

embOS

Real Time Operating System

Software Version 3.10

CPU independent

User�s & reference manual

Document revision 1

A product of SEGGER Microcontroller Systeme GmbH

2/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

Disclaimer
The information in this document is subject to change without notice. While the
information herein is assumed to be accurate, SEGGER MICROCONTROLLER
SYSTEME GmbH (the manufacturer) assumes no responsibility for any errors
or omissions.
The author makes and you receive no warranties or conditions, express, im-
plied, statutory or in any communications with you. The manufacturer specifi-
cally disclaims any implied warranty of merchantability or fitness for a particular
purpose.

Copyright notice
No part of this publication may be reproduced, stored in an retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the manufac-
turer. The Software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license. If
you have received this product as trial version for evaluation, you are entitled to
evaluate it, but you may under no circumstances use it in a product. If you want
to do so, you need to obtain a fully licensed version from the manufacturer.

 1996 - 2002 Segger Microcontrollersysteme GmbH
http://www.segger.com/

Trademarks
Names mentioned in this manual may be trademarks of their respective com-
panies.
Brand and product names are trademarks or registered trademarks of their re-
spective holders.

Contact / registration
Please register the software. This way we can make sure you will receive up-
dates or notifications of updates as soon as they become available. For regis-
tration please fill in and send us the registration card,

Contact address
SEGGER Microcontroller Systeme GmbH

Email : support@segger.com
Internet: http://www.segger.com/

User's & reference manual for embOS real time OS 3/134

 1996- 2002 Segger Microcontroller Systeme GmbH

Contents

Disclaimer.. 2
Copyright notice... 2
Trademarks ... 2
Contact / registration ... 2
Contents .. 3
1. About this document.. 6

1.1. Assumptions... 6
1.2. How to use this manual.. 6
1.3. Typographic Conventions for Syntax ... 6

2. Introduction to embOS.. 7
2.1. What is embOS ? ... 7
2.2. Features... 7

3. Basic concepts .. 9
3.1. Tasks ... 9
3.2. Multitasking: cooperative - preemptive... 9
3.3. Scheduling ... 10
3.4. Communication between tasks .. 12
3.5. How task-switching works .. 13
3.6. Switching stacks... 14
3.7. Change of task status .. 15
3.8. What happens after reset... 16
3.9. How the OS gains control .. 17
3.10. Different builds of embOS ... 18

4. Configuration for your target system (RTOSINIT.c)... 20
4.1. Routines in RTOSInit.c... 20
4.2. Configuration defines ... 20
4.3. How to change settings.. 21
4.4. OS_CONFIG.. 22

5. Task routines ... 23
5.1. OS_CREATETASK.. 24
5.2. OS_CreateTask ... 26
5.3. OS_Delay: Suspend for fixed time ... 28
5.4. OS_DelayUntil: Suspend until .. 29
5.5. OS_SetPriority: Change priority of a task... 30
5.6. OS_GetPriority: Retrieve priority of a task ... 31
5.7. OS_SetTimeSlice: Change timeslice of a task... 32
5.8. OS_Terminate: Terminate a task ... 33
5.9. OS_WakeTask... 34
5.10. OS_IsTask ... 35
5.11. OS_GetTaskID... 36

6. Software Timer ..37
6.1. OS_CREATETIMER .. 38
6.2. OS_CreateTimer .. 39
6.3. OS_StartTimer ... 40
6.4. OS_StopTimer ... 41
6.5. OS_RetriggerTimer .. 42
6.6. OS_SetTimerPeriod ... 43
6.7. OS_DeleteTimer .. 44
6.8. OS_GetTimerPeriod... 45
6.9. OS_GetTimerValue.. 46
6.10. OS_GetTimerStatus... 47

7. Resource semaphores .. 48

4/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

7.1. Example for use of Resource semaphore.. 49
7.2. OS_CREATERSEMA... 51
7.3. OS_Use: Using a Resource ... 52
7.4. OS_Unuse: Release Resource .. 54
7.5. OS_Request .. 55
7.6. OS_GetSemaValue ... 56
7.7. OS_GetResourceOwner .. 57

8. Counting Semaphores... 58
8.1. Example for OS_SignalCSema and OS_WaitCSema 58
8.2. OS_CREATECSEMA... 59
8.3. OS_CreateCSema ... 60
8.4. OS_SignalCSema: Incrementing ... 61
8.5. OS_WaitCSema: Decrementing .. 62
8.6. OS_WaitCSemaTimed: Decrementing with timeout .. 63
8.7. OS_GetCSemaValue... 64
8.8. OS_DeleteCSema ... 65

9. Mailboxes .. 66
9.1. Why mailboxes ?.. 66
9.2. Basics .. 66
9.3. Typical applications.. 67
9.4. Number of and size of mailboxes, type of mail .. 68
9.5. OS_CREATEMB: Creating a mailbox .. 69
9.6. Single byte mailbox functions... 70
9.7. OS_PutMail / OS_PutMail1: Store message.. 71
9.8. OS_PutMailCond / OS_PutMailCond1: Store Message if possible.................... 72
9.9. OS_GetMail / OS_GetMail1 ... 73
9.10. OS_GetMailCond / OS_GetMailCond1.. 74
9.11. OS_ClearMB: Empty a Mailbox ... 75
9.12. OS_GetMessageCnt .. 76
9.13. OS_DeleteMB .. 77

10. Queues.. 78
10.1. Why Queues ? ... 78
10.2. Basics .. 78
10.3. Number of and size of queues, type of messages... 79
10.4. OS_Q_Create: Creating a message queue ... 80
10.5. OS_Q_Put: Store message ... 81
10.6. OS_Q_GetPtr: Retrieve message.. 82
10.7. OS_Q_GetPtrCond: Retrieve message if available ... 83
10.8. OS_Q_Purge: Delete message in queue... 84
10.9. OS_Q_GetMessageCnt: Get number of messages in queue 85

11. Events ... 86
11.1. OS_WaitEvent ... 87
11.2. OS_WaitSingleEvent ... 88
11.3. OS_WaitEventTimed ... 89
11.4. OS_WaitSingleEventTimed ... 90
11.5. OS_SignalEvent... 91
11.6. OS_GetEventsOccured.. 93
11.7. OS_ClearEvents: Clear List of Events ... 94

12. Stacks.. 95
12.1. Some basics .. 95
12.2. System stack.. 95
12.3. Task stack.. 95
12.4. Interrupt stack .. 96
12.5. OS_GetStackSpace... 96

13. Interrupts ... 98
13.1. Rules for interrupt handlers.. 99

User's & reference manual for embOS real time OS 5/134

 1996- 2002 Segger Microcontroller Systeme GmbH

13.2. Calling embOS routines from within an ISR .. 100
13.3. Enabling / Disabling interrupts from "C" ... 101
13.4. Nesting interrupt routines ... 104
13.5. Non maskable interrupts (NMIs)... 105

14. Critical Regions ... 106
14.1. OS_EnterRegion .. 107
14.2. OS_LeaveRegion... 108

15. System variables ... 109
15.1. Time Variables ... 109
15.2. OS internal variables and data-structures .. 110

16. STOP / HALT / IDLE Mode.. 111
17. embOSView: Profiling and analyzing... 112

17.1. Overview .. 112
17.2. Task list window ... 113
17.3. System variables.. 113
17.4. Sharing the SIO for Terminal I/O.. 113
17.5. Using the API-trace .. 114
17.6. Trace filter setup functions... 116
17.7. Trace record functions ... 119
17.8. Application controlled trace example ... 121
17.9. embOS.ini: User defined functions... 123

18. Debugging ... 124
18.1. Run-time errors .. 124
18.2. List of error codes .. 125

19. Supported development tools.. 127
19.1. Reentrance... 127

20. Limitations ... 128
21. Source code of kernel and library.. 129

21.1. Building embOS libraries... 129
22. Additional modules .. 130

22.1. Keyboard-Manager: KEYMAN.C.. 130
22.2. Additional libraries and modules .. 131

23. FAQ (frequently asked questions) ... 132
24. Glossary .. 133
25. Index.. 134

6/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

1. About this document
This guide describes the functionality and user API of embOS Real Time Op-
erating System.

1.1. Assumptions
This guide assumes that you already have a solid knowledge of the following:
• The software-tools used to build your application (assembler, linker, "C"-

compiler)
• The C-language
• The target processor
• DOS-command-line

If you feel your knowledge of C is not good enough, we recommend The C Pro-
gramming Language by Kernighan and Richie, which describes the standard in
C-programming and in newer editions also covers ANSI C.

1.2. How to use this manual

This Manual explains all the functions and macros that embOS offers. How-
ever, it does cover the entire subject of real-time-programming. It assumes you
have a working knowledge of the C-Language, knowledge of assembly pro-
gramming is not required.
The intention of this manual is to give you a CPU & compiler independent intro-
duction of embOS and to be a reference for all embOS API functions.
For a quick and easy startup with embOS, please check out chapter 2 in the
CPU & Compiler Specifics manual of embOS documentation, which includes a
step-by-step introduction about using embOS.

1.3. Typographic Conventions for Syntax
This manual uses the following typographic conventions for syntax:

Regular size Arial for normal text

Regular size courier for text that you enter at the command-prompt and for what
you see on your display

Regular size courier for RTOS-functions mentioned in the
text

Reduced size courier in a frame for
program examples

Boldface Arial for very important sections

Italic text for keywords

User's & reference manual for embOS real time OS 7/134

 1996- 2002 Segger Microcontroller Systeme GmbH

2. Introduction to embOS

2.1. What is embOS ?

embOS is a priority-controlled Multitasking-System, designed to be used as
embedded operating system for the development of real-time applications for a
variety of microcontrollers.
embOS is a high performance tool that has been optimized for minimum mem-
ory consumption in both RAM and ROM, high speed and versatility.

2.2. Features

In the development process of embOS, the limited resources of microcontrol-
lers have always been kept in mind. The internal structure of the RTOS has
been optimized in a variety of applications with different customers over a pe-
riod of more than 5 years to fit the needs of the industry. Fully source-
compatible RTOS are available for a variety of microcontrollers, making it an ef-
fort well worth the time to learn how to structure real-time programs with real-
time-operating systems.
embOS is highly modular. This means that only those functions that are
needed are linked, keeping the ROM-size very small. (Minimum is little more
than1 kByte ROM and about 30 bytes of RAM (plus memory for stacks))
A couple of files are supplied in source-code-form to make sure that you do not
lose any flexibility by using embOS and that you can customize the system to
fully fit your needs.
The tasks that are created by the programmer can easily and safely communi-
cate with each other using a complete palette of communication mechanisms
like semaphores, mailboxes and events.

8/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

Some features of embOS are:

• Preemptive scheduling
Guarantees that of all tasks in READY-state the one with the highest priority
executes, except for situation where priority-inversion applies.

• Round robin scheduling for tasks with identical priorities
• Preemptions can be disabled for entire tasks or sections of a program
• up to 255 Priorities

Every task can have an individual priority ⇒ The response of tasks can be
precisely defined according to the requirements of the application

• Unlimited no. of tasks
No. of tasks is limited by the amount of available memory only

• Unlimited no. of semaphores
No. of semaphores is limited by the amount of available memory only

• 2 types of semaphores : Resource-, counting
• Unlimited no. of mailboxes

No. of mailboxes is limited by the amount of available memory only
• Size and number of messages can be freely defined when initializing mailbox
• Unlimited no. of software-timers

No. of software-timers is limited by the amount of available memory only
• 8-bit events for every task
• Time resolution can be freely selected (default 1ms)
• Easily accessible time variable
• Power management : Unused calculation-time can automatically be spent in

halt-mode ⇒ power-consumption is minimized
• Full interrupt support

Interrupts can call any function except those that require waiting for data or
create, delete or change the priority of a task.
Interrupts can wake-up or suspend tasks and directly communicate with
tasks using all available communication-instances (mailboxes, semaphores,
events)

• Very short interrupt-disable-time ⇒ short interrupt-latency-time
• Nested interrupts are permitted
• embOS has its own interrupt-stack, usage is optional
• Frame-application for easy start
• Debug-version performs run-time checks simplifying development
• Profiling and stack check may be implemented by choosing specified librar-

ies.
• Monitoring during run time via UART available (embOSView).
• Very fast, efficient yet small code
• Minimum RAM usage
• Core written in assembly language
• Interfaces "C" and / or assembly
• Initialization of microcontroller hardware as sources

User's & reference manual for embOS real time OS 9/134

 1996- 2002 Segger Microcontroller Systeme GmbH

3. Basic concepts

3.1. Tasks
In this context, a task is a program running on the CPU-core of a microcontrol-
ler. Without a multitasking-kernel (without RTOS), only one task can be exe-
cuted by the CPU. This is called a single-task-system. A real-time operating
system allows execution of multiple tasks on a single CPU. All tasks execute
as if they would completely "own" the entire CPU. The tasks are "scheduled";
the RTOS can activate and deactivate every task.

3.2. Multitasking: cooperative - preemptive
There are different ways the calculation-power of the CPU can be distributed
among the tasks.

Cooperative Multitasking
This scheduling-system expects cooperation of all tasks. Tasks can only be
suspended if they call a function of the operating system. If they do not, the
system "hangs", meaning that the other tasks have no chance of being exe-
cuted by the CPU.

Preemptive multitasking

Real-time systems can be accomplished with preemptive multitasking only. A
real-time operating system needs a regular timer-interrupt in order to be able to
interrupt tasks at defined times and to perform task-switches if necessary.

10/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

3.3. Scheduling
There are different algorithms that determine which task to execute, called
"scheduler". All schedulers have one thing in common:
They distinguish between tasks that are ready to be executed (In the READY
state) and the other tasks, that are suspended for a reason (Delay, waiting for
mailbox, waiting for semaphore, waiting for event etc.). The scheduler selects
one of the tasks that are ready and activates it: It executes the program of this
task.
This is what all schedulers have in common; the main difference is in how they
distribute the computation time between the tasks in READY state.

Round-robin scheduling algorithm

In this case, the scheduler has a list of tasks and - when deactivating the active
task - activates the next task that is in the READY state. Round-Robin works
with either preemptive or cooperative multitasking. Round-Robin works well if
you do not need to guarantee response-time and if the response time is not an
issue of importance or if all tasks have the same priority. Round-robin schedul-
ing can be symbolized as follows:

All tasks are on the same level, the possession of the CPU changes periodically
after a predefined execution time. This time is called Timeslice and may be de-
fined individually for every task.

Priority controlled scheduling algorithm

In real-world applications, the different tasks require different response times.
For example in an application that controls a motor, the keyboard and a display,
the motor usually requires faster reaction than keyboard and display. While the
display is being updated, the motor needs to be controlled. This makes pre-
emptive multitasking a must. Round-Robin might work, but since it can not
guarantee a certain reaction time, an improved algorithm should be used: Every
task is assigned a priority; the order of execution depends on this priority. The
rule is very simple to put in words:
The Scheduler activates the task that has the highest priority of all tasks
in READY-state.

This means that every time a task with higher priority than the active task gets
ready, it immediately becomes the active task.

However, the scheduler can be switched off in sections of a program where
task-switches are prohibited. (→ Critical region)

embOS uses a priority controlled scheduling algorithm with Round-Robin be-
tween tasks of identical priority. One hint at this point: Round-Robin scheduling
is a nice feature because you do not have to think about which task is more im-
portant than an other one. Tasks with identical priority can not block each other
for longer periods of time. But Round-Robin scheduling also costs time by con-
stantly switching between tasks of identical priority if two or more tasks of iden-

User's & reference manual for embOS real time OS 11/134

 1996- 2002 Segger Microcontroller Systeme GmbH

tical priority are ready and no task of higher priority is ready. It is more efficient
to assign different priorities to different tasks because this avoids unnecessary
task switches.

Priority inversion
The rule to go by for the scheduler is:
Activate the task that has the highest priority of all tasks in READY-state

But what happens if the high-priority task is blocked because it is waiting for a
resource owned by a low-priority task? According to the above rule, it would
wait until the low-priority-task gets active again and releases the resource.

The other rule is: No rule without exception.

In order to avoid this kind of situation, the low-priority tasks that is blocking the
high-priority task gets assigned the higher priority of the high-priority task until it
releases the resource and it therefore no longer blocks the high-priority task.
This is known as priority inversion.

12/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

 3.4. Communication between tasks
In a multi-task program (multithreaded program) multiple tasks work completely
separated from each other. But since all of these tasks work in the same appli-
cation, they probably have to communicate and exchange data or have to be
synchronized. It also has to be made sure that resources are not used by dif-
ferent tasks at the same time.

Global variables
The easiest way to do this is to use global variables. In certain situations, it can
make sense for tasks to communicate via global variables, but most of the time
using global variables has various disadvantages.
For example if you want synchronize a task to start when the value of a global
variable changes, you have to poll this variable, wasting precious calculation
time & power, and your reaction time is depending on how often you poll.

Communication mechanisms
When multiple tasks work with one an other, a lot of times they have to
• exchange data,
• synchronize to an other task
• make sure that a resource is used by no more than one task at a time

For these purposes embOS offers mailboxes, semaphores and events.

Mailboxes
A mailbox is basically a data-buffer, that is managed by the RTOS and that
works without conflicts and problems even if multiple tasks and interrupts try to
access the mailbox simultaneously. embOS also automatically activates tasks
that are waiting for a message in a mailbox the moment they receive new data
and - if necessary - automatically switches to this task.

Semaphores

Two types of semaphores are used to synchronize tasks and to manage re-
source. Most commonly used are resource semaphores. For details and sam-
ples, check out the section on semaphores and look for samples on our
website.

Events
A task can wait for a particular event without using any calculation time. The
idea is as simple as convincing: There is no sense in polling if we can simply
activate the task the moment the event that the task is waiting for occurs. This
saves a lot of calculation power and makes sure the task can respond to the
event without delay. Typical applications for events are where a task waits for
data, a pressed key, a received command or character or the pulse of an exter-
nal real-time clock.
For details, refer to the section → Events

User's & reference manual for embOS real time OS 13/134

 1996- 2002 Segger Microcontroller Systeme GmbH

3.5. How task-switching works
A real-time multitasking system lets multiple tasks run like multiple single-task-
programs quasi-simultaneous on a single CPU.
A task consists of three parts in the multitasking-world:
• The program-code, which usually resides in ROM

(though it does not have to!)
• A stack, residing in a RAM-area that can be accessed by the stack pointer
• A task-control-block, residing in RAM
The task-control-block (TCB) contains status information of the task: the stack-
pointer, priority, current status (Ready, waiting and reason for suspension) and
other management data. This TCB is accessed by the RTOS only.
The stack has the same function as in a single-task-system:
Storage of local variables, parameters, return addresses and temporary storage
of intermediate calculation results and register values.

