3TR7LOFZIZ
Using Advanced info based on Processor 'ARM!'
Using Advanced info based on 'Default' or 'All'
AFM FealView ICE HMicro Edition
TurboTAP FPGA Simulator
L Cind 4 SO £ Build £ FileFind ASrcCtrI £Log f ﬂ >|v|
Current Stake of Processor [tn1, Col1 [[[LI v

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 7129

* Now open a connection to your target (Menu: File\Connection\Connect To

%+ Connection Control { Administratirvdebug.brd)

Hame | pescription

e ARM-ARM-TISE FealV¥iew ICE Micro Edition
%ST ATRT1I0FZZ EVI-ME for 3T-STRT10FZZ MCU Toolkit
ﬂ'El AEMYTDMI.. ARMTTDMI on localhost |
$ST STRILO-EY.| PERVI-ME for 3T-STRET7L0-EVAL MCU Toolkit
ﬁST—STRTZEI EVI-ME for STR720 MCU

* Build the start project

Your screen should look like follows:
, R¥DEBUG «<5tart_STR71x> = @ARMTDMI_0:ARM-ARM-USE
[Fle Edit Find “iew Project Tools Debug Help

O Sd ' BREa PR 1+ L& EEH(DEE e
F|Ie.|SrC Flnd.l J L|ne.|_|@ |

No source for context: <Unknowns ;I ‘rocess Control
Click to Load 'Start STR71M.pri‘\RAM\Start STR71x.axf' Type I Ualue

#F LRNTTDNI PC=0x00000004
Elmage Gtart_STR71x.axt

@ | State: |Stopped

[JLoaad Not Loaded
Project <Aato>
Settin... <No Projects:
Sources From Image

L i

<| 3 |\ Dsm 4 Src 4 main_led.e f ﬂ » | v| M‘-M—-\Dlap ﬂ j
Hame | value Bl Name | value <NoAddr> =

<0x400025L..] <Urknown Locatios ke _— <Hoiddrs

B <Nokddr’-
£0x400024C... | <Inknowm Locations P— e

o & <MoAddr:

- g | <Hoaddres
G| 42 [ol steck JLocais Aotan <] || B [wetem Swvetenz Svaeh] 0| B conaaes =l
s=—csoososssosossoooooososossooossossooosossosssossosssossossoososssossossosssoosooes -]

Total RO &Size (Code + RO Data) 10110 { 9.87kE)
Total B 3Hize (RW Data + ZI Data) 1691 { 1.65kE)
Total ROM Size (Code + RO Data + RW Data) 10110 { 9.87kE)

Cmed £ StdlC } Biuilcd __-’FiIeFind KSrcCtrI ,{"Log { 4 I |

Currently opened file |1, Colt [[[LI v

L

For latest information you should open the file start\ReadMe.txt.

O 1996- 2005 Segger Microcontroller Systeme GmbH

8/29 embOS for ARM and ARM RealView Developer Kit

2.2.1. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application. (Please note that the file actually shipped with your
port of embOS may look slightly different from this one)

What happens is easy to see:

After initialization of embOS; two tasks are created and started

The 2 tasks are activated and execute until they run into the delay, then
suspend for the specified time and continue execution.

/**

* SEGGER M CROCONTROLLER SYSTEME GrbH

* Solutions for real time nmicrocontroller applications

R R I b O S kO O I S S o O O
File : Main.c

P urpose : Skeleton programfor enbCs

--------- END- OF- HEADER - - - === === =- s mmmmmmmmo oo e ¥

#i ncl ude "RTGCS. h"
#i ncl ude "LED. h"

OS_STACKPTR int StackO[128], Stackl1[128]; /* Task stacks */
OS_TASK TCBO, TCB1; [* Task-control -bl ocks */

voi d TaskO(void) {
while (1) {
LED Toggl eLEDO() ;
CS_Del ay (50);

}

voi d Taskl(void) {
while (1) {
LED Toggl eLED1();
CS_Del ay (200);
}
}

/**
*
* .
nmal n
*

**/

int main(void) {

OS IncDl(); /* Initially disable interrupts */
CS I nitKern(); /[* initialize OS */
OS I nitHW); /* initialize Hardware for OS */
LED Init(); /* initialize LED ports */
/* You need to create at |east one task here ! */

OS_CREATETASK(&TCBO, "HP Task", TaskO, 100, StackO);
OS_CREATETASK(&TCB1, "LP Task", Taskl, 50, Stackl);

S _Start(); /[* Start multitasking */
return O;

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit

9/29

2.3. Stepping through the sample application Main.c using the

integrated debugger

To start the debugger click the checkbox “Load” in the Process Control Window
to download the image to target. You will usually see the main function (very
similar to the screenshot below). You may look at the startup code and have to
set a breakpoint at main. Now you can step through the program.

OS I ncDl () initially disables interrupts.

OS_I ni tKern() is part of the embQOS library; you can therefore only step into
it in disassembly mode. It initializes the relevant OS-Variables. Because of the
previous call of OS_I ncDi (), interrupts are not enabled during execution of
OS InitKern().

OS I nit HW) is part of RTOSInit_*.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.

OS _Start () should be the last line in main, since it starts multitasking and
does not return.

