
A product of SEGGER Microcontroller Systeme GmbH

embOS

Software version 3.52
Document revision 0

Date: August 24, 2007

CPU-independent

User & reference guide

Real-Time
Operating System

www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER MICROCONTROLLER SYSTEME GmbH (the manufacturer) assumes
no responsibility for any errors or omissions. The manufacturer makes and you
receive no warranties or conditions, express, implied, statutory or in any communica-
tion with you. The manufacturer specifically disclaims any implied warranty of mer-
chantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2007 SEGGER Microcontroller Systeme GmbH, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.
Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Registration
Register the software via email. This way we can make sure you will receive updates
or notifications of updates as soon as they become available. For registration, pro-
vide the following information:
Company name and address

� Your name
� Your job title
� Your email address and telephone number
� Name and version of the product

Send this information to: register@segger.com

Contact address

SEGGER Microcontroller Systeme GmbH

Heinrich-Hertz-Str. 5
D-40721 Hilden
Germany
Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
Email: support@segger.com
Internet: http://www.segger.com
Template © 2007 SEGGER Microcontroller Systeme GmbH

3

Software and manual versions

This manual describes the software version 3.40C. If any error occurs, inform us and
we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: August 24, 2007

Software Manual Date By Description

3.52 0 070824 OO
Chapter "Task routines": Added OS_ExtendTaskContext().
Chapter "Interrupts": Updated, added OS_CallISR() and
OS_CallNestableISR().

3.50c 0 070814 AW Chapter "List of libraries" updated, XR library type added.
3.40C 3 070716 OO Chapter �Performance and resource usage� updated,

3.40C 2 070625 SK

Chapter �Debugging�, error codes updated:
 - OS_ERR_ISR_INDEX added.
 - OS_ERR_ISR_VECTOR added.
 - OS_ERR_RESOURCE_OWNER added.
 - OS_ERR_CSEMA_OVERFLOW added.
Chapter �Task routines�:
 - OS_Yield() added.
Chapter �Counting semaphores� updated.
 - OS_SignalCSema(), additional information adjusted.
Chapter �Performance and resource usage� updated:
 - Minor changes in wording.

3.40A 1 070608 SK

Chapter �Counting semaphores� updated.
 - OS_SetCSemaValue() added.
 - OS_CreateCSema(): Data type of parameter InitValue
 changed from unsigned char to unsigned int.
 - OS_SignalCSemaMax(): Data type of parameter MaxValue
 changed from unsigned char to unsigned int.
 - OS_SignalCSema(): Additional information updated.

3.40 0 070516 SK

Chapter �Performance and resource usage� added.
Chapter �Configuration of your target system (RTOSInit.c)�
renamed to �Configuration of your target system�.
Chapter �STOP\WAIT\IDLE modes� moved into
chapter �Configuration of your target system�.
Chapter �time-related routines� renamed to �Time measure-
ment�.

3.32o 9 070422 SK
Chapter 4: OS_CREATETIMER_EX(), additional information cor-
rected.

3.32m 8 070402 AW
Chapter 4: Extended timer added.
Chapter 8: API overview corrected, OS_Q_GetMessageCount()

3.32j 7 070216 AW Chapter 6: OS_CSemaRequest() function added.
3.32e 6 061220 SK About: Company description added.

Some minor formating changes.
3.32e 5 061107 AW Chapter 7: OS_GetMessageCnt() return value corrected to

unsigned int.
3.32d 4 061106 AW

Chapter 8: OS_Q_GetPtrTimed() function added.

3.32a 3 061012 AW

Chapter 3: OS_CreateTaskEx() function, description of parame-
ter pContext corrected.
Chapter 3: OS_CreateTaskEx() function, type of parameter
TimeSlice corrected.
Chapter 3: OS_CreateTask() function, type of parameter
TimeSlice corrected.
Chapter 9: OS_GetEventsOccured() renamed to
OS_GetEventsOccurred().
Chapter 10: OS_EVENT_WaitTimed() added.

3.32a 2 060804 AW Chapter 3: OS_CREATETASK_EX() function added.
Chapter 3: OS_CreateTaskEx() function added.

3.32 1 060717 OO Event objects introduced. Chapter 10 inserted which describes
event objects.
Previous chapter "Events" renamed to "Task events"

3.30 1 060519 OO New software version.
3.28 5 060223 OO All chapters: Added API tables.

Some minor changes.
Template © 2007 SEGGER Microcontroller Systeme GmbH

4

3.28 4 051109 AW Chapter 7: OS_SignalCSemaMax() function added.
Chapter 14: Explanation of interrupt latencies and high / low
priorities added.

3.28 3 050926 AW Chapter 6: OS_DeleteRSema() function added.
3.28 2 050707 AW Chapter 4: OS_GetSuspendCnt() function added.
3.28 1 050425 AW Version number changed to 3.28 to fit to current ombOS ver-

sion.
Chapter 18.1.2: Type of return value of OS GetTime32() cor-
rected

3.26 050209 AW
Chapter 4: OS_Terminate() modified due to new features of
version 3.26.
Chapter 24: Source code version: additional compile time
switches and build process of libraries explained more in detail.

3.24 041115
AW

Chapter 6: Some prototype declarations showed in OS_SEMA
instead of OS_RSEMA. Corrected.

3.22 1 040816 AW Chapter 8: New Mailbox functions added
OS_PutMailFront()
OS_PutMailFront1()
OS_PutMailFrontCond()
OS_PutMailFrontCond1()

3.20 5 040621 RS
AW

Software timers: Maximum timeout values and
OS_TIMER_MAX_TIME described.
Chapter 14: Description of rules for interrupt handlers
revised.
OS_LeaveNestableInterruptNoSwitch() added which was not
described before.

3.20 4 040329 AW OS_CreateCSema() prototype declaration corrected. Return
type is void.
OS_Q_GetMessageCnt() prototype declaration corrected.
OS_Q_Clear() function description added.
OS_MEMF_FreeBlock() prototype declaration corrected.

3.20 2 031128 AW OS_CREATEMB() Range for parameter MaxnofMsg corrected.
Upper limit is 65535, but was declared 65536 in previous
manuals.

3. 1 040831 AW Code samples modified: Task stacks defined as array of int,
because most CPUs require alignment of stack on integer
aligned addresses.

Software Manual Date By Description
Template © 2007 SEGGER Microcontroller Systeme GmbH

5

3.20 1 031016 AW Chapter 4: Type of task priority parameter corrected to
unsigned char.
Chapter 4: OS_DelayUntil(): Sample program modified.
Chapter 4: OS_Suspend() added.
Chapter 4: OS_Resume() added.
Chapter 5: OS_GetTimerValue(): Range of return value cor-
rected.
Chapter 6: Sample program for usage of resource sema-
phores modified.
Chapter 6: OS_GetResourceOwner(): Type of return value
corrected.
Chapter 8: OS_CREATEMB(): Types and valid range of
parameter corrected.
Chapter 8: OS_WaitMail() added
Chapter 10: OS_WaitEventTimed(): Range of timeout value
specified.

3.12 1 021015 AW Chapter 8: OS_GetMailTimed() added
Chapter 11 (Heap type memory management) inserted
Chapter 12 (Fixed block size memory pools) inserted

3.10 3 020926
020924
020910

KG
KG
KG

Index and glossary revised.
Section 16.3 (Example) added to Chapter 16 (Time-related rou-
tines).
Revised for language/grammar.
Version control table added.
Screenshots added: superloop, cooperative/preemptive multi-
tasking, nested interrupts, low-res and hi-res measurement.
Section 1.3 (Typographic conventions) changed to table.
Section 3.2 added (Single-task system).
Section 3.8 merged with section 3.9 (How the OS gains con-
trol).
Chapter 4 (Configuration for your target system) moved to after
Chapter 15 (System variables).
Chapter 16 (Time-related routines) added.

Software Manual Date By Description
Template © 2007 SEGGER Microcontroller Systeme GmbH

6

Template © 2007 SEGGER Microcontroller Systeme GmbH

7

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual

The intention of this manual is to give you a CPU- and compiler-independent intro-
duction to embOS and to be a reference for all embOS API functions.

For a quick and easy startup with embOS, refer to Chapter 2 in the CPU & Compiler
Specifics manual of embOS documentation, which includes a step-by-step introduc-
tion to using embOS.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on the
display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Reference Reference to chapters, tables and figures or other documents.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

8

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.
Starterkits, eval- and trial-versions are
available.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources. The profiling
PC tool embOSView is included.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-
mum memory consumption in RAM and
ROM while maintaining high speed.
Various Device drivers, e.g. for NAND
and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

USB-Stack
USB device stack
A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for microcon-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller Systeme GmbH develops
and distributes software development tools and ANSI
C software components (middleware) for embedded
systems in several industries such as telecom, medi-
cal technology, consumer electronics, automotive
industry and industrial automation.

SEGGER�s intention is to cut software development-
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficent real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER developes and produces program-
ming tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in devel-
opment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
User & reference manual for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

9

Table of Contents
1 Introduction to embOS...15

1.1 What is embOS ...16
1.2 Features...17

2 Basic concepts...19

2.1 Tasks...20
2.2 Single-task systems (superloop) ..21
2.3 Multitasking systems..22
2.3.1 Cooperative multitasking ..22
2.3.2 Preemptives multitasking..23
2.4 Scheduling..24
2.4.1 Round-robin scheduling algorithm..24
2.4.2 Priority-controlled scheduling algorithm ..24
2.4.3 Priority inversion ...25
2.5 Communication between tasks ..26
2.5.1 Global variables...26
2.5.2 Communication mechanisms ...26
2.5.3 Mailboxes and queues ..26
2.5.4 Semaphores ...26
2.5.5 Events ...26
2.6 How task-switching works...27
2.7 Switching stacks..28
2.8 Change of task status...29
2.9 How the OS gains control ...30
2.10 Different builds of embOS...32
2.10.1 Profiling ...32
2.10.2 List of libraries ..32

3 Task routines ...33

3.1 Task routine API function overview ..35
3.1.1 OS_CREATETASK() ..36
3.1.2 OS_CreateTask() ...37
3.1.3 OS_CREATETASK_EX()...39
3.1.4 OS_CreateTaskEx() ...40
3.1.5 OS_Delay()...41
3.1.6 OS_DelayUntil() ..42
3.1.7 OS_ExtendTaskContext()..43
3.1.8 OS_GetpCurrentTask() ...45
3.1.9 OS_GetPriority()..46
3.1.10 OS_GetSuspendCnt() ...47
3.1.11 OS_GetTaskID()..48
3.1.12 OS_IsTask() ...49
3.1.13 OS_Resume() ...50
3.1.14 OS_SetPriority() ..51
3.1.15 OS_SetTimeSlice()...52
3.1.16 OS_Suspend()...53
3.1.17 OS_Terminate() ..54
3.1.18 OS_WakeTask() ..55
3.1.19 OS_Yield()..56
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

10
4 Software timers ..57

4.1 Software timers API function overview ... 59
4.1.1 OS_CREATETIMER() .. 60
4.1.2 OS_CreateTimer() ... 61
4.1.3 OS_StartTimer() ... 62
4.1.4 OS_StopTimer().. 63
4.1.5 OS_RetriggerTimer() ... 64
4.1.6 OS_SetTimerPeriod()... 65
4.1.7 OS_DeleteTimer() ... 66
4.1.8 OS_GetTimerPeriod()... 67
4.1.9 OS_GetTimerValue().. 68
4.1.10 OS_GetTimerStatus() .. 69
4.1.11 OS_GetpCurrentTimer() ... 70
4.1.12 OS_CREATETIMER_EX() ... 71
4.1.13 OS_CreateTimerEx().. 72
4.1.14 OS_StartTimerEx().. 73
4.1.15 OS_StopTimerEx() .. 74
4.1.16 OS_RetriggerTimerEx() .. 75
4.1.17 OS_SetTimerPeriodEx() ... 76
4.1.18 OS_DeleteTimerEx().. 77
4.1.19 OS_GetTimerPeriodEx() ... 78
4.1.20 OS_GetTimerValueEx() .. 79
4.1.21 OS_GetTimerStatusEx() ... 80
4.1.22 OS_GetpCurrentTimerEx().. 81

5 Resource semaphores...83

5.1 Resource semaphores API function overview... 86
5.1.1 OS_CREATERSEMA() ... 87
5.1.2 OS_Use() ... 88
5.1.3 OS_Unuse() ... 90
5.1.4 OS_Request()... 91
5.1.5 OS_GetSemaValue().. 92
5.1.6 OS_GetResourceOwner().. 93
5.1.7 OS_DeleteRSema() ... 94

6 Counting Semaphores ...95

6.1 Counting semaphores API function overview .. 97
6.1.1 OS_CREATECSEMA() ... 98
6.1.2 OS_CreateCSema() ... 99
6.1.3 OS_SignalCSema()...100
6.1.4 OS_SignalCSemaMax() ...101
6.1.5 OS_WaitCSema() ...102
6.1.6 OS_WaitCSemaTimed()...103
6.1.7 OS_CSemaRequest() ..104
6.1.8 OS_GetCSemaValue()...105
6.1.9 OS_SetCSemaValue() ...106
6.1.10 OS_DeleteCSema() ..107

7 Mailboxes...109

7.1 Why mailboxes?...110
7.2 Basics...111
7.3 Typical applications ..112
7.4 Single-byte mailbox functions ..113
7.5 Mailboxes API function overview...114
7.5.1 OS_CREATEMB() ..115
7.5.2 OS_PutMail() / OS_PutMail1()..116
7.5.3 OS_PutMailCond() / OS_PutMailCond1()..117
7.5.4 OS_PutMailFront() / OS_PutMailFront1() ...118
7.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()119
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

11
7.5.6 OS_GetMail() / OS_GetMail1()... 120
7.5.7 OS_GetMailCond() / OS_GetMailCond1() .. 121
7.5.8 OS_GetMailTimed().. 122
7.5.9 OS_WaitMail()... 123
7.5.10 OS_ClearMB() ... 124
7.5.11 OS_GetMessageCnt() ... 125
7.5.12 OS_DeleteMB() ... 126

8 Queues ..127

8.1 Why queues? .. 128
8.2 Basics .. 129
8.3 Queues API function overview ... 130
8.3.1 OS_Q_Create() ... 131
8.3.2 OS_Q_Put() .. 132
8.3.3 OS_Q_GetPtr().. 133
8.3.4 OS_Q_GetPtrCond()... 134
8.3.5 OS_Q_GetPtrTimed() ... 135
8.3.6 OS_Q_Purge()... 136
8.3.7 OS_Q_Clear() ... 137
8.3.8 OS_Q_GetMessageCnt() ... 138

9 Task events..139

9.1 Events API function overview .. 141
9.1.1 OS_WaitEvent() .. 142
9.1.2 OS_WaitSingleEvent() .. 143
9.1.3 OS_WaitEventTimed() .. 144
9.1.4 OS_WaitSingleEventTimed() ... 145
9.1.5 OS_SignalEvent() .. 146
9.1.6 OS_GetEventsOccurred().. 147
9.1.7 OS_ClearEvents() .. 148

10 Event objects ...149

10.1 Event object API function overview .. 151
10.1.1 OS_EVENT_Create() .. 152
10.1.2 OS_EVENT_Wait() ... 153
10.1.3 OS_EVENT_WaitTimed()... 154
10.1.4 OS_EVENT_Set() ... 155
10.1.5 OS_EVENT_Reset().. 157
10.1.6 OS_EVENT_Pulse() .. 158
10.1.7 OS_EVENT_Get()... 159
10.1.8 OS_EVENT_Delete()... 160

11 Heap type memory management...161

11.1 Heap type memory manager API reference ... 163

12 Fixed block size memory pools..165

12.1 Memory pools API reference overview .. 167
12.1.1 OS_MEMF_Create().. 168
12.1.2 OS_MEMF_Delete().. 169
12.1.3 OS_MEMF_Alloc() .. 170
12.1.4 OS_MEMF_AllocTimed().. 171
12.1.5 OS_MEMF_Request().. 172
12.1.6 OS_MEMF_Release() .. 173
12.1.7 OS_MEMF_FreeBlock() ... 174
12.1.8 OS_MEMF_GetNumBlocks()... 175
12.1.9 OS_MEMF_GetBlockSize()... 176
12.1.10 OS_MEMF_GetNumFreeBlocks()... 177
12.1.11 OS_MEMF_GetMaxUsed() ... 178
12.1.12 OS_MEMF_IsInPool() ... 179
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

12
13 Stacks ..181

13.1 System stack...183
13.2 Task stack...184
13.3 Interrupt stack...185
13.4 Stacks API function overview ...186
13.4.1 OS_GetStackSpace() ..187

14 Interrupts..189

14.1 Interrupt latency..191
14.1.1 Causes of interrupt latencies..191
14.1.2 Additional causes for interrupt latencies ..191
14.2 Zero interrupt latency ...193
14.3 High / low priority interrupts..194
14.4 Rules for interrupt handlers ...195
14.4.1 General rules...195
14.4.2 Additional rules for preemptive multitasking ..195
14.5 Calling embOS routines from within an ISR..196
14.5.1 Interrupts API function overview ..197
14.5.2 OS_CallISR() ...198
14.5.3 OS_CallNestableISR() ...199
14.5.4 OS_EnterInterrupt() ...200
14.5.5 OS_LeaveInterrupt() ..201
14.5.6 OS_LeaveInterruptNoSwitch()..202
14.5.7 Example using OS_EnterInterrupt()/OS_LeaveInterrupt()202
14.6 Enabling / disabling interrupts from C ...203
14.6.1 OS_IncDI() / OS_DecRI()..204
14.6.2 OS_DI() / OS_EI() / OS_RestoreI() ..205
14.7 Definitions of interrupt control macros (in RTOS.h)206
14.8 Nesting interrupt routines..207
14.8.1 OS_EnterNestableInterrupt() ...208
14.8.2 OS_LeaveNestableInterrupt() ..209
14.8.3 OS_LeaveNestableInterruptNoSwitch()..210
14.9 Non-maskable interrupts (NMIs) ..211

15 Critical Regions..213

15.1 Critical regions API function overview..215
15.1.1 OS_EnterRegion() ..216
15.1.2 OS_LeaveRegion() ...217

16 System variables..219

16.1 Time variables ...221
16.1.1 OS_Time...221
16.1.2 OS_TimeDex ...221
16.2 OS internal variables and data-structures ..222

17 Configuration for your target system..223

17.1 Hardware-specific routines ..225
17.2 Configuration defines..226
17.3 How to change settings...227
17.3.1 Setting the system frequency OS_FSYS...227
17.3.2 Using a different timer to generate the tick-interrupts for embOS227
17.3.3 Using a different UART or baudrate for embOSView227
17.3.4 Changing the tick frequency ..227
17.4 Using non-standard ticks...229
17.5 STOP / HALT / IDLE modes..230

18 Time measurement ..231

18.1 Low-resolution measurement...233
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

13
18.2 Low-resolution measurement API function overview 234
18.2.1 OS_GetTime()... 235
18.2.2 OS_GetTime32() ... 236
18.3 High-resolution measurement ... 237
18.4 High-resolution measurement API function overview 238
18.4.1 OS_TimingStart() .. 239
18.4.2 OS_TimingEnd().. 240
18.4.3 OS_Timing_Getus() ... 241
18.4.4 OS_Timing_GetCycles().. 242
18.5 Example... 243

19 embOSView: Profiling and analyzing...245

19.1 Overview.. 246
19.2 Task list window.. 247
19.3 System variables window.. 248
19.4 Sharing the SIO for terminal I/O.. 249
19.4.1 Shared SIO API function overview.. 250
19.4.2 OS_SendString() ... 251
19.4.3 OS_SetRxCallback()... 252
19.5 Using the API trace .. 253
19.6 Trace filter setup functions.. 255
19.7 Trace filter API functions... 256
19.7.1 OS_TraceEnable().. 257
19.7.2 OS_TraceDisable()... 258
19.7.3 OS_TraceEnableAll() .. 259
19.7.4 OS_TraceDisableAll() ... 260
19.7.5 OS_TraceEnableId()... 261
19.7.6 OS_TraceDisableId() .. 262
19.7.7 OS_TraceEnableFilterId().. 263
19.7.8 OS_TraceDisableFilterId() ... 264
19.8 Trace record functions.. 265
19.9 Trace record API function overview .. 266
19.9.1 OS_TraceVoid()... 267
19.9.2 OS_TracePtr() ... 268
19.9.3 OS_TraceData() .. 269
19.9.4 OS_TraceDataPtr() .. 270
19.9.5 OS_TraceU32Ptr() ... 271
19.10 Application-controlled trace example .. 272
19.11 User-defined functions ... 273

20 Debugging..275

20.1 Runtime errors .. 276
20.2 List of error codes.. 277

21 Performance and resource usage..281

21.1 Introduction.. 282
21.2 Memory requirements .. 283
21.3 Performance ... 284
21.4 Benchmarking... 284
21.4.1 Measurement with port pins and oscilloscope... 285
21.4.1.1 Oscilloscope analysis.. 286
21.4.1.2 Example measurements AT91SAM7S, ARM code in RAM.............................. 287
21.4.1.3 Example measurements AT91SAM7S, Thumb code in FLASH 288
21.4.1.4 Measurement with high-resolution timer ... 289

22 Supported development tools ..291

23 Limitations..293

24 Source code of kernel and library ..295
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

14
24.1 Building embOS libraries ...297
24.2 Major compile time switches ..298
24.2.1 OS_RR_SUPPORTED ...298
24.2.2 OS_SUPPORT_CLEANUP_ON_TERMINATE ..298

25 Additional modules...299

25.1 Keyboard manager: KEYMAN.C ..300
25.2 Additional libraries and modules ...301

26 FAQ (frequently asked questions) ...303

27 Glossary...305
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

15
Chapter 1

Introduction to embOS
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

16 CHAPTER 1 Introduction to embOS
1.1 What is embOS
embOS is a priority-controlled multitasking system, designed to be used as an
embedded operating system for the development of real-time applications for a vari-
ety of microcontrollers.

embOS is a high-performance tool that has been optimized for minimum memory
consumption in both RAM and ROM, as well as high speed and versatility.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

17
1.2 Features
Throughout the development process of embOS, the limited resources of microcon-
trollers have always been kept in mind. The internal structure of the realtime operat-
ing system (RTOS) has been optimized in a variety of applications with different
customers, to fit the needs of the industry. Fully source-compatible RTOS are avail-
able for a variety of microcontrollers, making it well worth the time and effort to
learn how to structure real-time programs with real-time operating systems.

embOS is highly modular. This means that only those functions that are needed are
linked, keeping the ROM size very small. The minimum memory consumption is little
more than 1 Kbyte of ROM and about 30 bytes of RAM (plus memory for stacks). A
couple of files are supplied in source code to make sure that you do not loose any
flexibility by using embOS and that you can customize the system to fully fit your
needs.

The tasks you create can easily and safely communicate with each other using a
complete palette of communication mechanisms such as semaphores, mailboxes, and
events.

Some features of embOS include:

� Preemptive scheduling:
Guarantees that of all tasks in READY state the one with the highest priority exe-
cutes, except for situations where priority inversion applies.