14/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

3.6. Switching stacks
The following little drawing demonstrates the process of switching from one
stack to an other.
The scheduler deactivates the current task by saving the processor registers on
the current stack.
It then selects the active task by loading the stack pointer and the processor-
registers from the values stored on this stack.

Scheduler

CPU

Task 0
StackTask Control

block

CPU
registers

Free Stack
area

variables
temp. storage
ret. addresses

SP

Task n
StackTask Control

block

CPU
registers

Free Stack
area

variables
temp. storage
ret. addresses

SP

User's & reference manual for embOS real time OS 15/134

 1996- 2002 Segger Microcontroller Systeme GmbH

3.7. Change of task status
When a task is created, it is automatically put in the READY state
(TS_READY). As soon as there is no task with higher priority in the same state,
this task is activated. This task will stay active until a task with higher priority
becomes READY or the task is deactivated or it waits for a mailbox, sema-
phore, event or expiration of a delay.
The following drawing shows all possible task-states and the transitions.

TS_READY

TS_DELAYWait for Event, mailbox
or semaphore

Not existing

CREATETASK()

Delay()

Terminate()

Scheduler Active
Task

16/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

3.8. What happens after reset
On Reset, the special-function registers are set to their respective values.
After Reset, program execution starts.
The PC-register is set to the start address defined by the start-vector or start
address (depending on CPU). This start address is usually in a Startup-module
shipped with the C-compiler (and sometimes part of the standard library)

The startup code does the following:
• Load the SP (Stack-Pointer(s)) with the(ir) default values, which is (for most

CPUs) the end of the defined stack-segment(s)
• Initialize all data segments to their respective value
• call "main" routine

The process can be shown as a flowchart as follows:

Reset

Load SP

Init memory

main()

User's & reference manual for embOS real time OS 17/134

 1996- 2002 Segger Microcontroller Systeme GmbH

3.9. How the OS gains control
In a single-task-program, the main routine is part of the user-program which
takes control right after the Cstartup.
Normally embOS works with the standard Cstartup-module without any
change. If there are any changes required, those changes are documented in
the startup file which is shipped with embOS.
main() is still part of your application program. Basically main creates one or
more tasks and then starts multitasking by calling OS_Start(). From here on,
the scheduler controls which task is executed.
main() will not be interrupted by any of the created tasks, because these tasks
are executed only after the call to OS_Start(). It is therefore usually good
practice to create all or most of your tasks here, as well as control structures
such as Mailboxes and Semaphores. A good practice is to write software in
form of modules which are �up to a point - reusable. These modules usually
have an initialization routine, which would create the task(s) and or control
structures required for this module. A typical main() looks similar to the follow-
ing example:

/***
*
* main
*
**
*/

void main(void) {
OS_InitKern(); /* initialize OS (should be first !) */
OS_InitHW(); /* initialize Hardware for OS (in RtosInit.c) */
/* Call Init routines of all program modules which in turn will create
the tasks they need ... (Order of creation may be important) */
MODULE1_Init();
MODULE2_Init();
MODULE3_Init();
MODULE4_Init();
MODULE5_Init();
OS_Start(); /* Start multitasking */

}

With the call to OS_Start(), the scheduler starts the highest-priority task.
Please note, that OS_Start() does not return.

18/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

The following flowchart illustrates the starting procedure:

Task

embOS
Scheduler

Task

Reset of
CPU

Task

Load SP

Init
memory

main()

Init
Hardware
Create Tasks, Mailboxes,
Semaphores

3.10. Different builds of embOS

embOS comes in different builds (Different versions of the libraries). The rea-
son for different builds is that requirements vary during development. While de-
veloping software, the performance (and resource usage) is not as important as
in the final version which usually goes as release version into the product. But
during development even small programming errors should be caught by use of
assertions. These assertions are compiled into the debug version of the
embOS libraries and make the code a bit bigger (about 50%) and also slightly
slower than the release or stack check version used for the final product. This
concept gives you the best of both worlds: A compact and very efficient build
for your final product (release or stack check versions of the libraries) and a
safer, but slower and bigger version for development which will catch most of
the common programming errors. Of course you may also use the release ver-
sion of embOS during development, but it will not catch these application pro-
gramming errors.

User's & reference manual for embOS real time OS 19/134

 1996- 2002 Segger Microcontroller Systeme GmbH

3.10.1. Profiling

embOS supports profiling in profiling builds. Profiling makes precise informa-
tion available about the execution time of individual tasks.
You may always use the profiling libraries, but they induce certain overhead
(Bigger task control blocks, add. ROM (app. 200 bytes) and add. run time over-
head). This overhead is usually acceptable, but for best performance you may
want to use non-profiling builds of embOS if you do not use this feature.

3.10.2. List of libraries

In your application program, you need to let the compiler know which build of
embOS you are using. This is done by defining a single identifier prior to in-
cluding RTOS.h.

Build Define Explanation
R: Release OS_LIBMODE_R Smallest, fastest build
S: Stack check OS_LIBMODE_S Same as release, plus stack

checking
SP: Stack check plus

Profiling
OS_LIBMODE_SP Same as stack checking plus pro-

filing
D: Debug OS_LIBMODE_D Maximum run-time checking
DP: Debug plus Pro-

filing
OS_LIBMODE_DP Maximum run-time checking plus

Profiling
DT: Trace, including

Debug, Profiling
OS_LIBMODE_DT Tracing API calls, maximum run-

time checking plus Profiling

20/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

4. Configuration for your target system (RTOSINIT.c)
You do not have to configure anything in order to get started with embOS. The
start project supplied will execute on your system. Small changes in the con-
figuration will be necessary at a later point for system frequency or for the
UART used for communication with embOSView (optional).
The file RTOSINIT.c is provided in source-code form and can be modified in
order to match your target-hardware needs. You compile and link it with your
application program.

4.1. Routines in RTOSInit.c

 Explanation
OS_InitHW() embOS needs a timer-interrupt to determine

when to activate tasks that wait for the expiration
of a delay, when to call a software-timer and to
keep the time-variable up to date.
The hardware timer that needs to be initialized for
a small program with embOS is initialized in the
function OS_InitHW().

OS_Error() Is called by embOS when a fatal error has been
detected

OS_Idle() The idle loop is always executed whenever no
other task (and no interrupt service routine) is
ready for execution.

OS_GetTime_Cycles() Reads the timestamp in cycles. Cyclelength
depends on the system. This function is used for
system information sent to embOSView.

OS_ConvertCycles2us() Converts Cycles into us.
(Used with profiling only)

OS_COM_Init() Initializes communication for embOSView
(Used with embOSView only)

OS_ISR_Tick() The embOS timer interrupt handler. When using
a different timer, always check the specified
interrupt vector

OS_ISR_rx() Rx Interrupt service handler for embOSView
(Used with embOSView only)

OS_ISR_rx() Tx Interrupt service handler for embOSView
(Used with embOSView only)

OS_COM_Send1(�) Send 1 byte via UART
 (Used with embOSView only, DO NOT call this
function from your application)

4.2. Configuration defines
For most embedded systems, configuration is done by simply changing the fol-
lowing defines:

User's & reference manual for embOS real time OS 21/134

 1996- 2002 Segger Microcontroller Systeme GmbH

define Explanation
OS_FSYS System Frequency (in Hz)

Example: 20000000 for 20MHz
OS_UART Selection of UART to be used for embOSView

-1 will disable communication
OS_BAUDRATE Selection of baudrate for communication with embOSView

4.3. How to change settings
The only file which needs to be changed is RTOSInit.c, This file contains all
hardware specific routines. There is only one exception: Some ports of embOS
require an additional interrupt vector table file.

4.3.1. Setting the system frequency OS_FSYS

Relevant defines
OS_FSYS

Relevant routines
OS_ConvertCycles2us() (Only for profiling)

For most systems it should be sufficient to change the OS_FSYS define at the
top of RTOSINIT.c. When using profiling, certain values may require a change
in OS_ConvertCycles2us(). Please check out the contents of RTOSINIT.c
for more detailed information about in which cases this is necessary and what
needs to be done.

4.3.2. Using a different timer to generate the tick-interrupts for embOS

Relevant routines:
OS_ InitHW()

4.3.3. Using a different UART or baudrate for embOSView

Relevant defines
OS_UART
OS_BAUDRATE

Relevant routines:
OS_COM_Init()
OS_COM_Send1()
OS_ISR_rx()
OS_ISR_tx()

In some cases, this is done by simply changing the define OS_UART on top of
the RTOSInit.c. Please check out the contents of this file for more detailed in-
formation on which UARTS are supported for your CPU.

4.3.4. Changing the tick frequency
embOS usually generates 1 interrupt per ms. This is done by a timer initialized
in OS_InitHW().

22/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

OS_FSYS defines the clock frequency of your system in Hz.

The value of OS_FSYS is taken to calculate the desired reload counter value
for the system timer for 1000 interrupts/sec.
The timer itself is initialized in the routine OS_InitHW(), which is found in
RTOSINIT.C. If you have to use a different timer for your application, you
must modify OS_InitHW() to initialize the appropriate timer. For details about
initialization, please read the comments in RTOSInit.c.

However, different (lower or higher) interrupt-rates are possible.
If you chose an interrupt-frequency different from 1kHz, the value of the time
variable OS_Time will no longer be equivalent to multiples of 1 ms.
However, if you use a multiple of 1 ms as tick time, the basic time unit can be
made 1 ms by using the (optional) configuration macro OS_CONFIG(..).
The basic time unit does not have to be 1 ms, it might just as well be 100us or
10 ms or any other value. For most applications 1 ms is a convenient value.
For details, refer to → OS_CONFIG.

4.4. OS_CONFIG

OS_CONFIG can be used to configure embOS in situations, where the basic
timer interrupt interval is a multiple of 1ms and the time values for delays still
should use 1 ms as time base.
OS_CONFIG tells embOS how many clock ticks expire per embOS -timer in-
terrupt and what the system-frequency is.

Examples for OS_CONFIG
1) The following will lead to increment the time variable OS_Time by 1 per
RTOS-timer-interrupt:

OS_CONFIG(8000000,8000); /* Configure OS : System-frequency, ticks/int */

As this is the default for embOS, usage of OS_CONFIG is not required.

2) The following will lead to increment the time variable OS_Time by 2 per
embOS -timer-interrupt.

OS_CONFIG(8000000,16000); /* Configure OS : System-frequency, ticks/int */

If for example the basic timer was initialized to 500Hz, which would result in an
embOS timer interrupt every 2ms, a call of OS_Delay(10) would result in a
delay of 20ms, because all timing values are interpreted as timer ticks. A call of
OS_CONFIG with the parameter shown in example 2 will then result in a delay
of 10ms when calling OS_Delay(10).

User's & reference manual for embOS real time OS 23/134

 1996- 2002 Segger Microcontroller Systeme GmbH

5. Task routines
A task that should run under embOS needs a task control block, a stack and
just a normal routine, written in C. The following rules apply to task routines:

• The task routine can not take parameters
• The task routine is never called directly from your application
• The task routine does not return
• The task routine should be implemented as endless loop, or has to terminate

itself.
• The task routine is started from the scheduler, after the task was created and

OS_Start() was called.

/* Example of a task routine as endless loop */
void Task1(void) {

while(1) {
DoSomething() /* Do something */
OS_Delay(1); /* Give other tasks a chance */

}
}

/* Example of a task routine that terminates */
void Task2(void) {

char DoSomeMore;
do {

DoSomeMore = DoSomethingElse() /* Do something */
OS_Delay(1); /* Give other tasks a chance */

} while(DoSomeMore);
OS_Terminate(0); /* Terminate yourself */

}

There are different ways to create a task: embOS offers a simple macro that
makes it easy to create a task and is fully sufficient in most cases. However, if
you are dynamically creating and deleting tasks, a routine is available allowing
"fine-tuning" of all parameters. For most applications, at least initially, using the
macro as in the sample start project works fine.

24/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

5.1. OS_CREATETASK

Description
Creates a task.

Prototype
void OS_CREATETASK(OS_TASK* pTask,

char* pName,
void* pRoutine,
char Priority,
void* pStack);

Parameter Meaning
pTask Pointer to a data structure of type OS_TASK which will be

used as task control block (and reference) for this task.
pName Pointer to the Name of the task. Can be NULL (or 0) if not

used.
pRoutine Pointer to a routine that should run as task
Priority Priority of the task.

Has to be in the range :
0< Priority <=255
Higher values indicate higher priorities.

pStack Pointer to an area of memory in RAM that will serve as stack
area for the task. The size of this block of memory deter-
mines the size of the stack-area for this task.

Return value
Void.

Add. information
OS_CREATETASK is a macro calling an OS -library function.
It creates a task and makes it ready for execution by putting it in the READY
state.
The newly created task will be activated by the scheduler as soon as there is no
other task with higher priority in READY state. (→Scheduler)
If there is an other task with the same priority, the new task will be put right be-
fore that.
OS_CREATETASK can be called at any time, either from main during initializa-
tion, or from any other task.
The recommended strategy is to create all tasks during initialization in main in
order to keep the structure of your tasks easy to understand.
This macro is normally used to create a task instead of the function call below,
because it has less parameters and is therefore easier to use.
The absolute value of the Priority is of no importance, only the value in
comparison to the priorities of other tasks.
The macro OS_CREATETASK determines the size of the stack automatically
using sizeof. This is possible only if the memory area has been defined at com-
pile-time.

Important:

User's & reference manual for embOS real time OS 25/134

 1996- 2002 Segger Microcontroller Systeme GmbH

The stack that you define has to reside in an area that the CPU can actu-
ally use as stack, since the CPU can not use the entire memory-area as
stack.

Example
char UserStack[150]; /* Stack-space */
OS_TASK UserTCB; /* Task-control-blocks */

void UserTask(void) {
while (1) {

Delay (100);
}

}

void InitTask(void) {
OS_CREATETASK(&UserTCB, "UserTask", UserTask, 100, UserStack); /* Create

Task0 */
}

26/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

5.2. OS_CreateTask

Description
Creates a task.

Prototype
void OS_CreateTask (OS_TASK* pTask,

char* pName,
unsigned char Priority,
voidRoutine* pRoutine,
void* pStack,
unsigned StackSize,
unsigned TimeSlice);

Parameter Meaning
pTask Pointer to a data structure of type OS_TASK which will be

used as task control block (and reference) for this task.
pName Pointer to the Name of the task. Can be NULL if not used.
Priority Priority of the task.

Has to be in the range :
0< Priority <=255
Higher values indicate higher priorities.

pRoutine Pointer to a routine that should run as task
pStack Pointer to an area of memory in RAM that will serve as stack

area for the task. The size of this block of memory deter-
mines the size of the stack-area for this task.

StackSize Size of the stack
TimeSlice Time slice value for round robin scheduling. Has an effect

only if other tasks are running at the same priority.
TimeSlice denotes the time in timer ticks, that the task will
run until it suspends; thus enabling an other task with the
same priority.
This parameter has no effect for some ports of embOS for
efficiency reasons.

Return value
Void.

Add. information
Creates a task. All parameters of the task can be specified. The task can be
dynamically created because the stack size is not calculated automatically.
Works the same way as described under OS_CREATETASK.

Important:
The stack that you define has to reside in an area that the CPU can actu-
ally use as stack. Most CPUs can not use the entire memory-area as
stack.

User's & reference manual for embOS real time OS 27/134

 1996- 2002 Segger Microcontroller Systeme GmbH

Example
/*
* demo-program to illustrate the use of OS_CreateTask
*/
char StackMain[100], StackClock[50];
OS_TASK TaskMain,TaskClock;
OS_SEMA SemaLCD;

void Clock(void) {
while(1) {

/* code to update the clock */
}

}

void Main(void) {
while (1) {

/* your code */
}

}

void InitTask(void) {
OS_CreateTask(&TaskMain, NULL, 50, Main, StackMain, sizeof(StackMain), 2);
OS_CreateTask(&TaskClock, NULL, 100, Clock,StackClock,sizeof(StackClock),2);

}

28/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

5.3. OS_Delay: Suspend for fixed time

Description
The calling task will be put to the TS_DELAY-state for a period of time.

Prototype
void OS_Delay(int ms);

Parameter Meaning
ms Time interval to delay.

Has to be in the following range :
0 < ms < 215-1 = 0x7FFF = 32767 for 8/16 bit CPUs
0 < ms < 231-1 = 0x7FFFFFFF for 32 bit CPUs

Return value
Void.

Add. information
By calling the delay-routine, the task will stay in this state until the time speci-
fied has expired.
ms specifies the precise interval during which the task has to be suspended
given in basic time intervals (usually 1/1000 sec). The actual delay (in basic
time intervals) will be in the following range :

ms-1 <= Delay <= ms
depending on when the Interrupt for the Scheduler will occur.

After the expiration of a delay, the task is made ready again and activated ac-
cording to the rules of the scheduler.
A delay can be ended prematurely by an other task or an interrupt-handler call-
ing OS_WakeTask.

Example
void Hello() {

printf("Hello");
printf("The next line will be executed in 5 seconds");
OS_Delay (5000);
printf("Delay is over");

}

User's & reference manual for embOS real time OS 29/134

 1996- 2002 Segger Microcontroller Systeme GmbH

5.4. OS_DelayUntil: Suspend until

Description
Similar to the Delay-routine.

Prototype
void OS_DelayUntil(int t);

Parameter Meaning
t Time to delay until.

Has to be in the following range :
0 < t-OS_Time < 215-1 0x7FFF = 32767 for 8/16 bit CPUs
0 < t-OS_Time < 231-1 0x7FFFFFFF for 32 bit CPUs

Return value
Void.

Add. information
OS_DelayUntil delays until the value of the time-variable OS_Time has
reached a certain value. It is very useful if you have to avoid accumulating de-
lays.

Example
int sec,min;

void TaskShowTime() {
int t0 = TimeMS;
while (1) {

ShowTime(); /* Routine to display time */
OS_DelayUntil (t0+=1000);
if (sec<59) sec++;
else {

sec=0;
min++;

}
}

}

In the example above, the use of OS_Delay could lead to accumulating delays
and would cause the simple "clock" to be slow.

30/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

5.5. OS_SetPriority: Change priority of a task

Description
Assigns the Priority specified by Priority to the specified task.

Prototype
void OS_SetPriority(OS_TASK * pt, char Priority);

Parameter Meaning
Pt Pointer to a data structure of type OS_TASK
Priority Priority of the task.