, R¥YDEBUG{Start_STR71x) = @ARM7TDMI_0:ARM-ARM-USE
- File Edit Find Mew Project Tools Debug Help

DSH {B2REBTFHITORH 1+ I LS SHDET e

§2 & | state: | Stopped

File: |main_led.c Find:l j Line:l | v|
ks J,n’ﬁ‘ﬂ‘ﬁ'ﬁﬂ‘1?1?ﬂ‘ﬁwﬂ‘ﬁﬁ'ﬁﬁﬁ'ﬁﬂ‘ﬁ'ﬁﬂ‘ﬁﬁﬁﬁwﬁﬁwﬁﬁwﬁﬁwﬁﬁWﬁﬁﬁﬁﬁﬁwﬁﬁwﬁﬁwﬁﬁﬁﬁﬁﬁﬁ TUDE Ualue e |
" i _ #FARNTTDMI | PC=0x200005F8
W wain Tuage Start_STR71.axf
7 W W Load Inage+Synbols
- 1‘%‘ﬂ‘%‘%‘ﬂ‘*1‘ﬂ‘*1‘**1‘**1‘**1‘*ﬂ‘****1‘**1‘**1‘**1‘*********?**?**?******;’ PrDjECt Stﬁrt SITR?].X
. i i Settin. <Saved:
- Eh3ources From Project
05_IncDI(): /% Initially disable interrupts */ COMPILE=arm
05 _InitEerni): A% initialize 03 S LED.C
05_InitHW): 4% initialize Hardware for 03 4 Main LED.c
LED_Initi): /% initialize LED ports i 0% Error.c
A7 ¥ou need to create at least one task here ! w4 reEarget.c
05_CREATETASK(&TCEO, "HP Task™, Task0, 100, Stack0); RTOSTHIT STR7lx. o
0%_CREATETASK(&TCELl, "LP Task", Taskl, 50, Stackl); UserIRQ.: =
05_Start(): A% Start multitasking 4 £ COMPILE=arm cpp
return 0; {0 | COMPILE-thumb
4 EE ASSEMBLE=arn
heap.s
1 i
4| [\, psm fsre fvectors s j main_led.e ﬂ j:l M __M:i_,\jhdap ﬂ jll
Hame | value Bl Name | value 00000000(0xESSFFO1S| OxESSFFOLE =
Int main(void) Line £35 s 00000008 | 0xESSFFOLE | OxESSFFOLE
FE— rt entry(void I:l 00000010 0xESSFFOLE | O=xELA00000
—— 00000018 | O<ESSFFOLL) OXESSFFOLL
= . 00000020 0x20001AE0 Ox20000030C
_I.:' Sl 00000028 | 0x20000040 0x20000044
= | 00000030 | 0xz20000048 OxZ0001928
i ﬂﬁ‘ Call Stack 4 Locals 2913“ J I = ﬂ:[\,_wmcm 4 Watch? ZWatch d| Ij =l nnnnnn=a nz?nnnnnar l‘ltF‘hF‘F‘F"F‘F"F‘ i
Total RO $ize {Code + RO Data) 7658 { 7.48kE)
Total RY Size (BW Data + ZI Data) 1687 { Ll.65KE)
Total ROM Zize (Code + RO Data + R Data) 7658 { 7.48KE) r
cmd £ St 3 Build {FileFind £Srectr flog f 1| | 3R
Current State of Processar Ln 35, Cal 1 | | | Wl_ v

O 1996- 2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit

Before you step into OS_Start(), you should set two break points in the two
tasks as shown below.

¥DEBUG(Start_STR71x) = @ARMZ7TDMI_0:ARM-ARM-USB
File Edit Find WYiew Project Debug Help

O HEHl B2 E D™D

Tools

File: [main_led.c Find | ﬂ Line: | | - -
05_STACKPTE int Stack0[128], Stackl[128]; /% Task stacks */ Type Ualue]
03_TASK TCEQ, TCBL; /% Tagk-control-blocks */ #® LOM7TDMI PC=0xZ00005F5
]) Image dtart_5STR71x.axt
void TaskO(woid) { W Load Inage+Symhols
while (11 { Project | Htart STR71x
* LED_ToggleLEDO() ; Settin. <Saweds
05_Delay (500 Frgources From Praject
} COMFILE=arm
¥ LED.
Main LED.c
void Tasklivoid) { 08 Error.c
while (1) { reEarget.c
. LED_TogglelEDL(]}; RTOSINIT 3TR7IX.c
05_Delay (200): UserIROQ.c b
& } D COMPILE=arm cpp
vt COMPILE=thunh
i ASSEMELE=arm
w J,!’ﬁﬁ'ﬁﬁﬁ'ﬁ‘ﬁﬁ'ﬁﬂ‘ﬁ'ﬁﬂ‘ﬁﬁ‘ﬂ‘ﬁﬁ'ﬂ‘ﬁﬁ'ﬁﬁﬁ'ﬁﬁﬁ'ﬁﬂ‘ﬁﬁﬂ‘ﬁﬁ‘ﬁﬁwﬁﬁwﬁﬁwﬁﬁfﬁﬁﬁﬁﬁﬁﬁﬁﬁwﬁﬁ % hean.s
a» W@ vectors.s j main_ledc | ﬂ 'l'I ‘ P> Process :Map J J—I
Hame | varue B Hame 00000000 0xESSFFOLE | 0xESSFFOLE|)