� Round-robin scheduling for tasks with identical priorities.
� Preemptions can be disabled for entire tasks or for sections of a program.
� Up to 255 priorities.
� Every task can have an individual priority => the response of tasks can be pre-

cisely defined according to the requirements of the application.
� Unlimited number of tasks

(limited only by the amount of available memory).
� Unlimited number of semaphores

(limited only by the amount of available memory).
� 2 types of semaphores: resource and counting.
� Unlimited number of mailboxes

(limited only by the amount of available memory).
� Size and number of messages can be freely defined when initializing mailboxes.
� Unlimited number of software timers

(limited only by the amount of available memory).
� 8-bit events for every task.
� Time resolution can be freely selected (default is 1ms).
� Easily accessible time variable.
� Power management.
� Unused calculation time can automatically be spent in halt mode .

power-consumption is minimized.
� Full interrupt support:

Interrupts can call any function except those that require waiting for data,
as well as create, delete or change the priority of a task.
Interrupts can wake up or suspend tasks and directly communicate with tasks
using all available communication instances (mailboxes, semaphores, events).

� Very short interrupt disable-time => short interrupt latency time.
� Nested interrupts are permitted.
� embOS has its own interrupt stack (usage optional).
� Frame application for an easy start.
� Debug version performs runtime checks, simplifying development.
� Profiling and stack check may be implemented by choosing specified libraries.
� Monitoring during runtime via UART available (embOSView).
� Very fast and efficient, yet small code.
� Minimum RAM usage.
� Core written in assembly language.
� Interfaces C and/or assembly.
� Initialization of microcontroller hardware as sources.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

18 CHAPTER 1 Introduction to embOS
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

19
Chapter 2

Basic concepts
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

20 CHAPTER 2 Basic concepts
2.1 Tasks
In this context, a task is a program running on the CPU core of a microcontroller.
Without a multitasking kernel (an RTOS), only one task can be executed by the CPU
at a time. This is called a single-task system. A real-time operating system allows the
execution of multiple tasks on a single CPU. All tasks execute as if they completely
"owned" the entire CPU. The tasks are scheduled, meaning that the RTOS can
activate and deactivate every task.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

21
2.2 Single-task systems (superloop)
A superloop application is basically a program that runs in an endless loop, calling OS
functions to execute the appropriate operations (task level). No real-time kernel is
used, so interrupt service routines (ISRs) must be used for real-time parts of the
software or critical operations (interrupt level). This type of system is typically used
in small, uncomplex systems or if real-time behavior is not critical.

Of course, there are fewer preemption and synchronization problems with a super-
loop application. Also, because no real-time kernel is used, only one stack exists in
ROM, meaning that ROM size is smaller and less RAM is used up for stacks. However,
superloops can become difficult to maintain if the program becomes too large.
Because one software component cannot be interrupted by another component (only
by ISRs), the reaction time of one component depends on the execution time of all
other components in the system. Real-time behavior is therefore poor.

Time

Superloop

ISR

ISR (nested)

Task level Interrupt level

ISR
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

22 CHAPTER 2 Basic concepts
2.3 Multitasking systems
In a multitasking system, there are different scheduling systems in which the calcu-
lation power of the CPU can be distributed among tasks.

2.3.1 Cooperative multitasking
Cooperative multitasking expects cooperation of all tasks. Tasks can only be sus-
pended by calling a function of the operating system. If they do not, the system
"hangs", which means that other tasks have no chance of being executed by the CPU
while the first task is being carried out. This is illustrated in the diagram below. Even
if an ISR makes a higher-priority task ready to run, the interrupted task will be
returned to and finished before the task switch is made.

Time

ISR

Low priority task

High priority task

ISR puts high priority
task in READY state

Executing task is interrupted

Interrupted task
is completed

Higher priority task
Is executed
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

23
2.3.2 Preemptives multitasking
Real-time systems like embOS operate with preemptive multitasking only. A real-
time operating system needs a regular timer-interrupt to interrupt tasks at defined
times and to perform task-switches if necessary. The highest-priority task in the
READY state is therefore always executed, whether it is an interrupted task or not. If
an ISR makes a higher priority task ready, a task switch will occur and the task will
be executed before the interrupted task is returned to.

Time

ISR

Low priority task

High priority taskISR puts high priority
task in READY state;
task switch occurs

Executing task is interrupted

Interrupted task
is completed

Higher priority task
Is executed
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

24 CHAPTER 2 Basic concepts
2.4 Scheduling
There are different algorithms that determine which task to execute, called
schedulers. All schedulers have one thing in common: they distinguish between tasks
that are ready to be executed (in the READY state) and the other tasks that are
suspended for any reason (delay, waiting for mailbox, waiting for semaphore, waiting
for event, and so on). The scheduler selects one of the tasks in the READY state and
activates it (executes the program of this task). The task which is currently executing
is referred to as the active task. The main difference between schedulers is in how
they distribute the computation time between the tasks in READY state.

2.4.1 Round-robin scheduling algorithm
With round-robin scheduling, the scheduler has a list of tasks and, when deactivating
the active task, activates the next task that is in the READY state. Round-robin can
be used with either preemptive or cooperative multitasking. It works well if you do
not need to guarantee response time, if the response time is not an issue, or if all
tasks have the same priority. Round-robin scheduling can be illustrated as follows:

All tasks are on the same level; the possession of the CPU changes periodically after
a predefined execution time. This time is called timeslice, and may be defined
individually for every task.

2.4.2 Priority-controlled scheduling algorithm
In real-world applications, different tasks require different response times. For
example, in an application that controls a motor, a keyboard, and a display, the
motor usually requires faster reaction time than the keyboard and display. While the
display is being updated, the motor needs to be controlled. This makes preemptive
multitasking a must. Round-robin might work, but because it cannot guarantee a
specific reaction time, an improved algorithm should be used.

In priority-controlled scheduling, every task is assigned a priority. The order of exe-
cution depends on this priority. The rule is very simple:

Note: The scheduler activates the task that has the highest priority of all
tasks in the READY state.

This means that every time a task with higher priority than the active task gets
ready, it immediately becomes the active task. However, the scheduler can be
switched off in sections of a program where task switches are prohibited, known as
critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin between
tasks of identical priority. One hint at this point: round-robin scheduling is a nice fea-
ture because you do not have to think about whether one task is more important
than another. Tasks with identical priority cannot block each other for longer than
their timeslices. But round-robin scheduling also costs time if two or more tasks of
identical priority are ready and no task of higher priority is ready, because it will con-
stantly switch between the identical-priority tasks. It is more efficient to assign a dif-
ferent priority to each task, which will avoid unnecessary task switches.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

25
2.4.3 Priority inversion
The rule to go by for the scheduler is:

Activate the task that has the highest priority of all tasks in the READY state.

But what happens if the highest-priority task is blocked because it is waiting for a
resource owned by a lower-priority task? According to the above rule, it would wait
until the low-priority-task becomes active again and releases the resource.

The other rule is: No rule without exception.

To avoid this kind of situation, the low-priority task that is blocking the highest-prior-
ity task gets assigned the highest priority until it releases the resource, unblocking
the task which originally had highest priority. This is known as priority inversion.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

26 CHAPTER 2 Basic concepts
2.5 Communication between tasks
In a multitasking (multithreaded) program, multiple tasks work completely sepa-
rately. Because they all work in the same application, it will sometimes be necessary
for them to exchange information with each other.

2.5.1 Global variables
The easiest way to do this is by using global variables. In certain situations, it can
make sense for tasks to communicate via global variables, but most of the time this
method has various disadvantages.

For example, if you want to synchronize a task to start when the value of a global
variable changes, you have to poll this variable, wasting precious calculation time
and power, and the reaction time depends on how often you poll.

2.5.2 Communication mechanisms
When multiple tasks work with one another, they often have to:

� exchange data,
� synchronize with another task, or
� make sure that a resource is used by no more than one task at a time.

For these purposes embOS offers mailboxes, queues, semaphores and events.

2.5.3 Mailboxes and queues
A mailbox is basically a data buffer managed by the RTOS and is used for sending a
message to a task. It works without conflicts even if multiple tasks and interrupts try
to access it simultaneously. embOS also automatically activates any task that is
waiting for a message in a mailbox the moment it receives new data and, if neces-
sary, automatically switches to this task.

A queue works in a similar manner, but handle larger messages than mailboxes, and
every message may have a individual size.
For more information, see the Chapter Mailboxes on page 109 and Chapter Queues
on page 127.

2.5.4 Semaphores
Two types of semaphores are used for synchronizing tasks and to manage resources.
The most common are resource semaphores, although counting semaphores are also
used. For details and samples, refer to the Chapter Resource semaphores on page 83
and Chapter Counting Semaphores on page 95. Samples can also be found on our
website at www.segger.com.

2.5.5 Events
A task can wait for a particular event without using any calculation time. The idea is
as simple as it is convincing; there is no sense in polling if we can simply activate a
task the moment the event that it is waiting for occurs. This saves a great deal of
calculation power and ensures that the task can respond to the event without delay.
Typical applications for events are those where a task waits for data, a pressed key, a
received command or character, or the pulse of an external real-time clock.
For further details, refer to the Chapter Task events on page 139 and Chapter Event
objects on page 149.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

27
2.6 How task-switching works
A real-time multitasking system lets multiple tasks run like multiple single-task pro-
grams, quasi-simultaneously, on a single CPU. A task consists of three parts in the
multitasking world:

� The program code, which usually resides in ROM (though it does not have to)
� A stack, residing in a RAM area that can be accessed by the stack pointer
� A task control block, residing in RAM.

The stack has the same function as in a single-task system: storage of return
addresses of function calls, parameters and local variables, and temporary storage of
intermediate calculation results and register values. Each task can have a different
stack size. More information can be found in chapter Stacks on page 181.

The task control block (TCB) is a data structure assigned to a task when it is created.
It contains status information of the task, including the stack pointer, task priority,
current task status (ready, waiting, reason for suspension) and other management
data. This information allows an interrupted task to continue execution exactly where
it left off. TCBs are only accessed by the RTOS.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

28 CHAPTER 2 Basic concepts
2.7 Switching stacks
The following diagram demonstrates the process of switching from one stack to
another.

The scheduler deactivates the task to be suspended (Task 0) by saving the processor
registers on its stack. It then activates the higher-priority task (Task n) by loading
the stack pointer (SP) and the processor registers from the values stored on Task n's
stack.

Scheduler

CPU

Task 0
StackTask Control

block

CPU
registers

Free Stack
area

variables
temp. storage
ret. addresses

SP

Task n
StackTask Control

block

CPU
registers

Free Stack
area

variables
temp. storage
ret. addresses

SP
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

29
2.8 Change of task status
A task may be in one of several states at any given time. When a task is created, it is
automatically put into the READY state (TS_READY).

A task in the READY state is activated as soon as there is no other READY task with
higher priority. Only one task may be active at a time. If a task with higher priority
becomes READY, this higher priority task is activated and the preempted task
remains in the the READY state.

The active task may be delayed for or until a specified time; in this case it is put into
the DELAY state (TS_DELAY) and the next highest priority task in the READY state is
activated.

The active task may also have to wait for an event (or semaphore, mailbox, or
queue). If the event has not yet occurred, the task is put into the waiting state and
the next highest priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it has either not been
created yet or it has been terminated.

The following illustration shows all possible task states and transitions between
them.

Not existing

TS_Ready Scheduler Active task

Wait for event,
mailbox or
semaphore

TS_DELAY

CREATETASK() Terminate()

Delay()
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

30 CHAPTER 2 Basic concepts
2.9 How the OS gains control
When the CPU is reset, the special-function registers are set to their respective val-
ues. After reset, program execution begins. The PC register is set to the start
address defined by the start vector or start address (depending on the CPU). This
start address is usually in a startup module shipped with the C compiler, and is some-
times part of the standard library.

The startup code performs the following:

� Loads the stack pointers with the default values, which is for most CPUs
the end of the defined stack segment(s)

� Initializes all data segments to their respective values
� Calls the main() routine.

In a single-task-program, the main() routine is part of your program which takes
control immediately after the C startup. Normally, embOS works with the standard C
startup module without any modification. If there are any changes required, they are
documented in the startup file which is shipped with embOS.

The main() routine is still part of your application program. Basically, main() creates
one or more tasks and then starts multitasking by calling OS_Start(). From then on,
the scheduler controls which task is executed.

The main() routine will not be interrupted by any of the created tasks, because those
tasks are executed only after the call to OS_Start(). It is therefore usually recom-
mended to create all or most of your tasks here, as well as your control structures
such as mailboxes and semaphores. A good practice is to write software in the form
of modules which are (up to a point) reusable. These modules usually have an initial-
ization routine, which creates the required task(s) and/or control structures.
A typical main() looks similar to the following example:

Example

/***
*
* main
*
**
*/

void main(void) {
 OS_InitKern(); /* Initialize OS (should be first !) */
 OS_InitHW(); /* Initialize Hardware for OS (in RtosInit.c) */
 /* Call Init routines of all program modules which in turn will create
 the tasks they need ... (Order of creation may be important) */
 MODULE1_Init();
 MODULE2_Init();
 MODULE3_Init();
 MODULE4_Init();
 MODULE5_Init();
 OS_Start(); /* Start multitasking */
}

With the call to OS_Start(), the scheduler starts the highest-priority task that has
been created in main().

Note that OS_Start() is called only once during the startup process and does not
return.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

31
The flowchart below illustrates the starting procedure:

Reset of
CPU

Load SP

Init memory

main()

embOS
Scheduler

Task

Task

Task

Init
Hardware
Create task
Semaphore
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

32 CHAPTER 2 Basic concepts
2.10 Different builds of embOS
embOS comes in different builds, or versions of the libraries. The reason for different
builds is that requirements vary during development. While developing software, the
performance (and resource usage) is not as important as in the final version which
usually goes as release version into the product. But during development, even small
programming errors should be caught by use of assertions. These assertions are
compiled into the debug version of the embOS libraries and make the code a bit
bigger (about 50%) and also slightly slower than the release or stack check version
used for the final product.

This concept gives you the best of both worlds: a compact and very efficient build for
your final product (release or stack check versions of the libraries), and a safer
(though bigger and slower) version for development which will catch most of the
common application programming errors. Of course, you may also use the release
version of embOS during development, but it will not catch these errors.

2.10.1 Profiling
embOS supports profiling in profiling builds. Profiling makes precise information
available about the execution time of individual tasks. You may always use the profil-
ing libraries, but they induce certain overhead such as bigger task control blocks,
additional ROM (approximately 200 bytes) and additional runtime overhead. This
overhead is usually acceptable, but for best performance you may want to use non-
profiling builds of embOS if you do not use this feature.

2.10.2 List of libraries
In your application program, you need to let the compiler know which build of embOS
you are using. This is done by defining a single identifier prior to including RTOS.h.

Build Define Description

XR: Extreme
 Release OS_LIBMODE_XR Smallest fastest build. Does not support

round robin scheduling and task names.

R: Release OS_LIBMODE_R
Small, fast build, normally used for release
version of application

S: Stack check OS_LIBMODE_S Same as release, plus stack checking
SP: Stack check
 plus profiling OS_LIBMODE_SP Same as stack check, plus profiling

D: Debug OS_LIBMODE_D Maximum runtime checking
DP: Debug
 plus profiling OS_LIBMODE_DP Maximum runtime checking, plus profiling

DT: Debug
 including
 trace,
 profiling

 OS_LIBMODE_DT Maximum runtime checking, plus tracing API
calls and profiling

Table 2.1: List of libraries
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

33
Chapter 3

Task routines
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

34 CHAPTER 3 Task routines
A task that should run under embOS needs a task control block (TCB), a stack, and a
normal routine written in C. The following rules apply to task routines:

� The task routine cannot take parameters.
� The task routine must never be called directly from your application.
� The task routine must not return.
� The task routine should be implemented as an endless loop, or it must terminate

itself (see examples below).
� The task routine needs to be started from the scheduler, after the task is created

and OS_Start() is called.

Example of task routine as an endless loop:

/* Example of a task routine as an endless loop */
void Task1(void) {
 while(1) {
 DoSomething() /* Do something */
 OS_Delay(1); /* Give other tasks a chance */
 }
}

Example of task routine that terminates itself

/* Example of a task routine that terminates */
void Task2(void) {
 char DoSomeMore;
 do {
 DoSomeMore = DoSomethingElse() /* Do something */
 OS_Delay(1); /* Give other tasks a chance */
 } while(DoSomeMore);
 OS_Terminate(0); /* Terminate yourself */
}

There are different ways to create a task; embOS offers a simple macro that makes
this easy and which is fully sufficient in most cases. However, if you are dynamically
creating and deleting tasks, a routine is available allowing "fine-tuning" of all param-
eters. For most applications, at least initially, using the macro as in the sample start
project works fine.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

35
3.1 Task routine API function overview

Routine Description

OS_CREATETASK() Creates a task.
OS_CreateTask() Creates a task.
OS_CREATETASK_EX() Creates a task with parameter.
OS_CreateTaskEx() Creates a task with parameter.
OS_Delay() Suspends the calling task for a specified period of time.
OS_DelayUntil() Suspends the calling task until a specified time.
OS_ExtendTaskContext() Make global variables or processor registers task specific.

OS_GetpCurrentTask()
Returns a pointer to the task control block structure of
the currently running task.

OS_GetPriority() Returns the priority of a specified task
OS_GetSuspendCnt() Returns the suspension count.
OS_GetTaskID() Returns the ID of the currently running task.

OS_IsTask()
Determines whether a task control block actually belongs
to a valid task.

OS_Resume()
Decrements the suspend count of specified task and
resumes the task, if the suspend count reaches zero.

OS_SetPriority() Assigns a specified priority to a specified task.
OS_SetTimeSlice() Assigns a specified timeslice value to a specified task.
OS_Suspend() Suspends the specified task.
OS_Terminate() Ends (terminates) a task.
OS_WakeTask() Ends delay of a task immediately.
OS_Yield() Calls the scheduler to force a task switch.

Table 3.1: Task routine API list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

36 CHAPTER 3 Task routines
3.1.1 OS_CREATETASK()
Description

Creates a task.

Prototype
void OS_CREATETASK (OS_TASK* pTask,
 char* pName,
 void* pRoutine,
 unsigned char Priority,

 void* pStack);

Additional Information

OS_CREATETASK() is a macro calling an OS library function. It creates a task and
makes it ready for execution by putting it in the READY state. The newly created task
will be activated by the scheduler as soon as there is no other task with higher
priority in the READY state. If there is another task with the same priority, the new
task will be placed right before it. This macro is normally used for creating a task
instead of the function call OS_CreateTask(), because it has fewer parameters and is
therefore easier to use.

OS_CREATETASK() can be called at any time, either from main() during initialization
or from any other task. The recommended strategy is to create all tasks during ini-
tialization in main() to keep the structure of your tasks easy to understand.
The absolute value of Priority is of no importance, only the value in comparison to
the priorities of other tasks.

OS_CREATETASK() determines the size of the stack automatically, using sizeof. This is
possible only if the memory area has been defined at compile time.

Important

The stack that you define has to reside in an area that the CPU can actually use as
stack. Most CPUs cannot use the entire memory area as stack.Most CPUs require
alignment of stack in multiples of bytes. This is automatically done, when the task
stack is defined as an array of integers.

Example

OS_STACKPTR int UserStack[150]; /* Stack-space */
OS_TASK UserTCB; /* Task-control-blocks */

void UserTask(void) {
 while (1) {
 Delay (100);
 }
}

void InitTask(void) {
 OS_CREATETASK(&UserTCB, "UserTask", UserTask, 100, UserStack);
}

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which will be used as
task control block (and reference) for this task.

pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a routine that should run as a task

Priority
Priority of the task. Must be within the following range:
1 <= Priority <=255
Higher values indicate higher priorities.

pStack
Pointer to an area of memory in RAM that will serve as stack area
for the task. The size of this block of memory determines the size
of the stack area.

Table 3.2: OS_CREATETASK() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

37
3.1.2 OS_CreateTask()
Description

Creates a task.

Prototype
void OS_CreateTask (OS_TASK* pTask,
 char* pName,
 unsigned char Priority,
 voidRoutine* pRoutine,
 void* pStack,
 unsigned StackSize,
 unsigned char TimeSlice);)

Additional Information

This function works the same way as OS_CREATETASK(), except that all parameters of
the task can be specified.
The task can be dynamically created because the stack size is not calculated auto-
matically as it is with the macro.

Important

The stack that you define has to reside in an area that the CPU can actually use as
stack. Most CPUs cannot use the entire memory area as stack.
Most CPUs require alignment of stack in multiples of bytes. This is automatically
done, when the task stack is defined as an array of integers.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which will be used as
the task control block (and reference) for this task.

pName Pointer to the name of the task. Can be NULL (or 0) if not used.

Priority
Priority of the task. Must be within the following range:
1 <= Priority <=255
Higher values indicate higher priorities.

pRoutine Pointer to a routine that should run as task

pStack
Pointer to an area of memory in RAM that will serve as stack area
for the task. The size of this block of memory determines the size
of the stack area.

StackSize Size of the Stack

TimeSlice

Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority.TimeSlice denotes
the time in embOS timer ticks that the task will run until it sus-
pends; thus enabling another task with the same priority. This
parameter has no effect on some ports of embOS for efficiency
reasons.

Table 3.3: OS_CreateTask() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

38 CHAPTER 3 Task routines
Example

/* Demo-program to illustrate the use of OS_CreateTask */

OS_STACKPTR int StackMain[100], StackClock[50];
OS_TASK TaskMain,TaskClock;
OS_SEMA SemaLCD;

void Clock(void) {
 while(1) {
 /* Code to update the clock */
 }
}

void Main(void) {
 while (1) {
 /* Your code */
 }
}

void InitTask(void) {
 OS_CreateTask(&TaskMain, NULL, 50, Main, StackMain, sizeof(StackMain), 2);
 OS_CreateTask(&TaskClock, NULL, 100, Clock,StackClock,sizeof(StackClock),2);
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

39
3.1.3 OS_CREATETASK_EX()
Description

Creates a task and passes a parameter to the task.

Prototype
void OS_CREATETASK_EX (OS_TASK* pTask,
 char* pName,
 void* pRoutine,
 unsigned char Priority,
 void* pStack,

 void* pContext);

Additional Information

OS_CREATETASK_EX() is a macro calling an embOS library function. It works like
OS_CREATETASK(), but allows passing a parameter to the task.
Using a void pointer as additional parameter gives the flexibility to pass any kind of
data to the task function.

Example

The following example is delivered in the Samples folder of embOS.

/*--
File : Main_TaskEx.c
Purpose : Sample program for embOS using OC_CREATETASK_EX
--------- END-OF-HEADER --*/

#include "RTOS.h"
OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */
/**/
static void TaskEx(void* pData) {
 while (1) {
 OS_Delay ((OS_TIME) pData);
 }
}
/***
*
* main
*
***/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK_EX(&TCBHP, "HP Task", TaskEx, 100, StackHP, (void*) 50);
 OS_CREATETASK_EX(&TCBLP, "LP Task", TaskEx, 50, StackLP, (void*) 200);
 OS_SendString("Start project will start multitasking !\n");
 OS_Start(); /* Start multitasking */
 return 0;
}

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which will be used as
task control block (and reference) for this task.

pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a routine that should run as a task.