Has to be in the range :
0< Priority <=255

Return value
Void.

Add. information
Can be called at anytime from any task or software-timer. Calling this function
might lead to an immediate task-switch.

Important:
This function may not be called from within an interrupt-handler.

User's & reference manual for embOS real time OS 31/134

 1996- 2002 Segger Microcontroller Systeme GmbH

5.6. OS_GetPriority: Retrieve priority of a task

Description
Returns the priority of a specified task.

Prototype
unsigned char OS_GetPriority(OS_TASK* pt);

Parameter Meaning
pt Pointer to a data structure of type OS_TASK

If pt is the NULL pointer, the function returns the priority of the
current running task.

Return value
Priority of specified task as unsigned char.
range 1 .. 255

Add. information
If pt does not specify a valid task, the debug version of embOS calls
OS_Error().
The release version of embOS can not check validity of pt and may therefore
return invalid values if pt does not specify a valid task.

32/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

5.7. OS_SetTimeSlice: Change timeslice of a task

Description
Assigns the Timeslice value specified by TimeSlice to the specified task.

Prototype
unsigned char OS_SetTimeSlice(OS_TASK * pt,

unsigned char TimeSlice);

Parameter Meaning
pt Pointer to a data structure of type OS_TASK
TimeSlice New timeslice value for the task

Has to be in the range :
1<= TimeSlice <=255

Return value
unsigned char: Previous timeslice value of the task.

Add. information
Can be called at any time from any task or software timer. Setting the timeslice
value only affects on the tasks running in round robin mode. This means, an
other task with the same priority must exist. The new timeslice value is inter-
preted as reload value. It is used after the next activation of the task. It does not
affect the remaining timeslice of a running task.

User's & reference manual for embOS real time OS 33/134

 1996- 2002 Segger Microcontroller Systeme GmbH

5.8. OS_Terminate: Terminate a task

Description
Ends a task.

Prototype
void OS_Terminate(OS_TASK* pTask);

Parameter Meaning
pTask Pointer to a data structure of type OS_TASK used for the

task that shall be terminated. If pTask is the NULL pointer,
the current task terminates.

Return value
Void.

Add. information
It should be made sure that the task does not use any resources at that point.
The specified task will terminate immediately; the memory used for stack and
task-control-block can be reassigned.

Important:
This function may not be called from within an interrupt-handler.

34/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

5.9. OS_WakeTask

Description
End Delay of a task immediately.

Prototype
void OS_WakeTask(OS_TASK* pTask);

Parameter Meaning
pTask Pointer to a data structure of type OS_TASK which will be

used as task control block (and reference) for this task.

Return value
Void.

Add. information
Puts the specified task, that has been suspended for a certain amount of time
with OS_Delay or OS_DelayUntil and is therefore in the state TS_DELAY,
back to the state TS_READY (ready for execution). The specified task will be
activated immediately if it has a higher priority than the priority of the task that
had the highest priority before. If the specified task is not in the state
TS_DELAY (because it has already been activated or the delay has already
expired or for some other reason), the command is ignored.

User's & reference manual for embOS real time OS 35/134

 1996- 2002 Segger Microcontroller Systeme GmbH

5.10. OS_IsTask

Description
Checks whether a task control block actually belongs to a valid task.

Prototype
char OS_IsTask(OS_TASK* pTask);

Parameter Meaning
pTask Pointer to a data structure of type OS_TASK which will be

used as task control block (and reference) for a task.

Return value
character value
0: TCB actually not used by any task
1: TCB is used by a task.

Add. information
This function checks, if the requested task is still in the internal task list. If the
task was terminated, it is removed from the internal task list. This function may
be useful to check, whether the task control block and stack for the task may be
reused for an other task in applications that create and terminate tasks dynami-
cally.

36/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

5.11. OS_GetTaskID

Description
Returns the ID of the task that is actually running.

Prototype
OS_TASKID OS_GetTaskID(void);

Return value
OS_TASKID: A pointer to the task control block. A value of 0 (NULL) indicates,
that no task is executing.

Add. information
This function may be used to check, which task is executing. This may be help-
ful, if reaction of any function depends on actual running task.

User's & reference manual for embOS real time OS 37/134

 1996- 2002 Segger Microcontroller Systeme GmbH

6. Software Timer

A basically unlimited number of software-timers can be defined. A software-
timer is an object defined with OS_CREATETIMER. A timer calls a user-
specified routine after a specified delay.
Timers can be stopped, started and retriggered very similar to hardware timers.
When defining the timer, you specify any routine that is to be called after the
expiration of the delay that you specify. Timer routines are similar to interrupt
routines; they have a priority higher than the priority of all tasks. For that reason
they should be kept short just like interrupt routines.
Software-timers are called by embOS with interrupts enabled, so they can be
interrupted by any hardware interrupt.
Generally timers run in single-shot-mode, which means, they expire only once
and call their callback routine only once. By calling OS_RetriggerTimer()
from within the callback-routine, the timer is restarted with its initial delay time
and therefore works just as a free running timer.
The state of timers can be checked by the functions OS_GetTimerStatus(),
OS_GetTimerValue() and OS_GetTimerPeriod()

38/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

6.1. OS_CREATETIMER

Description
A macro that creates and starts a software-timer.

Prototype
void OS_CREATETIMER(OS_TIMER* pTimer,

OS_TIMERROUTINE* Callback,
unsigned int Timeout);

Parameter Meaning
pTimer Pointer to the OS_TIMER data structure containing the data of

the timer
Callback Pointer to the callback routine to be called from RTOS after

expiration of the delay
Timeout Initial timeout in basic embOS time units (nominal ms).

Minimum 1
Maximum 32767

Return value
Void.

Add. information
The timers are being kept track of in the form of a linked list that is managed by
embOS. Once the timeout is expired, the callback routine will be called imme-
diately (unless the task is in a critical region or has interrupts disabled!).
This macro uses the functions OS_CreateTimer() and OS_StartTimer().
It is supplied for backward compatibility; In newer programs these routines
should be called directly instead.
OS_TIMERROUTINE is defined in Rtos.h:
typedef void OS_TIMERROUTINE(void);

Source of the macro (in RTOS.h)
#define OS_CREATETIMER(pTimer,c,d) \

OS_CreateTimer(pTimer,c,d); \
OS_StartTimer(pTimer);

Example
OS_TIMER TIMER100;

void Timer100(void) {
LED = LED ? 0 : 1; /* toggle LED */
OS_RetriggerTimer(&TIMER100); /* make timer periodical */

}

void InitTask(void) {
/* Create and start Timer100 */
OS_CREATETIMER(&TIMER100, Timer100, 100);

}

User's & reference manual for embOS real time OS 39/134

 1996- 2002 Segger Microcontroller Systeme GmbH

6.2. OS_CreateTimer

Description
Creates a software-timer. (But does not start it)

Prototype
void OS_CreateTimer(OS_TIMER* pTimer,

OS_TIMERROUTINE* Callback,
unsigned int Timeout);

Parameter Meaning
pTimer Pointer to the OS_TIMER data structure containing the data of

the timer
Callback Pointer to the callback routine to be called from RTOS after

expiration of the delay
Timeout Initial Timeout in basic embOS time units (nominal ms).

Minimum 1
Maximum 32767

Return value
Void.

Add. information
The timers are being kept track of in the form of a linked list that is managed by
embOS. Once the timeout is expired, the callback routine will be called imme-
diately (unless the task is in a critical region or has interrupts disabled!).
The timer is not automatically started. This has to be done explicitly by a call of
OS_StartTimer() or OS_RetriggerTimer().
OS_TIMERROUTINE is defined in Rtos.h:
typedef void OS_TIMERROUTINE(void);

Example
OS_TIMER TIMER100;

void Timer100(void) {
LED = LED ? 0 : 1; /* toggle LED */
OS_RetriggerTimer(&TIMER100); /* make timer periodical */

}

void InitTask(void) {
/* Create Timer100, start it elsewhere */
OS_CreateTimer(&TIMER100, Timer100, 100);

}

40/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

6.3. OS_StartTimer

Description
Starts the specified timer.

Prototype
void OS_StartTimer(OS_TIMER* pTimer);

Parameter Meaning
pTimer Pointer to the OS_TIMER data structure containing the data of

the timer

Return value
Void.

Add. information
OS_StartTimer() is used for the following reasons:
• Start a timer which was created by OS_CreateTimer(). The timer will start

with its initial timer value.
• Restart a timer which was stopped by calling OS_StopTimer(). In this

case, the timer will continue with the remaining time value, which was pre-
served by stopping the timer.

This function has no affect on running timers.
Also this function has no effect on timers that are not running, but are ex-
pired. Use OS_RetriggerTimer() to rerstart those timers.

User's & reference manual for embOS real time OS 41/134

 1996- 2002 Segger Microcontroller Systeme GmbH

6.4. OS_StopTimer

Description
Stops the specified timer.

Prototype :
void OS_StopTimer(OS_TIMER* pTimer);

Parameter Meaning
pTimer Pointer to the OS_TIMER data structure containing the data of

the timer

Return Value
Void

Add. information
The actual value of the timer (the time until expiration) is kept until
OS_StartTimer() lets the timer continue.

42/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

6.5. OS_RetriggerTimer

Description
Restarts the specified timer with its initial time value.

Prototype
void OS_RetriggerTimer(OS_TIMER* pTimer);

Parameter Meaning
pTimer Pointer to the OS_TIMER data structure containing the data of

the timer

Return value
Void.

Add. information
OS_RetriggerTimer() restarts the timer using the initial time value pro-
grammed at creation of the timer.

Example

OS_TIMER TIMERCursor;
BOOL CursorOn;

void TimerCursor(void) {
if (CursorOn) ToggleCursor(); /* invert character at cursor-position */
OS_RetriggerTimer(&TIMERCursor); /* make timer periodical */

}

void InitTask(void) {
/* Create and start TimerCursor */
OS_CREATETIMER(&TIMERCursor, TimerCursor, 500);

}

User's & reference manual for embOS real time OS 43/134

 1996- 2002 Segger Microcontroller Systeme GmbH

6.6. OS_SetTimerPeriod

Description
Sets a new timer reload value for the specified timer.

Prototype
void OS_SetTimerPeriod(OS_TIMER* pTimer,

unsigned int Period);

Parameter Meaning
pTimer Pointer to the OS_TIMER data structure containing the data of

the timer
Period Timer period in basic embOS time units (nominal ms).

(1 <= Delay <= 32767)

Return value
Void.

Add. information
OS_SetTimerPeriod() sets the initial time value of the specified timer. The
period is the reload value of the timer, which is set as initial value, when the
timer is retriggered by OS_RetriggerTimer().

Example

OS_TIMER TIMERPulse;
BOOL CursorOn;

void TimerPulse(void) {
if TogglePulseOutput(); /* Toggle output */
OS_RetriggerTimer(&TIMERCursor); /* make timer periodical */

}

void InitTask(void) {
/* Create and start Pulse Timer with first pulse = 500ms */
OS_CREATETIMER(&TIMERPulse, TimerPulse, 500);
/* Set timer period to 200 ms for further pulses */
OS_SetTimerPeriod(&TIMERPulse, 200);

}

44/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

6.7. OS_DeleteTimer

Description
Stops and deletes the specified timer.

Prototype :
void OS_DeleteTimer(OS_TIMER* pTimer);

Parameter Meaning
pTimer Pointer to the OS_TIMER data structure containing the data of

the timer

Return Value
Void

Add. information
The timer is stopped and therefore removed out of the linked list of running tim-
ers. In debug builds of embOS the timer is also marked as invalid.

User's & reference manual for embOS real time OS 45/134

 1996- 2002 Segger Microcontroller Systeme GmbH

6.8. OS_GetTimerPeriod

Description
Returns the actual reload value of the specified timer.

Prototype
unsigned int OS_GetTimerPeriod(OS_TIMER* pTimer);

Parameter Meaning
pTimer Pointer to the OS_TIMER data structure containing the data of

the timer

Return value
Unsigned integer between 1 and 32767, which is the allowed range of timer val-
ues.

Add. information
The period is the reload value of the timer, which is used as initial value, when
the timer is retriggered by OS_RetriggerTimer().

46/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

6.9. OS_GetTimerValue

Description
Returns the actual remaining timer value of the specified timer.

Prototype
unsigned int OS_GetTimerValue(OS_TIMER* pTimer);

Parameter Meaning
pTimer Pointer to the OS_TIMER data structure containing the data of

the timer

Return value
Unsigned integer between 1 and 32767, which is the allowed range of timer val-
ues.

Add. information
The timer value is the remaining time until the timer expires and calls its call-
back function.

User's & reference manual for embOS real time OS 47/134

 1996- 2002 Segger Microcontroller Systeme GmbH

6.10. OS_GetTimerStatus

Description
Returns the actual timer status of the specified timer.

Prototype
unsigned char OS_GetTimerStatus(OS_TIMER* pTimer);

Parameter Meaning
pTimer Pointer to the OS_TIMER data structure containing the data of

the timer

Return value
Unsigned char, denoting whether the specified timer is running or not.
0: Timer is stopped
!=0: Timer is running

Add. information
None.

48/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

7. Resource semaphores
Resource semaphores are the type of semaphores that are most widely used.
Resource semaphores are used to manage resources by avoiding conflicts
caused by simultaneous use of a resource. The resource managed can be of
any kind: a part of the program that is not reentrant, a piece of hardware like
the display, a flash prom that can only be written to by a single task at a time, a
motor in a CNC-control that can only be controlled by one task at a time and a
lots more.
The basic procedure is the following:
Any task that uses the resource, first claims it calling the OS_Use or
OS_Request routines of embOS. If the resource is available, the program exe-
cution of the task continues, but the resource is blocked for other tasks. When
the task releases the resource, it does that by calling the OS_Unuse routine of
embOS. If a second task tries to use the same resource while it is used by the
first task, this task is suspended until the first task releases the resource.
However, if the first task that uses the resource calls OS_Use again for that re-
source, it is not suspended because the resource is blocked only for other
tasks.
The following little diagram illustrates the process of using a resource:

OS_Use()

Access resource

OS_Unuse()

A resource semaphore contains a counter that keeps track of how many times
the resource has been claimed by calling OS_Request or OS_Use by that task.
It is released when that counter reaches 0, which means the OS_Unuse routine
has to be called exactly the same number of times as the OS_Use routine. If
OS_Unuse is not called as many times as OS_Use / OS_Request, the re-
source remains blocked for other tasks.
On the other side a task can not release a resource that it does not own by call-
ing OS_Unuse. In the debug version, a call of OS_Unuse for a semaphore that
is not owned by this task will result in a call to the error handler OS_Error.
(→ Debugging)

User's & reference manual for embOS real time OS 49/134

 1996- 2002 Segger Microcontroller Systeme GmbH

7.1. Example for use of Resource semaphore
Here 2 tasks access an LC display completely independent from each other.
The problem is that one task may not interrupt the other task while it is writing
to the LCD because in this case the first task would position the cursor, could
get interrupted, the second task repositions the cursor and the first task writes
to the wrong place in the LCD' s memory. So every time before the LCD is ac-
cessed by a task, the resource (the LCD) is claimed by calling OS_Use (and is
automatically waited for if the resource is blocked). After the LCD has been writ-
ten to, the resource is released by a call to OS_Unuse.

/*
* demo program to illustrate the use of resource semaphores
*/
char StackMain[100], StackClock[50];
OS_TASK TaskMain,TaskClock;
OS_SEMA SemaLCD;

void Clock(void) {
char t=-1;
char s[] = "00:00";
while(1) {

while (TimeSec==t) Delay(10);
t= TimeSec;
s[4] = TimeSec%10+'0';
s[3] = TimeSec/10+'0';
s[1] = TimeMin%10+'0';
s[0] = TimeMin/10+'0';
OS_Use(&SemaLCD); /* make sure nobody else uses LCD */

LCD_Write(10,0,s);
OS_Unuse(&SemaLCD); /* release LCD */

}
}

void Main(void) {
signed char pos ;
LCD_Write(0,0,"Software tools by Segger ! ") ;
OS_Delay(2000);
while (1) {

for (pos=14 ; pos >=0 ; pos--) {
OS_Use(&SemaLCD); /* make sure nobody else uses LCD */
LCD_Write(pos,1,"train "); /* draw train */
OS_Unuse(&SemaLCD); /* release LCD */
OS_Delay(500);

}
OS_Use(&SemaLCD); /* make sure nobody else uses LCD */
LCD_Write(0,1," ") ;
OS_Unuse(&SemaLCD); /* release LCD */

}
}

void InitTask(void) {
OS_CREATETASK(&TaskMain, 0, Main, 50, StackMain);
OS_CREATETASK(&TaskClock, 0, Clock, 100, StackClock);
OS_CREATERSEMA(&SemaLCD); /* Creates resource semaphore */

}

50/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

In most applications, the routines that access a resource should automatically
call OS_Use and OS_Unuse so when using the resource you do not have to
worry about it and can use it just like in a single task system. The following is an
example for how to implement the resource semaphore usage into the routines
that actually access the display:

/*
* simple example when accessing single line dot matrix LCD
*/

OS_RSEMA RDisp; /* define resource semaphore */

void UseDisp() { /* simple routine to be called before using display */
OS_Use(&RDisp);

}

void UnuseDisp() { /* simple routine to be called after using display */
OS_Unuse(&RDisp);

}

void DispCharAt(char c, char x) {
UseDisp();
LCDGoto(x, y);
LCDWrite1(ASCII2LCD(c));
UnuseDisp();

}

void DISPInit(void) {
OS_CREATERSEMA(&RDisp);

}

User's & reference manual for embOS real time OS 51/134

 1996- 2002 Segger Microcontroller Systeme GmbH

7.2. OS_CREATERSEMA

Description
Creates a resource semaphore.

Prototype
void OS_CREATERSEMA(OS_RSEMA* pRSema);

Parameter Meaning
pRSema Pointer to the data structure for a resource semaphore

Return value
Void

Add. information
After creation, the resource is not blocked; the value of the counter is 0.

52/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

7.3. OS_Use: Using a Resource

Description
Claims the resource and blocks it for other tasks.

Prototype
int OS_Use(OS_RSEMA* pRSema);

Parameter Meaning
pRSema Pointer to the data structure for a resource semaphore

Return value
Returns the counter value of the semaphore.
A return value larger than 1 means, the resource was already locked by the
calling task.

Add. information
If a resource is already blocked by an other task, the task is suspended until the
resource is available again.