-
-1}
=
=
L]
41 A

00000008 | OxESSFFOLE OxESSFFOLS
00000010 OxESSFFOLE OxElA00000
00000018 |OxESSFFO14) OxESSFFOLL
00000020 0x2000LAED) Ox20000030
4| 00000028 | 020000040 | Gxz0000044
G| 000000350 0x20000048 0x20001925
=l annannzal e Fnnnnnar | vFiFFERTE

Line
_ rt entryivoid)

int main(woid)

unknowmn

_,-' =
| 4| » [cal stack_{Tocals fotati «| | o B34 | watoht watona fwaten 4| | |

=
[

Total RO Size (Code + RO Data) TE55 [7. 45KE)
Total RV Size (BW Data + ZI Data) 1687 { 1.G5KE)
Total ROM Hize (Code + RO Data + EW Data) 76558 [7.45kE) J
Cmd £ Stdio 4 Build { FileFind KSrcCtrI flog f 4 | I >|v|
Current State of Processor |Ln 35, Col 1 [[[LI i

As OS Start() is part of the embOS library, you can step through it
disassembly mode only. You may press GO, step over OS_Start (), or step
into OS_St art () in disassembly mode until you reach the highest priority task.

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit

11/29

RYDEBUG(Start_STR71x) = @ARM7TDMI_0: ARM-ARM-USE

[Fle Edit Find “iew Project Tools Debug Help

DSH ‘2R EbrtmetR 1+ sSds|m=EE

§2 & | state: | Stopped

j Line:|_| v|

File: | main_led.c Fin: I

05_STACKPTR int Stack(Q[128], Svackl[l2d]: /% Task stacks #/
053_TASE TCEO, TCE1l: /% Task-control-blocks */

woid Task0Oivoid) {
while (1) {
[LED ToggleLEDO(): |
03_Delay (50);
i

}

woid Taskliwvoid) {
while (1) {
- LED_ToggleLEDL()
03_Delay (200);
i +
T

S AT AN A A AR LTLEEERTANELL

< | ;|- vectors.s j main_led.o /

Ualue N

0
[

N | - 4| * . Process {hap f

Type
#F LLIMTTDMT PC=0x200005D0C
Tmage dtart_STR71x.axf
W Load Inage+Synbols
Project Start STR71x
Settin. <3aved:
Eh3ources From Project
COMPILE=arm
LED. C
Main LED.c
03 _Error.c
retarget.c
RTOSTHIT_STR71x.c
UzerIRQ.c _—
| COMPILE=arm_cpp

COMPILE=thumb
AZSEMELE=arm

heap.s
ﬂ >|-|

Bl yame B poooo000| 0xE5SFFOLE| 0xESSFFOLE| -]
s T T T = | 00000008 | 0xESSFFOLE| 0xESSFFOLE
00000010| 0xESSFFOLE | OxE1A00000

wold Task0(void) Line #15

Sl 4| 1 o stack {Locals Fstati 4]

| &

00000018 | O<ESSFFOLL) OXESSFFOLL

| 00000020 0xZ0001AED | 020000030

4l 00000028 | 0x20000040 | 0x20000044
00000030| 020000045 | 0x200019E5

=l nnnnnn=al O ?O0nnnar | nyFaFFRFEEE ;I

Total RO 3ize (Code + RO Data) 7658 |
Total RW 3%ize (BEW Data + ZI Data) 1eg7 |
Total ROM 3ize (Code + RO Data + BRI Data) 76558 |

Current State of Processar

|Lr 35, Col 1 [[

If you continue stepping, you will arrive in the task with lower priority:

O 1996- 2005 Segger Microcontroller Systeme GmbH

12/29

embOS for ARM and ARM RealView Developer Kit

, RYDEBUG(Start_STR71x) = @ARMZTDMI_0:ARM-ARM-USE
-Eile Edit Find WYiew Project Tools Debug Help

O SH ‘2R EBPmRe R+ LES D= e

File: | main_led.c Find:l j Line:l | -

0%_STACKPTRE int StackO[l28], Stackl[l2g8]; /* Task stacks #/ Value
03_TASK TCEO, TCEL: /% Task-control-blocks */ PC=0x200005EC
Elmage dtart_STR71x.axf
woid Task0O{woid) { W Load Tnage+3ymbols
while (1) { Project Start STR71x
* LED_TogglelED0(}; Settin. <Saved
03_Delay (50); FFSources From Project
} COMPILE=arm
1 LED.c
Main LED.c
void Taskl(void)] { 05_Error.c
while (1) { reEarget.C
[LED ToggleLEDL(): | RTOSINIT_STR71X.c
0% _Delay (200); UserIRQ.o —
v] | COMPILE=arm_cpp
Yol £ COMPILE=thumb
i ASSEMELE=arm
e J,-’t?ﬂ‘t?ﬂ‘#1‘****ﬂ‘tﬂ‘ﬂ‘t?ﬂ‘t?*t?ﬂ‘ﬂ‘?ﬂ‘ﬂ‘t*ﬂ‘t%‘ﬂ‘#?*t?*t?*ﬁ***t*ﬁt?ﬁ#?*t % hEﬁp.S
4| > [\\pem f5re fvectorss j main_led.c 1« 2=l | 4] J: Process {Map / I KB
=| Name | value B[Hame | value B[ggooooon| oxessrrols| oxEserrols) <]
e e R = = | 00000008 | (xESSFFOLE 0xESIFFOLE
void Tagkl(veid) Line #22 L 00000010 | 0xESSFFOLE OxE1A00000