Priority
Priority of the task. Must be within the following range:
1 <= Priority <=255
Higher values indicate higher priorities.

pStack
Pointer to an area of memory in RAM that will serve as stack area
for the task. The size of this block of memory determines the size
of the stack area.

pContext Parameter passed to the created task function.
Table 3.4: OS_CREATETASK_EX() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

40 CHAPTER 3 Task routines
3.1.4 OS_CreateTaskEx()
Description

Creates a task and passes a parameter to the task.

Prototype
void OS_CreateTaskEx (OS_TASK* pTask,
 char* pName,
 unsigned char Priority,
 voidRoutine* pRoutine,
 void* pStack,
 unsigned StackSize,
 unsigned char TimeSlice,
 void* pContext);)

Additional Information

This function works the same way as OS_CreateTask(), except that a parameter is
passed to the task function.
An example of parameter passing to tasks is shown under OS_CREATETASK_EX().

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which will be used as
the task control block (and reference) for this task.

pName Pointer to the name of the task. Can be NULL (or 0) if not used.

Priority
Priority of the task. Must be within the following range:
1 <= Priority <=255
Higher values indicate higher priorities.

pRoutine Pointer to a routine that should run as task.

pStack
Pointer to an area of memory in RAM that will serve as stack area
for the task. The size of this block of memory determines the size
of the stack area.

StackSize Size of the Stack

Timeslice

Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority.TimeSlice denotes
the time in embOS timer ticks that the task will run until it sus-
pends; thus enabling another task with the same priority. This
parameter has no effect on some ports of embOS for efficiency
reasons.

pContext Parameter passed to the created task.
Table 3.5: OS_Create_Task_Ex() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

41
3.1.5 OS_Delay()
Description

Suspends the calling task for a specified period of time.

Prototype
void OS_Delay (int ms);

Additional Information

The calling task will be put into the TS_DELAY state for the period of time specified.
The task will stay in the delayed state until the specified time has expired. The
parameter ms specifies the precise interval during which the task has to be sus-
pended given in basic time intervals (usually 1/1000 sec). The actual delay (in basic
time intervals) will be in the following range: ms - 1 <= delay <= ms, depending on
when the interrupt for the scheduler will occur.
After the expiration of a delay, the task is made ready again and activated according
to the rules of the scheduler. A delay can be ended prematurely by another task or by
an interrupt handler calling OS_WakeTask().

Example

void Hello() {
 printf("Hello");
 printf("The next output will occur in 5 seconds");
 OS_Delay (5000);
 printf("Delay is over");
}

Parameter Description

ms

Time interval to delay. Must be within the following range:
1 <= ms <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= ms <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 3.6: OS_Delay() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

42 CHAPTER 3 Task routines
3.1.6 OS_DelayUntil()
Description

Suspends the calling task until a specified time.

Prototype
void OS_DelayUntil (int t);

Additional Information

The calling task will be put into the TS_DELAY state until the time specified.
The OS_DelayUntil() function delays until the value of the time-variable OS_Time
has reached a certain value. It is very useful if you have to avoid accumulating
delays.

Example

int sec,min;

void TaskShowTime() {
 int t0 = OS_GetTime();
 while (1) {
 ShowTime(); /* Routine to display time */
 OS_DelayUntil (t0 += 1000);
 if (sec < 59) sec++;
 else {
 sec=0;
 min++;
 }
 }
}

In the example above, the use of OS_Delay() could lead to accumulating delays and
would cause the simple "clock" to be slow.

Parameter Description

t

Time to delay until. Must be within the following range:
1 <= (t - OS_Time) <= 215-1 = 0x7FFF = 32767 for 8/16-bit
CPUs
1 <= (t - OS_Time) <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 3.7: OS_DelayUntil() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

43
3.1.7 OS_ExtendTaskContext()
Note: This function may not be available in all ports.

Description

OS_ExtendTaskContext() can be used to add global variables or special registers, like
floating point registers, to the task context and make them task specific.

Prototype
void OS_ExtendTaskContext(OS_TASK * pTask,
 void (*pfSave)(void * pStack),

 void (*pfRestore)(const void * pStack));

Additional Information

The function may be used to store global variables like errno or others into the task
context, if these variables have to be task specific, which is the case, if they are used
by different tasks.

Example

The following example is delivered in the Samples folder of embOS.

--
File : ExtendTaskContext.c
Purpose : Sample program for embOS demonstrating how to dynamically
extend the task context.
This example adds a global variable to the task context of
certain tasks.
-------- END-OF-HEADER ---
*/
#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */
int GlobalVar; // This

/***
*
* _Restore / _Save
*
* Function description
* This function pair saves and restores an extended task context.
* In this case, the extended task context consists of just a single
* member, which is a global variable.
*/
typedef struct {
 int GlobalVar;
} CONTEXT_EXTENSION;

void OS_Save(void * pStack) {
 CONTEXT_EXTENSION * p;
 p = ((CONTEXT_EXTENSION*)pStack) - 1; // Create pointer to our structure
 //
 // Save all members of the structure
 //
 p->GlobalVar = GlobalVar;
}

Parameter Description

pTask
Pointer to the tasks who.s task context should be extended. A
NULL pointer may be used to address the current running
task.

pfSave
Function pointer, addresses the function used to save the
extended task context. This function is called, when the task is
suspended for any reason.

pfRestore
Function pointer, addresses the function used to restore the
extended task context. This function is called when the task is
resumed.

Table 3.8: OS_ExtendTaskContext() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

44 CHAPTER 3 Task routines
void OS_Restore(void * pStack) {
 CONTEXT_EXTENSION * p;
 p = ((CONTEXT_EXTENSION*)pStack) - 1; // Create pointer to our structure
 //
 // Restore all members of the structure
 //
 GlobalVar = p->GlobalVar;
}

/***
*
* HPTask
*
* Function description
* During the execution of this function, the thread-specific
* global variable has always the same value of 1.
*/
static void HPTask(void) {
 OS_ExtendTaskContext(NULL, OS_Save, OS_Restore);
 GlobalVar = 1;
 while (1) {
 OS_Delay (10);
 }
}

/***
*
* LPTask
*
* Function description
* During the execution of this function, the thread-specific
* global variable has always the same value of 2.
*/
static void LPTask(void) {
 OS_ExtendTaskContext(NULL, OS_Save, OS_Restore);
 GlobalVar = 2;
 while (1) {
 OS_Delay (50);
 }
}

/***
*
* main
*/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

45
3.1.8 OS_GetpCurrentTask()
Description

Returns a pointer to the task control block structure of the currently running task.

Prototype
OS_TASK* OS_GetpCurrentTask (void);

Return value

OS_TASK*: A pointer to the task control block structure.

Additional Information

This function may be used for determining which task is executing. This may be help-
ful if the reaction of any function depends on the currently running task.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

46 CHAPTER 3 Task routines
3.1.9 OS_GetPriority()
Description

Returns the priority of a specified task.

Prototype
unsigned char OS_GetPriority (OS_TASK* pTask);

Return value

Priority of the specified task as an "unsigned character" (range 1 to 255).

Additional Information

If pTask is the NULL pointer, the function returns the priority of the currently running
task. If pTask does not specify a valid task, the debug version of embOS calls
OS_Error(). The release version of embOS cannot check the validity of pTask and
may therefore return invalid values if pTask does not specify a valid task.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pTask Pointer to a data structure of type OS_TASK.
Table 3.9: OS_GetPriority() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

47
3.1.10 OS_GetSuspendCnt()
Description

The function returns the suspension count and thus suspension state of the specified
task. This function may be used for examining whether a task is suspended by previ-
ous calls of OS_Suspend().

Prototype
unsigned char OS_GetSuspendCnt (OS_TASK* pTask);

Return value

Suspension count of the specified task as unsigned character value.
0: Task is not suspended.
>0: Task is suspended by at least one call of OS_Suspend().

Additional Information

If pTask does not specify a valid task, the debug version of embOS calls OS_Error().
The release version of embOS can not check the validity of pTask and may therefore
return invalid values if pTask does not specify a valid task. When tasks are created
and terminated dynamically, OS_IsTask() may be called prior calling
OS_GetSuspendCnt() to examine whether the task is valid. The remturned value can
be used for resuming a suspended task by calling OS_Resume() as often as indicated
by the returned value.

Example

/* Demo-function to illustrate the use of OS_GetSuspendCnt() */

void ResumeTask(OS_TASK* pTask) {
 unsigned char SuspendCnt;
 SuspendCnt = OS_GetSuspendCnt(pTask);
 while(SuspendCnt > 0) {
 OS_Resume(pTask); /* May cause a task switch */
 SuspendCnt--;
 }
}

Parameter Description

pTask Pointer to a data structure of type OS_TASK.
Table 3.10: OS_GetSuspendCnt() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

48 CHAPTER 3 Task routines
3.1.11 OS_GetTaskID()
Description

Returns the ID of the currently running task.

Prototype
OS_TASKID OS_GetTaskID (void);

Return value

OS_TASKID: A pointer to the task control block. A value of 0 (NULL) indicates that no
task is executing.

Additional Information

This function may be used for determining which task is executing. This may be help-
ful if the reaction of any function depends on the currently running task.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

49
3.1.12 OS_IsTask()
Description

Determines whether a task control block actually belongs to a valid task.

Prototype
char OS_IsTask (OS_TASK* pTask);

Return value

Character value:
0: TCB is not used by any task
1: TCB is used by a task

Additional Information

This function checks if the specified task is still in the internal task list. If the task
was terminated, it is removed from the internal task list. This function may be useful
to determine whether the task control block and stack for the task may be reused for
another task in applications that create and terminate tasks dynamically.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which is used as task
control block (and reference) for this task.

Table 3.11: OS_IsTask() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

50 CHAPTER 3 Task routines
3.1.13 OS_Resume()
Description

Decrements the suspend count of the specified task and resumes it, if the suspend
count reaches zero.

Prototype
void OS_Resume (OS_TASK* pTask);

Additional Information

The specified task's suspend count is decremented. If the resulting value is 0, the
execution of the specified task is resumed.
If the task is not blocked by other task blocking mechanisms, the task will be set
back in ready state and continues operation according to the rules of the scheduler.
In debug versions of embOS, the OS_Resume() function checks the suspend count of
the specified task. If the suspend count is 0 when OS_Resume() is called, the
specified task is not currently suspended and OS_Error() is called with error
OS_ERR_RESUME_BEFORE_SUSPEND.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which is used as task
control block (and reference) for the task that should be sus-
pended.

Table 3.12: OS_Resume() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

51
3.1.14 OS_SetPriority()
Description

Assigns a specified priority to a specified task.

Prototype
void OS_SetPriority (OS_TASK* pTask,
 unsigned char Priority);

Additional Information

Can be called at any time from any task or software timer. Calling this function might
lead to an immediate task switch.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pTask Pointer to a data structure of type OS_TASK.

Priority
Priority of the task. Must be within the following range:
1 <= Priority <= 255 Higher values indicate higher priorities.

Table 3.13: OS_SetPriority() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

52 CHAPTER 3 Task routines
3.1.15 OS_SetTimeSlice()
Description

Assigns a specified timeslice value to a specified task.

Prototype
unsigned char OS_SetTimeSlice (OS_TASK* pTask,
 unsigned char TimeSlice);

Return value

Previous timeslice value of the task as unsigned char.

Additional Information

Can be called at any time from any task or software timer. Setting the timeslice value
only affects the tasks running in round-robin mode. This means another task with the
same priority must exist.
The new timeslice value is interpreted as reload value. It is used after the next acti-
vation of the task. It does not affect the remaining timeslice of a running task.

Parameter Description

pTask Pointer to a data structure of type OS_TASK.

TimeSlice
New timeslice value for the task. Must be within the following
range:
1 <= TimeSlice <= 255.

Table 3.14: OS_SetTimeSlice() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

53
3.1.16 OS_Suspend()
Description

Suspends the specified task.

Prototype
void OS_Suspend (OS_TASK* pTask);

Additional Information

If pTask is the NULL pointer, the current task suspends.
If the function succeeds, execution of the specified task is suspended and the task's
suspend count is incremented. The specified task will be suspended immediately. It
can only be restarted by a call of OS_Resume().
Every task has a suspend count with a maximum value of OS_MAX_SUSPEND_CNT. If
the suspend count is greater than zero, the task is suspended.
In debug versions of embOS, calling OS_Suspend() more often than
OS_MAX_SUSPEND_CNT times without calling OS_Resume(), the task's internal suspend
count is not incremented and OS_Error() is called with error
OS_ERR_SUSPEND_TOO_OFTEN.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which is used as task
control block (and reference) for the task that should be sus-
pended.

Table 3.15: OS_Suspend() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

54 CHAPTER 3 Task routines
3.1.17 OS_Terminate()
Description

Ends (terminates) a task.

Prototype
void OS_Terminate (OS_TASK* pTask);

Additional Information

If pTask is the NULL pointer, the current task terminates. The specified task will ter-
minate immediately. The memory used for stack and task control block can be reas-
signed.

Since version 3.26 of embOS, all resources which are held by the terminated task are
released. Any task may be terminated regardless of its state. This functionality is
default for any 16-bit or 32-bit CPU and may be changed by recompiling embOS
sources. On 8-bit CPUs, terminating tasks that hold any resources is prohibited. To
enable safe termination, the embOS sources have to be recompiled with the compile
time switch OS_SUPPORT_CLEANUP_ON_TERMINATE activated.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which is used as task
control block (and reference) for this task.

Table 3.16: OS_Terminate() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

55
3.1.18 OS_WakeTask()
Description

Ends delay of a task immediately.

Prototype
void OS_WakeTask (OS_TASK* pTask);

Additional Information

Puts the specified task, which is already suspended for a certain amount of time with
OS_Delay() or OS_DelayUntil() back to the state TS_READY (ready for execution).
The specified task will be activated immediately if it has a higher priority than the
priority of the task that had the highest priority before. If the specified task is not in
the state TS_DELAY (because it has already been activated, or the delay has already
expired, or for some other reason), this command is ignored.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which is used as task
control block (and reference) for this task.

Table 3.17: OS_WakeTask() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

56 CHAPTER 3 Task routines
3.1.19 OS_Yield()
Description

 Calls the scheduler to force a task switch.

Prototype
void OS_Yield (void);

Additional Information

If the task is running on round-robin, it will be suspended if there is an other task
with the same priority ready for execution.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

57
Chapter 4

Software timers
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

58 CHAPTER 4 Software timers
A software timer is an object that calls a user-specified routine after a specified
delay. A basically unlimited number of software timers can be defined with the macro
OS_CREATETIMER().

Timers can be stopped, started and retriggered much like hardware timers. When
defining a timer, you specify any routine that is to be called after the expiration of
the delay. Timer routines are similar to interrupt routines; they have a priority higher
than the priority of all tasks. For that reason they should be kept short just like
interrupt routines.

Software timers are called by embOS with interrupts enabled, so they can be inter-
rupted by any hardware interrupt. Generally, timers run in single-shot mode, which
means they expire only once and call their callback routine only once. By calling
OS_RetriggerTimer() from within the callback routine, the timer is restarted with its
initial delay time and therefore works just as a free-running timer.

The state of timers can be checked by the functions OS_GetTimerStatus(),
OS_GetTimerValue(), and OS_GetTimerPeriod().

Maximum timeout / period

The timeout value is stored as an integer, thus a 16-bit value on 8/16-bit CPUs, a 32-
bit value on 32-bit CPUs. The comparisons are done as signed comparisons, (because
expired time-outs are permitted). This means that only 15-bits can be used on 8/16
bit CPUs, 31-bits on 32-bit CPUs. Another factor to take into account is the maximum
time spent in critical regions. During critical regions timers may expire, but because
the timer routine can not be called from a critical region (timers are "put on hold"),
the maximum time that the system spends at once in a critical region needs to be
deducted. In most systems, this is no more than a single tick. However, to be safe,
we have assumed that your system spends no more than up to 255 ticks in a row in
a critical region and defined a macro which defines the maximum timeout value. It is
normally 0x7F00 for 8/16-bit systems or 0x7FFFFF00 for 32-bit Systems and defined
in RTOS.h as OS_TIMER_MAX_TIME. If your system spends more than 255 ticks without
break in a critical section (effectively disabling the scheduler during this time ... not
recommended), you have to make sure your application uses shorter timeouts.

Extended software timers

Sometimes it may be useful to pass a paramter to the timer callback function. This
allows usage of one callback function for different software timers.
Since version 3.32m of embOS, the extended timer structure and related extended
timer functions were implemented to allow parameter passing to the callback func-
tion.
Except the different callback function with parameter passing, extended timers
behave exactly the same as normal embOS software timers and may be used in par-
allel with normal software timers.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

59
4.1 Software timers API function overview

Routine Description

OS_CREATETIMER() Macro that creates and starts a software-timer.
OS_CreateTimer() Creates a software timer without starting it.
OS_StartTimer() Starts a software timer.
OS_StopTimer() Stops a software timer.
OS_RetriggerTimer() Restarts a software timer with its initial time value.
OS_SetTimerPeriod() Sets a new timer reload value for a software timer.
OS_DeleteTimer() Stops and deletes a software timer.
OS_GetTimerPeriod() Returns the current reload value of a software timer.
OS_GetTimerValue() Returns the remaining timer value of a software timer.
OS_GetTimerStatus() Returns the current timer status of a software timer.

OS_GetpCurrentTimer()
Returns a pointer to the data structure of the timer
that just expired.

OS_CREATETIMER_EX()
Macro that creates and starts an extended software-
timer.

OS_CreateTimer_Ex()
Creates an extended software timer without starting
it.

OS_StartTimer_Ex() Starts an extended timer.
OS_StopTimer_Ex() Stops an extended timer.
OS_RetriggerTimer_Ex() Restarts an extended timer with its initial time value.
OS_SetTimerPeriod_Ex() Sets a new timer reload value for an extended timer.
OS_DeleteTimer_Ex() Stops and deletes an extended timer.
OS_GetTimerPeriod_Ex() Returns the current reload value of an extended timer.

OS_GetTimerValue_Ex()
Returns the remaining timer value of an extended
timer.

OS_GetTimerStatus_Ex() Returns the current timer status of an extended timer.

OS_GetpCurrentTimerEx()
Returns a pointer to the data structure of the extended
timer that just expired.

Table 4.1: Software timers API
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

60 CHAPTER 4 Software timers
4.1.1 OS_CREATETIMER()
Description

Macro that creates and starts a software timer.

Prototype
void OS_CREATETIMER (OS_TIMER* pTimer,
 OS_TIMERROUTINE* Callback,
 OS_TIME Timeout);)

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).
This macro uses the functions OS_CreateTimer() and OS_StartTimer(). It is sup-
plied for backward compatibility; in newer applications these routines should be
called directly instead.
OS_TIMERROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMERROUTINE(void);

Source of the macro (in RTOS.h):

#define OS_CREATETIMER(pTimer,c,d) \
 OS_CreateTimer(pTimer,c,d); \
 OS_StartTimer(pTimer);

Example

OS_TIMER TIMER100;

void Timer100(void) {
 LED = LED ? 0 : 1; /* Toggle LED */
 OS_RetriggerTimer(&TIMER100); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start Timer100 */
 OS_CREATETIMER(&TIMER100, Timer100, 100);
}

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Callback

Pointer to the callback routine to be called from the RTOS after
expiration of the delay. The callback function hast to be a void
function which does not take any parameter and does not return
any value.

Timeout

Initial timeout in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 4.2: OS_CREATETIMER() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

61
4.1.2 OS_CreateTimer()
Description

Creates a software timer (but does not start it).

Prototype
void OS_CreateTimer (OS_TIMER* pTimer,
 OS_TIMERROUTINE* Callback,
 OS_TIME Timeout);)

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled). The timer is not automatically started. This has to
be done explicitly by a call of OS_StartTimer() or OS_RetriggerTimer().
OS_TIMERROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMERROUTINE(void);

Example

OS_TIMER TIMER100;

void Timer100(void) {
 LED = LED ? 0 : 1; /* Toggle LED */
 OS_RetriggerTimer(&TIMER100); /* Make timer periodical */
}

void InitTask(void) {
 /* Create Timer100, start it elsewhere */
 OS_CreateTimer(&TIMER100, Timer100, 100);
}

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Callback
Pointer to the callback routine to be called from the RTOS after
expiration of the delay.

Timeout

Initial timeout in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 4.3: OS_CreateTimer() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

62 CHAPTER 4 Software timers
4.1.3 OS_StartTimer()
Description

Starts a software timer.

Prototype
void OS_StartTimer (OS_TIMER* pTimer);

Additional Information

OS_StartTimer() is used for the following reasons:

� Start a timer which was created by OS_CreateTimer(). The timer will start with
its initial timer value.

� Restart a timer which was stopped by calling OS_StopTimer(). In this case, the
timer will continue with the remaining time value which was preserved by stop-
ping the timer.

Important

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use OS_RetriggerTimer() to restart those timers.

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 4.4: OS_StartTimer() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

63
4.1.4 OS_StopTimer()
Description

Stops a software timer.

Prototype
void OS_StopTimer (OS_TIMER* pTimer);

Additional Information

The actual value of the timer (the time until expiration) is kept until
OS_StartTimer() lets the timer continue.

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 4.5: OS_StopTimer() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

64 CHAPTER 4 Software timers
4.1.5 OS_RetriggerTimer()
Description

Restarts a software timer with its initial time value.

Prototype
void OS_RetriggerTimer (OS_TIMER* pTimer);

Additional Information

OS_RetriggerTimer() restarts the timer using the initial time value programmed at
creation of the timer or with the function OS_SetTimerPeriod().

Example

OS_TIMER TIMERCursor;
BOOL CursorOn;

void TimerCursor(void) {
 if (CursorOn) ToggleCursor(); /* Invert character at cursor-position */
 OS_RetriggerTimer(&TIMERCursor); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start TimerCursor */
 OS_CREATETIMER(&TIMERCursor, TimerCursor, 500);
}

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 4.6: OS_RetriggerTimer() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

65
4.1.6 OS_SetTimerPeriod()
Description

Sets a new timer reload value for a software timer.

Prototype
void OS_SetTimerPeriod (OS_TIMER* pTimer,
 OS_TIME Period);

Additional Information

OS_SetTimerPeriod() sets the initial time value of the specified timer. Period is the
reload value of the timer to be used as initial value when the timer is retriggered by
OS_RetriggerTimer().

Example

OS_TIMER TIMERPulse;
BOOL CursorOn;

void TimerPulse(void) {
 if TogglePulseOutput(); /* Toggle output */
 OS_RetriggerTimer(&TIMERCursor); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start Pulse Timer with first pulse = 500ms */
 OS_CREATETIMER(&TIMERPulse, TimerPulse, 500);
 /* Set timer period to 200 ms for further pulses */
 OS_SetTimerPeriod(&TIMERPulse, 200);
}

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Period

Timer period in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 4.7: OS_SetTimerPeriod() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

66 CHAPTER 4 Software timers
4.1.7 OS_DeleteTimer()
Description

Stops and deletes a software timer.