The following happens:
Case a)
• The resource is not in use:

If the resource is not used by a task, which means the counter of the sema-
phore is 0, the resource will be blocked for other tasks by incrementing the
counter and writing a unique code for the task that uses it into the sema-
phore.

Case b)
• The resource is used by this task:

The counter of the semaphore is simply incremented. The program contin-
ues without a break.

Case c)
• The resource is already used by an other task:

The execution of this task is halted until the resource semaphore is released.
In the meantime if the task blocked by the resource semaphore has a higher
priority than the task blocking the semaphore the blocking task is assigned
the priority of the task requesting the resource semaphore. This is called pri-
ority inversion. Priority inversion can only temporarily increase the priority of
a task, never reduce it.

An unlimited number of tasks can wait for a resource semaphore. According to
the rules of the scheduler, of all the tasks waiting for the resource, the task with
the highest priority will get access to the resource and can continue program
execution.

User's & reference manual for embOS real time OS 53/134

 1996- 2002 Segger Microcontroller Systeme GmbH

The following diagram illustrates the function of the OS_Use routine

Resource
 in use?

Wait for resource
to be released

Mark current task
as owner

Usage counter = 1

return

Increase Usage
counter

Yes, by
other task

Yes, by this task
No

OS_Use(...)

return

54/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

7.4. OS_Unuse: Release Resource

Description
Releases the semaphore currently in use by the task.

Prototype
void OS_Unuse(OS_RSEMA * pRSema);

Parameter Meaning
pRSema Pointer to the data structure for a resource semaphore

Return value
Void.

Add, information
OS_Unuse() may be used on a resource semaphore only after that sema-
phore has been used by calling OS_Use() or OS_Request(). OS_Unuse()
decrements the usage counter of the semaphore which may never become
negative. If this counter becomes negative, the debug version will call the
embOS error handler.

User's & reference manual for embOS real time OS 55/134

 1996- 2002 Segger Microcontroller Systeme GmbH

7.5. OS_Request

Description
Requests the specified semaphore, blocks it for other tasks if it is available.
Continues execution in any case.

Prototype
char OS_Request(OS_RSEMA* pRSema);

Parameter Meaning
pRSema Pointer to the data structure for a resource semaphore

Return value
1 Resource available, in use now
0 Resource was not available

Add. Information
The following diagram illustrates how OS_Request works:

OS_Request (RSEMA*ps)

return 0Resource in use by other task ?

In use by this task ?

Inc Usage counter

Mark current task
as owner

Usage counter = 1

return 1return 1

Yes

No

No

Yes

Example
if (!OS_Request(&RSEMA_LCD)) {

LED_LCDBUSY = 1; /* indicate that task is waiting for */
/* resource */

OS_Use(&RSEMA_LCD); /* wait for resource */
LED_LCDBUSY = 0; /* indicate task is no longer waiting*/

}
DispTime(); /* Access the resource LCD */
OS_Unuse(&RSEMA_LCD); /* resource LCD is no longer needed */

56/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

7.6. OS_GetSemaValue

Description
Returns the value of the usage counter of the specified resource semaphore.

Prototype
int OS_GetSemaValue(OS_SEMA* pSema);

Parameter Meaning
pSema Pointer to the data structure for a resource semaphore

Return value
Returns the counter of the semaphore. 0 means the resource is available.

Add. information
None.

User's & reference manual for embOS real time OS 57/134

 1996- 2002 Segger Microcontroller Systeme GmbH

7.7. OS_GetResourceOwner

Description
Returns a pointer to the task that is currently using (blocking) the resource.

Prototype
TASK* OS_GetResourceOwner(OS_RSEMA* pSema);

Parameter Meaning
pSema Pointer to the data structure for a resource semaphore

Return value
If the resource is available, the NULL pointer is returned.

Add. information
None.

58/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

8. Counting Semaphores
Counting semaphores are counters that are managed by embOS. They are not
as widely used as resource semaphores, events or mailboxes, but they can be
very useful some times. They are used in situations where a task needs to wait
for something that can be signaled one or more times. The semaphores can be
accessed from any point, any task, any interrupt in any way.

8.1. Example for OS_SignalCSema and OS_WaitCSema
char Stack0[96], Stack1[64]; /* stack-space */
OS_TASK TCB0, TCB1; /* Data-area for tasks (task-control-blocks) */
OS_CSEMA SEMALCD;

void Task0(void) {
Loop:

Disp("Task0 will wait for task 1 to signal");
OS_WaitCSema(&SEMALCD);
Disp("Task1 has signaled !!");
OS_Delay(100);
goto Loop;

}

void Task1(void) {
Loop:

OS_Delay(5000);
OS_SignalCSema(&SEMALCD);
goto Loop;

}

void InitTask(void) {
OS_CREATETASK(&TCB0, NullTask0, 100, Stack0); /* Create Task0 */
OS_CREATETASK(&TCB1, NullTask1, 50, Stack1); /* Create Task1 */
OS_CREATECSEMA(&SEMALCD); /* Create Semaphore */

}

User's & reference manual for embOS real time OS 59/134

 1996- 2002 Segger Microcontroller Systeme GmbH

8.2. OS_CREATECSEMA

Description
Creates a counting semaphore with an initial count value of zero.

Prototype
void OS_CREATECSEMA (OS_CSEMA* pCSema);

Parameter Meaning
pCSema Pointer to a data structure of type OS_CSEMA

Return value
void.

Add. information
In order to create a counting Semaphore, a data structure of the type CSEMA
has to be defined in memory and initialized using OS_CREATECSEMA().
The value of a semaphore after creation using this macro is always zero.
If for any reason you have to create a semaphore with an initial counting value
above zero, you have to use the function OS_CreateCSema().

60/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

8.3. OS_CreateCSema

Description
Creates a counting semaphore with a specified initial count value.

Prototype
int OS_CreateCSema(OS_CSEMA* pCSema,

unsigned char InitValue);

Parameter Meaning
pCSema Pointer to the data structure of a counting semaphore
InitValue Initial count value of the semaphore

0 <= InitValue <= 255

Return value
void.

Add. information
In order to create a counting Semaphore, a data structure of the type CSEMA
has to be defined in memory and initialized using OS_CreateCSema().
If the value of the semaphore after creation should be zero, the macro
OS_CREATECSEMA() should be used.

User's & reference manual for embOS real time OS 61/134

 1996- 2002 Segger Microcontroller Systeme GmbH

8.4. OS_SignalCSema: Incrementing

Description
Increments the counter of the semaphore

Prototype
void OS_SignalCSema(OS_CSEMA * pCSema);

Parameter Meaning
pCSema Pointer to the data structure of a counting semaphore

Return value
Void.

Add. information
OS_SignalCSema() signals an event to a semaphore by incrementing the
counter of the semaphore. If one or more tasks are waiting for an event to be
signaled to this semaphore, the task that has the highest priority will become
the active task.
The counter can have a maximum value of 255. The application should make
sure that this limit will not be exceeded.

62/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

8.5. OS_WaitCSema: Decrementing

Description
Decrementing the semaphore counter

Prototype
void OS_WaitCSema(OS_CSEMA* pCSema);

Parameter Meaning
pCSema Pointer to the data structure of a counting semaphore

Return value
Void

Add. information
If the counter of the semaphore is not 0, the counter is decremented and pro-
gram execution continues. If the counter is 0, WaitCSema waits until the
counter is incremented by an other task, a timer or an interrupt-handler via a
call to OS_SignalCSema(). The counter is then decremented and program exe-
cution continues.
An unlimited number of tasks can wait for a semaphore. According to the rules
of the scheduler, of all the tasks waiting for the semaphore, the task with the
highest priority will continue program-execution.

User's & reference manual for embOS real time OS 63/134

 1996- 2002 Segger Microcontroller Systeme GmbH

8.6. OS_WaitCSemaTimed: Decrementing with timeout

Description
Decrementing the semaphore counter, if semaphore is available within the
specified time.

Prototype
int OS_WaitCSemaTimed(OS_CSEMA* pCSema,

int TimeOut);

Parameter Meaning
pCSema Pointer to the data structure of a counting semaphore
TimeOut Maximum time until semaphore should be available

Return value
int
0: Failed, semaphore not available within timeout time
1: OK, semaphore is available

Add. information
If the counter of the semaphore is not 0, the counter is decremented and pro-
gram execution continues. If the counter is 0, OS_WaitCSemaTimed() waits un-
til the semaphore is signaled by an other task, a timer or an interrupt-handler
via a call to OS_SignalCSema() within the specified timeout time.
The counter is then decremented and program execution continues.
If the semaphore was not signaled within the specified time, the program exe-
cution continues, but receives a return value of zero.
An unlimited number of tasks can wait for a semaphore. According to the rules
of the scheduler, of all the tasks waiting for the semaphore, the task with the
highest priority will continue program-execution.

64/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

8.7. OS_GetCSemaValue

Description
Returns count-value

Prototype
int OS_GetCSemaValue(OS_SEMA* pCSema);

Return value
Count-value of the semaphore.

Add. information
None

User's & reference manual for embOS real time OS 65/134

 1996- 2002 Segger Microcontroller Systeme GmbH

8.8. OS_DeleteCSema

Description
Deletes the specified semaphore. The memory of that semaphore can be re-
used for other purposes.

Prototype
void OS_DeleteCSema(OS_CSEMA* pCSema);

Parameter Meaning
pCSema Pointer to the data structure of a counting semaphore

Return value
Void

Add. information
Before deleting a semaphore, make sure that no task is waiting at that sema-
phore and no task will signal that semaphore later.
The debug version will reflect an error, if a deleted semaphore is signaled.

66/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

9. Mailboxes

9.1. Why mailboxes ?
In the preceding chapter the task synchronization by use of semaphores has
been described. Unfortunately, semaphores can not transfer data from one task
to an other. If we need to transfer data from one task to an other via a buffer for
example, we could use a resource semaphore every time before we access the
buffer. This would make the program less efficient. An other major disadvan-
tage would be that we can not access this buffer from an interrupt handler since
the interrupt handler is not allowed to wait for the resource semaphore. One
way out would be the usage of global variables. In this case we have to disable
interrupts every time and everywhere we access these variables. This is possi-
ble, but it is a path full of pitfalls. Most of all, we have one disadvantage: It is not
easy for a task to wait for a character to be placed in the buffer without polling
the global variable that contains the number of characters in the buffer. Again,
there is a way: The task could be notified by an event signaled to the task every
time a character is placed in the buffer.
Complicated you think ?
That is why there is an easier way to do this with a real time OS:
The use of mailboxes.

9.2. Basics
A mailbox is a buffer that is managed by the real time operating system. The
buffer behaves like a normal buffer: you can put something (called a message)
in and retrieve it later. Mailboxes usually work as FIFO: first in, first out. So a
message that is put in first will usually be retrieved first. Message might sound
abstract. But really message means just "item of data". It will become clear in
the following typical applications explained in the following chapter.

User's & reference manual for embOS real time OS 67/134

 1996- 2002 Segger Microcontroller Systeme GmbH

9.3. Typical applications

A keyboard buffer
In most programs, you use either a task, a software timer or an interrupt han-
dler to check the keyboard. When you detect that a key has been pressed, you
put that key in a mailbox that is used as keyboard buffer. The message is then
retrieved by the task that handles keyboard input. The message in this case will
be typically a single byte that holds the key code, the message size is 1 byte.
The advantages: The management of the keyboard buffer is very efficient, you
do not have to worry about it since it is reliable, proven code and you have a
type ahead buffer at no extra cost. On top of that, a task can easily wait for a
key to be pressed without having to poll the buffer. It simply calls the
OS_GetMail routine for that mailbox. The number of keys that can be stored in
the type ahead buffer depends on the size of the mailbox buffer only, which you
define when creating the mailbox.

A buffer for serial I/O
In most cases, serial I/O is done with the help of interrupt handlers. The com-
munication to these interrupt handlers is very easy using mailboxes. Both your
task programs and your interrupt handlers store or retrieve data to/from the
same mailboxes.
For interrupt driven sending: The task places character(s) in the mailbox using
OS_PutMail or OS_PutMailCond, the interrupt handler that is activated when
a new character can be send retrieves this character with OS_GetMailCond.
For interrupt driven receiving: The interrupt handler that is activated when a
new character is received puts it into the mailbox using OS_PutMailCond, the
task receives it using OS_GetMail or OS_GetMailCond.
Again, the message size will be 1 character.

A buffer for commands sent to a task
Assume you have one task that controls a motor as you might have in applica-
tions that control a machine. An easy way to give commands to this task on
how to control the motor would be to define a structure for commands. The
message size will then be the size of this structure.

68/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

9.4. Number of and size of mailboxes, type of mail
The number of mailboxes is limited by the amount of available memory only.

Message size: 1 <= x <= 127 byte.
Number of messages 1 <= x <= 32767.

These limitations have been placed on mailboxes in order to guarantee efficient
coding and to keep the management very efficient.
However, these limitations normally are not a problem. If they are in your case,
please give us feedback and we will try to find a solution.
To handle message sizes above 127 bytes you might use queues.

User's & reference manual for embOS real time OS 69/134

 1996- 2002 Segger Microcontroller Systeme GmbH

9.5. OS_CREATEMB: Creating a mailbox

Description
Creates a new mailbox.

Prototype
void OS_CREATEMB(OS_MAILBOX* pMB,

char sizeofMsg,
char maxnofMsg,
void* pMsg);

Parameter Meaning
pMB Pointer to a data structure of type OS_MAILBOX reserved for

the management of the mailbox
sizeofMsg Size of a message in bytes
maxnofMsg Max. no. of messages
pMsg Pointer to a memory area used as buffer. The buffer has to be

big enough to hold the given number of messages of the given
size: sizeofMsg * maxnofMsg bytes

Return value
Void.

Examples
Mailbox used as keyboard buffer:
OS_MAILBOX MBKey;
char MBKeyBuffer[6];

void InitKeyMan(void) {
/* create mailbox functioning as type ahead buffer */
OS_CREATEMB(&MBKey, 1, sizeof(MBKeyBuffer), &MBKeyBuffer);

}

Mailbox used to transfer complex commands from one task to an other:
/*
* example for mailbox used to transfer commands to a task
* that controls 2 motors
*/

typedef struct {
char Cmd;
int Speed[2];
int Position[2];

} MOTORCMD ;

OS_MAILBOX MBMotor;

#define MOTORCMD_SIZE 4
char BufferMotor[sizeof(MOTORCMD)*MOTORCMD_SIZE];

void MOTOR_Init(void) {
/* create mailbox that holds commands messages */
OS_CREATEMB(&MBMotor, sizeof(MOTORCMD), MOTORCMD_SIZE, &BufferMotor);

}

70/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

9.6. Single byte mailbox functions
In a lot (if not the most) situations, mailboxes are used to just hold and transfer
single byte messages. This is for example the case for a mailbox that takes the
character received or sent via serial interface or normally for a mailbox used as
keyboard buffer. In some of these case time is very critical, especially if a lot of
data is transferred in short periods of time. In order to minimize the overhead
caused by the mailbox management of embOS, there are all of the functions
described above available for single byte mailboxes. The general functions
OS_PutMail, OS_PutMailCond, OS_GetMail, OS_GetMailCond can trans-
fer messages of sizes between 1 and 127 bytes each. Their single byte equiva-
lents OS_PutMail1, OS_PutMailCond1, OS_GetMail1, OS_GetMailCond1
function exactly the same way with the exception that they execute a lot faster
since the management is easier. It is recommended you use the single byte
versions if you transfer a lot of single byte data via mailboxes.

OS_PutMail1, OS_PutMailCond1, OS_GetMail1, OS_GetMailCond1 func-
tion exactly the same way as their more universal equivalents and are therefore
not described in detail. The only difference is that they can only be used for sin-
gle byte mailboxes.

User's & reference manual for embOS real time OS 71/134

 1996- 2002 Segger Microcontroller Systeme GmbH

9.7. OS_PutMail / OS_PutMail1: Store message

Description
Stores a new message of the predefined size in the mailbox.

Prototype
void OS_PutMail (OS_MAILBOX * pMB, void* pMail);
void OS_PutMail1 (OS_MAILBOX * pMB, const char* pMail);

Parameter Meaning
pMB Pointer to the mailbox
pMail Pointer to the message to store

Return value
Void.

Add. information
If the mailbox is full, the task is suspended.
Since this routine might require a suspension, it must not be called from an in-
terrupt routine. Use →OS_PutMailCond →OS_PutMailCond1 instead.

Example
Single byte mailbox as keyboard buffer:
OS_MAILBOX MBKey;
char MBKeyBuffer[6];

void KEYMAN_StoreKey(char k) {
OS_PutMail1(&MBKey, &k); /* store key, wait if no space in buffer */

}

void KEYMAN_Init(void) {
/* create mailbox functioning as type ahead buffer */
OS_CREATEMB(&MBKey, 1, sizeof(MBKeyBuffer), &MBKeyBuffer);

}

72/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

9.8. OS_PutMailCond / OS_PutMailCond1: Store Message if possi-
ble

Description
Stores a new message of the predefined size in the mailbox, if the mailbox is
able to accept one more message. This routine will never suspend the calling
task.

Prototype
char OS_PutMailCond (OS_MAILBOX * pMB, void* pMail);
char OS_PutMailCond1 (OS_MAILBOX * pMB, const char* pMail);

Parameter Meaning
pMB Pointer to the mailbox
pMail Pointer to the message to store

Return value
Returns 0 if message could be stored (success) , otherwise 1.

Add. information
If the mailbox is full, the message is not stored.
This routine can be called from an interrupt routine.

Example
OS_MAILBOX MBKey;
char MBKeyBuffer[6];

char KEYMAN_StoreCond(char k) {
return OS_PutMailCond1(&MBKey, &k); /* store key if space in buffer */

}

This example can be used with the sample program shown earlier to create a
mailbox as keyboard buffer.

User's & reference manual for embOS real time OS 73/134

 1996- 2002 Segger Microcontroller Systeme GmbH

9.9. OS_GetMail / OS_GetMail1

Description
Retrieves a new mail of the predefined size from a mailbox and will suspend the
calling task until a message is available.

Prototype
void OS_GetMail (OS_MAILBOX * pMB, void* pDest);
void OS_GetMail1(OS_MAILBOX * pMB, char* pDest);

Parameter Meaning
pMB Pointer to the mailbox
pDest Pointer to the memory area that the message should be stored

at. You have to make sure that this pointer points to a valid
memory area and that there is sufficient space for an entire
message. The message size (in bytes) has been defined upon
creation of the mailbox

Return value
Void.