00000018 |OxESSFFO14) OxESSFFOLL
| 00000020 | Dx2000LAED OxZ0000050C
| 00000028 | 0x20000040| 0%20000044
00000030 0x20000048 0xZ0001925
NOnANA3R| M= 000n04ar ! ivFaFFFREE LI

4| /» [, cal stack {Locals Jstati 4] | 4| p [westert fwiatenz fwaen <] |] 2

B S mm o mm oo ———soo—s—o—m———o—o———m——o—s——omm——o—s—omm—c—o—c—m—so—oc= -]
=
Total RO Size (Code + RO Data) 7658 { 7.48KkE)
Total R &Size (RW Data + ZI Data) 1687 { l.65KE)
Total ROM Size (Code + RO Data + RV Data) 7658 { 7.48KkE) r

cmed S0 j Buid {FileFind £srectr flog f 1] | v~
[ln 35, ol 1 [[[MM [

Current State of Processor

Continuing to step through the program, there is no other task ready for
execution. embOS will therefore start the idle-loop, which is an endless loop
which is always executed if there is nothing else to do (no task is ready, no
interrupt routine or timer executing).

You will arrive there when you step into the OS Del ay() function in
disassembly mode. OS 1 dl e() is part of RTOSI nit*. c. You may also set a
breakpoint there before you step over the delay in Task1.

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 13/29

R¥YDEBUG{Start_STR71x) = @ARM7TDMI_0:ARM-ARM-USE
[Fle Edit Find “iew Project Tools Debug Help

DSH ‘2R EbrtmetR 1+ sSds|m=EE

§2 & | state: | Stopped

File: [rtosinit_str71x.c Find:l j Line: l_ | v|
* [like toggeling an output or increwmenting a counter) ;I |
i Type Ualue -
woid 05 _Tdle(woid) | 44 Idle loop: No task is ready to exec # LLMTTDMT PC=0x20000364
while (L] (] Tuage Start STR71x.axf
+ W Load Inage+Synbols
} Project Start STR71x

Settin. <3aved:

fﬁ*#ﬁ*#**#*ﬁ#*ﬁ#*ﬁ**ﬁ*#ﬁﬂ'#**#*ﬁ##ﬁ**ﬁ*#ﬁ*#**#**#*ﬁ#*ﬁ*#ﬁ*#ﬁ*#**#*ﬁ#*** .
Eh3ources From Project

* COMPILE=arm

b Get time [cycles] LED.c

* Main LED.c

* Thisz routine iz required for task-info wia ewb05View or high | 0% Error.c

* resolution time maesurement functions. reEarget.c

* It returhs the systen time in timer clock cycles. | BTOSINIT STR71x.cC
i UserIR].c b
03_U32 03_GetTime Cycles(woid) { | COMPILE=arm cpp

05_U32 time; COMFPILE=thumh
03_Il6 count; ASSEMELE=arm
] heap.s

0
[

n O TTEE ST i
> |- Sre j rtosint_str71xe {lede fvectors s+dmain_led.e 4| | Ahd| | 4] > ' Process {Map / il B
B yame | value - B gooooooo| oxEseFFoLs| oxEsoFFols| «)
= T T T T T < | 00000008 | 0xESSFFOLE| 0xESSFFOLE
00000010 0xESSFFOLE | 0xELA00000

unknown 03_ChangeTask (void)
unknown 03_Startiwoid)

00000018 | O<ESSFFOLL) OXESSFFOLL

| 00000020 0xZ0001AED | 020000030

4l 00000028 | 0x20000040 | 0x20000044
00000030| 020000045 | 0x200019E5

=l nnnnnn=al O ?O0nnnar | nyFaFFRFEEE ;I

f 4|2] o Stack {Tacals fstati 4] | = | B4]x [wetent Jwstchz fovetch 4] |]

= Command pended until execution stops. Use 'Cancel' to purge. ;I
Command pended until execution stops. Use 'Cancel' to purge.
Command pended until execution stops. Use 'Cancel' to purge.
Conmand pended until execution stops. Use 'Cancel' to purge.
Command pended until execution stops. Use 'Cancel' to purge.
pended until execution stops. Use 'Cancel' to purge.

pended until execution stops. Use 'Cancel' to purge.
cmd £ St 3 Build {FileFind £Srectr flog f 1| | v~
For more information, select Help from Menu |Lr 348, Col 1 [[[LI v

If you set a breakpoint in one or both of our tasks, you will see that they
continue execution after the given delay.

O 1996- 2005 Segger Microcontroller Systeme GmbH

14/29

embOS for ARM and ARM RealView Developer Kit

As can be seen by the value of embQOS timer variable OS_Ti e, shown in the
watch window, TaskO continues operation after expiration of the 50 ms delay.