Prototype
void OS_DeleteTimer (OS_TIMER* pTimer);

Additional Information

The timer is stopped and therefore removed out of the linked list of running timers.
In debug builds of embOS, the timer is also marked as invalid.

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 4.8: OS_DeleteTimer() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

67
4.1.8 OS_GetTimerPeriod()
Description

 Returns the current reload value of a software timer.

Prototype
OS_TIME OS_GetTimerPeriod (OS_TIMER* pTimer);

Return value

Type OS_TIME, which is defined as an integer between
1 and 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs and as an integer between
1 and <= 231-1 = 0x7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.

Additional Information

The period returned is the reload value of the timer set as initial value when the
timer is retriggered by OS_RetriggerTimer().

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 4.9: OS_GetTimerPeriod() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

68 CHAPTER 4 Software timers
4.1.9 OS_GetTimerValue()
Description

Returns the remaining timer value of a software timer.

Prototype
OS_TIME OS_GetTimerValue (OS_TIMER* pTimer);

Return value

Type OS_TIME, which is defined as an integer between
1 and 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs and as an integer between
1 and <= 231-1 = 0x7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.
The returned time value is the remaining timer time in embOS tick units until expira-
tion of the timer.

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 4.10: OS_GetTimerValue() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

69
4.1.10 OS_GetTimerStatus()
Description

Returns the current timer status of a software timer.

Prototype
unsigned char OS_GetTimerStatus (OS_TIMER* pTimer);

Return value

Unsigned character, denoting whether the specified timer is running or not:
0: timer has stopped
! = 0: timer is running.

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 4.11: OS_GetTimerStatus parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

70 CHAPTER 4 Software timers
4.1.11 OS_GetpCurrentTimer()
Description

Returns a pointer to the data structure of the timer that just expired.

Prototype
OS_TIMER* OS_GetpCurrentTimer (void);

Return value

OS_TIMER*: A pointer to the control structure of a timer.

Additional Information

The return value of OS_GetpCurrentTimer() is valid during execution of a timer call-
back function; otherwise it is undetermined. If only one callback function should be
used for multiple timers, this function can be used for examining the timer that
expired.
The example below shows one usage of OS_GetpCurrentTimer(). Since version
3.32m of embOS, the extended timer structure and functions which come with
embOS may be used to generate and use software timer with individual parameter
for the callback function.

Example

#include "RTOS.H"

/**
*
* Types
*/
typedef struct { /* Timer object with its own user data */
 OS_TIMER Timer;
 void* pUser;
} TIMER_EX;

/**
*
* Variables
*/

TIMER_EX Timer_User;
int a;

/**
*
* Local Functions
*/

void CreateTimer(TIMER_EX* timer, OS_TIMERROUTINE* Callback, OS_UINT Timeout,
 void* pUser) {
 timer->pUser = pUser;
 OS_CreateTimer((OS_TIMER*) timer, Callback, Timeout);
}

void cb(void) { /* Timer callback function for multiple timers */
 TIMER_EX* p = (TIMER_EX*)OS_GetpCurrentTimer();
 void* pUser = p->pUser; /* Examine user data */
 OS_RetriggerTimer(&p->Timer); /* Retrigger timer */
}

/**
*
* main
*/
int main(void) {
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 CreateTimer(&Timer_User, cb, 100, &a);
 OS_Start(); /* Start multitasking */
 return 0;
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

71
4.1.12 OS_CREATETIMER_EX()
Description

Macro that creates and starts an extended software timer.

Prototype
void OS_CREATETIMER_EX (OS_TIMER_EX* pTimerEx,
 OS_TIMER_EX_ROUTINE* Callback,
 OS_TIME Timeout
 void* pData)

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).
This macro uses the functions OS_CreateTimerEx() and OS_StartTimerEx().
OS_TIMER_EX_ROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMER_EX_ROUTINE(void *);

Source of the macro (in RTOS.h):

#define OS_CREATETIMER_EX(pTimerEx,cb,Timeout,pData) \
 OS_CreateTimerEx(pTimerEx,cb,Timeout,pData); \
 OS_StartTimerEx(pTimerEx)

Example

OS_TIMER TIMER100;
OS_TASK TCB_HP;

void Timer100(void* pTask) {
 LED = LED ? 0 : 1; /* Toggle LED */
 if (pTask != NULL) {
 OS_SignalEvent(0x01, (OS_TASK*)pTask);
 }
 OS_RetriggerTimerEx(&TIMER100); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start Timer100 */
 OS_CREATETIMER_EX(&TIMER100, Timer100, 100, (void*) &TCB_HP);
}

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Callback

Pointer to the callback routine to be called from the RTOS after
expiration of the delay. The callback function hast to be of type
OS_TIMER_EX_ROUTINE which takes a void pointer as parameter
and does not return any value.

Timeout

Initial timeout in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

pData
A void pointer which is used as parameter for the extended timer
callback function.

Table 4.12: OS_CREATETIMER_EX() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

72 CHAPTER 4 Software timers
4.1.13 OS_CreateTimerEx()
Description

Creates an extended software timer (but does not start it).

Prototype
void OS_CreateTimerEx (OS_TIMER_EX* pTimerEx,
 OS_TIMER_EX_ROUTINE* Callback,
 OS_TIME Timeout,
 void* pData)

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout has expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).
The extended software timer is not automatically started. This has to be done explic-
itly by a call of OS_StartTimerEx() or OS_RetriggerTimerEx().

OS_TIMER_EX_ROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMER_EX_ROUTINE(void*);

Example

OS_TIMER TIMER100;
OS_TASK TCB_HP;

void Timer100(void* pTask) {
 LED = LED ? 0 : 1; /* Toggle LED */
 if (pTask != NULL) {
 OS_SignalEvent(0x01, (OS_TASK*) pTask);
 }
 OS_RetriggerTimerEx(&TIMER100); /* Make timer periodical */
}

void InitTask(void) {
 /* Create Timer100, start it elsewhere later on*/
 OS_CreateTimerEx(&TIMER100, Timer100, 100, (void*) & TCB_HP);
}

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Callback
Pointer to the callback routine of type OS_TIMER_EX_ROUTINE to
be called from the RTOS after expiration of the timer.

Timeout

Initial timeout in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

pData
A void pointer which is used as parameter for the extended timer
callback function.

Table 4.13: OS_CreateTimerEx() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

73
4.1.14 OS_StartTimerEx()
Description

Starts an extended software timer.

Prototype
void OS_StartTimerEx (OS_TIMER_EX* pTimerEx);

Additional Information

OS_StartTimerEx() is used for the following reasons:

� Start an extended software timer which was created by OS_CreateTimerEx().
The timer will start with its initial timer value.

� Restart a timer which was stopped by calling OS_StopTimerEx(). In this case,
the timer will continue with the remaining time value which was preserved by
stopping the timer.

Important

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use OS_RetriggerTimerEx() to restart those timers.

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Table 4.14: OS_StartTimereEx() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

74 CHAPTER 4 Software timers
4.1.15 OS_StopTimerEx()
Description

Stops an extended software timer.

Prototype
void OS_StopTimerEx (OS_TIMER_EX* pTimerEx);

Additional Information

The actual time value of the extended software timer (the time until expiration) is
kept until OS_StartTimerEx() lets the timer continue.

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Table 4.15: OS_StopTimerEx() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

75
4.1.16 OS_RetriggerTimerEx()
Description

Restarts an extended software timer with its initial time value.

Prototype
void OS_RetriggerTimerEx (OS_TIMER_EX* pTimerEx);

Additional Information

OS_RetriggerTimerEx() restarts the extended software timer using the initial time
value which was programmed at creation of the timer or which was set using the
function OS_SetTimerPeriodEx().

Example

OS_TIMER TIMERCursor;
OS_TASK TCB_HP;
BOOL CursorOn;

void TimerCursor(void* pTask) {
 if (CursorOn != 0) ToggleCursor(); /* Invert character at cursor-position */
 OS_SignalEvent(0x01, (OS_TASK*) pTask);
 OS_RetriggerTimerEx(&TIMERCursor); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start TimerCursor */
 OS_CREATETIMER_EX(&TIMERCursor, TimerCursor, 500, (void*)&TCB_HP);
}

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Table 4.16: OS_RetriggerTimerEx() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

76 CHAPTER 4 Software timers
4.1.17 OS_SetTimerPeriodEx()
Description

Sets a new timer reload value for an extended software timer.

Prototype
void OS_SetTimerPeriodEx (OS_TIMER_EX* pTimerEx,
 OS_TIME Period);

Additional Information

OS_SetTimerPeriodEx() sets the initial time value of the specified extended soft-
ware timer. Period is the reload value of the timer to be used as initial value when
the timer is retriggered the next time by OS_RetriggerTimerEx().
A call of OS_SetTimerPeriodEx() does not affect the remaining time period of an
extended software timer.

Example

OS_TIMER_EX TIMERPulse;
OS_TASK TCB_HP;

void TimerPulse(void* pTask) {
 OS_SignalEvent(0x01, (OS_TASK*) pTask);
 OS_RetriggerTimerEx(&TIMERPulse); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start Pulse Timer with first pulse == 500ms */
 OS_CREATETIMER_EX(&TIMERPulse, TimerPulse, 500, (void*)&TCB_HP);
 /* Set timer period to 200 ms for further pulses */
 OS_SetTimerPeriodEx(&TIMERPulse, 200);
}

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Period

Timer period in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 4.17: OS_SetTimerPeriodEx() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

77
4.1.18 OS_DeleteTimerEx()
Description

Stops and deletes an extended software timer.

Prototype
void OS_DeleteTimerEx(OS_TIMER_EX* pTimerEx);

Additional Information

The extended software timer is stopped and therefore removed out of the linked list
of running timers. In debug builds of embOS, the timer is also marked as invalid.

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the timer.

Table 4.18: OS_DeleteTimerEx() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

78 CHAPTER 4 Software timers
4.1.19 OS_GetTimerPeriodEx()
Description

Returns the current reload value of an extended software timer.

Prototype
OS_TIME OS_GetTimerPeriodEx (OS_TIMER_EX* pTimerEx);

Return value

Type OS_TIME, which is defined as an integer between
1 and 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs and as an integer between
1 and <= 231-1 = 0x7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.

Additional Information

The period returned is the reload value of the timer which was set as initial value
when the timer was created or which was modified by a call of
OS_SetTimerPeriodEx(). This reload value will be used as time period when the
timer is is retriggered by OS_RetriggerTimerEx().

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended timer.

Table 4.19: OS_GetTimerPeriodEx() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

79
4.1.20 OS_GetTimerValueEx()
Description

Returns the remaining timer value of an extended software timer.

Prototype
OS_TIME OS_GetTimerValueEx(OS_TIMER_EX* pTimerEx);

Return value

Type OS_TIME, which is defined as an integer between
1 and 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs and as an integer between
1 and <= 231-1 = 0x7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.
The returned time value is the remaining timer time in embOS tick units until expira-
tion of the extended software timer.

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the timer.

Table 4.20: OS_GetTimerValueEx() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

80 CHAPTER 4 Software timers
4.1.21 OS_GetTimerStatusEx()
Description

Returns the current timer status of an extended software timer.

Prototype
unsigned char OS_GetTimerStatusEx (OS_TIMER_EX* pTimerEx);

Return value

Unsigned character, denoting whether the specified timer is running or not:
0: timer has stopped
! = 0: timer is running.

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended timer.

Table 4.21: OS_GetTimerStatusEx parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

81
4.1.22 OS_GetpCurrentTimerEx()
Description

Returns a pointer to the data structure of the extended timer that just expired.

Prototype
OS_TIMER_EX* OS_GetpCurrentTimerEx (void);

Return value

OS_TIMER_EX*: A pointer to the control structure of an extended software timer.

Additional Information

The return value of OS_GetpCurrentTimerEx() is valid during execution of a timer
callback function; otherwise it is undetermined. If one callback function should be
used for multiple extended timers, this function can be used for examining the timer
that expired.
Example

#include "RTOS.H"

OS_TIMER_EX MyTimerEx;

/**
*
* Local Functions
*/

void cbTimerEx(void* pData) { /* Timer callback function for multiple timers */
 OS_TIMER_EX* pTimerEx;

 pTimerEx = OS_GetpCurrentTimerEx();
 OS_SignalEvent(0x01, (OS_TASK*) pData);
 OS_RetriggerTimer(pTimerEx); /* Retrigger timer */
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

82 CHAPTER 4 Software timers
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

83
Chapter 5

Resource semaphores
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

84 CHAPTER 5 Resource semaphores
Resource semaphores are used for managing resources by avoiding conflicts caused
by simultaneous use of a resource. The resource managed can be of any kind: a part
of the program that is not reentrant, a piece of hardware like the display, a flash
prom that can only be written to by a single task at a time, a motor in a CNC control
that can only be controlled by one task at a time, and a lot more.

The basic procedure is as follows:

Any task that uses a resource first claims it calling the OS_Use() or OS_Request()
routines of embOS. If the resource is available, the program execution of the task
continues, but the resource is blocked for other tasks. If a second task now tries to
use the same resource while it is in use by the first task, this second task is sus-
pended until the first task releases the resource. However, if the first task that uses
the resource calls OS_Use() again for that resource, it is not suspended because the
resource is blocked only for other tasks.

The following diagram illustrates the process of using a resource:

A resource semaphore contains a counter that keeps track of how many times the
resource has been claimed by calling OS_Request() or OS_Use() by a particular task.
It is released when that counter reaches 0, which means the OS_Unuse() routine has
to be called exactly the same number of times as OS_Use() or OS_Request(). If it is
not, the resource remains blocked for other tasks.

On the other hand, a task cannot release a resource that it does not own by calling
OS_Unuse(). In the debug version of embOS, a call of OS_Unuse() for a semaphore
that is not owned by this task will result in a call to the error handler OS_Error().

Example of using resource semaphores

Here, two tasks access an LC display completely independently from each other. The
LCD is a resource that needs to be protected with a resource semaphore. One task
may not interrupt another task which is writing to the LCD, because otherwise the
following might occur:

� Task A positions the cursor
� Task B interrupts Task A and repositions the cursor
� Task A writes to the wrong place in the LCD' s memory.

To avoid this type of situation, every the LCD must be accessed by a task, it is first
claimed by a call to OS_Use() (and is automatically waited for if the resource is
blocked). After the LCD has been written to, it is released by a call to OS_Unuse().

USE()

Access resource

UNUSE()
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

85
/*
* demo program to illustrate the use of resource semaphores
*/
OS_STACKPTR int StackMain[100], StackClock[50];
OS_TASK TaskMain,TaskClock;
OS_SEMA SemaLCD;

void TaskClock(void) {
 char t=-1;
 char s[] = "00:00";
 while(1) {
 while (TimeSec==t) Delay(10);
 t= TimeSec;
 s[4] = TimeSec%10+'0';
 s[3] = TimeSec/10+'0';
 s[1] = TimeMin%10+'0';
 s[0] = TimeMin/10+'0';
 OS_Use(&SemaLCD); /* Make sure nobody else uses LCD */
 LCD_Write(10,0,s);
 OS_Unuse(&SemaLCD); /* Release LCD */
 }
}

void TaskMain(void) {
 signed char pos ;
 LCD_Write(0,0,"Software tools by Segger ! ") ;
 OS_Delay(2000);
 while (1) {
 for (pos=14 ; pos >=0 ; pos--) {
 OS_Use(&SemaLCD); /* Make sure nobody else uses LCD */
 LCD_Write(pos,1,"train "); /* Draw train */
 OS_Unuse(&SemaLCD); /* Release LCD */
 OS_Delay(500);
 }
 OS_Use(&SemaLCD); /* Make sure nobody else uses LCD */
 LCD_Write(0,1," ") ;
 OS_Unuse(&SemaLCD); /* Release LCD */
 }
}

void InitTask(void) {
 OS_CREATERSEMA(&SemaLCD); /* Creates resource semaphore */
 OS_CREATETASK(&TaskMain, 0, Main, 50, StackMain);
 OS_CREATETASK(&TaskClock, 0, Clock, 100, StackClock);
}

In most applications, the routines that access a resource should automatically call
OS_Use() and OS_Unuse() so that when using the resource you do not have to worry
about it and can use it just as you would in a single-task system. The following is an
example of how to implement a resource into the routines that actually access the
display:

/*
* Simple example when accessing single line dot matrix LCD
*/
OS_RSEMA RDisp; /* Define resource semaphore */

void UseDisp() { /* Simple routine to be called before using display */
 OS_Use(&RDisp);
}

void UnuseDisp() { /* Simple routine to be called after using display */
 OS_Unuse(&RDisp);
}

void DispCharAt(char c, char x) {
 UseDisp();
 LCDGoto(x, y);
 LCDWrite1(ASCII2LCD(c));
 UnuseDisp();
}

void DISPInit(void) {
 OS_CREATERSEMA(&RDisp);
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

86 CHAPTER 5 Resource semaphores
5.1 Resource semaphores API function overview

Routine Description

OS_CREATERSEMA() Macro that creates a resource semaphore.
OS_Use() Claims a resource and blocks it for other tasks.
OS_Unuse() Releases a semaphore currently in use by a task.

OS_Request()
Requests a specified semaphore, blocks it for other tasks
if it is available. Continues execution in any case.

OS_GetSemaValue()
Returns the value of the usage counter of a specified
resource semaphore.

OS_GetResourceOwner()
Returns a pointer to the task that is currently using
(blocking) a resource.

OS_DeleteRSema() Deletes a specified resource semaphore.
Table 5.1: Resource semaphore API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

87
5.1.1 OS_CREATERSEMA()
Description

Macro that creates a resource semaphore.

Prototype
void OS_CREATERSEMA (OS_RSEMA* pRSema);

Additional Information

After creation, the resource is not blocked; the value of the counter is 0.

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 5.2: OS_CREATESEMA() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

88 CHAPTER 5 Resource semaphores
5.1.2 OS_Use()
Description

Claims a resource and blocks it for other tasks.

Prototype
int OS_Use (OS_RSEMA* pRSema);

Return value

The counter value of the semaphore.

A value larger than 1 means the resource was already locked by the calling task.

Additional Information

The following situations are possible:

� Case A: The resource is not in use.
If the resource is not used by a task, which means the counter of the semaphore
is 0, the resource will be blocked for other tasks by incrementing the counter and
writing a unique code for the task that uses it into the semahore.

� Case B: The resource is used by this task.
The counter of the semaphore is simply incremented. The program continues
without a break.

� Case C: The resource is being used by another task.
The execution of this task is suspended until the resource semaphore is released.
In the meantime if the task blocked by the resource semaphore has a higher pri-
ority than the task blocking the semaphore, the blocking task is assigned the pri-
ority of the task requesting the resource semaphore. This is called priority
inversion. Priority inversion can only temporarily increase the priority of a task,
never reduce it.

An unlimited number of tasks can wait for a resource semaphore. According to the
rules of the scheduler, of all the tasks waiting for the resource, the task with the
highest priority will get access to the resource and can continue program execution.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 5.3: OS_Use() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

89
The following diagram illustrates how the OS_Use() routine works:

Resource
 in use?

Wait for resource
to be released

Mark current task
as owner

Usage counter = 1

return

Increase Usage
counter

Yes, by
other task

Yes, by this task
No

OS_Use(...)

return
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

90 CHAPTER 5 Resource semaphores
5.1.3 OS_Unuse()
Description

Releases a semaphore currently in use by a task.

Prototype
void OS_Unuse (OS_RSEMA* pRSema)

Additional Information

OS_Unuse() may be used on a resource semaphore only after that semaphore has
been used by calling OS_Use() or OS_Request(). OS_Unuse() decrements the usage
counter of the semaphore which must never become negative. If this counter
becomes negative, the debug version will call the embOS error handler OS_Error()
with error code OS_ERR_UNUSE_BEFORE_USE. In the debug version OS_Error() will
also be called, if OS_Unuse() is called from a task which does not own the resource.
The error code in this case is OS_ERR_RESOURCE_OWNER.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 5.4: OS_Unuse() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

91
5.1.4 OS_Request()
Description

Requests a specified semaphore and blocks it for other tasks if it is available. Contin-
ues execution in any case.

Prototype
char OS_Request (OS_RSEMA* pRSema);

Return value

1: Resource was available, now in use by calling task
0: Resource was not available.

Additional Information

The following diagram illustrates how OS_Request() works:

Example

if (!OS_Request(&RSEMA_LCD)) {
 LED_LCDBUSY = 1; /* Indicate that task is waiting for */
 /* resource */
 OS_Use(&RSEMA_LCD); /* Wait for resource */
 LED_LCDBUSY = 0; /* Indicate task is no longer waiting */
}
 DispTime(); /* Access the resource LCD */
 OS_Unuse(&RSEMA_LCD); /* Resource LCD is no longer needed */

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 5.5: OS-Request() parameter list

OS_Request (RSEMA*ps)

return 0Resource in use by other task ?

In use by this task ?

Inc Usage counter

Mark current task
as owner

Usage counter = 1

return 1return 1

Yes

No

No

Yes
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

92 CHAPTER 5 Resource semaphores
5.1.5 OS_GetSemaValue()
Description

Returns the value of the usage counter of a specified resource semaphore.

Prototype
int OS_GetSemaValue (OS_SEMA* pSema);

Return value

The counter of the semaphore.
A value of 0 means the resource is available.

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 5.6: OS_GetSemaValue() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

93
5.1.6 OS_GetResourceOwner()
Description

Returns a pointer to the task that is currently using (blocking) a resource.

Prototype
OS_TASK* OS_GetResourceOwner (OS_RSEMA* pSema);

Return value

Pointer to the task that is blocking the resource.
A value of 0 means the resource is available.

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 5.7: OS_GetResourceOwner() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

94 CHAPTER 5 Resource semaphores
5.1.7 OS_DeleteRSema()
Description

Deletes a specified resource semaphore. The memory of that semaphore may be
reused for other purposes or may be used for creating another resources semaphore
using the same memory.

Prototype
void OS_DeleteRSema (OS_RSEMA* pRSema);

Additional Information

Before deleting a resource semaphore, make sure that no task is claiming the
resources semaphore. The debug version of embOS will call OS_Error(), if a
resources semaphore is deleted when it is already used. In systems with dynamic
creation of resource semaphores, it is required to delete a resource semaphore,
before re-creating it. Otherwise the semaphore handling will not work correctly.

Parameter Description

pRSema Pointer to a data structure of type OS_RSEMA.
Table 5.8: OS_DeleteRSema parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

95
Chapter 6

Counting Semaphores
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

96 CHAPTER 6 Counting Semaphores
Counting semaphores are counters that are managed by embOS. They are not as
widely used as resource semaphores, events or mailboxes, but they can be very
useful sometimes. They are used in situations where a task needs to wait for
something that can be signaled one or more times. The semaphores can be accessed
from any point, any task, or any interrupt in any way.