Add. information
If the mailbox is empty, the task is suspended until the mailbox receives a new
message.
Since this routine might require a suspension, it may not be called from an in-
terrupt routine. Use →OS_GetMailCond / →OS_GetMailCond1 instead if you
have to retrieve data from a mailbox from within an ISR.

Example
OS_MAILBOX MBKey;
char MBKeyBuffer[6];

char WaitKey(void) {
char c;
OS_GetMail1(&MBKey, &c);
return c;

}

74/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

9.10. OS_GetMailCond / OS_GetMailCond1

Description
Retrieves a new mail of the predefined size from a mailbox, if a message is
available. This function never suspends the calling task.

Prototype
char OS_GetMailCond (OS_MAILBOX * pMB, void* pDest);
char OS_GetMailCond1(OS_MAILBOX * pMB, char* pDest);

Parameter Meaning
pm Pointer to the mailbox
pDest Pointer to the memory area that the message should be

stored at. You have to make sure that this pointer points to a
valid memory area and that there is sufficient space for an
entire message. The message size (in bytes) has been de-
fined upon creation of the mailbox

Add. information
If the mailbox is empty, no message is retrieved, but the program execution
continues.
Can be called from an interrupt routine.

Return value
0 on success: message retrieved
1 no message could be retrieved (mailbox is empty !), destination remains un-
changed

Example
OS_MAILBOX MBKey;
char MBKeyBuffer[6];

/*
* If a key has been pressed, it is taken out of the mailbox and returned to
* caller.
* Otherwise, 0 is returned.
*/
char GetKey(void) {

char c =0;
OS_GetMailCond1(&MBKey, &c)
return c;

}

User's & reference manual for embOS real time OS 75/134

 1996- 2002 Segger Microcontroller Systeme GmbH

9.11. OS_ClearMB: Empty a Mailbox

Description
Clears all messages in the specified mailbox.

Prototype
void OS_ClearMB(OS_MAILBOX * pMB);

Parameter Meaning
pMB Pointer to the mailbox

Return value
Void.

Add. information
None.

Example
OS_MAILBOX MBKey;
char MBKeyBuffer[6];

/*
* Clear keyboard type ahead buffer
*/
void ClearKeyBuffer(void) {

OS_ClearMB(&MBKey);
}

76/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

9.12. OS_GetMessageCnt

Description
Return no. of messages.

Prototype
char OS_GetMessageCnt(OS_MAILBOX * pMB);

Parameter Meaning
pMB Pointer to the mailbox

Return value
Returns the number of messages currently in the mailbox.

Add. information
None.

Example
char GetKey(void) {

if (OS_GetMessageCnt(&MBKey)) return WaitKey();
return 0;

}

User's & reference manual for embOS real time OS 77/134

 1996- 2002 Segger Microcontroller Systeme GmbH

9.13. OS_DeleteMB

Description
Deletes the specified mailbox.

Prototype
void OS_DeleteMB(OS_MAILBOX * pMB);

Parameter Meaning
pMB Pointer to the mailbox

Return value
Void.

Add. information
In order to keep the system fully dynamic, it is essential that mailboxes can be
created dynamically. This also means there has to be a way to delete the mail-
box when it is no longer needed. The memory that has been used by the mail-
box for the control structure and the buffer can then be reused or reallocated.
It is the programmers responsibility to:
1. make sure that the program does not use the mailbox any more
2. make sure that the mailbox that shall be deleted does actually exist, i.e. has

been created first before deleting the mailbox.

Example
OS_MAILBOX MBSerIn;
char MBSerInBuffer[6];

void Cleanup(void) {
OS_DeleteMB(MBSerIn);
return 0;

}

78/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

10. Queues

10.1. Why Queues ?
In the preceding chapter inter task communication using mailboxes was de-
scribed. Mailboxes can handle small messages with fixed data size only.
Queues enable inter task communication with large messages or messages of
various size.

10.2. Basics
A queue consists of a data buffer and a control structure that is managed by the
real time operating system. The queue behaves like a normal buffer: you can
put something (called a message) in and retrieve it later. Queues work as FIFO:
first in, first out. So a message that is put in first will be retrieved first.
There are two major differences to mailboxes:
1. Queues accept messages of various size. When putting a message into a

queue, the message size has to be passed as additional parameter.
2. Retrieving a message from the queue does not copy the message but gives

a pointer to the message and the size of the message. This enhances per-
formance, because the data is copied only once, when the message is writ-
ten into the queue.

3. The retrieving function has to delete every message after processing it.

User's & reference manual for embOS real time OS 79/134

 1996- 2002 Segger Microcontroller Systeme GmbH

10.3. Number of and size of queues, type of messages
The number of queues is limited by the amount of available memory only.
The size of a queue is limited by the amount of available memory only.
Any data structure can be written into a queue. The message size is not fixed.

80/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

10.4. OS_Q_Create: Creating a message queue

Description
Creates and initializes a message queue.

Prototype
void OS_Q_Create(OS_Q* pQ,

void*pData,
OS_UINT Size)

Parameter Meaning
pQ Pointer to a data structure of type OS_Q reserved for the man-

agement of the message queue
pData Pointer to a memory area used as data buffer for the queue.
Size Size of the data buffer in bytes

Return value
Void.

Examples
Queue used to transfer data to memory:

define MEMORY_QSIZE 10000;
static OS_Q _MemoryQ;
static char _acMemQBuffer[MEMORY_QSIZE];

void MEMORY_Init(void) {
OS_Q_Create(&_MemoryQ, &_acMemQBuffer, sizeof(_acMemQBuffer));

}

User's & reference manual for embOS real time OS 81/134

 1996- 2002 Segger Microcontroller Systeme GmbH

10.5. OS_Q_Put: Store message

Description
Stores a new message of given size in a queue.

Prototype
int OS_Q_Put(OS_Q* pQ, const void* pSrc, OS_UINT Size)

Parameter Meaning
pQ Pointer to the queue
pSrc Pointer to the message to store
Size Size of the actual message to store

Return value
Returns 0 if message could be stored (success) , otherwise 1.

Add. information
If the queue is full, the task is not suspended, the function returns a value un-
equal to zero.
Since this routine never suspends a task, it may also be called from an interrupt
routine.

Example
char MEMORY_Write(char* pData, int Len) {

return OS_Q_Put(&_MemoryQ, pData, Len));
}

82/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

10.6. OS_Q_GetPtr: Retrieve message

Description
Retrieves a message from the queue, if one message is available.
This routine will suspend the calling task, as long as no message is available in
the queue.

Prototype
int OS_Q_GetPtr(OS_Q* pQ, void**ppData)

Parameter Meaning
pQ Pointer to the queue
ppData Address of pointer to the message to be retrieved from queue.

Return value
Returns the message size of the retrieved message.
Sets the pointer to the actual message that should be retrieved.

Add. information
If the queue is empty, the calling task is suspended.
Therefore this routine must not be called from within an interrupt routine.
The retrieved message is not removed from the queue. This has to be done by
a call of OS_Q_Purge()after the message wass processed.

Example
static void MemoryTask(void) {

char MemoryEvent;
int Len;
char* pData;
while (1) {

Len = OS_Q_GetPtr(&_MemoryQ, &pData); /* Get message */
Memory_WritePacket(*(U32*)pData, pData+4, Len); /* Process message */
OS_Q_Purge(&_MemoryQ); /* Delete message */

}
}

User's & reference manual for embOS real time OS 83/134

 1996- 2002 Segger Microcontroller Systeme GmbH

10.7. OS_Q_GetPtrCond: Retrieve message if available

Description
Retrieves a message from the queue, if one message is available and delivers
the size of the message as return value.
If no message is available, the functions returns with a size of zero, indicating,
that there was no message in the queue. This routine will never suspend the
calling task.

Prototype
int OS_Q_GetPtrCond(OS_Q* pQ, void**ppData)

Parameter Meaning
pQ Pointer to the queue
ppData Address of pointer to the message to be retrieved from queue.

Return value
0: No message available in queue.
>0: Size of message that was retrieved from queue.

Add. information
If the queue is empty, the calling task is not suspended, the function returns
with zero. The value of ppData is undefined.
If one message could be retrieved, this message is not removed from the
queue. This has to be done by a call of OS_Q_Purge()after the message was
processed.

Example
static void MemoryTask(void) {

char MemoryEvent;
int Len;
char* pData;
while (1) {

Len = OS_Q_GetPtrCond(&_MemoryQ, &pData); /* Check message */
if (Len > 0) {

Memory_WritePacket(*(U32*)pData, pData+4, Len); /* Process message */
OS_Q_Purge(&_MemoryQ); /* Delete message */

} else {
DoSomethingElse();

}
}

}

84/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

10.8. OS_Q_Purge: Delete message in queue

Description
Deletes the last message in queue.

Prototype
void OS_Q_Purge(OS_Q* pQ)

Parameter Meaning
pQ Pointer to the queue

Return value
Void.

Add. information
This routine should be called by the task that retrieved the last message from
queue, after the message is processed.

Example
static void MemoryTask(void) {

char MemoryEvent;
int Len;
char* pData;
while (1) {

Len = OS_Q_GetPtr(&_MemoryQ, &pData); /* Get message */
Memory_WritePacket(*(U32*)pData, pData+4, Len); /* Process message */
OS_Q_Purge(&_MemoryQ); /* Delete message */

}
}

User's & reference manual for embOS real time OS 85/134

 1996- 2002 Segger Microcontroller Systeme GmbH

10.9. OS_Q_GetMessageCnt: Get number of messages in queue

Description
Deletes the last message in queue.

Prototype
void OS_Q_Purge(OS_Q* pQ)

Parameter Meaning
pQ Pointer to the queue

Return value
Void.

Add. information
This routine should be called by the task that retrieved the last message from
queue, after the message is processed.

Example
static void MemoryTask(void) {

char MemoryEvent;
int Len;
char* pData;
while (1) {

Len = OS_Q_GetPtr(&_MemoryQ, &pData); /* Get message */
Memory_WritePacket(*(U32*)pData, pData+4, Len); /* Process message */
OS_Q_Purge(&_MemoryQ); /* Delete message */

}
}

86/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

11. Events
Events are another means of communication between tasks. In contrast to
semaphores and mailboxes, events are messages to a single, specified recipi-
ent. In other words: An event is send to a specified task.
The purpose of an event is to enable a task to wait for a particular event (or for
one of several events) to occur. This task can be kept inactive until the event is
signaled by an other task, a S/W timer or an interrupt handler. The event can
be anything that the software is made aware of in any way. Examples are the
change of an input signal, the expiration of a timer, a key press, the reception of
a character or a complete command.
Every task has an 1 byte (8 bits) mask, which means that 8 different events can
be signaled to and distinguished by every task.
By calling OS_WaitEvent, a task waits for one of the events specified as bit-
mask.
As soon as one of the events actually occurs, it has to be signaled to this task
by calling OS_SignalEvent.
The waiting task will then be put in the ready state immediately and activated
according to the rules of the scheduler as soon as it becomes the task with the
highest priority of all the tasks in the READY state.

User's & reference manual for embOS real time OS 87/134

 1996- 2002 Segger Microcontroller Systeme GmbH

11.1. OS_WaitEvent

Description
Waits for the specified event and clears the event memory after the event oc-
curs.

Prototype
char OS_WaitEvent(char EventMask);

Parameter Meaning
EventMask The events that the task will be waiting for.

Return value
Returns all events that have actually occurred.

Add. information
Lets the task wait for the occurrence of one of the specified events and then
clears the event memory. If none of the specified events is signaled, the task is
suspended. The first of the specified events will wake the task. These events
have to be signaled by an other task, a S/W timer or an interrupt handler.
Every 1 bit in the event mask enables the according event.

Example
OS_WaitEvent(3); /* Wait for event 1 or 2 to be signaled */

Further example: → OS_SignalEvent

88/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

11.2. OS_WaitSingleEvent

Description
Waits for the specified event and clears only those event after the event occurs.

Prototype
char OS_WaitSingleEvent(char EventMask);

Parameter Meaning
EventMask The events that the task will be waiting for.

Return value
Returns all masked events that have actually occurred.

Add. information
Lets the task wait for the occurrence of one of the specified events and then
clears the masked events only. If none of the specified events is signaled, the
task is suspended. The first of the specified events will wake the task. These
events have to be signaled by an other task, a S/W timer or an interrupt han-
dler.
Every 1 bit in the event mask enables the according event.
All unmasked events remain unchanged.

Example
OS_WaitSingleEvent(3); /* Wait for event 1 or 2 to be signaled */

User's & reference manual for embOS real time OS 89/134

 1996- 2002 Segger Microcontroller Systeme GmbH

11.3. OS_WaitEventTimed

Description
Waits for the specified events for a given time.

Prototype
char OS_WaitEventTimed(char EventMask, int TimeOut);

Parameter Meaning
EventMask The events that the task will be waiting for.
TimeOut Maximum time in timer ticks, until the events have to be

signaled.

Return value
Returns the events that have actually occurred within the specified time.
Returns 0, if no events were signaled in time

Add. information
Lets the task wait for the occurrence of one of the specified events and then
clears the event memory. If none of the specified events is available, the task is
suspended for the given time. The first of the specified events will wake the
task, if the event has been signaled by an other task, a S/W timer or an inter-
rupt handler within the specified TimeOut time.
If no event was signaled, the Task is activated after the specified TimeOut time,
all actual events are returned and then cleared.
Every 1 bit in the event mask enables the according event.

Example
OS_WaitEventTimed(3, 10); /* Wait for event 1/2 to be signaled within 10 ms */

90/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

11.4. OS_WaitSingleEventTimed

Description
Waits for the specified events for a given time.

Prototype
char OS_WaitSingleEventTimed(char EventMask, int TimeOut);

Parameter Meaning
EventMask The events that the task will be waiting for.
TimeOut Maximum time in timer ticks, until the events have to be

signaled.

Return value
Returns the masked events that have occurred within the specified time.
Returns 0, if none of the masked events were signaled in time

Add. information
Lets the task wait for the occurrence of one of the specified events and then
clears the masked events.
Unmasked events remain unchanged.
If none of the specified events is available, the task is suspended for the given
time. The first of the specified events will wake the task, if the event has been
signaled by an other task, a S/W timer or an interrupt handler within the speci-
fied TimeOut time.
If no event was signaled, the task is activated after the specified TimeOut time
and the function returns zero.
Every 1 bit in the event mask enables the according event.

Example
OS_WaitSingleEventTimed(3, 10); /* Wait for event 1/2 to be signaled within 10
ms */

User's & reference manual for embOS real time OS 91/134

 1996- 2002 Segger Microcontroller Systeme GmbH

11.5. OS_SignalEvent

Description
Signals the event(s) specified to the task specified.

Prototype
void OS_SignalEvent(char Event, OS_TASK* pTask);

Parameter Meaning
Event The event(s) to signal

1 means event 1
2 means event 2
4 means event 3
...
128 means event 8
multiple events can be signaled as the sum of the single
events, e.g. 6 will signal event 2 & 3

pTask the task that the events are sent to

Return value
Void.

Add. information
If the specified task is waiting for one of these events, it will be put in the ready
state and activated according to the rules of the scheduler.
Usually it is sufficient to just signal 1 to the task since it can find out itself which
event has occurred.

92/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

Example
Task is waiting for serial reception or keyboard

The task that handles the serial input and the keyboard, waits for a character to
be received either via keyboard (EVENT_KEYPRESSED) or serial interface
(EVENT_SERIN).

/*
* just a small demo for events
*/

#define EVENT_KEYPRESSED (1)
#define EVENT_SERIN (2)

char Stack0[96], Stack1[64]; /* stack space */
OS_TASK TCB0, TCB1; /* Data area for tasks (task control blocks) */

void Task0(void) {
while(1)

OS_WaitEvent(EVENT_KEYPRESSED | EVENT_SERIN)
/* check & handle key press */
/* check & handle serial reception */

}
}

void TimerKey(void) {
/* more code to find out if key has been pressed */
OS_SignalEvent(EVENT_SERIN, &TCB0); /* notify Task that key was pressed */

}

void InitTask(void) {
OS_CREATETASK(&TCB0, 0, Task0, 100, Stack0); /* Create Task0 */

}

If the task would wait for a key to be pressed only, OS_GetMail could simply
be called. The task would then be deactivated until a key is pressed. If the task
has to handle multiple mailboxes as in this case, events are a good option.

User's & reference manual for embOS real time OS 93/134

 1996- 2002 Segger Microcontroller Systeme GmbH

11.6. OS_GetEventsOccured

Description
Get List of events

Prototype
char OS_GetEventsOccured(OS_TASK* pTask);

Parameter Meaning
pTask The task who's event mask is to be returned

NULL means current task

Return value
Returns the bit mask of the events that have actually occurred.

Add. information
This is one way for a task to find out which events have been signaled. The
task is not suspended, if no events are available. By calling this function, the
actual events remain signaled, the event memory is not cleared.

94/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

11.7. OS_ClearEvents: Clear List of Events

Description
Returns the actual state of events and then clears the events of the specified
task.

Prototype
char OS_ClearEvents(OS_TASK* pTask);

Parameter Meaning
pTask The task who's event mask is to be cleared

NULL means current task

Return value
Returns the bit mask of the events that were actually signaled before clearing.

User's & reference manual for embOS real time OS 95/134

 1996- 2002 Segger Microcontroller Systeme GmbH

12. Stacks

12.1.Some basics
The stack is the memory-area used to store the return-address of function calls,
parameters, and local variables and for temporary storage. Interrupt-routines
also use the stack to save the return address and flag register, except in case
the CPU does have a separate stack for interrupt functions. Please check out
the CPU & Compiler Specifics manual of embOS documentation for details on
your processor�s stack. A "normal" single-task program needs exactly one
stack. In a multitasking system, every task has to have its own stack.
The stack has to have a minimum size, which is determined by the sum of the
stack-usage of the routines in the worst-case nesting. If the stack is to small, a
section of the memory that is not reserved for the stack will be overwritten, a
serious program-failure is most likely to occur.
embOS monitors the stack size and if available also interrupt stack size in the
debug version and calls the failure-routine OS_Error if it detects a stack-
overflow. However, embOS cannot reliably detect a stack overflow.

A stack that has been defined bigger than necessary does not hurt; it is only a
waist of memory.
The debug and stack check builds of embOS fill the Stack with control charac-
ters when it is created and check these control-characters every time the task is
deactivated in order to detect a stack-overflow.
In case a stack overflow is detected, OS_Error will be called.