R¥YDEBUG(Start_STR71x) = @ARM7TDMI_0:ARM-ARM-USE

[Ele Edit Find Wiew Project Tools Debug Help

O FE BB E®THE O

+ I xS @S EEE

582 & | State: [Stopped

j Line:l_l A

File: {main_led.c Find: I

void TaskOiwoid) §
while (1) {
LED ToggleLEDO():
* 0% Delay (50);

+

vold Taskl(woid) |

while (1) {
LED_TogglelEDL();

* 0% _Delay (200);
i }
v
v J,rmrwwwwwwwﬁa—wmn-ﬁwﬂmwwwwwﬁwwﬁwﬂrmrﬁwwwwwwwwwﬁwwﬁwwﬁww*wwww
e *
. main
o

<

A T A T TN TR E LA ARLLEETTRT

b I b I\ Dsm ,{Src ,(rtosinit_strﬁx.c ,(Ied.c ,(vectors.sﬁ\rnain_led.c ﬂ

Type Value o
& LEMTTDNI PC=0x200005E0
Image dtart_STR71x.axf
W Load Inage+iymbols
Project | Start STR71x
Settin. <iaved-
EFSources From Project
COMPILE=arm
LED.
Main_LED.c
05_Error.c
retarget.c
RTOSINIT $TR7IX.c
UszerIRQ.c _—
| COMPILE=arm_cpp
& COMPILE=thuub
% ASSEMBELE=arn
heap.s
'l'l ilblx,_Process Aap f ﬂ >|v|

=| Name | value B Hame | value

= 00000000 OxESSFFOLE OxESSFFOLS ;I

- volid T: d) Line hd
void TaskO(woid) Line #15

A | ¥ [, Call Stack {Locals ZStati il I j

| » owvstemt Swstcha fwiaich 4 |

| &

& | 00000008 | 0xESSFFO018 OxESSFFOLE
00000010 0xESSFFOLE OxElA00O00
00000018 |OxESSFFO14 OxESSFFOLL
00000020 0x20001LAED OxE00000350
00000028 || 0x20000040) 0x20000044
00000030 0x20000048 0xZ0001925
Sl NN A3R| O 2 O0nnnar | ivFaFFFREE

Coumatd pended until execution stops. Use 'Cancel' to purge.
Command pended until execution stops. Use 'Cancel' to purge.
Command pended until execution stops. Use 'Cancel' to purge.
Command pended until execution stops. Use 'Cancel' ©o purge.
Command pended until execution stops. TUse 'Cancel' to purge.
pended until execution stops. Use 'Cancel' to purge.
pended until execution stops. Use 'Cancel' to purge.

Cmd £ St ',.' Buildd __-’ FileFinc KSrcCtrI ,(*Log f

=
[

For more information, seleck Help from Menu

Ln 18, Col 1 [

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 15/29

3. Build your own application

To build your own application, you should always start with a copy of the
sample start workspace and project. Therefore copy the entire folder “Start”
from your embQOS distribution into a working folder of your choice and then
modify the start project there. This has the advantage, that all necessary files
are included and all settings for the project are already done.

3.1. Required files for an embOS application

To build an application using embQOS, the following files from your embOS
distribution are required and have to be included in your project:

* RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

* RTOSInit_*.c from one CPU subfolder.

It contains hardware dependent initialization code for embOS timer and
optional UART for embOSView.

e init_*.s from one of the CPU subfolder.

It contains the low level initialization of the hardware and setup of the various
stack pointer.

e scat_*.scf from one of the CPU subfolder.

It contains the linker settings.

* One embOSs library from the Lib\ subfolder

* RTOSVect.s from the Src\ subfolder.

It contains the low level interrupt handler entry for ARM CPUs running with
embOS.

* OS_Error.c from subfolder Src\ The error handler is used if any library other
than Release build library is used in your project.

» vector.s from the Src\ subfolder.

This file contains the ARM vector table

» retarget.c from the Src\ subfolder.

Since you use your own linker file (scatter file) some functions need to be
rewritten for the ARM RealView Developer Kit's runtime library. The delivered
retarget.c file is already prepared for usage with embOS. If you want to modify
this file, please refer to the ARM Compilers and Libraries Guide

» Additional low level init code may be required according to CPU.

When you decide to write your own startup code, please use one of the init_*.s
as template. Also ensure, that main is called with CPU running in supervisor or
system mode.

Your main() function has to initialize embOS by call of OS_I ni t Kern() and
OS _I ni t HN() prior any other embOS functions are called.

You should then modify or replace the main.c source file in the subfolder src\.

3.2. Change library mode

For your application you may wish to choose an other library. For debugging
and program development you should use an embOS -debug library. For your
final application you may wish to use an embOS -release library or a stack
check library.

O 1996- 2005 Segger Microcontroller Systeme GmbH

16/29 embOS for ARM and ARM RealView Developer Kit

Therefore you have to select or replace the embOS library in your project or

target:

* Replace the Linker options (Menu Project\Project Settings *BUILD) and
replace the OS*.a string with the desired library.

e« Check and set the appropriate OS_LIBMODE_* define as preprocessor
option. (Menu Project\Project Settings *Compile_arm*\Preprocessor)

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 17/29

4. ARM specifics

4.1. CPU modes

embOS supports nearly all memory and code model combinations that ARM
RealView Developer Kit's C-Compiler supports.

embOS was compiled with interwork options. Therefore it is required to compile
the projects with interwork option too.

4.2. Available libraries
embOS for ARM for ARM RealView Developer Kit is shipped with 6 different

libraries, one for each library type.
The libraries are named as follows:

OS<Mode>4L<LibMode>.a

Parameter |Meaning Values
Mode Specifies the CPU mode A: ARM mode
T: THUMB mode
4 Specifies the CPU variant 4: core type4: ARM 7/9
L Endian mode L: Little
LibMode Library mode R Release
S: Stack check
D: Debug
SP: Stack check + profiling
DP: Debug + profiling
DT: Debug + trace

Example:
osT4LR.a the library for a project using THUMB mode, ARM 7/9 core, little

endian mode and release build library type.