Example of using counting semaphores

OS_STACKPTR int Stack0[96], Stack1[64]; /* Task stacks */
OS_TASK TCB0, TCB1; /* Data-area for tasks (task-control-blocks) */
OS_CSEMA SEMALCD;

void Task0(void) {
Loop:
 Disp("Task0 will wait for task 1 to signal");
 OS_WaitCSema(&SEMALCD);
 Disp("Task1 has signaled !!");
 OS_Delay(100);
 goto Loop;
}

void Task1(void) {
Loop:
 OS_Delay(5000);
 OS_SignalCSema(&SEMALCD);
 goto Loop;
}

void InitTask(void) {
 OS_CREATECSEMA(&SEMALCD); /* Create Semaphore */
 OS_CREATETASK(&TCB0, NULL, Task0, 100, Stack0); /* Create Task0 */
 OS_CREATETASK(&TCB1, NULL, Task1, 50, Stack1); /* Create Task1 */
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

97
6.1 Counting semaphores API function overview

Routine Description

OS_CREATECSEMA()
Macro that creates a counting semaphore with an initial
count value of zero.

OS_CreateCSema()
Creates a counting semaphore with a specified initial
count value.

OS_SignalCSema() Increments the counter of a semaphore.

OS_SignalCSemaMax
Increments the counter of a semaphore up to a specified
maximum value.

OS_WaitCSema() Decrements the counter of a semaphore.
OS_CSemaRequest() Decrements the counter of a semaphore, if available.

OS_WaitCSemaTimed
Decrements a semaphore counter if the semaphore is
available within a specified time.

OS_GetCSemaValue() Returns the counter value of a specified semaphore.
OS_SetCSemaValue() Sets the counter value of a specified semaphore.
OS_DeleteCSema() Deletes a specified semaphore.

Table 6.1: Counting semaphores API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

98 CHAPTER 6 Counting Semaphores
6.1.1 OS_CREATECSEMA()
Description

Macro that creates a counting semaphore with an initial count value of zero.

Prototype
void OS_CREATECSEMA (OS_CSEMA* pCSema);

Additional Information

To create a counting semaphore, a data structure of the type OS_CSEMA needs to be
defined in memory and initialized using OS_CREATECSEMA(). The value of a sema-
phore created using this macro is zero. If, for any reason, you have to create a sema-
phore with an initial counting value above zero, use the function OS_CreateCSema().

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 6.2: OS_CREATECSEMA() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

99
6.1.2 OS_CreateCSema()
Description

Creates a counting semaphore with a specified initial count value.

Prototype
void OS_CreateCSema (OS_CSEMA* pCSema,
 OS_UINT InitValue);

Additional Information

To create a counting semaphore, a data structure of the type OS_CSEMA needs to be
defined in memory and initialized using OS_CreateCSema(). If the value of the cre-
ated semaphore should be zero, the macro OS_CREATECSEMA() should be used.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.

InitValue

Initial count value of the semaphore:
0 <= InitValue <= 216 = 0xFFFF for 8/16-bit CPUs
0 <= InitValue <= 232 = 0xFFFFFFFF for 32-bit CPUs

Table 6.3: OS_CreateCSema() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

100 CHAPTER 6 Counting Semaphores
6.1.3 OS_SignalCSema()
Description

Increments the counter of a semaphore.

Prototype
void OS_SignalCSema (OS_CSEMA * pCSema);

Additional Information

OS_SignalCSema() signals an event to a semaphore by incrementing its counter. If
one or more tasks are waiting for an event to be signaled to this semaphore, the task
that has the highest priority will become the active task. The counter can have a
maximum value of 0xFFFF for 8/16-bit CPUs / 0xFFFFFFFF for 32-bit CPUs. It is the
responsibility of the application to make sure that this limit will not be exceeded. The
debug version of embOS detects an counter overflow and calls OS_Error() with error
code OS_ERR_CSEMA_OVERFLOW, if an overflow occurs.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 6.4: OS_SignalCSema() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

101
6.1.4 OS_SignalCSemaMax()
Description

Increments the counter of a semaphore up to a specified maximum value.

Prototype
void OS_SignalCSemaMax (OS_CSEMA* pCSema,
 OS_UINT MaxValue);

Additional Information

As long as current value of the semaphore counter is below the specified maximum
value, OS_SignalCSemaMax() signals an event to a semaphore by incrementing its
counter. If one or more tasks are waiting for an event to be signaled to this sema-
phore, the tasks are put into ready state and the task that has the highest priority
will become the active task. Calling OS_SignalCSemaMax() with a MaxValue of 1 han-
dles a counting semaphore as a binary semaphore.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.

MaxValue

Limit of semaphore count value.
1 <= MaxValue <= 216 = 0xFFFF for 8/16-bit CPUs
1 <= MaxValue <= 232 = 0xFFFFFFFF for 32-bit CPUs

Table 6.5: OS_SignalCSemaMax() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

102 CHAPTER 6 Counting Semaphores
6.1.5 OS_WaitCSema()
Description

Decrements the counter of a semaphore.

Prototype
void OS_WaitCSema (OS_CSEMA* pCSema);

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues.
If the counter is 0, WaitCSema() waits until the counter is incremented by another
task, a timer or an interrupt handler via a call to OS_SignalCSema(). The counter is
then decremented and program execution continues.
An unlimited number of tasks can wait for a semaphore. According to the rules of the
scheduler, of all the tasks waiting for the semaphore, the task with the highest
priority will continue program execution.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 6.6: OS_WaitCSema() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

103
6.1.6 OS_WaitCSemaTimed()
Description

Decrements a semaphore counter if the semaphore is available within a specified
time.

Prototype
int OS_WaitCSemaTimed (OS_CSEMA* pCSema,

 OS_TIME TimeOut);

Return value

Integer value:
0: Failed, semaphore not available before timeout.
1: OK, semaphore was available and counter decremented.

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues. If the counter is 0, WaitCSemaTimed() waits until the sema-
phore is signaled by another task, a timer, or an interrupt handler via a call to
OS_SignalCSema(). The counter is then decremented and program execution contin-
ues. If the semaphore was not signaled within the specified time, the program execu-
tion continues but returns a value of 0. An unlimited number of tasks can wait for a
semaphore. According to the rules of the scheduler, of all the tasks waiting for the
semaphore, the task with the highest priority will continue program execution.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
TimeOut Maximum time until semaphore should be available

Table 6.7: OS_WaitCSemaTimed parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

104 CHAPTER 6 Counting Semaphores
6.1.7 OS_CSemaRequest()
Description

Decrements the counter of a semaphore, if it is signaled.

Prototype
char OS_CSemaRequest (OS_CSEMA* pCSema);

Return value

Integer value:
0: Failed, semaphore was not signaled.
1: OK, semaphore was available and counter was decremented once.

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues.
If the counter is 0, OS_CSemaRequest() does not wait and does not modify the sema-
phore counter. The function returns with error state.
Because this function never blocks a calling task, this function may be called from an
interrupt handler.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 6.8: OS_CSemaRequest() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

105
6.1.8 OS_GetCSemaValue()
Description

Returns the counter value of a specified semaphore.

Prototype
int OS_GetCSemaValue (OS_SEMA* pCSema);

Return value

The counter value of the semaphore.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 6.9: OS_GetCSemaValue() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

106 CHAPTER 6 Counting Semaphores
6.1.9 OS_SetCSemaValue()
Description

Sets the counter value of a specified semaphore.

Prototype
OS_U8 OS_SetCSemaValue (OS_SEMA* pCSema,

 OS_UINT Value);

Return value

0: If the value could be set.
!= 0: In case of error.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.

Value

Count value of the semaphore:
0 <= InitValue <= 216 = 0xFFFF for 8/16-bit CPUs
0 <= InitValue <= 232 = 0xFFFFFFFF for 32-bit CPUs

Table 6.10: OS_SetCSemaValue() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

107
6.1.10 OS_DeleteCSema()
Description

Returns the counter value of a specified semaphore.

Prototype
void OS_DeleteCSema (OS_CSEMA* pCSema);

Additional Information

Before deleting a semaphore, make sure that no task is waiting for it and that no
task will signal that semaphore at a later point.
The debug version of embOS will reflect an error if a deleted semaphore is signaled.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 6.11: OS_DeleteCSema() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

108 CHAPTER 6 Counting Semaphores
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

109
Chapter 7

Mailboxes
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

110 CHAPTER 7 Mailboxes
7.1 Why mailboxes?
In the preceding chapters, task synchronization by the use of semaphores was
described. Unfortunately, semaphores cannot transfer data from one task to another.
If we need to transfer data between tasks via a buffer for example, we could use a
resource semaphore every time we accessed the buffer. But doing so would make the
program less efficient. Another major disadvantage would be that we could not
access the buffer from an interrupt handler, because the interrupt handler is not
allowed to wait for the resource semaphore.

One way out would be the usage of global variables. In this case we would have to
disable interrupts every time and in every place that we accessed these variables.
This is possible, but it is a path full of pitfalls. It is also not easy for a task to wait for
a character to be placed in a buffer without polling the global variable that contains
the number of characters in the buffer. Again, there is a way out - the task could be
notified by an event signaled to the task every time a character is placed in the
buffer. That is why there is an easier way to do this with a real-time OS:
The use of mailboxes.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

111
7.2 Basics
A mailbox is a buffer that is managed by the real-time operating system. The buffer
behaves like a normal buffer; you can put something (called a message) in and
retrieve it later. Mailboxes usually work as FIFO: first in, first out. So a message that
is put in first will usually be retrieved first. "Message" might sound abstract, but very
simply just means "item of data". It will become clearer in the typical applications
explained in the following section.

The number of mailboxes is limited only by the amount of available memory.
Message size: 1 <= x <= 127 bytes.
Number of messages: 1 <= x <= 32767.
These limitations have been placed on mailboxes to guarantee efficient coding and
also to ensure efficient management. The limitations are normally not a problem.
For handling messages larger than 127 bytes, you may use queues. For more infor-
mation, refer to the Chapter Queues on page 127.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

112 CHAPTER 7 Mailboxes
7.3 Typical applications
A keyboard buffer

In most programs, you use either a task, a software timer or an interrupt handler to
check the keyboard. When detected that a key has been pressed, that key is put into
a mailbox that is used as a keyboard buffer. The message is then retrieved by the
task that handles the keyboard input. The message in this case is typically a single
byte that holds the key code; the message size is therefore 1 byte.

The advantage of a keyboard buffer is that management is very efficient; you do not
have to worry about it, because it is reliable, proven code and you have a type-ahead
buffer at no extra cost. On top of that, a task can easily wait for a key to be pressed
without having to poll the buffer. It simply calls the OS_GetMail() routine for that
particular mailbox. The number of keys that can be stored in the type-ahead buffer
depends only on the size of the mailbox buffer, which you define when creating the
mailbox.

A buffer for serial I/O

In most cases, serial I/O is done with the help of interrupt handlers. The communica-
tion to these interrupt handlers is very easy with mailboxes. Both your task programs
and your interrupt handlers store or retrieve data to/from the same mailboxes. As
with a keyboard buffer, the message size is 1 character.

For interrupt-driven sending, the task places the character(s) in the mailbox using
OS_PutMail() or OS_PutMailCond(); the interrupt handler that is activated when a
new character can be sent retrieves this character with OS_GetMailCond().

For interrupt-driven receiving, the interrupt handler that is activated when a new
character is received puts it in the mailbox using OS_PutMailCond(); the task
receives it using OS_GetMail() or OS_GetMailCond().

A buffer for commands sent to a task

Assume you have one task controlling a motor, as you might have in applications that
control a machine. A simple way to give commands to this task would be to define a
structure for commands. The message size would then be the size of this structure.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

113
7.4 Single-byte mailbox functions
In many (if not the most) situations, mailboxes are used simply to hold and transfer
single-byte messages. This is the case, for example, with a mailbox that takes the
character received or sent via serial interface, or normally with a mailbox used as
keyboard buffer. In some of these cases, time is very critical, especially if a lot of
data is transferred in short periods of time.

To minimize the overhead caused by the mailbox management of embOS, variations
on some mailbox functions are available for single-byte mailboxes. The general func-
tions OS_PutMail(), OS_PutMailCond(), OS_GetMail(), and OS_GetMailCond() can
transfer messages of sizes between 1 and 127 bytes each. Their single-byte equiva-
lents OS_PutMail1(), OS_PutMailCond1(), OS_GetMail1(), and OS_GetMailCond1()
work the same way with the exception that they execute much faster because man-
agement is simpler. It is recommended to use the single-byte versions if you transfer
a lot of single byte-data via mailboxes.

The routines OS_PutMail1(), OS_PutMailCond1(), OS_GetMail1(), and
OS_GetMailCond1() work exactly the same way as their more universal equivalents
and are therefore not described separately. The only difference is that they can only
be used for single-byte mailboxes.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

114 CHAPTER 7 Mailboxes
7.5 Mailboxes API function overview

Routine Explanation

OS_CREATEMB() Macro that creates a new mailbox.
OS_PutMail() Stores a new message of a predefined size in a mailbox.
OS_PutMail1() Stores a new message of a predefined size in a mailbox.

OS_PutMailCond()
Stores a new message of a predefined size in a mailbox,
if the mailbox is able to accept one more message.

OS_PutMailCond1()
Stores a new message of a predefined size in a mailbox,
if the mailbox is able to accept one more message.

OS_PutMailFront()
Stores a new message of a predefined size into a mailbox
in front of all other messages. This new message will be
retrieved first.

OS_PutMailFront1()
Stores a new message of a predefined size into a mailbox
in front of all other messages. This new message will be
retrieved first.

OS_PutMailFrontCond()
Stores a new message of a predefined size into a mailbox
in front of all other messages, if the mailbox is able to
accept one more message.

OS_PutMailFrontCond1()
Stores a new message of a predefined size into a mailbox
in front of all other messages, if the mailbox is able to
accept one more message.

OS_GetMail()
Retrieves a new message of a predefined size from a
mailbox.

OS_GetMail1()
Retrieves a new message of a predefined size from a
mailbox.

OS_GetMailCond()
Retrieves a new message of a predefined size from a
mailbox, if a message is available.

OS_GetMailCond1()
Retrieves a new message of a predefined size from a
mailbox, if a message is available.

OS_GetMailTimed()
Retrieves a new message of a predefined size from a
mailbox, if a message is available within a given time.

OS_WaitMail()
Waits until a mail is available, but does not retrieve the
message from the mailbox.

OS_ClearMB() Clears all messages in a specified mailbox.

OS_GetMessageCnt()
Returns number of messages currently in a specified
mailbox.

OS_DeleteMB() Deletes a specified mailbox.
Table 7.1: Mailboxes API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

115
7.5.1 OS_CREATEMB()
Description

Macro that creates a new mailbox.

Prototype
void OS_CREATEMB (OS_MAILBOX* pMB,
 unsigned char sizeofMsg,
 unsigned int maxnofMsg,
 void* pMsg);)

Example

Mailbox used as keyboard buffer:

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

void InitKeyMan(void) {
 /* Create mailbox, functioning as type ahead buffer */
 OS_CREATEMB(&MBKey, 1, sizeof(MBKeyBuffer), &MBKeyBuffer);
}

Mailbox used for transfering complex commands from one task to another:

/*
* Example of mailbox used for transfering commands to a task
* that controls 2 motors
*/
typedef struct {
 char Cmd;
 int Speed[2];
 int Position[2];
} MOTORCMD ;

OS_MAILBOX MBMotor;

#define MOTORCMD_SIZE 4

char BufferMotor[sizeof(MOTORCMD)*MOTORCMD_SIZE];

void MOTOR_Init(void) {
 /* Create mailbox that holds commands messages */
 OS_CREATEMB(&MBMotor, sizeof(MOTORCMD), MOTORCMD_SIZE, &BufferMotor);
}

Parameter Description

pMB
Pointer to a data structure of type OS_MAILBOX reserved for man-
aging the mailbox.

sizeofMsg Size of a message in bytes. (1 <= sizeofMsg <= 127)
maxnoMsg Maximum number of messages. (1 <= MaxnofMsg <= 65535)

pMsg
Pointer to a memory area used as buffer. The buffer has to be big
enough to hold the given number of messages of the specified
size: sizeofMsg * maxnoMsg bytes.

Table 7.2: OS_CREATEMB() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

116 CHAPTER 7 Mailboxes
7.5.2 OS_PutMail() / OS_PutMail1()
Description

Stores a new message of a predefined size in a mailbox.

Prototype
void OS_PutMail (OS_MAILBOX* pMB,
 void* pMail);
void OS_PutMail1 (OS_MAILBOX* pMB,
 const char* pMail);

Additional Information

If the mailbox is full, the calling task is suspended.
Because this routine might require a suspension, it must not be called from an inter-
rupt routine. Use OS_PutMailCond()/OS_PutMailCond1() instead if you have to
store data in a mailbox from within an ISR.

Important

This function may not be called from within an interrupt handler.

Example

Single-byte mailbox as keyboard buffer:

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

void KEYMAN_StoreKey(char k) {
 OS_PutMail1(&MBKey, &k); /* Store key, wait if no space in buffer */
}

void KEYMAN_Init(void) {
 /* Create mailbox functioning as type ahead buffer */
 OS_CREATEMB(&MBKey, 1, sizeof(MBKeyBuffer), &MBKeyBuffer);
}

Parameter Description

pMB Pointer to the mailbox.
pMail Pointer to the message to store.

Table 7.3: OS_PutMail() / OS_PutMail1() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

117
7.5.3 OS_PutMailCond() / OS_PutMailCond1()
Description

Stores a new message of a predefined size in a mailbox, if the mailbox is able to
accept one more message.

Prototype
char OS_PutMailCond (OS_MAILBOX* pMB,
 void* pMail);
char OS_PutMailCond1 (OS_MAILBOX* pMB,
 const char* pMail);)

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Additional Information

If the mailbox is full, the message is not stored.
This function never suspends the calling task. It may therefore be called from an
interrupt routine.

Example

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

char KEYMAN_StoreCond(char k) {
 return OS_PutMailCond1(&MBKey, &k); /* Store key if space in buffer */
}

This example can be used with the sample program shown earlier to handle a mail-
box as keyboard buffer.

Parameter Description

pMB Pointer to the mailbox.
pMail Pointer to the message to store.

Table 7.4: OS_PutMailCond() / OS_PutMailCond1() overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

118 CHAPTER 7 Mailboxes
7.5.4 OS_PutMailFront() / OS_PutMailFront1()
Description

Stores a new message of a predefined size at the beginning of a mailbox in front of
all other messages. This new message will be retrieved first.

Prototype
void OS_PutMailFront (OS_MAILBOX* pMB,
 void* pMail);
void OS_PutMailFront1 (OS_MAILBOX* pMB,
 const char* pMail);

Additional Information

If the mailbox is full, the calling task is suspended. Because this routine might
require a suspension, it must not be called from an interrupt routine. Use
OS_PutMailFrontCond()/OS_PutMailFrontCond1() instead if you have to store data
in a mailbox from within an ISR.
This function is useful to store "emergency" messages into a mailbox which have to
be handled quick.
It may also be used in general instead of OS_PutMail() to change the FIFO structure
of a mailbox into a LIFO structure.

Important

This function may not be called from within an interrupt handler.

Example

Single-byte mailbox as keyboard buffer:

OS_MAILBOX MBCmd;
char MBCmdBuffer[6];

void KEYMAN_StoreCommand(char k) {
 OS_PutMailFront1(&MBCmd, &k); /* Store command, wait if no space in buffer*/
}

void KEYMAN_Init(void) {
 /* Create mailbox for command buffer */
 OS_CREATEMB(&MBCmd, 1, sizeof(MBCmdBuffer), &MBCmdBuffer);
}

Parameter Description

pMB Pointer to the mailbox.
pMail Pointer to the message to store.

Table 7.5: OS_PutMailFront() / OS_PutMailFront1() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

119
7.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()
Description

Stores a new message of a predefined size into a mailbox in front of all other mes-
sages, if the mailbox is able to accept one more message. The new message will be
retrieved first.

Prototype
char OS_PutMailFrontCond (OS_MAILBOX* pMB,
 void* pMail);
char OS_PutMailFrontCond1 (OS_MAILBOX* pMB,
 const char* pMail);)

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Additional Information

If the mailbox is full, the message is not stored. This function never suspends the
calling task. It may therefore be called from an interrupt routine. This function is
useful to store "emergency" messages into a mailbox which have to be handled
quick. It may also be used in general instead of OS_PutMail() to change the FIFO
structure of a mailbox into a LIFO structure.

Parameter Description

pMB Pointer to the mailbox.
pMail Pointer to the message to store.

Table 7.6: OS_PutMailFrontCond() / OS_PutMailFrontCond1() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

120 CHAPTER 7 Mailboxes
7.5.6 OS_GetMail() / OS_GetMail1()
Description

Retrieves a new message of a predefined size from a mailbox.

Prototype
void OS_GetMail (OS_MAILBOX* pMB,
 void* pDest);
void OS_GetMail1 (OS_MAILBOX* pMB,

 char* pDest);

Additional Information

If the mailbox is empty, the task is suspended until the mailbox receives a new mes-
sage. Because this routine might require a suspension, it may not be called from an
interrupt routine. Use OS_GetMailCond/OS_GetMailCond1 instead if you have to
retrieve data from a mailbox from within an ISR.

Important

This function may not be called from within an interrupt handler.

Example

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

char WaitKey(void) {
 char c;
 OS_GetMail1(&MBKey, &c);
 return c;
}

Parameter Description

pMB Pointer to the mailbox.

pDest

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) was defined when the mailbox was created.

Table 7.7: OS_GetMail() / OS_GetMail1() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

121
7.5.7 OS_GetMailCond() / OS_GetMailCond1()
Description

Retrieves a new message of a predefined size from a mailbox, if a message is
available.

Prototype
char OS_GetMailCond (OS_MAILBOX * pMB,
 void* pDest);
char OS_GetMailCond1 (OS_MAILBOX * pMB,
 char* pDest);

Return value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination remains
 unchanged.

Additional Information

If the mailbox is empty, no message is retrieved, but the program execution contin-
ues.
This function never suspends the calling task. It may therefore also be called from an
interrupt routine.

Important

This function may not be called from within an interrupt handler.

Example

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

/*
* If a key has been pressed, it is taken out of the mailbox and returned to
* caller.
* Otherwise, 0 is returned.
*/
char GetKey(void) {
 char c =0;
 OS_GetMailCond1(&MBKey, &c)
 return c;
}

Parameter Description

pMB Pointer to the mailbox.

pDest

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) was defined when the mailbox was created.

Table 7.8: OS_GetMailCond() / OS_GetMailCond1() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

122 CHAPTER 7 Mailboxes
7.5.8 OS_GetMailTimed()
Description

Retrieves a new message of a predefined size from a mailbox, if a message is avail-
able within a given time.

Prototype
char OS_GetMailTimed (OS_MAILBOX* pMB,
 void* pDest,

 OS_TIME Timeout);

Return value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination remains
 unchanged.

Additional Information

If the mailbox is empty, no message is retrieved, the task is suspended for the given
timeout. The task continues execution, according to the rules of the scheduler, as
soon as a mail is available within the given timeout, or after the timeout value has
expired.

Important

This function may not be called from within an interrupt handler.

Example

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

/*
* If a key has been pressed, it is taken out of the mailbox and returned to
* caller.
* Otherwise, 0 is returned.
*/
char GetKey(void) {
 char c =0;
 OS_GetMailTimed(&MBKey, &c, 10) /* Wait for 10 timer ticks */
 return c;
}

Parameter Description

pMB Pointer to the mailbox.

pDest

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) has been defined upon creation of the mailbox.