12.2.System stack

Before embOS takes over control (before call to OS_Start()), a program
does use the so-called system stack. This is the same stack, as a non-embOS
program for this CPU would use. After transferring control to embOS scheduler
by calling OS_Start(), system stack is used only when no task is executed for
the following:

• embOS Scheduler
• embOS Software timers (and the callback)

For details regarding required size of your system stack, please refer the CPU
& Compiler Specifics manual of embOS documentation.

12.3.Task stack

Each embOS task does have a separate stack. Location and size of this stack
is defined when creating a task. Minimum size of a task stack depends pretty
much on the CPU and compiler. For details, please see CPU & Compiler Spe-
cifics manual of embOS documentation.

96/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

12.4.Interrupt stack
For reduction of stack size in a multi-tasking environment, some processors use
a specific stack area for interrupt service routines (hardware interrupt stack). If
there is no interrupt stack, you will have to add stack requirements of your inter-
rupt service routines to each task stack.
Even if the CPU does not support an interrupt stack by hardware, embOS may
support a separate stack for interrupts by calling function
OS_EnterIntStack() at beginning of an interrupt service routine and
OS_LeaveIntStack() at its very end. In case the CPU does already support
hardware interrupt stack or a separate interrupt stack is not supported at all,
these function calls are implemented as empty macros.
We recommend using OS_EnterIntStack() and OS_LeaveIntStack()
even if there is currently no additional benefit for your specific CPU, because
code using them might reduce stack size on another CPU or a new version of
embOS with support for an interrupt stack for your CPU.
For details about interrupt stack, please check out the CPU & Compiler Specif-
ics manual of embOS documentation.

12.5. OS_GetStackSpace

Description
Returns the unused portion of the stack.

Prototype
int OS_GetStackSpace(OS_TCB* pTask);

Parameter Meaning
pTask The task who's stack space is to be checked

NULL means current task

Return value
Returns the unused portion of the stack in bytes.

Add. information
In most cases, the stack size required by a task can not be easily calculated,
since it takes quite some time to calculate the worst case nesting and the calcu-
lation itself is difficult.
There is an other approach:
The required stack size can be figured out using the function
OS_GetStackSpace. OS_GetStackSpace returns the number of unused
bytes on the stack. If there is a lot of space left, you can reduce the size of this
stack and vice versa.

User's & reference manual for embOS real time OS 97/134

 1996- 2002 Segger Microcontroller Systeme GmbH

This function is available in the debug and stack check builds of embOS
only, since only these initialize the stack space used for the tasks.

Example
void CheckSpace(void) {

printf("Unused Stack[0] %d", OS_GetStackSpace(&TCB[0]);
OS_Delay(1000);
printf("Unused Stack[1] %d", OS_GetStackSpace(&TCB[1]);
OS_Delay(1000);

}

Attention
This routine does not reliably detect the amount of stack space left. (This
is because it can only detect modified bytes on the stack. Unfortunately,
space used for register storage or local variables is not always modified.
However, in most cases this routine will detect the correct amount of
stack bytes.)
In case of doubt, be generous with your stack-space or use other means
to verify that the allocated stack space is sufficient.

98/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

13. Interrupts
In this chapter, you will find a very basic description about using interrupt ser-
vice routines in cooperation with embOS. Details for your CPU and compiler
can be found in the manual �CPU & Compiler Specifics� of embOS documenta-
tion.
Interrupts are interruptions of a program caused by hardware. Normal interrupts
are maskable and can occur at any time unless they are disabled with the
CPU's disable-interrupt-instruction.
There are several good reasons for using interrupt-routines. They can respond
very fast to external events like the status change on an input, the expiration of
a hardware timer, reception or completion of transmission of a character via se-
rial interface or other events.

User's & reference manual for embOS real time OS 99/134

 1996- 2002 Segger Microcontroller Systeme GmbH

13.1. Rules for interrupt handlers

General rules
There are some general rules for interrupt handlers. These rules apply to both
"single task programming" as well as to multi task programming using embOS.

• Interrupt handlers preserve all registers

Interrupt handlers have to restore the environment of a task completely. This
environment normally consists of the registers only, so the interrupt routine
has to make sure that all registers that are modified during interrupt execu-
tion have to be saved at the start and restored at the end of the interrupt rou-
tine.

• Interrupt handler have to be finished quickly.
Calculation intensive parts of the program should be kept out of the interrupt
handler. The interrupt handler should only be used to store a received value
or to trigger an operation in the regular program (a task). It should not wait in
any form or perform a polling operation.

Additional rules
A preemptive multitasking system like embOS needs to know if the program it
is interrupting is part of the current task or an interrupt handler. This is so be-
cause embOS can not perform a task switch during the execution of an inter-
rupt handler. However, it can perform the task switch at the end of the interrupt
routine.
If it would interrupt the interrupt routine; the interrupt routine would be continued
as soon as the interrupted task becomes the current task again. This is not a
problem for interrupt handlers that do not allow further interruptions, (which do
not enable interrupts) and that do not call any embOS function.
This leads us to the following rule:
• Interrupt functions that re-enable interrupts or use any embOS functions

need to use OS_EnterInterrupt() as first and
OS_LeaveInterrupt() or
OS_LeaveInterruptNoSwitch() as last line.

The task switch then occurs in the routine OS_LeaveInterrupt(). The end
of the interrupt service routine is executed at a later point, when the interrupted
task is made ready again. If you debug an interrupt routine, do not be confused.
This has proven to be the most efficient way of initiating a task switch from
within an interrupt service routine.
If fast task-activation is not required, OS_LeaveInterruptNoSwitch() can
be used instead.

100/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

13.2. Calling embOS routines from within an ISR
OS_EnterInterrupt(), OS_LeaveInterrupt(), OS_LeaveInterruptNoSwitch() ,

The use of OS_EnterInterrupt() informs embOS that interrupt code is
executing and has the following effects:
• disables task-switches
• keeps interrupts in internal routines disabled

If OS_EnterInterrupt() is used, it should be the first function to be called in
the interrupt handler.

If OS_EnterInterrupt() is used, OS_LeaveInterrupt() or
OS_LeaveInterruptNoSwitch() should be the last function to be called in
the interrupt handler.
OS_LeaveInterrupt() informs embOS that the end of the interrupt routine
is reached. If the interrupt has caused a task switch, it is executed now -unless
the program which was interrupted was in a critical region.

OS_LeaveInterruptNoSwitch() informs embOS that the end of the inter-
rupt routine is reached, but does not execute the task switch from within the
ISR, but at the next possible occasion. This will be the next call of an embOS
function or the Scheduler Interrupt if the program is not in a critical region.

Examples
Interrupt routine using OS_EnterInterrupt() / OS_LeaveInterrupt():

__interrupt void ISR_Timer(void) {

OS_EnterInterrupt();
OS_SignalEvent(1,&Task); /* any functionality could be here */
OS_LeaveInterrupt();

}

User's & reference manual for embOS real time OS 101/134

 1996- 2002 Segger Microcontroller Systeme GmbH

13.3. Enabling / Disabling interrupts from "C"
During the execution of a task, maskable interrupts are normally enabled. In
certain sections of the program however, it can be necessary to disable inter-
rupts for short periods of time to make a section of the program an atomic op-
eration that can not be interrupted. An example would be the access to a global
volatile variable of type long on an 8/16 bit CPU:

Bad example
volatile long lvar;

void routine (void) {
lvar ++;

}

In order to make sure that the value does not change between the two or more
accesses that are needed, the interrupts have to be temporarily disabled.
The problem with disabling and re-enabling interrupts is the following: Functions
that disable/enable the interrupt can not be nested.
Your C-compiler offers 2 intrinsic functions for enabling and disabling interrupts.
These functions can still be used, but it is recommended you use the functions
that embOS offers (To be precise, they only look like functions, but are macros
in reality).
If you do not use this recommended embOS functions, you may run into a
problem if routines which require a portion of the code to run with disabled inter-
rupts are nested or call an OS-routine. We recommend to disable the interrupt
only for short periods of time, if possible. Also you should not call routines when
interrupts are disabled, because this could lead to long interrupt latency times.
If you do this, you may also safely use the compiler provided intrinsics to dis-
able interrupts.

102/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

OS_IncDI()
Short for: Increment and disable interrupts
Increments the Interrupt disable counter (OS_DICnt) and disables interrupts.
Defined in RTOS.h:

OS_DecRI()
Short for: Decrement and restore interrupts
Decrements the counter and enables interrupts if the counter reaches 0.

The functions mentioned above are in reality macros, so they use very little
space only and execute very fast. It is important that they are used as a pair:
OS_IncDI() first, then OS_DecRI().

Example
volatile long lvar;

void routine (void) {
OS_IncDI();
lvar ++;
OS_DecRI();

}

OS_IncDI() increments the interrupt disable counter which is used for the en-
tire OS and is therefore consistent with the rest of the program: Any routine can
be called, and the interrupts will not be switched on before the matching
OS_DecRI() has been executed. These 2 functions are actually macros de-
fined in RTOS.H. They are very efficient and use no more than a few bytes.
However, if you need to disable the interrupts for a short moment only where no
routine is called as in the example above, you could also use the pair OS_DI()
and OS_RestoreI(). These are a tiny little bit more efficient because the in-
terrupt disable counter OS_DICnt is not modified twice, but only checked once.
They do have the disadvantage that they do not work with routines because the
status of OS_DICnt is not actually changed and should be used with great
care. In case of doubt, use OS_IncDI() and OS_DecRI().

User's & reference manual for embOS real time OS 103/134

 1996- 2002 Segger Microcontroller Systeme GmbH

OS_DI()
Short for Disable Interrupts
Disables interrupts. Does not change the interrupt disable counter.

OS_EI()
Short for Enable Interrupts
Please refrain from using it directly unless you are sure that the interrupt enable
count has the value zero. (Because it does not take the interrupt-disable
counter into account)

OS_RestoreI()
Short for Restore Interrupts
Restores the status of the interrupt flag, based on the interrupt disable counter.

Example
volatile long lvar;

void routine (void) {
OS_DI();
lvar ++;
OS_RestoreI();

}

Definitions of interrupt control macros (in RTOS.h)
#define OS_IncDI() { OS_ASSERT_DICnt(); OS_DI(); OS_DICnt++; }
#define OS_DecRI() { OS_ASSERT_DICnt(); if (--OS_DICnt==0) OS_EI(); }
#define OS_RestoreI() { OS_ASSERT_DICnt(); if (OS_DICnt==0) OS_EI(); }

104/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

13.4. Nesting interrupt routines
For applications requiring short interrupt latency, you may re-enable interrupts
inside an interrupt handler. Therefore use OS_EnterNestableInterrupt()
and OS_LeaveNestableInterrupt() within your interrupt handler.
Per default, interrupts are disabled in an interrupt handler (ISR) because the
CPU disables interrupts with the execution of the interrupt handler. Re-enabling
interrupts in an interrupt handler allows the execution of further interrupts with
equal or higher priority than that of the current interrupt. (nesting interrupts)
Nested interrupts can lead to problems that are difficult to track; therefore it is
not really recommended to enable the execution of interrupts form within an in-
terrupt handler. As it is important, that embOS keeps track of the status of the
interrupt enable / disable flag, disabling of the interrupt has to be done using
the functions that embOS offers for this purpose. To enable the interrupt in an
interrupt handler, use OS_EnterNestableInterrupt(); you need to use
OS_LeaveNestableInterrupt() to disable the interrupts right before end-
ing the interrupt routine again in order to restore the default condition. The call
of OS_EnterNestableInterrupt() prevents further task switches. Re-
enabling interrupts will make it possible that an embOS-Scheduler interrupt
shortly interrupts this ISR. In this case, embOS needs to know that an other
ISR is still active and it may not perform a task switch.

OS_EnterNestableInterrupt()
Re-enables interrupts and increments the embOS internal critical region
counter, thus disabling further task switches. This function should be the first
call inside an interrupt handler, when nested interrupts are required. The func-
tion is implemented as a macro and offers the same functionality, as the former
OS_EnterInterrupt() and OS_DecRI(), but is more efficient, which
means, it results in smaller and faster code.

OS_LeaveNestableInterrupt()
This function disables further interrupts, then decrements the embOS internal
critical region count, thus re-enabling task switches, if the critical region count
reached zero again.
This function is the counterpart of OS_EnterNestableInterrupt() and has
to be the last function call inside an interrupt handler, when nested interrupts
where enabled before by calling OS_EnterNestableInterrupt(). The
function OS_LeaveNestableInterrupt() is implemented as a macro and offers
the same functionality, as the former OS_IncDI()in combination with
OS_LeaveInterrupt(), but is more efficient, which means, it results in
smaller and faster code.

__interrupt void ISR_Timer(void) {
OS_EnterNestableInterrupt(); /* Enable interrupts, but disable task switch*/
/*
* any code legal for interrupt-routines can be placed here
*/
IntHandler();
OS_LeaveNestableInterrupt(); /* Disable interrupts, allow task switch */

}

User's & reference manual for embOS real time OS 105/134

 1996- 2002 Segger Microcontroller Systeme GmbH

13.5. Non maskable interrupts (NMIs)

embOS performs atomic operations by disabling interrupts. Since NMIs can not
be masked, they can interrupt these atomic operations. Therefore NMIs should
be used with great care and may under no circumstances call any embOS -
routines.

106/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

14. Critical Regions
Critical regions are program sections during which the scheduler is switched off,
meaning that no task switch and no execution of a software-timer is allowed ex-
cept for a situation in which the active task has to wait. Effectively preemptions
are switched off.
A typical example for a critical region would be the execution of a program sec-
tion that handles a time critical hardware access, e.g. writing multiple bytes into
a EEPROM, where the bytes have to be written in a certain amount of time or a
section that writes data into global variables used by a different task and there-
fore needs to make sure the data is consistent.
A "critical region" can be defined anywhere during the execution of a task. S/W
timers and interrupts are executed as critical regions anyhow, so it does not
hurt but it does not do any good either to declare a critical region there.
If a task switch becomes due during the execution of a critical region, it will be
performed right after the critical region is left.
Critical regions can be nested; the scheduler will be switched on again after the
outermost loop is left. Interrupts are still legal in a critical region. However, soft-
ware-timer will not be executed during a critical region but right after it is left.

User's & reference manual for embOS real time OS 107/134

 1996- 2002 Segger Microcontroller Systeme GmbH

14.1. OS_EnterRegion

Description
Indicates to the OS the beginning of a critical region.

Prototype
void OS_EnterRegion(void);

Return value
Void.

Add. information
OE_EnterRegion is not actually a function but a macro. However, it behaves
very much like a function with the difference that is a lot more efficient.
Usage of the macro indicates to embOS the beginning of a critical region. A
critical region counter (OS_RegionCnt), which is 0 by default, is incremented,
so that the routine can be nested. The counter will be decremented by a call to
the routine OS_LeaveRegion. If this counter reaches 0 again, the critical re-
gion ends.
Interrupts are not disabled using OS_EnterRegion; disabling the interrupts will
on the other side disable preemptive task switches.

Example
void SubRoutine(void) {

OS_EnterRegion();
/* this code will not be interrupted by the OS */
OS_LeaveRegion();

}

108/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

14.2. OS_LeaveRegion

Description
Indicates to the OS the end of a critical region.

Prototype:
void OS_LeaveRegion(void);

Return value
Void.

Add. information
OS_LeaveRegion is not actually a function but a macro. However, it behaves
very much like a function with the difference that is a lot more efficient.
Usage of the macro indicates to embOS the end of a critical region. A critical
region counter (OS_RegionCnt), which is 0 by default, is decremented.
If this counter reaches 0 again, the critical region ends.

Example
Refer to section for OS_EnterRegion.

User's & reference manual for embOS real time OS 109/134

 1996- 2002 Segger Microcontroller Systeme GmbH

15. System variables

The system variables are described here for a deeper understanding of how the
OS works and to make debugging easier.
Please, do not change the value of any system variables.
These variables are accessible and not declared constant, but they should only
be altered by functions of embOS. However, some of these variables can be
very useful, especially the time variables.

15.1. Time Variables

15.1.1. OS_Time

Description
This is the time variable which contains the current system time in ticks (usually
equivalent to ms)

Prototype
extern volatile OS_U32 OS_Time;

Add. information
The time variable has a resolution of one time unit, which is normally 1/1000
sec and normally the time between two successive calls to the embOS inter-
rupt handler. Instead of accessing this variable directly, you should do so by us-
ing OS_GetTime() or OS_GetTime32().

15.1.2. OS_TimeDex

Basically for internal use only. Contains the time at which the next task switch
or timer activation is due. If ((int)(OS_Time - OS_TimeDex) >=0), the
task-list and timer list will be checked for a task or timer to activate. After activa-
tion of this timer, OS_TimeDex will be assigned the time stamp of the next task
or timer to be activated.

110/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

15.2. OS internal variables and data-structures

embOS internal variables are not explained here as this is in no way required
to use embOS. Your application should not rely on any of the internal vari-
ables, as only the documented API functions are guaranteed to remain un-
changed in future versions of embOS.

Important
Do not alter any system variables

User's & reference manual for embOS real time OS 111/134

 1996- 2002 Segger Microcontroller Systeme GmbH

16. STOP / HALT / IDLE Mode
Most CPUs support power saving STOP, HALT or IDLE modes. Usage of these
modes is one possibility to save power consumption during idle times. As long
as the timer interrupt will wake up the system every embOS tick, or other inter-
rupts will activate tasks, these modes may be used to save power consumption.
If required, you may modify the OS_Idle() routine, which is part of the hard-
ware dependant module RtosInit.c to switch the CPU to power saving mode
during idle times. Please check out the CPU & Compiler Specifics manual of
embOS documentation for details on your processor.

112/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

17. embOSView: Profiling and analyzing

17.1. Overview

embOSView displays the state of a running application using embOS. A serial
interface (UART) is normally used to communicate with the target.
The hardware dependent routines and defines to communicate with embOS-
View are located in RTOSInit.c. This file has to be configured properly. For de-
tails on how to configure this file, please refer the CPU & Compiler Specifics
manual of embOS documentation.
The embOSView utility is shipped as embosView.exe with embOS and runs
under Windows 9x / NT / 2000. The latest version is available on our website
www.segger.com

embOSView is a very helpful tool for analysis of the running target application.

User's & reference manual for embOS real time OS 113/134

 1996- 2002 Segger Microcontroller Systeme GmbH

17.2. Task list window
embOSView shows the state of every created task of the target application in
the Task list window. The information shown depends on the library used in
your application

Item Explanation Builds
Prio Actual priority of task All
Id Task Id, which is the address of task control

block
All

Name Name given during creation All
Status Actual state of task (Executing, delay, waiting

etc)
All

Data Meaning depends on status All
Timeout Time of next activation All
Stack Used stack size, max. stack size, stack location S, SP, D, DP, DT
CPULoad Percentage CPU load caused by task SP, DP, DT
Context-
Switches

Number of activations since reset SP, DP, DT

The task list window is very helpful in analysis of stack usage and CPU load for
every running task.