O 1996- 2005 Segger Microcontroller Systeme GmbH

18/29 embOS for ARM and ARM RealView Developer Kit

5. Stacks

5.1. Task stack for ARM 7 and ARM 9

All embOS tasks execute in system mode. The stack-size required is the sum
of the stack-size of all routines plus basic stack size.

The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.

For the ARM 7/9, this minimum task stack size is about 68 bytes.

5.2. System stack for ARM 7 and ARM 9

The embOS system executes in supervisor mode. The minimum system stack
size required by embOS is about 136 bytes (stack check & profiling build)
However, since the system stack is also used by the application before the start
of multitasking (the call to OS_Start()), and because software-timers and
“C’-level interrupt handlers also use the system-stack, the actual stack
requirements depend on the application.

The size of the system stack can be changed by modifying value of
Len_SVC_Stack in the file init_*.s.

5.3. Interrupt stack for ARM 7 and ARM 9

If a normal hardware exception occurs, the ARM core switches to IRQ mode,
which has a separate stack pointer. To enable support for nested interrupts,
execution of the ISR itself in a different CPU mode than IRQ mode is
necessary. embOS switches to supervisor mode after saving scratch registers,
LR_irqg and SPSR_irq onto the IRQ stack.

As a result, only registers mentioned above are saved on the IRQ stack. For the
interrupt routine itself, the supervisor stack is used.

The size of the interrupt stack can be changed by modifying value of
Len_IRQ_Stack in the file init_*.s. We recommend at least 128 bytes.

5.4. Stack specifics of the ARM family

Exceptions require space on the supervisor and interrupt stack. The interrupt
stack is used to store contents of scratch registers, the ISR itself uses
supervisor stack.

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit

19/29

6. Heap

6.1. Heap management

If you intend to use heap for dynamic memory allocation, the scatter file
(scat_*.scf) needs to be modified. Per default a heap of 4 kBytes are resevered:

Example

¢

EECEE b S 2k S I kS kO S O S I o O S I
i SEGGER M CROCONTROLLER SYSTEME GrbH *
o Solutions for real time microcontroller applications *
CEE Rk S o I S O S kS o O S I O S O O
. % *

* (C 2002-2005 SEGGER M crocontroller Systeme GrbH *

* *
i WWw. segger . com Support: support @egger.com *
. % *

Rk I S kS S R S R S O

File : scat _STR71x_ROM scf
;; Pur pose . Scatter file for use with ST STR71x to run with

internal ROM RAM

e END- OF- HEADER: - = - = = = = == === == == === == == oo o

This scatterloading descriptor file defines:
one | oad region (STR71x) and a nunber of execution regions
(FLASH & XRAM et c.)

The region HEAP is used to locate the bottom of the heap
The heap will grow up fromthis address

The region STACKS is used to |locate the top of the nenory used to store
the stacks for each nobde. The stacks will grow down fromthis address

FLASH 0x40000000 0x01000000

Addr . Fl ags Len
FLASH 0x40000000 Ox1FFFF
{
vectors.o (Vect, +First)
init*.o (Init)
* (+RO
Addr . Fl ags Len
XRAM 0x20000000 0x2D00
* (+RW +ZI)
Addr . Fl ags Len
STACK +0x0000 EMPTY 0x0300
{
}
Addr . Fl ags Len
HEAP +0x0 EMPTY 0x1000
{
}

O 1996- 2005 Segger Microcontroller Systeme GmbH

20/29 embOS for ARM and ARM RealView Developer Kit

7. Interrupts

7.1. What happens when an interrupt occurs?

« The CPU-core receives an interrupt request

» As soon as the interrupts are enabled, the interrupt is executed

« the CPU switches to the Interrupt stack

» the CPU saves PC and flags in registers LR_irg and SPSR_irq

» the CPU jumps to the vector address 0x18

« embOS OS_IRQ_SERVICE: save scratch registers

« embOS OS_IRQ_SERVICE: save LR_irg and SPSR_irq

« embOS OS_IRQ_SERVICE: switch to supervisor mode

* embOS OS_IRQ_SERVICE: execute OS_irg_handler (defined in
RTOSINIT_*.C)

« embOS OS_irg_handler: check for interrupt source and execute timer
interrupt, serial communication or user ISR.

« embOS OS IRQ_SERVICE: switch to IRQ mode

« embOS OS_IRQ_SERVICE: restore LR_irg and SPSR_irq

« embOS OS_IRQ_SERVICE: pop scratch registers

e return from interrupt

When using an ARM derivate with vectored interrupt controller, please ensure
that OS_IRQ_SERVICE is called from every interrupt. The interrupt vector itself
may then be examined by the “C”-level interrupt handler in RTOSInit*.c.

7.2. Defining interrupt handlers in "C"

Interrupt handlers called from embOS interrupt handler in RTCSI nit*. c are
just normal “C”-functions which do not take parameters and do not return any
value.

The default C interrupt handler GS_i r q_handl er () in RTOSInit*.c first calls
OS Enterinterrupt() or OS EnterNestablelnterrupt() to inform
embOS that interrupt code is running. Then this handler examines the source
of interrupt and calls the related interrupt handler function.

Finally the default interrupt handler OS_i r g_handl er () in RTOSInit*.c calls
CS Leavelnterrupt() or OS LeaveNest abl el nterrupt () and returns
to the primary interrupt handler OS_I RQ_SERVI CE() .