Timeout

Maximum time in timer ticks until the requested mail has to be
available. The data type OS_TIME is defined as an integer, there-
fore valid values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 7.9: OS_GetMailTimed() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

123
7.5.9 OS_WaitMail()
Description

Waits until a mail is available, but does not retrieve the message from the mailbox.

Prototype
void OS_WaitMail (OS_MAILBOX* pMB);

Additional Information

If the mailbox is empty, the task is suspended until a mail is available, otherwise the
task continues.
The task continues execution, according to the rules of the scheduler, as soon as a
mail is available, but the mail is not retrieved from the mailbox.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pMB Pointer to the mailbox.
Table 7.10: OS_WaitMail() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

124 CHAPTER 7 Mailboxes
7.5.10 OS_ClearMB()
Description

Clears all messages in a specified mailbox.

Prototype
void OS_ClearMB (OS_MAILBOX* pMB);

Example

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

/*
* Clear keyboard type ahead buffer
*/
void ClearKeyBuffer(void) {
 OS_ClearMB(&MBKey);
}

Parameter Description

pMB Pointer to the mailbox.
Table 7.11: OS_ClearMB() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

125
7.5.11 OS_GetMessageCnt()
Description

Returns the number of messages currently available in a specified mailbox.

Prototype
unsigned int OS_GetMessageCnt (OS_MAILBOX* pMB);

Return value

The number of messages in the mailbox.

Example

char GetKey(void) {
 if (OS_GetMessageCnt(&MBKey)) return WaitKey();
 return 0;
}

Parameter Description

pMB Pointer to the mailbox.
Table 7.12: OS_GetMessageCnt() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

126 CHAPTER 7 Mailboxes
7.5.12 OS_DeleteMB()
Description

Deletes a specified mailbox.

Prototype
void OS_DeleteMB (OS_MAILBOX* pMB);

Additional Information

To keep the system fully dynamic, it is essential that mailboxes can be created
dynamically. This also means there has to be a way to delete a mailbox when it is no
longer needed. The memory that has been used by the mailbox for the control struc-
ture and the buffer can then be reused or reallocated.
It is the programmer's responsibility to:

� make sure that the program no longer uses the mailbox to be deleted
� make sure that the mailbox to be deleted actually exists (i.e. has been created

first).

Example

OS_MAILBOX MBSerIn;
char MBSerInBuffer[6];

void Cleanup(void) {
 OS_DeleteMB(MBSerIn);
 return 0;
}

Parameter Description

pMB Pointer to the mailbox.
Table 7.13: OS_DeleteMB() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

127
Chapter 8

Queues
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

128 CHAPTER 8 Queues
8.1 Why queues?
In the preceding chapter, intertask communication using mailboxes was described.
Mailboxes can handle small messages with fixed data size only.
Queues enable intertask communication with larger messages or with messages of
various sizes.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

129
8.2 Basics
A queue consists of a data buffer and a control structure that is managed by the real-
time operating system. The queue behaves like a normal buffer; you can put
something (called a message) in and retrieve it later. Queues work as FIFO: first in,
first out. So a message that is put in first will be retrieved first.
There are three major differences between queues and mailboxes:

1. Queues accept messages of various size. When putting a message into a queue,
the message size is passed as a parameter.

2. Retrieving a message from the queue does not copy the message, but returns a
pointer to the message and its size. This enhances performance because the data
is copied only once, when the message is written into the queue.

3. The retrieving function has to delete every message after processing it.

Both the number and size of queues is limited only by the amount of available
memory. Any data structure can be written into a queue. The message size is not
fixed.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

130 CHAPTER 8 Queues
8.3 Queues API function overview

Routine Description

OS_Q_Create() Creates and initializes a message queue.
OS_Q_Put() Stores a new message of given size in a queue.
OS_Q_GetPtr() Retrieves a message from a queue.

OS_Q_GetPtrCond()
Retrieves a message from a queue, if one message is
available or returns without suspension.

OS_Q_GetPtrTimed()
Retrieves a message from a queue within a specified
time, if one message is available.

OS_Q_Purge() Deletes the last retrieved message in a queue.
OS_Q_Clear() Deletes all message in a queue.
OS_Q_GetMessageCnt() Returns the number of messages currently in a queue.

Table 8.1: Queues API
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

131
8.3.1 OS_Q_Create()
Description

Creates and initializes a message queue.

Prototype
void OS_Q_Create (OS_Q* pQ,
 void*pData,

 OS_UINT Size);

Example

#define MEMORY_QSIZE 10000;
static OS_Q _MemoryQ;
static char _acMemQBuffer[MEMORY_QSIZE];

void MEMORY_Init(void) {
 OS_Q_Create(&_MemoryQ, &_acMemQBuffer, sizeof(_acMemQBuffer));
}

Parameter Description

pQ
Pointer to a data structure of type OS_Q reserved for the manage-
ment of the message queue.

pData Pointer to a memory area used as data buffer for the queue.
Size Size in bytes of the data buffer.

Table 8.2: OS_Q_Create() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

132 CHAPTER 8 Queues
8.3.2 OS_Q_Put()
Description

Stores a new message of given size in a queue.

Prototype
int OS_Q_Put (OS_Q* pQ,
 const void* pSrc,
 OS_UINT Size);

Return value

0: Success; message stored.
1: Message could not be stored (queue is full).

Additional Information

If the queue is full, the function returns a value unequal to 0.
This routine never suspends the calling task. It may therefore also be called from an
interrupt routine.

Example

char MEMORY_Write(char* pData, int Len) {
 return OS_Q_Put(&_MemoryQ, pData, Len));
}

Parameter Description

pQ
Pointer to a data structure of type OS_Q reserved for the manage-
ment of the message queue.

pSrc Pointer to the message to store
Size Size of the message to store

Table 8.3: OS_Q_Put() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

133
8.3.3 OS_Q_GetPtr()
Description

Retrieves a message from a queue.

Prototype
int OS_Q_GetPtr (OS_Q* pQ,
 void** ppData);

Return value

The size of the retrieved message.
Sets the pointer to the message that should be retrieved.

Additional Information

If the queue is empty, the calling task is suspended until the queue receives a new
message. Because this routine might require a suspension, it must not be called from
an interrupt routine. Use OS_GetPtrCond() instead. The retrieved message is not
removed from the queue. This has to be done by a call of OS_Q_Purge() after the
message was processed.

Example

static void MemoryTask(void) {
 char MemoryEvent;
 int Len;
 char* pData;

 while (1) {
 Len = OS_Q_GetPtr(&_MemoryQ, &pData); /* Get message */
 Memory_WritePacket(*(U32*)pData, pData+4, Len); /* Process message */
 OS_Q_Purge(&_MemoryQ); /* Delete message */
 }
}

Parameter Description

pQ Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Table 8.4: OS_Q_GetPtr() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

134 CHAPTER 8 Queues
8.3.4 OS_Q_GetPtrCond()
Description

Retrieves a message from a queue, if one message is available.

Prototype
int OS_Q_GetPtrCond (OS_Q* pQ,
 void** ppData);

Return value

0: No message available in queue.
>0: Size of message that was retrieved from queue.

Additional Information

If the queue is empty, the function returns 0. The value of ppData is undefined. This
function never suspends the calling task. It may therefore also be called from an
interrupt routine. If a message could be retrieved, it is not removed from the queue.
This has to be done by a call of OS_Q_Purge() after the message was processed.

Example

static void MemoryTask(void) {
 char MemoryEvent;
 int Len;
 char* pData;
 while (1) {
 Len = OS_Q_GetPtrCond(&_MemoryQ, &pData); /* Check message */
 if (Len > 0) {
 Memory_WritePacket(*(U32*)pData, pData+4, Len); /* Process message */
 OS_Q_Purge(&_MemoryQ); /* Delete message */
 } else {
 DoSomethingElse();
 }
 }
}

Parameter Description

pQ Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Table 8.5: OS_Q_GetPtrCond() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

135
8.3.5 OS_Q_GetPtrTimed()
Description

Retrieves a message from a queue within a specified time if a message is available.

Prototype
int OS_Q_GetPtrTimed (OS_Q* pQ,
 void** ppData,
 OS_TIME Timeout);

Return value

0: No message available in queue.
>0: Size of message that was retrieved from queue.

Additional Information

If the queue is empty, no message is retrieved, the task is suspended for the given
timeout. The task continues execution, according to the rules of the scheduler, as
soon as a message is available within the given timeout, or after the timeout value
has expired.

Example

static void MemoryTask(void) {
 char MemoryEvent;
 int Len;
 char* pData;
 while (1) {
 Len = OS_Q_GetPtrTimed(&_MemoryQ, &pData, 10); /* Check message */
 if (Len > 0) {
 Memory_WritePacket(*(U32*)pData, pData+4, Len); /* Process message */
 OS_Q_Purge(&_MemoryQ); /* Delete message */
 } else { /* Timeout */
 DoSomethingElse();
 }
 }
}

Parameter Description

pQ Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Timeout

Maximum time in timer ticks until the requested message has to
be available. The data type OS_TIME is defined as an integer,
therefore valid values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 8.6: OS_Q_GetPtrCond() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

136 CHAPTER 8 Queues
8.3.6 OS_Q_Purge()
Description

Deletes the last retrieved message in a queue.

Prototype
void OS_Q_Purge (OS_Q* pQ);

Additional Information

This routine should be called by the task that retrieved the last message from the
queue, after the message is processed.

Example

static void MemoryTask(void) {
 char MemoryEvent;
 int Len;
 char* pData;

 while (1) {
 Len = OS_Q_GetPtr(&_MemoryQ, &pData); /* Get message */
 Memory_WritePacket(*(U32*)pData, pData+4, Len); /* Process message */
 OS_Q_Purge(&_MemoryQ); /* Delete message */
 }
}

Parameter Description

pQ Pointer to the queue.
Table 8.7: OS_Q_Purge() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

137
8.3.7 OS_Q_Clear()
Description

Deletes all message in a queue.

Prototype
void OS_Q_Clear (OS_Q* pQ);

Parameter Description

pQ Pointer to the queue.
Table 8.8: OS_Q_Clear() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

138 CHAPTER 8 Queues
8.3.8 OS_Q_GetMessageCnt()
Description

Returns the number of messages currently in a queue.

Prototype
int OS_Q_GetMessageCnt (OS_Q* pQ);

Return value

The number of messages in the queue.

Parameter Description

pQ Pointer to the queue.
Table 8.9: OS_Q_GetMessageCnt() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

139
Chapter 9

Task events
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

140 CHAPTER 9 Task events
Task events are another way of communication between tasks. In contrast to sema-
phores and mailboxes, task events are messages to a single, specified recipient. In
other words, a task event is sent to a specified task.

The purpose of a task event is to enable a task to wait for a particular event (or for
one of several events) to occur. This task can be kept inactive until the event is sig-
naled by another task, a S/W timer or an interrupt handler. The event can consist of
anything that the software has been made aware of in any way. For example, the
change of an input signal, the expiration of a timer, a key press, the reception of a
character, or a complete command.

Every task has a 1-byte (8-bit) mask, which means that 8 different events can be
signaled to and distinguished by every task. By calling OS_WaitEvent(), a task waits
for one of the events specified as a bitmask. As soon as one of the events occurs, this
task must be signaled by calling OS_SignalEvent(). The waiting task will then be put
in the READY state immediately. It will be activated according to the rules of the
scheduler as soon as it becomes the task with the highest priority of all the tasks in
the READY state.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

141
9.1 Events API function overview

Routine Description

OS_WaitEvent()
Waits for one of the events specified in the bitmask
and clears the event memory after an event occurs.

OS_WaitSingleEvent()
Waits for one of the events specified as bitmask and
clears only that event after it occurs.

OS_WaitEventTimed()
Waits for the specified events for a given time, and
clears the event memory after an event occurs.

OS_WaitSingleEventTimed()
Waits for the specified events for a given time; after
an event occurs, only that event is cleared.

OS_SignalEvent() Signals event(s) to a specified task.

OS_GetEventsOccurred()
Returns a list of events that have occurred for a
specified task.

OS_ClearEvents()
Returns the actual state of events and then clears
the events of a specified task.

Table 9.1: Events API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

142 CHAPTER 9 Task events
9.1.1 OS_WaitEvent()
Description

Waits for one of the events specified in the bitmask and clears the event memory
after an event occurs.

Prototype
char OS_WaitEvent (char EventMask);

Return value

All events that have actually occurred.

Additional Information

If none of the specified events are signaled, the task is suspended. The first of the
specified events will wake the task. These events are signaled by another task, a S/W
timer or an interrupt handler. Any bit in the 8-bit event mask may enable the corre-
sponding event.

Example

OS_WaitEvent(3); /* Wait for event 1 or 2 to be signaled */

For a further example, see OS_SignalEvent().

Parameter Description

EventMask The events that the task will be waiting for.
Table 9.2: OS_WaitEvent() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

143
9.1.2 OS_WaitSingleEvent()
Description

Waits for one of the events specified by the bitmask and clears only that event after
it occurs.

Prototype
char OS_WaitSingleEvent (char EventMask);

Return value

All masked events that have actually occurred.

Additional Information

If none of the specified events are signaled, the task is suspended. The first of the
specified events will wake the task. These events are signaled by another task, a S/W
timer, or an interrupt handler. Any bit in the 8-bit event mask may enable the corre-
sponding event. All unmasked events remain unchanged.

Example

OS_WaitSingleEvent(3); /* Wait for event 1 or 2 to be signaled */

Parameter Description

EventMask The events that the task will be waiting for.
Table 9.3: OS_WaitSingleEvent() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

144 CHAPTER 9 Task events
9.1.3 OS_WaitEventTimed()
Description

Waits for the specified events for a given time, and clears the event memory after an
event occurs.

Prototype
char OS_WaitEventTimed (char EventMask,

 OS_TIME TimeOut);

Return value

The events that have actually occurred within the specified time.
0 if no events were signaled in time.

Additional Information

If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled by
another task, a S/W timer, or an interrupt handler within the specified TimeOut time.

If no event is signaled, the task is activated after the specified timeout and all actual
events are returned and then cleared. Any bit in the 8-bit event mask may enable the
corresponding event.

Example

OS_WaitEventTimed(3, 10); /* Wait for event 1 or 2 to be signaled within 10 ms */

Parameter Description

EventMask The events that the task will be waiting for.

Timeout

Maximum time in timer ticks until the events have to be signaled.
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 9.4: OS_WaitEventTimed() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

145
9.1.4 OS_WaitSingleEventTimed()
Description

Waits for the specified events for a given time; after an event occurs, only that event
is cleared.

Prototype
char OS_WaitSingleEventTimed (char EventMask,

 OS_TIME TimeOut);

Return value

The masked events that have actually occurred within the specified time.
0 if no masked events were signaled in time.

Additional Information

If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled by
another task, a S/W timer or an interrupt handler within the specified TimeOut time.
If no event is signaled, the task is activated after the specified timeout and the
function returns zero. Any bit in the 8-bit event mask may enable the corresponding
event. All unmasked events remain unchanged.

Example

OS_WaitSingleEventTimed(3, 10); /* Wait for event 1 or 2 to be
 signaled within 10 ms */

Parameter Description

EventMask The events that the task will be waiting for.

Timeout

Maximum time in timer ticks until the events have to be signaled.
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 9.5: OS_WaitSingleEventTimed() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

146 CHAPTER 9 Task events
9.1.5 OS_SignalEvent()
Description

Signals event(s) to a specified task.

Prototype
void OS_SignalEvent (char Event,

 OS_TASK* pTask);

Additional Information

If the specified task is waiting for one of these events, it will be put in the READY
state and activated according to the rules of the scheduler.

Example

The task that handles the serial input and the keyboard waits for a character to be
received either via the keyboard (EVENT_KEYPRESSED) or serial interface
(EVENT_SERIN):

/*
* Just a small demo for events
*/

#define EVENT_KEYPRESSED (1)
#define EVENT_SERIN (2)

OS_STACKPTR int Stack0[96], Stack1[64]; /* Task stacks */
OS_TASK TCB0, TCB1; /* Data area for tasks (task control blocks) */

void Task0(void) {
 OS_U8 MyEvent;
 while(1)
 MyEvent = OS_WaitEvent(EVENT_KEYPRESSED | EVENT_SERIN)
 if (MyEvent & EVENT_KEYPRESSED) {
 /* handle key press */
 }
 if (MyEvent & EVENT_SERIN) {
 /* Handle serial reception */
 }
 }
}

void TimerKey(void) {
 /* More code to find out if key has been pressed */
 OS_SignalEvent(EVENT_SERIN, &TCB0); /* Notify Task that key was pressed */
}

void InitTask(void) {
 OS_CREATETASK(&TCB0, 0, Task0, 100, Stack0); /* Create Task0 */
}

If the task was only waiting for a key to be pressed, OS_GetMail() could simply be
called. The task would then be deactivated until a key is pressed. If the task has to
handle multiple mailboxes, as in this case, events are a good option.

Parameter Description

Event

The event(s) to signal:
1 means event 1
2 means event 2
4 means event 3
...
128 means event 8.
Multiple events can be signaled as the sum of the single events
(for example, 6 will signal events 2 & 3).

pTask Task that the events are sent to.
Table 9.6: OS_SignalEvent() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

147
9.1.6 OS_GetEventsOccurred()
Description

Returns a list of events that have occurred for a specified task.

Prototype
char OS_GetEventsOccurred (OS_TASK* pTask);

Return value

The event mask of the events that have actually occurred.

Additional Information

By calling this function, the actual events remain signaled. The event memory is not
cleared. This is one way for a task to find out which events have been signaled. The
task is not suspended if no events are available.

Parameter Description

pTask
The task who's event mask is to be returned,
NULL means current task.

Table 9.7: OS_getEventsOccured() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

148 CHAPTER 9 Task events
9.1.7 OS_ClearEvents()
Description

Returns the actual state of events and then clears the events of a specified task.

Prototype
char OS_ClearEvents (OS_TASK* pTask);

Return value

The events that were actually signaled before clearing.

Parameter Description

pTask
The task who's event mask is to be returned,
NULL means current task.

Table 9.8: OS_ClearEvents() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

149
Chapter 10

Event objects
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

150 CHAPTER 10 Event objects
Event objects are another type of communication and synchronization objects. In
contrast to task-events, event objects are standalone objects which are not owned by
any task.

The purpose of an event object is to enable one or multiple tasks to wait for a partic-
ular event to occur. The tasks can be kept suspended until the event is set by another
task, a S/W timer, or an interrupt handler. The event can be anything that the soft-
ware is made aware of in any way. Examples include the change of an input signal,
the expiration of a timer, a key press, the reception of a character, or a complete
command.

Compared to a task event, the signalling function does not need to know which task
is waiting for the event to occur.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

151
10.1 Event object API function overview

Routine Description

OS_EVENT_Create()
Creates an event object. Has to be called before the
event object can be used.

OS_EVENT_Wait() Waits for an event and resets the event after it occurs.

OS_EVENT_WaitTimed()
Waits for an event with timeout and resets the event
after it occurs.

OS_EVENT_Set() Sets the events, or resumes waiting tasks.
OS_EVENT_Reset() Clears for example resets the event to un-signaled state.

OS_EVENT_Pulse()
Sets the event, resumes waiting tasks, if any, and then
resets the event.

OS_EVENT_Get() Returns the state of an event object.
OS_EVENT_Delete() Deletes the specified event object.

Table 10.1: Event object API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

152 CHAPTER 10 Event objects
10.1.1 OS_EVENT_Create()
Description

Creates an event object and resets the event.

Prototype
void OS_EVENT_Create (OS_EVENT* pEvent)

Additional Information

Before the event object can be used, it has to be created once by a call of
OS_EVENT_Create(). On creation, the event is set in non-signaled state, and the list
of waiting tasks is deleted. Therefore, OS_EVENT_Create() must not be called for an
event object which was already created before. The debug version of embOS checks
whether the specified event object was already created and calls OS_Error() with
error code OS_ERR_2USE_EVENTOBJ, if the event object was already created before the
call of OS_EVENT_Create().

Example

OS_EVENT _HW_Event;
OS_EVENT_Create(&HW_Event); /* Create and initialize event object */

Parameter Description

pEvent Pointer to an event object data structure.
Table 10.2: OS_EVENT_Create() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

153
10.1.2 OS_EVENT_Wait()
Description

Waits for an event and suspends the calling task as long as the event is not signaled.

Prototype
void OS_EVENT_Wait (OS_EVENT* pEvent)

Additional Information

If the specified event object is already set, the calling task resets the event and con-
tinues operation. If the specified event object is not set, the calling task is suspended
until the event object becomes signaled. pEvent has to address an existing event
object, which has to be created before the call of OS_EVENT_Wait(). The debug ver-
sion of embOS will check whether pEvent addresses a valid event object and will call
OS_Error() with error code OS_ERR_EVENT_INVALID in case of an error.

Important

This function may not be called from within an interrupt handler or software timer.

Example

OS_EVENT_Wait(&_HW_Event); /* Wait for event object */

Parameter Description

pEvent Pointer to the event object that the task will be waiting for.
Table 10.3: OS_EVENT_Wait() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

154 CHAPTER 10 Event objects
10.1.3 OS_EVENT_WaitTimed()
Description

Waits for an event and suspends the calling task for a specified time as long as the
event is not signaled.

Prototype
char OS_EVENT_WaitTimed (OS_EVENT* pEvent, OS_TIME Timeout)

Return value

0 success, the event was signaled within the specified time.
1 if the event was not signaled and a timeout occured.

Additional Information

If the specified event object is already set, the calling task resets the event and con-
tinues operation. If the specified event object is not set, the calling task is suspended
until the event object becomes signaled or the timeout time has expired.
pEvent has to address an existing event object, which has to be created before the
call of OS_EVENT_WaitTimed(). The debug version of embOS will check whether
pEvent addresses a valid event object and will call OS_Error() with error code
OS_ERR_EVENT_INVALID in case of an error.

Important

This function may not be called from within an interrupt handler or software timer.

Example

if (OS_EVENT_WaitTimed(&_HW_Event, 10) == 0) {
 /* event was signaled within tim out time, handle event */
 ...
} else {
 /* event was not signaled within tim out time, handle timeout */
 ...
}

Parameter Description

pEvent Pointer to the event object that the task will be waiting for.

Timeout

Maximum time in timer ticks until the event have to be signaled.
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 10.4: OS_EVENT_Wait() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

155
10.1.4 OS_EVENT_Set()
Description

Sets an event object to signaled state, or resumes tasks which are waiting at the
event object.

Prototype
void OS_EVENT_Set (OS_EVENT* pEvent)

Additional Information

If no tasks are waiting at the event object, the event object is set to signaled state.
If at least one task is already waiting at the event object, all waiting tasks are
resumed and the event object is not set to the signaled state. pEvent has to address
an existing event object, which has to be created before by a call of of
OS_EVENT_Create(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call OS_Error() with error code
OS_ERR_EVENT_INVALID in case of an error.