17.3. System variables
embOSView shows the actual state of major system variables in the system
variables window. The information shown also depends on the library used in
your application:

Item Explanation Builds
OS_VERSION Actual version of embOS All
CPU Target CPU and compiler All
LibMode Library mode used for target application All
OS_Time Actual system time in timer ticks All
OS_NumTasks Actual number of defined tasks All
OS_Status shows actual error code (or O.K.) All
OS_pActiveTask Active task, that should actually run SP, D, DP, DT
OS_pCurrentTask Actual running task SP, D, DP, DT
SysStack Used size, max. size and location of

system stack
SP, DP, DT

IntStack Used size, max. size and location of
interrupt stack

SP, DP, DT

TraceBuffer Actual count, maximum size and actual
state of trace buffer

all trace builds

17.4. Sharing the SIO for Terminal I/O
The SIO used by embOSView may also be used by the application at the same
time for both input and output. This can be very helpful. Terminal input is often
used as keyboard input, where terminal output may be used to output debug
messages. Input and output is done via the terminal window, which can be
shown by menu �View | Terminal�
To ensure communication via the terminal window in parallel with the viewer
functions, the application has to use the two functions OS_SendString() for

114/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

sending and OS_SetRxCallback() to hook a reception routine, that receives
one byte.

OS_SendString

Description
Sends a string over SIO to the terminal window.

Prototype
void OS_SendString(const char* s);

Parameter Meaning
s Points to a zero terminated string that should be sent to the

terminal

Add. information
This function uses OS_COM_Send1() which is defined in RTOSInit.c.

OS_SetRxCallback

Description
Sets a callback hook to a routine for receiving one character.

Prototype
typedef void OS_RX_CALLBACK(OS_U8 Data)
OS_RX_CALLBACK* OS_SetRxCallback(OS_RX_CALLBACK* cb)

Parameter Meaning
cb Pointer to the application routine that should be called, when

one character is received over serial interface

Return value
OS_RX_CALLBACK* as described above. This is the pointer to the callback
function that was hooked before the call.

Add. information
The user function is called from embOS. The received character is passed as
parameter. See example below.

Example
void GUI_X_OnRx(OS_U8 Data); /* Callback ... called from Rx-interrupt */

void GUI_X_Init(void) {
OS_SetRxCallback(&GUI_X_OnRx);

}

17.5. Using the API-trace

With embOS version 3.06 or higher, a trace feature of API call was introduced.
This requires the use of the trace build libraries in the target application.
The trace build libraries implement a buffer for 100 trace entries. Tracing of API
calls can be started and stopped from embOSView via menu �Trace�, or it can

User's & reference manual for embOS real time OS 115/134

 1996- 2002 Segger Microcontroller Systeme GmbH

also be started and stopped from within the application by use of the new func-
tions OS_TraceEnable() and OS_TraceDiasable().
Individual filters may be defined, to determine which API calls should be traced
for different tasks or from within interrupt or timer routines.
Once trace was started, the API calls are recorded in the trace buffer, which is
periodically read by embOSView. The result is shown in the Trace window:

Every entry in the trace list is recorded with the actual system time. In case of
calls or events from tasks, the task ID and task name (limited to 15 characters)
is also recorded. Parameters of API calls are recorded if possible and are
shown as part of the APIName column. In the example above, this is shown for
OS_Delay(3).
Once the trace buffer is full, trace is automatically stopped. The trace list and
buffer can be cleared from embOSView.

17.5.1. Setting up trace from embOSView
Three different kinds of trace filter are defined for tracing. These filters can be
set up from embOSView via menu �Options | Setup | Trace�:
Filter 0 is non task specific and records all specified events regardless of the
task. As the Idle loop is no task, calls from within the Idle loop are not traced.
Filter 1 is specific for interrupt service routines, s/w timer and all calls that occur
outside a running task. These calls may come from the Idle loop or during
startup, when no task is running.
Filter 2 to 4 allow trace of API calls from named tasks.

116/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

To enable or disable a filter, simply check or uncheck the corresponding check-
box �Filter 0 Enable� to �Filter 4 Enable�.
For any of those five filters, individual API functions can be enabled or disabled
by checking or unchecking the corresponding checkboxes in the list.
To speed up the process, there are two buttons available:
�Select All� enables trace of all API functions for the actual enabled (checked)
filters.
�Deselect All� disables trace of all API functions for the actual enabled
(checked) filters.
Filter 2 to 4 allow trace of task specific API calls. Therefore a task name can be
specified for each of those filters.
In the example above, Filter 4 is configured to trace calls of OS_Delay from the
task called �MainTask�.
After the settings are saved (via Apply or OK button), the new settings are sent
to the target application.

17.6. Trace filter setup functions
Tracing of API or user function calls can be started or stopped from embOS-
View. Per default trace is initially disabled in an application program. It may be
very helpful to control the recording of trace events directly from the application.
This can be done by the following functions:

OS_TraceEnable

Description
Enables trace of actual filtered API calls.

Prototype
void OS_TraceEnable(void);

User's & reference manual for embOS real time OS 117/134

 1996- 2002 Segger Microcontroller Systeme GmbH

Add. information
The trace filter conditions should have been set up before a call of this function.
This functionality is available in trace builds only. In none trace builds this API
call is removed by the preprocessor.

OS_TraceDisable

Description
Disables trace of API and user function calls.

Prototype
void OS_TraceDisable(void);

Add. information
This functionality is available in trace builds only. In none trace builds this API
call is removed by the preprocessor.

OS_TraceEnableAll

Description
Sets up the first trace filter (Filter 0: �Any task�), enables trace of all API calls
and then enables trace function.

Prototype
void OS_TraceEnableAll(void);

Add. information
The trace filter conditions of all the other trace filters are not affected. This func-
tionality is available in trace builds only. In none trace builds this API call is re-
moved by the preprocessor.

OS_TraceDisableAll

Description
Sets up the first trace filter (Filter 0: �Any task�), disables trace of all API calls
and also disables trace.

Prototype
void OS_TraceDisableAll(void);

Add. information
The trace filter conditions of all the other trace filters are not affected, but trac-
ing is stopped. This functionality is available in trace builds only. In none trace
builds this API call is removed by the preprocessor.

OS_TraceEnableId

Description
Sets the specified id value in the first trace filter (Filter 0: �Any task�), thus ena-
bling trace of the specified function, but does not start trace.

118/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

Prototype
void OS_TraceEnableId(OS_U8 Id);

Parameter Meaning
Id Id value of API call that should be enabled for trace

0 <= Id <= 127
Values from 0 to 99 are reserved for embOS

Add. information
To enable trace of a specific embOS API function, you have to use the correct
Id value. These values are defined as symbolic constants in RTOS.h
This function may also be used to enable trace of your own functions. This
functionality is available in trace builds only. In none trace builds this API call is
removed by the preprocessor.

OS_TraceDisableId

Description
Resets the specified id value in the first trace filter (Filter 0: �Any task�), thus dis-
abling trace of the specified function, but does not stop trace.

Prototype
void OS_TraceDisableId(OS_U8 Id);

Parameter Meaning
Id Id value of API call that should be enabled for trace

0 <= Id <= 127
Values from 0 to 99 are reserved for embOS

Add. information
To disable trace of a specific embOS API function, you have to use the correct
Id value. These values are defined as symbolic constants in RTOS.h
This function may also be used to disable trace of your own functions. This
functionality is available in trace builds only. In none trace builds this API call is
removed by the preprocessor.

OS_TraceEnableFilterId

Description
Sets the specified id value in the specified trace filter, thus enabling trace of the
specified function, but does not start trace.

Prototype
void OS_TraceEnableFilterId(OS_U8 FilterIndex, OS_U8 id)

Parameter Meaning
FilterIndex Index of the Filter, that should be affected.

0 <= FilterIndex <= 4
0 affects Filter 0 (�Any Task�) and so on

id Id value of API call that should be enabled for trace
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS

User's & reference manual for embOS real time OS 119/134

 1996- 2002 Segger Microcontroller Systeme GmbH

Add. information
To enable trace of a specific embOS API function, you have to use the correct
Id value. These values are defined as symbolic constants in RTOS.h
This function may also be used to enable trace of your own functions. This
functionality is available in trace builds only. In none trace builds this API call is
removed by the preprocessor.

OS_TraceDisableFilterId

Description
Resets the specified id value in the specified trace filter, thus disabling trace of
the specified function, but does not stop trace.

Prototype
void OS_TraceDisableFilterId(OS_U8 FilterIndex, OS_U8 id)

Parameter Meaning
FilterIndex Index of the Filter, that should be affected.

0 <= FilterIndex <= 4
0 affects Filter 0 (�Any Task�) and so on

id Id value of API call that should be enabled for trace
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS

Add. information
To disable trace of a specific embOS API function, you have to use the correct
Id value. These values are defined as symbolic constants in RTOS.h
This function may also be used to disable trace of your own functions. This
functionality is available in trace builds only. In none trace builds this API call is
removed by the preprocessor.

17.7. Trace record functions
The following functions are used to write (record) data into the trace buffer. As
long as only embOS API calls should be recorded, these functions are used in-
ternally by the trace build libraries.
If for some reason, you want to trace own functions with own parameters, you
may call one of those functions.
All those functions have the following points in common:
• To record data, trace must be enabled.
• An Id value in the range from 100 to 127 has to be used as id parameter. Id

values from 0 to 99 are internally reserved for embOS
• The specified events (id�s) have to be enabled in any of the trace filters.
• Active system time and current task are automatically recorded together with

the specified event.

OS_TraceVoid

Description
Writes an entry which is only identified by its id into the trace buffer.

Prototype
void OS_TraceVoid(OS_U8 id);

120/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

Parameter Meaning
id Id value that should be written into trace buffer

100 <= Id <= 127
Values from 0 to 99 are reserved for embOS

Add. information
This functionality is available in trace builds only. In none trace builds this API
call is removed by the preprocessor.

OS_TracePtr

Description
Writes an entry with id and a pointer as parameter into the trace buffer.

Prototype
void OS_TracePtr(OS_U8 id, void* p);

Parameter Meaning
id Id value that should be written into trace buffer

100 <= Id <= 127
Values from 0 to 99 are reserved for embOS

p any void pointer that should be recorded as parameter

Add. information
The pointer passed as parameter, will be displayed in the trace list window of
embOSView. This functionality is available in trace builds only. In none trace
builds this API call is removed by the preprocessor.

OS_TraceData

Description
Writes an entry with id and an integer as parameter into the trace buffer.

Prototype
void OS_TraceData (OS_U8 id, int v);

Parameter Meaning
id Id value that should be written into trace buffer

100 <= Id <= 127
Values from 0 to 99 are reserved for embOS

v any integer value that should be recorded as parameter

Add. information
The value passed as parameter, will be displayed in the trace list window of
embOSView. This functionality is available in trace builds only. In none trace
builds this API call is removed by the preprocessor.

OS_TraceDataPtr

Description

User's & reference manual for embOS real time OS 121/134

 1996- 2002 Segger Microcontroller Systeme GmbH

Writes an entry with id, an integer and a pointer as parameter into the trace
buffer.

Prototype
void OS_TraceDataPtr(OS_U8 id, int v, void*p);

Parameter Meaning
id Id value that should be written into trace buffer

100 <= Id <= 127
Values from 0 to 99 are reserved for embOS

v any integer value that should be recorded as parameter
p any void pointer that should be recorded as parameter

Add. information
The values passed as parameter, will be displayed in the trace list window of
embOSView. This functionality is available in trace builds only. In none trace
builds this API call is removed by the preprocessor.

OS_TraceU32Ptr

Description
Writes an entry with id, a 32 bit unsigned integer and a pointer as parameter
into the trace buffer.

Prototype
void OS_TraceU32Ptr(OS_U8 id, OS_U32 p0, void*p1);

Parameter Meaning
Id Id value that should be written into trace buffer

100 <= Id <= 127
Values from 0 to 99 are reserved for embOS

p0 any unsigned 32 bit value that should be recorded as
parameter

p1 any void pointer that should be recorded as parameter

Add. information
The values passed as parameter, will be displayed in the trace list window of
embOSView. This function may be used to record two pointer. This functionality
is available in trace builds only. In none trace builds this API call is removed by
the preprocessor.

17.8. Application controlled trace example
As described above, the user application can enable and setup the trace condi-
tions without the need of a connection or command from embOSview. Also the
trace record functions can be called from any user function to write data into the
trace buffer. Therefore id numbers from 100 to 127 may be used.
This can be very helpful to trace API and user functions just after starting the
application at a moment, when the communication to embOSView is not avail-
able or setup from embOSView is not complete.

#include “RTOS.h”

#ifndef OS_TRACE_FROM_START
#define OS_TRACE_FROM_START 1

122/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

#endif

/* Application specific trace id numbers */
#define APP_TRACE_ID_SETSTATE 100

char MainState;

/* Sample of application routine with trace */
void SetState(char* pState, char Value) {

#if OS_TRACE
OS_TraceDataPtr(APP_TRACE_ID_SETSTATE, Value, pState);

#endif
* pState = Value;

}

/* Sample main routine, that enables and setup API and function call trace
from start */

void main(void) {
OS_InitKern();
OS_InitHW();
#if (OS_TRACE && OS_TRACE_FROM_START)

/* OS_TRACE is defined in trace builds of the library */
OS_TraceDisableAll(); /* Disable all API trace calls */
OS_TraceEnableId(APP_TRACE_ID_SETSTATE); /* User trace */
OS_TraceEnableFilterId(APP_TRACE_ID_SETSTATE); /* User trace */
OS_TraceEnable();

#endif
/* Application specific initilisation */
SetState(&MainState, 1);
OS_CREATETASK(&TCBMain, "MainTask", MainTask, PRIO_MAIN, MainStack);
OS_Start(); /* Start multitasking -> MainTask() */

}

Note:
The example above shows, how a trace filter can be set up by application. As
described earlier, OS_TraceEnableID() sets the trace filter 0, that affects calls
from any running task. The first call of SetState() in the example above would
not be traced, because there is no task running at that moment. Therefore the
additional filter setup routine OS_TraceEnableFilterId() is called with filter 1,
which results in trace of calls from outside running tasks.

Per default, embOSView lists all user function traces in the trace list window as
�Routine�, followed by the specified ID and two parameter as Hex value.
The example above would result in
Routine100(0xabcd, 0x01)
Where 0xabcd is the pointer address and 0x01 is the parameter recorded from
OS_TraceDataPtr().

User's & reference manual for embOS real time OS 123/134

 1996- 2002 Segger Microcontroller Systeme GmbH

17.9. embOS.ini: User defined functions
In order to be able to use the built-in trace (available in trace builds of embOS)
for functions of the application program, embOSView can be customized. This
customization is done in the Setup file �embOS.ini�.
This setup file is parsed at startup of embOSView. It is optional; you will not see
an error message if it can not be found.

The following shows a sample embOS.ini file:

File: embOS.ini
#
embOSView Setup file
#
embOSView loads this file at startup. It has to reside in the same
directory as the execuatble itself.
#
Note: The file is not required in order to run embOSView. You will not get
an error message if it is not found. However, you will get an error message
if the contents of the file are invalid.

#
Define add. API functions.
Syntax: API(<Index>, <Routinename> [parameters])
Index: Integer, between 100 and 127
Routinename: Identifier for the routine. Should be no more than 32
characters
parameters: Optional paramters. A max. of 2 parameters can be specified.
Valid parameters are:
int
ptr
Every parameter has to be proceeded by a colon.
#
API(100, "Routine100")
API(101, "Routine101", int)
API(102, "Routine102", int, ptr)

17.9.1. Defining User functions for trace

To enable trace setup for user functions, embOSView needs to know an id
number, the function name and the type of two optional parameters that can be
traced.
The format is explained in the sample file above.

124/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

18. Debugging

18.1. Run-time errors
Some error-conditions can be detected during runtime. These are:
• Usage of uninitialized data structures
• Invalid pointers
• Resource unused that has not been used by this task before
• OS_LeaveRegion called more often than OS_EnterRegion
• stack-overflow (This feature is not available for some processors)
Which run-time errors can be detected depends on how much checking is per-
formed. Unfortunately, additional checking costs memory and speed (It is not
really significant, but there is a difference).

If embOS detects a run-time error, it calls the routine

void OS_Error(int ErrCode);

This routine is shipped in source as part of the module RTOSINIT.C. The rou-
tine simply disables further tasks switches and then after re-enabling interrupts
loops forever as follows:

/*

Run-time error reaction
*/

void OS_Error(int ErrCode) {
OS_EnterRegion(); /* Avoid further task switches */
OS_DICnt =0; /* Allow interrupts so we can communicate */
OS_EI();
OS_Status = ErrCode;
while (OS_Status);

}

In case you are using embOSView, you can see value and meaning of
OS_Status in the system variable window.

When using an emulator you should set a breakpoint at the beginning of this
routine or simply stop the program after a failure. The error code is passed to
the function as parameter.
You can modify the routine to accommodate your own hardware; this could
mean that your target-hardware sets an error-indicating LED or shows a little
message on the display.

Important
When modifying the OS_Error() routine, the first statement needs to be
the disabling of scheduler via OS_EnterRegion(); the last statement
needs to be the infinite loop.

If you look at the OS_Error() routine, you will see that it is more complicated
than necessary. The actual error code is assigned to the global variable
OS_Status. The program then waits for this variable to be reset. This allows
to get back to the program-code that caused the problem easily: Simply reset
this variable to 0 using your in circuit-emulator, and you can step back to the
program sequence causing the problem. Most of the time, a look at this part of
the program will make the problem clear.