Depending on the interrupting source, it may be required to reset the interrupt
pending condition of the related peripherals.

Example

"Simple" interrupt-routine

void Tinmer_irqg_func(void) ({
if (__INTPND & 0x0800) { /1 Interrupt pending ?
__INTPND = 0x0800; /'l reset pending condition
OSTEST_X_1 SRO() ; /1 handl e interrupt
}
}

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 21/29

7.3. Interrupt handling with vectored interrupt controller

For ARM derivates with built in vectored interrupt controller, embOS uses a
different interrupt handling procedure and delivers additional functions to install
and setup interrupt handler functions.

When using an ARM derivate with vectored interrupt controller, please ensure
that OS_| RQ_SERVI CE() is called from every interrupt. This is default when
startup code and hardware initialization delivered with embOS is used.

The interrupt vector itself will then be examined by the “C’-level interrupt
handler OS_i r g_handl er () in RTOSInit*.c.

You should not program the interrupt controller for IRQ handling directly. You
should use the functions delivered with embOS.

The reaction to an interrupt with vectored interrupt controller is as follows:

* embOS OS_| RQ SERVI CE() is called by CPU or interrupt controller.

» OS | RQ _SERVI CE() saves registers and switches to supervisor mode.

* OS | RQ _SERVI CE() calls Gs_irqg_handl er () (in RTOSInit*.c).

« OS_irqg_handl er () examines the interrupting source by reading the
interrupt vector from the interrupt controller.

e OS irqg_handl er () informs embOS that interrupt code is running by a call
of OS_Ent er Nest abl el nt err upt () which re-enables interrupts.

* OS_irqg_handl er () calls the interrupt handler function which is addressed
by the interrupt vector.

« OS_irqg_handl er () resets the interrupt controller to re-enable acceptance
of new interrupts.

e OS.irq_handl er() calls OS LeaveNest abl el nt errupt () which

disables interrupts and informs embQOS that interrupt handling finished.

OS_irqg_handl er () returnsto OS_| RQ SERVI CE() .

OS_| RQ_SERVI CE() restores registers and performs a return from interrupt.

Please note, that different ARM CPUs may have different versions of
vectored interrupt controller hardware and usage of embOS supplied
functions varies depending on the type of interrupt controller. Please refer
to the samples delivered with embOS which are used in the CPU specific
RTOSInit module.

To handle interrupts with vectored interrupt controller, embOS offers the
following functions:

O 1996- 2005 Segger Microcontroller Systeme GmbH

22/29 embOS for ARM and ARM RealView Developer Kit

7.3.1. OS_ARM_InstalllISRHandler(): Install an interrupt handler

Description

OS_ARM _InstalllISRHandler() is used to install a specific interrupt vector when
ARM CPUs with vectored interrupt controller are used.

Prototype

CS | SR HANDLER* OS _ARM I nstal | | SRHandl er (i nt | SRl ndex,
OS_| SR HANDLER* pl SRHandl er) ;

Parameter Meaning
| SRI ndex Index of the interrupt source, normally the interrupt vector
number.
pl SRHandl er | Address of the interrupt handler function.

Return value

OS_ISR_HANDLER?*: the address of the previous installed interrupt function,
which was installed at the addressed vector number before.

Add. information

This function just installs the interrupt vector but does not modify the priority
and does not automatically enable the interrupt.

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 23/29

7.3.2. OS_ARM_EnablelSR(): Enable specific interrupt

Description

OS_ARM_EnablelSR() is used to enable interrupt acceptance of a specific
interrupt source in a vectored interrupt controller.

Prototype
voi d OS_ARM Enabl el SR(i nt | SRI ndex)
Parameter Meaning
| SRI ndex Index of the interrupt source which should be enabled.

Return value
NONE.

Add. information

This function just enables the interrupt inside the interrupt controller. 1t does not
enable the interrupt of any peripherals. This has to be done elsewhere.

For ARM CPUs with VIC type interrupt controller, this function just
enables the interrupt vector itself. To enable the hardware assigned to
that vector, you have to call OS_ARM Enabl el SRSour ce() also.

O 1996- 2005 Segger Microcontroller Systeme GmbH

24/29

embOS for ARM and ARM RealView Developer Kit

7.3.3. OS_ARM _ DisablelSR(): Disable specific interrupt

Description

OS_ARM _ DisablelSR() is used to disable interrupt acceptance of a specific
interrupt source in a vectored interrupt controller which is not of the VIC type.

Prototype

void OS_ARM Di sabl el SR(i nt | SRI ndex);

Parameter

Meaning

| SRI ndex

Index of the interrupt source which should be disabled.

Return value
NONE.

Add. information

This function just disables the interrupt controller. It does not disable the
interrupt of any peripherals. This has to be done elsewhere.

When using an ARM CPU with built in interrupt controller of VIC type,
please use OS_ARM Di sabl el SRSour ce() to disable a specific interrupt.

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 25/29

7.3.4. OS_ARM_ISRSetPrio(): Set priority of specific interrupt

Description

OS_ARM_ISRSetPrio () is used to set or modify the priority of a specific
interrupt source by programming the interrupt controller.

Prototype
int OS_ ARM I SRSet Prio(int ISRl ndex, int Prio);

Parameter Meaning
| SRI ndex Index of the interrupt source which should be modified.
Prio The priority which should be set for the specific interrupt.

Return value
Previous priority which was assigned before the call of OS_ARM_ISRSetPrio().