Example

The following printout shows an example using event objects to synchronize tasks to
a hardware initilization function. This sample application can be found in
MAIN_Event.c, which is delivered in the Samples subdirectory of the embOS Start
folder.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : Main_EVENT.c
Purpose : Sample program for embOS using EVENT object
--------- END-OF-HEADER --*/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

/**/

/****** Interface to HW module **************************************/

void HW_Wait(void);
void HW_Free(void);
void HW_Init(void);

/**/

/****** HW module ***/

OS_STACKPTR int _StackHW[128]; /* Task stack */
OS_TASK _TCBHW; /* Task-control-block */

/****** local data **/
static OS_EVENT _HW_Event;

/****** local functions ***/
static void _HWTask(void) {
 /* Initialize HW functionallity */

Parameter Description

pEvent Pointer to the event object which should be set to signaled state.
Table 10.5: OS_EVENT_Set() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

156 CHAPTER 10 Event objects
 OS_Delay(100);
 /* Init done, send broadcast to waiting tasks */
 HW_Free();
 while (1) {
 OS_Delay (40);
 }
}

/****** global functions **/
void HW_Wait(void) {
 OS_EVENT_Wait(&_HW_Event);
}

void HW_Free(void) {
 OS_EVENT_Set(&_HW_Event);
}

void HW_Init(void) {
 OS_CREATETASK(&_TCBHW, "HWTask", _HWTask, 25, _StackHW);
 OS_EVENT_Create(&_HW_Event);
}

/**/

/**/

static void HPTask(void) {
 HW_Wait(); /* Wait until HW module is set up */
 while (1) {
 OS_Delay (50);
 }
}

static void LPTask(void) {
 HW_Wait(); /* Wait until HW module is set up */
 while (1) {
 OS_Delay (200);
 }
}

/***
*
* main
**/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 HW_Init(); /* Initialize HW module */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_SendString("Start project will start multitasking !\n");
 OS_Start(); /* Start multitasking */
 return 0;
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

157
10.1.5 OS_EVENT_Reset()
Description

Resets the specified event object to non-signaled state.

Prototype
void OS_EVENT_Reset (OS_EVENT* pEvent)

Additional Information

pEvent has to address an existing event object, which has been created before by a
call of OS_EVENT_Create(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call OS_Error() with the error code
OS_ERR_EVENT_INVALID in case of an error.

Example

OS_EVENT_Reset(&_HW_Event); /* Reset event object to non-signaled state */

Parameter Description

pEvent
Pointer to the event object which should be reset to non-signaled
state.

Table 10.6: OS_EVENT_Reset() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

158 CHAPTER 10 Event objects
10.1.6 OS_EVENT_Pulse()
Description

Signals an event object and resumes waiting tasks, then resets the event object to
non-signaled state.

Prototype
void OS_EVENT_Pulse (OS_EVENT* pEvent);

Additional Information

If any tasks are waiting at the event object, the tasks are resumed. The event object
remains unsignaled. The debug version of embOS will check whether pEvent
addresses a valid event object and will call OS_Error() with the error code
OS_ERR_EVENT_INVALID in case of an error.

Parameter Description

pEvent Pointer to the event object which should be pulsed.
Table 10.7: OS_EVENT_Pulse() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

159
10.1.7 OS_EVENT_Get()
Description

Returns the state of an event object.

Prototype
unsigned char OS_EVENT_Get (OS_EVENT* pEvent);

Return value

0: Event object is not set to signaled state
1: Event object is set to signaled state.

Additional Information

By calling this function, the actual state of the event object remains unchanged.
pEvent has to address an existing event object, which has been created before by a
call of OS_EVENT_Create(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call OS_Error() with error code
OS_ERR_EVENT_INVALID in case of an error.

Parameter Description

pEvent Pointer to an event object who�s state should be examined.
Table 10.8: OS_EVENT_Get() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

160 CHAPTER 10 Event objects
10.1.8 OS_EVENT_Delete()
Description

Deletes an event object.

Prototype
void OS_EVENT_Delete (OS_EVENT* pEvent);

Additional Information

To keep the system fully dynamic, it is essential that event objects can be created
dynamically. This also means there has to be a way to delete an event object when it
is no longer needed. The memory that has been used by the event object�s control
structure can then be reused or reallocated.
It is your responsibility to make sure that:

� the program no longer uses the event object to be deleted
� the event object to be deleted actually exists (has been created first)
� no tasks are waiting at the event object when it is deleted.

pEvent has to address an existing event object, which has been created before by a
call of OS_EVENT_Create(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call OS_Error() with error code
OS_ERR_EVENT_INVALID in case of an error. If any task is waiting at the event object
which is deleted, the debug version of embOS calls OS_Error() with error code
OS_ERR_EVENT_DELETE. To avoid any problems, an event object should not be deleted
in a normal application.

Parameter Description

pEvent Pointer to an event object which should be deleted.
Table 10.9: OS_EVENT_Delete() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

161
Chapter 11

Heap type memory management
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

162 CHAPTER 11 Heap type memory management
ANSI C offers some basic dynamic memory management functions. These are mal-
loc, free, and realloc.
Unfortunately, these routines are not thread-safe, unless a special thread-safe imple-
mentation exists in the compiler specific runtime libraries; they can only be used
from one task or by multiple tasks if they are called sequentially. Therefore, embOS
offer task-safe variants of these routines. These variants have the same names as
their ANSI counterparts, but are prefixed OS_; they are called OS_malloc(),
OS_free(), OS_realloc(). The thread-safe variants that embOS offers use the stan-
dard ANSI routines, but they guarantee that the calls are serialized using a resource
semaphore.
If heap memory management is not supported by the standard C-libraries for a spe-
cific CPU, embOS heap memory management is not implemented.

Heap type memory management is part of the embOS libraries. It does not use any
resources if it is not referenced by the application (that is, if the application does not
use any memory management API function).

Note that another aspect of these routines may still be a problem: the memory used
for the functions (known as heap) may fragment. This can lead to a situation where
the total amount of memory is sufficient, but there is not enough memory available
in a single block to satisfy an allocation request.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

163
11.1 Heap type memory manager API reference

API routine Description

OS_malloc() Allocates a block of memory on the heap.
OS_free() Frees a block of memory previously allocated.
OS_realloc() Changes allocation size.

Table 11.1: Heap type memory manager API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

164 CHAPTER 11 Heap type memory management
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

165
Chapter 12

Fixed block size memory pools
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

166 CHAPTER 12 Fixed block size memory pools
Fixed block size memory pools contain a specific number of fixed-size blocks of mem-
ory. The location in memory of the pool, the size of each block, and the number of
blocks are set at runtime by the application via a call to the OS_MEMF_CREATE() func-
tion. The advantage of fixed memory pools is that a block of memory can be allo-
cated from within any task in a very short, determined period of time.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

167
12.1 Memory pools API reference overview
All API functions for fixed block size memory pools are prefixed OS_MEMF_.

API routine Description

Create / Delete
OS_MEMF_Create Creates fixed block memory pool.
OS_MEMF_Delete Deletes fixed block memory pool.

Allocation

OS_MEMF_Alloc
Allocates memory block from a given memory pool.
Wait indefinitely if no block is available.

OS_MEMF_AllocTimed
Allocates memory block from a given memory pool.
Wait no longer than given timelimit if no block is avail-
able.

OS_MEMF_Request
Allocates block from a given memory pool, if available.
Non-blocking.

Release
OS_MEMF_Release Releases memory block from a given memory pool.
OS_MEMF_FreeBlock Releases memory block from any pool.

Info
OS_MEMF_GetNumFreeBlocks Returns the number of available blocks in a pool.
OS_MEMF_IsInPool Returns !=0 if block is in memory pool.

OS_MEMF_GetMaxUsed
Returns the maximum number of blocks in a pool
which have been used at a time.

OS_MEMF_GetNumBlocks Returns the number of blocks in a pool.
OS_MEMF_GetBlockSize Returns the size of one block of a given pool.

Table 12.1: Memory pools API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

168 CHAPTER 12 Fixed block size memory pools
12.1.1 OS_MEMF_Create()
Description

Creates and initializes a fixed block size memory pool.

Prototype
void OS_MEMF_Create (OS_MEMF* pMEMF,
 void* pPool,
 OS_U16 NumBlocks,

 OS_U16 BlockSize);

Additional Information

OS_MEMF_SIZEOF_BLOCKCONTROL gives the number of bytes used for control and
debug purposes. It is guaranteed to be 0 in release or stack check builds. Before
using any memory pool, it has to be created. The debug version of libraries keeps
track of created and deleted memory pools. The release and stack check versions do
not.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.

pPool
Pointer to memory to be used for the memory pool. Required size
is: NumBlocks * (BlockSize + OS_MEMF_SIZEOF_BLOCKCONTROL).

NumBlocks
Pointer to memory to be used for the memory pool. Required size
is: NumBlocks * (BlockSize + OS_MEMF_SIZEOF_BLOCKCONTROL).

BlockSize Size in bytes of one block.
Table 12.2: OS_MEMF_Create() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

169
12.1.2 OS_MEMF_Delete()
Description

Deletes a fixed block size memory pool. After deletion, the memory pool and memory
blocks inside this pool can no longer be used.

Prototype
void OS_MEMF_Delete (OS_MEMF* pMEMF);

Additional Information

This routine is provided for completeness. It is not used in the majority of
applications because there is no need to dynamically create/delete memory pools.
For most applications it is preferred to have a static memory pool design; memory
pools are created at startup (before calling OS_Start()) and will never be deleted.
The debug version of libraries mark the memory pool as deleted.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
Table 12.3: OS_MEMF_Delete() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

170 CHAPTER 12 Fixed block size memory pools
12.1.3 OS_MEMF_Alloc()
Description

Requests allocation of a memory block. Waits until a block of memory is available.

Prototype
void* OS_MEMF_Alloc (OS_MEMF* pMEMF,

 int Purpose);

Return value

Pointer to the allocated block.

Additional Information

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available. The retrieved pointer must be delivered to
OS_MEMF_Release() as a parameter to free the memory block. The pointer must not
be modified.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.

Purpose

This is a parameter which is used for debugging purpose only. Its
value has no effect on program execution, but may be remem-
bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 12.4: OS_MEMF_Alloc() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

171
12.1.4 OS_MEMF_AllocTimed()
Description

Requests allocation of a memory block. Waits until a block of memory is available or
the timeout has expired.

Prototype
void* OS_MEMF_AllocTimed (OS_MEMF* pMEMF,
 int Timeout,

 int Purpose);

Return value

!=NULL pointer to the allocated block
NULL if no block has been allocated.

Additional Information

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available or the timeout has expired. The retrieved pointer
must be delivered to OS_MEMF_Release() as parameter to free the memory block.
The pointer must not be modified.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.

Timeout
Timelimit before timeout, given in ticks. 0 or negative values are
permitted.

Purpose

This is a parameter which is used for debugging purpose only. Its
value has no effect on program execution, but may be remem-
bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 12.5: OS_MEMF_Alloc_Timed()
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

172 CHAPTER 12 Fixed block size memory pools
12.1.5 OS_MEMF_Request()
Description

Requests allocation of a memory block. Continues execution in any case.

Prototype
void* OS_MEMF_Request (OS_MEMF* pMEMF,

 int Purpose);

Return value

!=NULL pointer to the allocated block
NULL if no block has been allocated.

Additional Information

The calling task is never suspended by calling OS_MEMF_Request(). The retrieved
pointer must be delivered to OS_MEMF_Release() as parameter to free the memory
block. The pointer must not be modified.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.

Purpose

This is a parameter which is used for debugging purpose only. Its
value has no effect on program execution, but may be remem-
bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 12.6: OS_MEMF_Request() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

173
12.1.6 OS_MEMF_Release()
Description

Releases a memory block that was previously allocated.

Prototype
void OS_MEMF_Release (OS_MEMF* pMEMF,

 void* pMemBlock);

Additional Information

The pMemBlock pointer has to be the one that was delivered form any retrival func-
tion described above. The pointer must not be modified between allocation and
release. The memory block becomes available for other tasks waiting for a memory
block from the pool. If any task is waiting for a fixed memory block, it is activated
according to the rules of the scheduler.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to the memory block to free.

Table 12.7: OS_MEMF_Release() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

174 CHAPTER 12 Fixed block size memory pools
12.1.7 OS_MEMF_FreeBlock()
Description

Releases a memory block that was previously allocated. The memory pool does not
need to be denoted.

Prototype
void OS_MEMF_FreeBlock (void* pMemBlock);

Additional Information

The pMemBlock pointer has to be the one that was delivered form any retrieval func-
tion described above. The pointer must not be modified between allocation and
release. This function may be used instead of OS_MEMF_Release(). It has the advan-
tage that only one parameter is needed. embOS itself will find the associated mem-
ory pool. The memory block becomes available for other tasks waiting for a memory
block from the pool. If any task is waiting for a fixed memory block, it is activated
according to the rules of the scheduler.

Parameter Description

pMemBlock Pointer to the memory block to free.
Table 12.8: OS_MEMF_FreeBlock() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

175
12.1.8 OS_MEMF_GetNumBlocks()
Description

Information routine to examine the total number of available memory blocks in the
pool.

Prototype
int OS_MEMF_GetNumFreeBlocks (OS_MEMF* pMEMF);

Return value

Returns the number of blocks in the specified memory pool. This is the value that
was given as parameter during creation of the memory pool.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
Table 12.9: OS_MEMF_GetNumBlocks() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

176 CHAPTER 12 Fixed block size memory pools
12.1.9 OS_MEMF_GetBlockSize()
Description

Information routine to examine the size of one memory block in the pool.

Prototype
int OS_MEMF_GetBlockSize (OS_MEMF* pMEMF);

Return value

Size in bytes of one memory block in the specified memory pool. This is the value of
the parameter when the memory pool was created.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
Table 12.10: OS_MEMF_GetBlockSize() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

177
12.1.10 OS_MEMF_GetNumFreeBlocks()
Description

Information routine to examine the number of free memory blocks in the pool.

Prototype
int OS_MEMF_GetNumFreeBlocks (OS_MEMF* pMEMF);

Return value

The number of free blocks actually available in the specified memory pool.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
Table 12.11: OS_MEMF_GetNumFreeBlocks() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

178 CHAPTER 12 Fixed block size memory pools
12.1.11 OS_MEMF_GetMaxUsed()
Description

Information routine to examine the amount of memory blocks in the pool that were
used concurrently since creation of the pool.

Prototype
int OS_MEMF_GetMaxUsed (OS_MEMF* pMEMF);

Return value

Maximum number of blocks in the specified memory pool that were used concurrently
since the pool was created.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
Table 12.12: OS_MEMF_GetMaxUsed() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

179
12.1.12 OS_MEMF_IsInPool()
Description

Information routine to examine whether a memory block reference pointer belongs to
the specified memory pool.

Prototype
char OS_MEMF_IsInPool (OS_MEMF* pMEMF,

 void* pMemBlock);

Return value

0: Pointer does not belong to memory pool.
1: Pointer belongs to the pool.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to a memory block that should be checked

Table 12.13: OS_MEMF_IsInPool() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

180 CHAPTER 12 Fixed block size memory pools
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

181
Chapter 13

Stacks
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

182 CHAPTER 13 Stacks
The stack is the memory area used for storing the return address of function calls,
parameters, and local variables, as well as for temporary storage. Interrupt routines
also use the stack to save the return address and flag registers, except in cases
where the CPU has a separate stack for interrupt functions. Refer to the CPU &
Compiler Specifics manual of embOS documentation for details on your processor's
stack. A "normal" single-task program needs exactly one stack. In a multitasking
system, every task has to have its own stack.

The stack needs to have a minimum size which is determined by the sum of the stack
usage of the routines in the worst-case nesting. If the stack is too small, a section of
the memory that is not reserved for the stack will be overwritten, and a serious pro-
gram failure is most likely to occur. embOS monitors the stack size (and, if available,
also interrupt stack size in the debug version), and calls the failure routine
OS_Error() if it detects a stack overflow. However, embOS cannot reliably detect a
stack overflow.

A stack that has been defined larger than necessary does not hurt; it is only a waist
of memory. To detect a stack overflow, the debug and stack check builds of embOS
fill the stack with control characters when it is created and check these characters
every time the task is deactivated. If an overflow is detected, OS_Error() is called.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

183
13.1 System stack
Before embOS takes over control (before the call to OS_Start()), a program does
use the so-called system stack. This is the same stack that a non-embOS program for
this CPU would use. After transferring control to the embOS scheduler by calling
OS_Start(), the system stack is used only when no task is executed for the follow-
ing:

� embOS scheduler
� embOS software timers (and the callback).

For details regarding required size of your system stack, refer to the CPU & Compiler
Specifics manual of embOS documentation.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

184 CHAPTER 13 Stacks
13.2 Task stack
Each embOS task has a separate stack. The location and size of this stack is defined
when creating the task. The minimum size of a task stack pretty much depends on
the CPU and the compiler. For details, see the CPU & Compiler Specifics manual of
embOS documentation.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

185
13.3 Interrupt stack
To reduce stack size in a multitasking environment, some processors use a specific
stack area for interrupt service routines (called a hardware interrupt stack). If there
is no interrupt stack, you will have to add stack requirements of your interrupt ser-
vice routines to each task stack.
Even if the CPU does not support a hardware interrupt stack, embOS may support a
separate stack for interrupts by calling the function OS_EnterIntStack() at begin-
ning of an interrupt service routine and OS_LeaveIntStack() at its very end. In case
the CPU already supports hardware interrupt stacks or if a separate interrupt stack is
not supported at all, these function calls are implemented as empty macros.
We recommend using OS_EnterIntStack() and OS_LeaveIntStack() even if there is
currently no additional benefit for your specific CPU, because code that uses them
might reduce stack size on another CPU or a new version of embOS with support for
an interrupt stack for your CPU. For details about interrupt stacks, see the CPU &
Compiler Specifics manual of embOS documentation.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

186 CHAPTER 13 Stacks
13.4 Stacks API function overview

Routine Description

OS_GetStackSpace() Returns the unused portion of a task stack.
Table 13.1: Stacks API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

187
13.4.1 OS_GetStackSpace()
Description

Returns the unused portion of a task stack.

Prototype
int OS_GetStackSpace (OS_TCB* pTask);

Return value

The unused portion of the task stack in bytes.

Additional Information

In most cases, the stack size required by a task cannot be easily calculated, because
it takes quite some time to calculate the worst-case nesting and the calculation itself
is difficult.
However, the required stack size can be calculated using the function
OS_GetStackSpace(), which returns the number of unused bytes on the stack. If
there is a lot of space left, you can reduce the size of this stack and vice versa.
This function is only available in the debug and stack check builds of embOS, because
only these builds initialize the stack space used for the tasks.

Important

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckSpace(void) {
 printf("Unused Stack[0] %d", OS_GetStackSpace(&TCB[0]);
 OS_Delay(1000);
 printf("Unused Stack[1] %d", OS_GetStackSpace(&TCB[1]);
 OS_Delay(1000);
}

Parameter Description

pTask
The task who's stack space is to be checked.
NULL means current task.

Table 13.2: OS_GetStackSpace() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

188 CHAPTER 13 Stacks
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

189
Chapter 14

Interrupts
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

190 CHAPTER 14 Interrupts
In this chapter, you will find a very basic description about using interrupt service
routines (ISRs) in cooperation with embOS. Specific details for your CPU and
compiler may be found in the CPU & Compiler Specifics manual of the embOS docu-
mentation.

Interrupts are interruptions of a program caused by hardware. When an interrupt
occurs, the CPU saves its registers and executes a subroutine called an interrupt
service routine, or ISR. After the ISR is completed, the program returns to the
highest-priority task in the READY state. Normal interrupts are maskable; they can
occur at any time unless they are disabled with the CPU's "disable interrupt" instruc-
tion. ISRs are also nestable - they can be recognized and executed within other ISRs.

There are several good reasons for using interrupt routines. They can respond very
quickly to external events such as the status change on an input, the expiration of a
hardware timer, reception or completion of transmission of a character via serial
interface, or other types of events. Interrupts effectively allow events to be pro-
cessed as they occur.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

191
14.1 Interrupt latency
Interrupt latency is the time between an interrupt request and the execution of the
first instruction of the interrupt service routine.
Every computer system has an interrupt latency. The latency depends on various fac-
tors and differs even on the same computer system. The value that one is typically
interested in is the worst case interrupt latency.
The interrupt latency is the sum of a lot of different smaller delays explained below.

14.1.1 Causes of interrupt latencies
� The first delay is typically in the hardware: The interrupt request signal needs to

be synchronized to the CPU clock. Depending on the synchronization logic, typi-
cally up to 3 CPU cycles can be lost before the interrupt request has reached the
CPU core.

� The CPU will typically complete the current instruction. This instruction can take
a lot of cycles; on most systems, divide, push-multiple, or memory-copy instruc-
tions are the instructions which require most clock cycles. On top of the cycles
required by the CPU, there are in most cases additional cycles required for mem-
ory access. In an ARM7 system, the instruction STMDB SP!,{R0-R11,LR}; (Push
parameters and perm. register) is typically the worst case instruction. It stores
13 32-bit registers on the stack. The CPU requires 15 clock cycles.

� The memory system may require additional cycles for wait states.
� After the current instruction is completet, the CPU performs a mode switch or

pushes registers (typically, PC and flag registers) on the stack. In general, mod-
ern CPUs (such as ARM) perform a mode switch, which requires less CPU cycles
than saving registers.

� Pipeline fill
Most modern CPUs are pipelined. Execution of an instruction happens in various
stages of the pipeline. An instruction is executed when it has reached its final
stage of the pipeline. Because the mode switch has flushed the pipeline, a few
extra cycles are required to refill the pipeline.

14.1.2 Additional causes for interrupt latencies
There can be additional causes for interrupt latencies.
These depend on the type of system used, but we list a few of them.

� Latencies caused by cache line fill.
If the memory system has one or multiple caches, these may not contain the
required data. In this case, not only the required data is loaded from memory,
but in a lot of cases a complete line fill needs to be performed, reading multiple
words from memory.

� Latencies caused by cache write back.
A cache miss may cause a line to be replaced. If this line is marked as dirty, it
needs to be written back to main memory, causing an additional delay.

� Latencies caused by MMU translation table walks.
Translation table walks can take a considerable amount of time, especially as
they involve potentially slow main memory accesses. In real-time interrupt han-
dlers, translation table walks caused by the TLB not containing translations for
the handler and/or the data it accesses can increase interrupt latency signifi-
cantly.

� Application program.
Of course, the application program can cause additional latencies by disabling
interrupts. This can make sense in some situations, but of course causes add.
latencies.

� Interrupt routines.
On most systems, one interrupt disables further interrupts. Even if the interrupts
are re-enabled in the ISR, this takes a few instructions, causing add. latency.

� RTOS (Real-time Operating system).
An RTOS also needs to temporarily disable the interrupts which can call API-func-
tions of the RTOS. Some RTOSes disable all interrupts, effectively increasing
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

192 CHAPTER 14 Interrupts
interrupt latencies for all interrupts, some (like embOS) disable only low-priority
interrupts and do thereby not affect the latency of high priority interrupts.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

193
14.2 Zero interrupt latency
Zero interrupt latency in the strict sense is not possible as explained above. What we
mean when we say "Zero interrupt latency" is that the latency of high-priority inter-
rupts is not affected by the RTOS; a system using embOS will have the same worst-
case interrupt latency for high priority interrupts as a system running without
embOS.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

194 CHAPTER 14 Interrupts
14.3 High / low priority interrupts
Most CPUs support interrupts with different priorities. Different priorities have two
effects:

� If different interrupts occur simultaneously, the interrupt with higher priority
takes precedence and its ISR is executed first.