User's & reference manual for embOS real time OS 125/134

 1996- 2002 Segger Microcontroller Systeme GmbH

18.2. List of error codes

Value Symbolic name Explanation
120 OS_ERR_STACK stack overflow or invalid stack
128 OS_ERR_INV_TASK task control block invalid or not initial-

ized or overwritten
129 OS_ERR_INV_TIMER timer control block invalid or not initial-

ized or overwritten
130 OS_ERR_INV_MAILBOX mailbox control block invalid or not ini-

tialized or overwritten
132 OS_ERR_INV_CSEMA control block for counting semaphore

invalid or not initialized or overwritten
133 OS_ERR_INV_RSEMA control block for resource semaphore

invalid or not initialized or overwritten
135 OS_ERR_MAILBOX_NOT1 One of the following 1 byte mailbox

functions has been used on a multi
byte mailbox:
OS_PutMail1(),
OS_PutMailCond1(),
OS_GetMail1(),
OS_GetMailCond1()

140 OS_ERR_MAILBOX_NOT_IN_L
IST

The mailbox is not in the list of mail-
boxes as expected. Possible Reasons:
a) one mailbox data structure overwrit-
ten

142 OS_ERR_TASKLIST_CORRUPT The OS internal tasklist is destroyed
150 OS_ERR_UNUSE_BEFORE_USE OS_Unuse() has been called before

OS_Use()
151 OS_ERR_LEAVEREGION_BEFO

RE_ENTERREGION
OS_LeaveRegion() has been called
before OS_EnterRegion()

152 OS_ERR_LEAVEINT Error in OS_LeaveInterrupt()
153 OS_ERR_DICNT The interrupt disable counter

(OS_DICnt) is out of range (0-15).
The counter is affected by the following
API calls:
OS_IncDI()
OS_DecRI()
OS_EnterInterrupt()
OS_LeaveInterrupt()

154 OS_ERR_INTERRUPT_DISABL
ED

OS_Delay() or OS_DelayUntil()
called from inside a critical region with
interrupts disabled

160 OS_ERR_ILLEGAL_IN_ISR Illegal function call in interrupt service
routine:
A routine that may not be called from
within an ISR has been called from
within an ISR.

161 OS_ERR_ILLEGAL_IN_TIMER Illegal function call in interrupt service
routine:
A routine that may not be called from
within a software timer has been called
from within a Timer.

170 OS_ERR_2USE_TASK Task control block has been initialized
by calling a create function twice.

171 OS_ERR_2USE_TIMER Timer control block has been initialized

126/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

Value Symbolic name Explanation
by calling a create function twice.

172 OS_ERR_2USE_MAILBOX Mailbox control block has been initial-
ized by calling a create function twice.

173 OS_ERR_2USE_BSEMA Binary semaphore has been initialized
by calling a create function twice.

174 OS_ERR_2USE_CSEMA Counting semaphore has been initial-
ized by calling a create function twice.

175 OS_ERR_2USE_RSEMA Resource semaphore has been initial-
ized by calling a create function twice.

The latest version of defined error table is part of the comment just before the
OS_Error() function declaration in the source file RtosInit.c

User's & reference manual for embOS real time OS 127/134

 1996- 2002 Segger Microcontroller Systeme GmbH

19. Supported development tools
embOS has been developed with and for a specific C-Compiler version for the
selected target processor. Please check the file RELEASE.HTML for details. It
works with the specified C-Compiler only, since other C-Compiler's may use dif-
ferent calling conventions (incompatible object file formats) and therefore might
be incompatible. However, if you prefer to use a different C-Compiler, please
contact us, we will do our best to satisfy your needs in the shortest possible
time.

19.1.Reentrance
All routines, that can be used from different tasks at the same time have to be
fully reentrant. A routine is in use, from the moment when it is being called until
it returns or the task that has called it is terminated.
All routines supplied with your real-time operating system are fully reentrant. If
for some reason you have to have routines that are non - reentrant in your pro-
gram that can be used from more than one task, it is recommended to use a
resource-semaphore to avoid this kind of problem.

C-Routines and reentrance
Normally, the "C"-Compiler generates code that is fully reentrant. However, the
compiler has options that force it to generate non-reentrant code (in order to
optimize the performance of the compiler). It is recommended not to use these
options; but it is possible under certain circumstances.

Assembly routines and reentrance
As long as assembly-functions access local variables and parameters only,
they are fully reentrant. Everything else has to be thought about carefully.

128/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

20. Limitations
Max. no. of tasks limited by avail. RAM only
Max. no. of priorities limited by avail. RAM only
Max. no. of semaphore limited by avail. RAM only
Max. no. of mailboxes limited by avail. RAM only
Max. no. of queues limited by avail. RAM only
Max. size. of queue limited by avail. RAM only
Max. no. of timer limited by avail. RAM only
Event flags : 8 bit / task

If you miss additional functions, we appreciate your feedback and will do our
best to implement these functions if they fit into the concept.
Do not hesitate to contact us. If you need to make changes to embOS, the full
source-code is available.

User's & reference manual for embOS real time OS 129/134

 1996- 2002 Segger Microcontroller Systeme GmbH

21. Source code of kernel and library
embOS is available in two versions:
1. Object version: Object code + h/w init source
2. Full source version: Full sources

Since this is the document that describes the object version, the internal data
structures are not explained in detail. The object version offers the full function-
ality of embOS including all supported memory models of the compiler, the de-
bug libraries as described and the source code for idle task and hardware init.
However, the object version does not allow source level debugging of the library
routines and the kernel.

The full source version gives you the ultimate options: embOS can be recom-
piled for different data sizes; different compile options give you full control of the
generated code, making it possible to optimize the system for versatility or
minimum memory requirements. You can debug the entire system and even
modify it for new memory models or other CPUs.

21.1. Building embOS libraries

The embOS libraries can only be built, if you have purchased a source code
version of embOS.
In the root path of embOS, you will find a DOS batch file PREP.BAT, which
needs to be modified to match the installation directory of your C compiler.
Once this work is done, you can call the batch file M.BAT to build all embOS
libraries for your CPU.
The build process should run without any error or warning message. If the build
process reports any problem please check the following:

• Are you using the same compiler version as mentioned in the file

RELEASE.HTML ?
• Can you compile a simple test file after running PREP.BAT and does it really

use the compiler version you have specified ?
• Is there anything mentioned about possible compiler warnings in the

RELEASE.HTML ?

If you still have a problem, please let us know.

130/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

22. Additional modules

22.1. Keyboard-Manager: KEYMAN.C
Keyboard-driver module supplied in "C". It serves both as example and as a
module that can actually be used in your application. The module can be used
in most applications with only little changes to the hardware-specific part. It
needs to be initialized on startup and creates a task that checks the keyboard
50 times per second.

Changes req. for your hardware

void ReadKeys(void);

How to implement into your program

Example
void main(void) {

OS_InitKern(); /* initialize OS (should be first !) */
OS_InitHW(); /* initialize Hardware for OS (see RtosInit.c)*/
/* You need to create at least one task here ! */
OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0); /*Create Task0*/
OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1); /*Create Task1*/
InitKeyMan(); /* Initialize keyboard manager */
OS_Start();

}

User's & reference manual for embOS real time OS 131/134

 1996- 2002 Segger Microcontroller Systeme GmbH

22.2. Additional libraries and modules

For all embOS compatible real time operating systems, there are additional li-
braries and modules available. However, these modules can also be used with-
out embOS or with a different operating system.

Since these libraries are written in ANSI-"C", they can be used for any target
CPU that an ANSI-"C" Compiler exists for. In general, these modules are highly
optimized for both low memory consumption (especially in RAM) and high
speed.
The modules can be scaled for optimum performance at minimum memory
consumption using compile-time switches. Unused portions of the modules are
not even compiled, your program stays lean and fast.

emWin The complete solution for graphical LCDs

fully scaleable graphical user interface featuring:
different fonts, (from 4*6 to 16*32)
line drawing, bitmap drawing,
advanced drawing : (e.g. Circles)
display routines for strings, decimal, hexadecimal, bi-
nary values, multiple windows

ultra-fast, yet still very compact (typical Between 8 and
20 kB ROM)
Everything you need for graphic displays !
Any LCD * Any LCD-controller * Any CPU
(monochrome and color version available, Bitmapcon-
verter, Fontconverter, PC-Simulation and Viewer �
Check out our website !)

emLoad Boot-loader software

132/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

23. FAQ (frequently asked questions)
Q : Can I implement different priority scheduling algorithms ?
A : Yes, the system is fully dynamic, which means that task-priorities can
be changed while the system is running (Using OS_SetPriority). This fea-
ture can be used to change priorities in a way that basically every desired algo-
rithm can be implemented. One way would be to have a task control task with a
priority higher than that of all other tasks that dynamically changes priorities.
Normally, the priority controlled round-robin algorithm is perfect for real-time
applications.

Q : Can I use a different interrupt source for embOS ?
A : Yes, any periodical signal can be used, i.e. any internal timer, but it
could also be an external signal.

Q : What interrupt priorities can I use for the interrupts my program uses ?
A : Any.

User's & reference manual for embOS real time OS 133/134

 1996- 2002 Segger Microcontroller Systeme GmbH

24. Glossary
Some technical terms used in this manual are explained below.

Active Task Only one task can execute at any given time. The Task cur-

rently executing is called the active task
CPU Central Processing Unit. The "brain" of a microcontroller
ISR Interrupt service routine. The routine that is called automati-

cally by the processor when an interrupt is acknowledged.
ISR have to preserve the entire context of a task, i.e. all regis-
ters.

NMI non maskable interrupt

Interrupts that can not be masked (disabled) by software. Ex-
ample Watchdog timer interrupt.

Processor Short for microprocessor. The CPU core of a controller
Priority Every task in an RTOS has a priority. Tasks with higher prior-

ity are preferred by the scheduler.

Resource anything in the computer system of limited availability :

e.g. memory, timers, computation time

RTOS Real time operating system

Scheduler The program section of an RTOS that selects the active task

Task program running on a processor. A multi-tasking system al-

lows multiple tasks to execute independently from one an-
other.

TICK The OS timer interrupt. Usually equals 1 ms.

Timeslice The time (number of ticks) which a task will be executed until

a round robin task change may occur

134/134 User's & reference manual for embOS real time OS

 1996-2002 Segger Microcontroller Systeme GmbH

25. Index
A
additional modules131
C
Cooperative multitasking..................9
Critical Regions............................106
D
Debugging124
debug-version.................................48
Development tools........................127
E
Events...86
F
Features ..7
H
Halt-mode.....................................111
I
Idle-mode111
internal data structures110
Interrupts ..98
K
keyboard-driver130
KEYMAN.C.................................130
L
Limitations128
M
Mailboxes.......................................66
Multitasking9
N
NMI..105
O
OS_ClearEvents94
OS_ClearMB..................................75
OS_CreateCSema...........................60
OS_CREATECSEMA....................59
OS_CREATEMB69
OS_CREATERSEMA....................51
OS_CreateTask...............................26
OS_CREATETASK.......................24
OS_CreateTimer.............................39
OS_CREATETIMER.....................38
OS_DecRI()..................................102
OS_Delay28

OS_DelayUntil29
OS_DeleteCSema65
OS_DeleteMB77
OS_DeleteTimer.............................44
OS_DI() ..103
OS_EI() ..103
OS_EnterInterrupt100
OS_EnterNestableInterrupt()........104
OS_EnterRegion...........................107
OS_GetCSemaValue64
OS_GetEventsOccured93
OS_GetMail....................................73
OS_GetMail1..................................73
OS_GetMailCond74
OS_GetMailCond174
OS_GetMessageCnt........................76
OS_GetPriority...............................31
OS_GetResourceOwner..................57
OS_GetSemaValue.........................56
OS_GetStackSpace.........................96
OS_GetTaskID36
OS_GetTime.................................109
OS_GetTimerPeriod45
OS_GetTimerStatus........................47
OS_GetTimerValue46
OS_IncDI()...................................102
OS_IsTask35
OS_LeaveInterrupt100
OS_LeaveInterruptNoSwitch100
OS_LeaveNestableInterrupt().......104
OS_LeaveRegion..........................108
OS_PutMail....................................71
OS_PutMail1..................................71
OS_PutMailCond72
OS_PutMailCond172
OS_Q_Create..................................80
OS_Q_GetMessageCnt...................85
OS_Q_GetPtr..................................82
OS_Q_GetPtrCond.........................83
OS_Q_Purge...................................84
OS_Q_Put81
OS_RequestSema55
OS_RestoreI()...............................103
OS_RetriggerTimer42
OS_SendString114
OS_SetPriority................................30
OS_SetRxCallback114

OS_SetTimerPeriod....................... 43
OS_SetTimeSlice........................... 32
OS_SignalCSema 61
OS_SignalEvent............................. 91
OS_StartTimer............................... 40
OS_StopTimer 41
OS_Terminate................................ 33
OS_Time...................................... 109
OS_TimeDex 109
OS_Unuse...................................... 54
OS_Use.. 52
OS_WaitCSema............................. 62
OS_WaitCSemaTimed................... 63
OS_WaitEvent 87
OS_WaitEventTimed..................... 89
OS_WaitSingleEvent 88
OS_WaitSingleEventTimed........... 90
OS_WakeTask 34
P
Preemptive multitasking 9
priority ... 10
Profiling... 19
program-failure 95
Q
Queues ... 78
R
Reentrance 127
Resource semaphores..................... 48
Round-Robin 10
S
Scheduler 10
Semaphores.................................... 12
Single byte mailboxes 70
Software Timer 37
stack-overflow 95
Stack-pointer.................................. 16
Stacks... 95
Stop-mode.................................... 111
T
Task routines.................................. 23
Tasks.. 9
V
Variables...................................... 109

	Disclaimer
	Copyright notice
	Trademarks
	Contact / registration
	Contents
	About this document
	Assumptions
	How to use this manual
	Typographic Conventions for Syntax

	Introduction to embOS
	What is embOS??
	Features

	Basic concepts
	Tasks
	Multitasking: cooperative - preemptive
	Cooperative Multitasking
	Preemptive multitasking

	Scheduling
	Round-robin scheduling algorithm
	Priority controlled scheduling algorithm
	Priority inversion

	� Communication between tasks
	Global variables
	Communication mechanisms
	Mailboxes
	Semaphores
	Events

	How task-switching works
	Switching stacks
	Change of task status
	What happens after reset
	How the OS gains control
	Different builds of embOS
	Profiling
	List of libraries

	Configuration for your target system (RTOSINIT.c)
	Routines in RTOSInit.c
	Configuration defines
	How to change settings
	Setting the system frequency OS_FSYS
	Using a different timer to generate the tick-interrupts for embOS
	Using a different UART or baudrate for embOSView
	Changing the tick frequency

	OS_CONFIG

	Task routines
	OS_CREATETASK
	OS_CreateTask
	OS_Delay: Suspend for fixed time
	OS_DelayUntil: Suspend until
	OS_SetPriority: Change priority of a task
	OS_GetPriority: Retrieve priority of a task
	OS_SetTimeSlice: Change timeslice of a task
	OS_Terminate: Terminate a task
	OS_WakeTask
	OS_IsTask
	OS_GetTaskID

	Software Timer
	OS_CREATETIMER
	OS_CreateTimer
	OS_StartTimer
	OS_StopTimer
	OS_RetriggerTimer
	OS_SetTimerPeriod
	OS_DeleteTimer
	OS_GetTimerPeriod
	OS_GetTimerValue
	OS_GetTimerStatus

	Resource semaphores
	Example for use of Resource semaphore
	OS_CREATERSEMA
	OS_Use: Using a Resource
	OS_Unuse: Release Resource
	OS_Request
	OS_GetSemaValue
	OS_GetResourceOwner

	Counting Semaphores
	Example for OS_SignalCSema and OS_WaitCSema
	OS_CREATECSEMA
	OS_CreateCSema
	OS_SignalCSema: Incrementing
	OS_WaitCSema: Decrementing
	OS_WaitCSemaTimed: Decrementing with timeout
	OS_GetCSemaValue
	OS_DeleteCSema

	Mailboxes
	Why mailboxes ?
	Basics
	Typical applications
	A keyboard buffer
	A buffer for serial I/O
	A buffer for commands sent to a task

	Number of and size of mailboxes, type of mail
	OS_CREATEMB: Creating a mailbox
	Single byte mailbox functions
	OS_PutMail / OS_PutMail1: Store message
	OS_PutMailCond / OS_PutMailCond1: Store Message if possible
	OS_GetMail / OS_GetMail1
	OS_GetMailCond / OS_GetMailCond1
	OS_ClearMB: Empty a Mailbox
	OS_GetMessageCnt
	OS_DeleteMB

	Queues
	Why Queues ?
	Basics
	Number of and size of queues, type of messages
	OS_Q_Create: Creating a message queue
	OS_Q_Put: Store message
	OS_Q_GetPtr: Retrieve message
	OS_Q_GetPtrCond: Retrieve message if available
	OS_Q_Purge: Delete message in queue
	OS_Q_GetMessageCnt: Get number of messages in queue

	Events
	OS_WaitEvent
	OS_WaitSingleEvent
	OS_WaitEventTimed
	OS_WaitSingleEventTimed
	OS_SignalEvent
	OS_GetEventsOccured
	OS_ClearEvents: Clear List of Events

	Stacks
	Some basics
	System stack
	Task stack
	Interrupt stack
	OS_GetStackSpace

	Interrupts
	Rules for interrupt handlers
	General rules
	Additional rules

	Calling embOS routines from within an ISR
	Enabling / Disabling interrupts from "C"
	OS_IncDI()
	OS_DecRI()
	OS_DI()
	OS_EI()
	OS_RestoreI()
	Definitions of interrupt control macros (in RTOS.h)

	Nesting interrupt routines
	OS_EnterNestableInterrupt()
	OS_LeaveNestableInterrupt()

	Non maskable interrupts (NMIs)

	Critical Regions
	OS_EnterRegion
	OS_LeaveRegion

	System variables
	Time Variables
	OS_Time
	OS_TimeDex

	OS internal variables and data-structures

	STOP / HALT / IDLE Mode
	embOSView: Profiling and analyzing
	Overview
	Task list window
	System variables
	Sharing the SIO for Terminal I/O
	OS_SendString
	OS_SetRxCallback

	Using the API-trace
	Setting up trace from embOSView

	Trace filter setup functions
	OS_TraceEnable
	OS_TraceDisable
	OS_TraceEnableAll
	OS_TraceDisableAll
	OS_TraceEnableId
	OS_TraceDisableId
	OS_TraceEnableFilterId
	OS_TraceDisableFilterId

	Trace record functions
	OS_TraceVoid
	OS_TracePtr
	OS_TraceData
	OS_TraceDataPtr
	OS_TraceU32Ptr

	Application controlled trace example
	embOS.ini: User defined functions
	Defining User functions for trace

	Debugging
	Run-time errors
	List of error codes

	Supported development tools
	Reentrance
	C-Routines and reentrance
	Assembly routines and reentrance

	Limitations
	Source code of kernel and library
	Building embOS libraries

	Additional modules
	Keyboard-Manager: KEYMAN.C
	Changes req. for your hardware
	How to implement into your program

	Additional libraries and modules

	FAQ (frequently asked questions)
	Glossary
	Index