Add. information

This function sets the priority of an interrupt channel by programming the
interrupt controller. Please refer to CPU specific manuals about allowed priority
levels.

This function can not be used to modify the interrupt priority for interrupt
controllers of the VIC type. The interrupt priority with VIC type controllers
depends on the interrupt vector number and can not be changed.

O 1996- 2005 Segger Microcontroller Systeme GmbH

26/29 embOS for ARM and ARM RealView Developer Kit

7.4. Interrupt-stack switching

Since ARM core based controllers have a separate stack pointer for interrupts,
there is no need for explicit stack-switching in an interrupt routine. The routines
OS _EnterlntStack() and OS_Leavel nt St ack() are supplied for source
compatibility to other processors only and have no functionality.

The ARM interrupt stack is used for primary interrupt handler in RTOSVect.s
only.

7.5. Fast Interrupt FIQ

FIQ interrupt can not be used with embOS functions, it is reserved for high
speed user functions.

FIQ is never disabled by embOS.

Never call any embOS function from an FIQ handler.

Do not assign any embOS interrupt handler to FIQ.

When you decide to use FIQ, please ensure that FIQ stack is initialized during
startup and an interrupt vector for FIQ handling is included in your application.

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 27129

8. STOP / WAIT Mode

In case your controller does support some kind of power saving mode, it should
be possible to use it also with embOS, as long as the timer keeps working and
timer interrupts are processed. To enter that mode, you usually have to
implement some special sequence in function OS_Idle(), which you can find in
embOS module RTOSINIT.c.

9. Technical data

9.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. Using ARM mode, the minimum ROM requirement for the kernel itself
is about 2.500 bytes. In THUMB mode kernel itself does have a minimum ROM
size of about 1.700 bytes.

In the table below, you can find minimum RAM size for embOS resources.
Please note, that sizes depend on selected embOS library mode; table below
is for a release build.

embOS resource RAM [bytes]

Task control block 32
Resource semaphore 16
Counting semaphore 8
Mailbox 20
Software timer 20

O 1996- 2005 Segger Microcontroller Systeme GmbH

28/29

embOS for ARM and ARM RealView Developer Kit

10. Files shipped with embOS

Directory File Explanation

root *. pdf Generic APl and target specific
documentation.

root Rel ease. ht m Version control document.

root enbCOSVi ew. exe |Utility for runtime analysis, described in
generic documentation.

START Start*. prj Sample project files for ARM RealView
Debugger IDE.

START\INC RTCS. H Include file for embOS, to be included in
every "C"-file using embQOS —functions.

START\LIB 0s*. a embOS libraries

START\SRC |main.c Sample frame program to serve as a
start.

START\SRC |CS_Error.c embOS runtime error handler used in
stack check or debug builds.

START\SRC |retarget.c ARM runtime library initialization

START\SRC |RTGSVect.s embOS interrupt handler

START\SRC |Vector.s ARM vector table.

START\CPU_* |*.* CPU specific hardware routines for
various CPUs.

Any additional file shipped as example.

0 1996-2005 Segger Microcontroller Systeme GmbH

embOS for ARM and ARM RealView Developer Kit 29/29

11. Index

F available......oooninniiniieiins 17 S

FITSt DS oo oeeeereeeeeeeeseeen 6 change.....cccccooviiviveccicc, 16 Sample

H M

Hatmode oo 27 Memory models...........ccovvreninnnne. 17

Y 19 memory requirements...........oou.... 27 Stacks, interrupt stack.................. 18

| @) Stacks, system stack.........cccueuee. 18

; Stop-mode........cceevvrienee.

OS_ARM_DisablelSR().......c...... 24

Idl etaslf-mode 27 05 ARM Erabldl SR(S) 2 System stack

INStallationcccoeevreeneiinrieeen 5 - ORI OTI e

INterrupt Stackvvvereeeene. 18, 26 OS_ARM_Installl SRHandler()22 T

IPRETUDLS ..o "0 OS_ARM_ISRSEtPri0()c...n. 25 target hardware............................. 27

INEETUPLS, F1Q oo 2% OS irg_handler()coevvevevrnnnns 20 W

L OS_IRQ_SERVICE()ccccoevvs 20 Wait-mode........coovvvereneiniccnes 27

Len SVC_StacK.....ccccevveiviviennnns 18 R . .

Libraries Required files.......c.ccoevevicvcnennnn 15

O 1996- 2005 Segger Microcontroller Systeme GmbH

	Contents
	About this document
	How to use this manual

	Using embOS with ARM RealView Developer Kit
	Installation
	First steps
	The sample application Main.c

	Stepping through the sample application Main.c using the integrated debugger

	Build your own application
	Required files for an embOS application
	Change library mode

	ARM specifics
	CPU modes
	Available libraries

	Stacks
	Task stack for ARM 7 and ARM 9
	System stack for ARM 7 and ARM 9
	Interrupt stack for ARM 7 and ARM 9
	Stack specifics of the ARM family

	Heap
	Heap management

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt handling with vectored interrupt controller
	OS_ARM_InstallISRHandler(): Install an interrupt handler
	OS_ARM_EnableISR(): Enable specific interrupt
	OS_ARM_DisableISR(): Disable specific interrupt
	OS_ARM_ISRSetPrio(): Set priority of specific interrupt

	Interrupt-stack switching
	Fast Interrupt FIQ

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