� Interrupts can never be interrupted by other interrupts of the same or lower level
of priority.

How many different levels of interrupts there are depend on the CPU and the inter-
rupt controller. Details are explained in the CPU/MCU/SOC manuals and the CPU &
Compiler Specifics manual of embOS. embOS distinguishes two different levels of
interrupts: High / Low priority interrupts. The embOS port specific documentation
explains where "the line is drawn", which interrupts are considered high and which
interrupts are considered low priority. In general, the differences are:

Low priority interrupts
� May call embOS API functions
� Latencies caused by embOS

High priority interrupts
� May not call embOS API functions
� No Latencies caused by embOS (Zero latency)

Example of different interrupt priority levels

M16C CPUs support 8 interrupt priority levels. With embOS, the 3 highest priority
levels are treated as �High priority interrupts�. ARM CPUs support normal interrupts
(IRQ) and fast interrupt (FIQ). Using embOS, the FIQ is treated as �High priority
interrupt�.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

195
14.4 Rules for interrupt handlers

14.4.1 General rules
There are some general rules for interrupt handlers. These rules apply to both single-
task programming as well as to multitask programming using embOS.

� Interrupt handlers preserve all registers.
Interrupt handlers must restore the environment of a task completely. This
environment normally consists of the registers only, so the ISR has to make sure
that all registers modified during interrupt execution are saved at the beginning
and restored at the end of the interrupt routine

� Interrupt handlers have to be finished quickly.
Intensive calculations should be kept out of interrupt handlers. An interrupt han-
dler should only be used for storing a received value or to trigger an operation in
the regular program (task). It should not wait in any form or perform a polling
operation.

14.4.2 Additional rules for preemptive multitasking
A preemptive multitasking system like embOS needs to know if the program that is
executing is part of the current task or an interrupt handler. This is because embOS
cannot perform a task switch during the execution of an interrupt handler; it can only
do so at the end of an interrupt handler.

If a task switch were to occur during the execution of an ISR, the ISR would continue
as soon as the interrupted task became the current task again. This is not a problem
for interrupt handlers that do not allow further interruptions (which do not enable
interrupts) and that do not call any embOS functions.

This leads us to the following rule:

� Interrupt functions that re-enable interrupts or use any embOS function need to
call OS_EnterInterrupt() at the beginning, before executing any other com-
mand, and before they return, call either OS_LeaveInterrupt() or
OS_LeaveInterruptNoSwitch() as last command.

If a higher priority task is made ready by the ISR, the task switch then occurs in the
routine OS_LeaveInterrupt(). The end of the ISR is executed at a later point, when
the interrupted task is made ready again. If you debug an interrupt routine, do not
be confused. This has proven to be the most efficient way of initiating a task switch
from within an interrupt service routine.

If fast task-activation at the end of an interrupt service routine is not required,
OS_LeaveInterruptNoSwitch() can be used instead.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

196 CHAPTER 14 Interrupts
14.5 Calling embOS routines from within an ISR
Before calling any embOS function from within an ISR, embOS has to be informed
that an interrupt service routine is running.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

197
14.5.1 Interrupts API function overview

Routine Description

OS_CallISR() Interrupt entry function.

OS_CallNestableISR()
Interrupt entry function supporting
estable interrupts.

OS_EnterInterrupt()
Informs embOS that interrupt code is
executing.

OS_LeaveInterrupt()
Informs embOS that the end of the inter-
rupt routine has been reached; executes
task switching within ISR.

OS_LeaveInterruptNoSwitch()
Informs embOS that the end of the inter-
rupt routine has been reached but does
not execute task switching within ISR.

OS_IncDI()
Increments the interrupt disable counter
(OS_DICnt) and disables interrupts.

OS_DecRI()
Decrements the counter and enables
interrupts if the counter reaches 0.

OS_DI()
Disables interrupts. Does not change the
interrupt disable counter.

OS_EI() Unconditionally enables Interrupt.

OS_RestoreI()
Restores the status of the interrupt flag,
based on the interrupt disable counter.

OS_EnterNestableInterrupt()
Re-enables interrupts and increments the
embOS internal critical region counter,
thus disabling further task switches.

OS_LeaveNestableInterrupt() Disables further interrupts.

OS_LeaveNestableInterruptNoSwitch()
Disables further interrupts, informs
embOS that the end of ISR is reached,
but does not perform a task switch.

Table 14.1: Interrupt API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

198 CHAPTER 14 Interrupts
14.5.2 OS_CallISR()
Description

Entry function for use in an embOS interrupt handler. Nestable interrupts disabled.

Prototype
void OS_CallISR (void (*pRoutine)(void));

Additional Information

OS_CallISR() can be used as entry function in an embOS interrupt handler, when
the corresponding interrupt should not be interrupted by another embOS interrupt.
OS_CallISR() sets the interrupt priority of the CPU to the user definable �fast� inter-
rupt priority level, thus locking any other embOS interrupt.
Fast interrupts are not disabled.

Note: For some specific CPUs OS_CallISR() has to be used to call an interrupt
handler because OS_EnterInterrupt() / OS_LeaveInterrupt() may not be avail-
able.
Refer to the CPU specific manual.

Example

#pragma interrupt void OS_ISR_Tick(void) {
 OS_CallISR(_IsrTickHandler);
}

Parameter Description

pRoutine Pointer to a routine that should run on interrupt.
Table 14.2: OS_CallISR() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

199
14.5.3 OS_CallNestableISR()
Description

Entry function for use in an embOS interrupt handler. Nestable interrupts enabled.

Prototype
void OS_CallNestableISR (void (*pRoutine)(void));

Additional Information

OS_CallNestableISR() can be used as entry function in an embOS interrupt handler,
when interruption by higher prioritized embOS interrupts should be allowed.
OS_CallNestableISR() does not alter the interrupt priority of the CPU, thus keeping
all interrupts with higher priority enabled.

Note: For some specific CPUs OS_CallNestableISR() has to be used to call an
interrupt handler because OS_EnterNestableInterrupt() /
OS_LeaveNestableInterrupt() may not be available.
Refer to the CPU specific manual.

Example

#pragma interrupt void OS_ISR_Tick(void) {
 OS_CallNestableISR(_IsrTickHandler);
}

Parameter Description

pRoutine Pointer to a routine that should run on interrupt.
Table 14.3: OS_CallNestableISR() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

200 CHAPTER 14 Interrupts
14.5.4 OS_EnterInterrupt()
Note: This function may not be available in all ports.

Description

Informs embOS that interrupt code is executing.

Prototype
void OS_EnterInterrupt (void);

Additional Information

If OS_EnterInterrupt() is used, it should be the first function to be called in the
interrupt handler. It must be used with either OS_LeaveInterrupt() or
OS_LeaveInterruptNoSwitch() as the last function called.
The use of this function has the following effects, it:

� disables task switches
� keeps interrupts in internal routines disabled.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

201
14.5.5 OS_LeaveInterrupt()
Note: This function may not be available in all ports.

Description

Informs embOS that the end of the interrupt routine has been reached; executes
task switching within ISR.

Prototype
void OS_LeaveInterrupt (void);

Additional Information

If OS_LeaveInterrupt() is used, it should be the last function to be called in the
interrupt handler. If the interrupt has caused a task switch, it will be executed
(unless the program which was interrupted was in a critical region).
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

202 CHAPTER 14 Interrupts
14.5.6 OS_LeaveInterruptNoSwitch()
Note: This function may not be available in all ports.

Description

Informs embOS that the end of the interrupt routine has been reached but does not
execute task switching within ISR.

Prototype
void OS_LeaveInterruptNoSwitch (void);

Additional Information

If OS_LeaveInterruptNoSwitch() is used, it should be the last function to be called
in the interrupt handler. If the interrupt has caused a task switch, it is not executed
from within the ISR, but at the next possible occasion. This will be the next call of an
embOS function or the scheduler interrupt if the program is not in a critical region.

14.5.7 Example using OS_EnterInterrupt()/OS_LeaveInterrupt()
Interrupt routine using OS_EnterInterrupt()/OS_LeaveInterrupt():

__interrupt void ISR_Timer(void) {
 OS_EnterInterrupt();
 OS_SignalEvent(1,&Task);/* Any functionality could be here */
 OS_LeaveInterrupt();
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

203
14.6 Enabling / disabling interrupts from C
During the execution of a task, maskable interrupts are normally enabled. In certain
sections of the program, however, it can be necessary to disable interrupts for short
periods of time to make a section of the program an atomic operation that cannot be
interrupted. An example would be the access to a global volatile variable of type long
on an 8/16-bit CPU. To make sure that the value does not change between the two or
more accesses that are needed, the interrupts have to be temporarily disabled:

Bad example:

volatile long lvar;

void routine (void) {
 lvar ++;
}

The problem with disabling and re-enabling interrupts is that functions that disable/
enable the interrupt cannot be nested.

Your C compiler offers two intrinsic functions for enabling and disabling interrupts.
These functions can still be used, but it is recommended to use the functions that
embOS offers (to be precise, they only look like functions, but are macros in reality).
If you do not use these recommended embOS functions, you may run into a problem
if routines which require a portion of the code to run with disabled interrupts are
nested or call an OS routine.

We recommend disabling interrupts only for short periods of time, if possible. Also,
you should not call routines when interrupts are disabled, because this could lead to
long interrupt latency times (the longer interrupts are disabled, the higher the inter-
rupt latency). As long as you only call embOS functions with interrupts enabled, you
may also safely use the compiler-provided intrinsics to disable interrupts.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

204 CHAPTER 14 Interrupts
14.6.1 OS_IncDI() / OS_DecRI()
The following functions are actually macros defined in RTOS.h, so they execute very
quickly and are very efficient. It is important that they are used as a pair: first
OS_IncDI(), then OS_DecRI().

OS_IncDI()

Short for Increment and Disable Interrupts. Increments the interrupt disable
counter (OS_DICnt) and disables interrupts.

OS_DecRI()

Short for Decrement and Restore Interrupts. Decrements the counter and
enables interrupts if the counter reaches 0.

Example

volatile long lvar;

void routine (void) {
 OS_IncDI();
 lvar ++;
 OS_DecRI();
}

OS_IncDI() increments the interrupt disable counter which is used for the entire OS
and is therefore consistent with the rest of the program in that any routine can be
called and the interrupts will not be switched on before the matching OS_DecRI() has
been executed.

If you need to disable interrupts for a short moment only where no routine is called,
as in the example above, you could also use the pair OS_DI() and OS_RestoreI().
These are a bit more efficient because the interrupt disable counter OS_DICnt is not
modified twice, but only checked once. They have the disadvantage that they do not
work with routines because the status of OS_DICnt is not actually changed, and they
should therefore be used with great care. In case of doubt, use OS_IncDI() and
OS_DecRI().
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

205
14.6.2 OS_DI() / OS_EI() / OS_RestoreI()
OS_DI()

Short for Disable Interrupts. Disables interrupts. Does not change the interrupt
disable counter.

OS_EI()

Short for Enable Interrupts. Refrain from using this function directly unless you are
sure that the interrupt enable count has the value zero, because it does not take the
interrupt disable counter into account.

OS_RestoreI()

Short for Restore Interrupts. Restores the status of the interrupt flag, based on the
interrupt disable counter.

Example

volatile long lvar;

void routine (void) {
 OS_DI();
 lvar++;
 OS_RestoreI();
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

206 CHAPTER 14 Interrupts
14.7 Definitions of interrupt control macros (in RTOS.h)
#define OS_IncDI() { OS_ASSERT_DICnt(); OS_DI(); OS_DICnt++; }
#define OS_DecRI() { OS_ASSERT_DICnt(); if (--OS_DICnt==0) OS_EI(); }
#define OS_RestoreI() { OS_ASSERT_DICnt(); if (OS_DICnt==0) OS_EI(); }
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

207
14.8 Nesting interrupt routines
By default, interrupts are disabled in an ISR because the CPU disables interrupts with
the execution of the interrupt handler. Re-enabling interrupts in an interrupt handler
allows the execution of further interrupts with equal or higher priority than that of
the current interrupt. These are known as nested interrupts, illustrated in the dia-
gram below:

For applications requiring short interrupt latency, you may re-enable interrupts inside
an ISR by using OS_EnterNestableInterrupt() and OS_LeaveNestableInterrupt()
within the interrupt handler.

Nested interrupts can lead to problems that are difficult to track; therefore it is not
really recommended to enable interrupts within an interrupt handler. As it is impor-
tant that embOS keeps track of the status of the interrupt enable/disable flag, the
enabling and disabling of interrupts from within an ISR has to be done using the
functions that embOS offers for this purpose.

The routine OS_EnterNestableInterrupt() enables interrupts within an ISR and
prevents further task switches; OS_LeaveNestableInterrupt() disables interrupts
right before ending the interrupt routine again, thus restores the default condition.
Re-enabling interrupts will make it possible for an embOS scheduler interrupt to
shortly interrupt this ISR. In this case, embOS needs to know that another ISR is still
active and that it may not perform a task switch.

Time

Task ISR 1 ISR 3ISR 2

Interrupt 1

Interrupt 2

Interrupt 3
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

208 CHAPTER 14 Interrupts
14.8.1 OS_EnterNestableInterrupt()
Note: This function may not be available in all ports.

Description

Re-enables interrupts and increments the embOS internal critical region counter,
thus disabling further task switches.

Prototype
void OS_EnterNestableInterrupt (void);

Additional Information

This function should be the first call inside an interrupt handler when nested inter-
rupts are required. The function OS_EnterNestableInterrupt() is implemented as a
macro and offers the same functionality as OS_EnterInterrupt() in combination
with OS_DecRI(), but is more efficient, resulting in smaller and faster code.

Example

Refer to the example for OS_LeaveNestableInterrupt().
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

209
14.8.2 OS_LeaveNestableInterrupt()
Note: This function may not be available in all ports.

Description

Disables further interrupts, then decrements the embOS internal critical region
count, thus re-enabling task switches if the counter has reached zero again.

Prototype
void OS_LeaveNestableInterrupt (void);

Additional Information

This function is the counterpart of OS_EnterNestableInterrupt(), and has to be the
last function call inside an interrupt handler when nested interrupts have earlier been
enabled by OS_EnterNestableInterrupt().
The function OS_LeaveNestableInterrupt() is implemented as a macro and offers
the same functionality as OS_LeaveInterrupt() in combination with OS_IncDI(),
but is more efficient, resulting in smaller and faster code.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

210 CHAPTER 14 Interrupts
14.8.3 OS_LeaveNestableInterruptNoSwitch()
Note: This function may not be available in all ports.

Description

Disables further interrupts, informs embOS that the end of the ISR is reached, but
does not perform a task switch.

Prototype
void OS_LeaveNestableInterruptNoSwitch (void);

Additional Information

If OS_LeaveNestableInterruptNoSwitch() is used, it should be the last function to
be called in the interrupt handler. If the interrupt has caused a task switch, it is not
executed from within the ISR, but at the next possible occasion. This will be the next
call of an embOS function or the scheduler interrupt if the program is not in a critical
region.

Example

__interrupt void ISR_Timer(void) {
 OS_EnterNestableInterrupt(); /* Enable interrupts, but disable task switch*/
 /*
 * Any code legal for interrupt-routines can be placed here
 */
 IntHandler();
 OS_LeaveNestableInterrupt(); /* Disable interrupts, allow task switch */
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

211
14.9 Non-maskable interrupts (NMIs)
embOS performs atomic operations by disabling interrupts. However, a non-maskable
interrupt (NMI) cannot be disabled, meaning it can interrupt these atomic operations.
Therefore, NMIs should be used with great care and may under no circumstances call
any embOS routines.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

212 CHAPTER 14 Interrupts
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

213
Chapter 15

Critical Regions
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

214 CHAPTER 15 Critical Regions
Critical regions are program sections during which the scheduler is switched off,
meaning that no task switch and no execution of software timers are allowed except
in situations where the active task has to wait. Effectively, preemptions are switched
off.

A typical example for a critical region would be the execution of a program section
that handles a time-critical hardware access (for example writing multiple bytes into
an EEPROM where the bytes have to be written in a certain amount of time), or a
section that writes data into global variables used by a different task and therefore
needs to make sure the data is consistent.

A critical region can be defined anywhere during the execution of a task. Critical
regions can be nested; the scheduler will be switched on again after the outermost
loop is left. Interrupts are still legal in a critical region. Software timers and inter-
rupts are executed as critical regions anyhow, so it does not hurt but does not do any
good either to declare them as such. If a task switch becomes due during the execu-
tion of a critical region, it will be performed right after the region is left.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

215
15.1 Critical regions API function overview

Routine Description

OS_EnterRegion() Indicates to the OS the beginning of a critical region.
OS_LeaveRegion() Indicates to the OS the end of a critical region.

Table 15.1: Critical regions API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

216 CHAPTER 15 Critical Regions
15.1.1 OS_EnterRegion()
Description

Indicates to the OS the beginning of a critical region.

Prototype
void OS_EnterRegion (void);

Additional Information

OS_EnterRegion() is not actually a function but a macro. However, it behaves very
much like a function but is much more efficient. Using the macro indicates to embOS
the beginning of a critical region. A critical region counter (OS_RegionCnt), which is 0
by default, is incremented so that the routine can be nested. The counter will be dec-
remented by a call to the routine OS_LeaveRegion(). If this counter reaches 0 again,
the critical region ends. Interrupts are not disabled using OS_EnterRegion(); how-
ever, disabling interrupts will disable preemptive task switches.

Example

void SubRoutine(void) {
 OS_EnterRegion();
 /* this code will not be interrupted by the OS */
 OS_LeaveRegion();
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

217
15.1.2 OS_LeaveRegion()
Description

Indicates to the OS the end of a critical region.

Prototype
void OS_LeaveRegion (void);

Additional Information

OS_LeaveRegion() is not actually a function but a macro. However, it behaves very
much like a function but is much more efficient. Usage of the macro indicates to
embOS the end of a critical region. A critical region counter (OS_RegionCnt), which is
0 by default, is decremented. If this counter reaches 0 again, the critical region ends.

Example

Refer to the example for OS_EnterRegion().
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

218 CHAPTER 15 Critical Regions
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

219
Chapter 16

System variables
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

220 CHAPTER 16 System variables
The system variables are described here for a deeper understanding of how the OS
works and to make debugging easier.

Note: Do not change the value of any system variables.

These variables are accessible and are not declared constant, but they should only be
altered by functions of embOS. However, some of these variables can be very useful,
especially the time variables.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

221
16.1 Time variables

16.1.1 OS_Time
Description

This is the time variable which contains the current system time in ticks (usually
equivalent to ms).

Prototyp
extern volatile OS_I32 OS_Time;

Additional Information

The time variable has a resolution of one time unit, which is normally 1/1000 sec
(1 ms) and is normally the time between two successive calls to the embOS interrupt
handler. Instead of accessing this variable directly, use OS_GetTime() or
OS_GetTime32() as explained in the Chapter Time measurement on page 231.

16.1.2 OS_TimeDex
Basically, for internal use only. Contains the time at which the next task switch or
timer activation is due. If ((int)(OS_Time - OS_TimeDex)) >= 0, the task list and
timer list will be checked for a task or timer to activate. After activation, OS_TimeDex
will be assigned the time stamp of the next task or timer to be activated.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

222 CHAPTER 16 System variables
16.2 OS internal variables and data-structures
embOS internal variables are not explained here as they are in no way required to
use embOS. Your application should not rely on any of the internal variables, as only
the documented API functions are guaranteed to remain unchanged in future
versions of embOS.

Important

Do not alter any system variables.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

223
Chapter 17

Configuration for your target
system
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

224 CHAPTER 17 Configuration for your target system
You do not have to configure anything to get started with embOS. The start project
supplied will execute on your system. Small changes in the configuration will be nec-
essary at a later point for system frequency or for the UART used for communication
with the optional embOSView.

The file RTOSInit.c is provided in source code and can be modified to match your
target hardware needs. It is compiled and linked with your application program.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

225
17.1 Hardware-specific routines

Routine Description

OS_InitHW()

Initializes the hardware timer used for generating inter-
rupts. embOS needs a timer-interrupt to determine when
to activate tasks that wait for the expiration of a delay,
when to call a software timer, and to keep the time vari-
able up-to-date.

OS_Idle()
The idle loop is always executed whenever no other task
(and no interrupt service routine) is ready for execution.

OS_GetTime_Cycles()
Reads the timestamp in cycles. Cycle length depends on
the system. This function is used for system information
sent to embOSView.

OS_ConvertCycles2us() Converts cycles into µs (used with profiling only).

OS_COM_Init()
Initializes communication for embOSView
(used with embOSView only).

OS_ISR_Tick()
The embOS timer-interrupt handler. When using a differ-
ent timer, always check the specified interrupt vector.

OS_ISR_rx()
Rx Interrupt service handler for embOSView
(used with embOSView only).

OS_ISR_tx()
Tx Interrupt service handler for embOSView
(used with embOSView only).

OS_COM_Send1()
Send 1 byte via a UART (used with embOSView only).
Do not call this function from your application.

Table 17.1: Hardware specific routines
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

226 CHAPTER 17 Configuration for your target system
17.2 Configuration defines
For most embedded systems, configuration is done by simply modifying the following
defines, located at the top of the RTOSInit.c file:

Define Description

OS_FSYS
System frequency (in Hz).
Example: 20000000 for 20MHz.

OS_UART
Selection of UART to be used with embOSView
(-1 will disable communication),

OS_BAUDRATE Selection of baudrate for communication with embOSView.
Table 17.2: Configuration defines overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

227
17.3 How to change settings
The only file which you may need to change is RTOSInit.c. This file contains all
hardware-specific routines. The one exception is that some ports of embOS require
an additional interrupt vector table file (details can be found in the CPU & Compiler
Specifics manual of embOS documentation).

17.3.1 Setting the system frequency OS_FSYS
Relevant defines

OS_FSYS

Relevant routines

OS_ConvertCycles2us() (used with profiling only)

For most systems it should be sufficient to change the OS_FSYS define at the top of
RTOSInit.c. When using profiling, certain values may require a change in
OS_ConvertCycles2us(). The RTOSInit.c file contains more information about in
which cases this is necessary and what needs to be done.

17.3.2 Using a different timer to generate the tick-interrupts for
embOS

Relevant routines

OS_ InitHW()

embOS usually generates 1 interrupt per ms, making the timer-interrupt, or tick,
normally equal to 1 ms. This is done by a timer initialized in the routine
OS_InitHW(). If you have to use a different timer for your application, you must
modify OS_InitHW() to initialize the appropriate timer. For details about initialization,
read the comments in RTOSInit.c.

17.3.3 Using a different UART or baudrate for embOSView
Relevant defines

OS_UART
OS_BAUDRATE

Relevant routines:

OS_COM_Init()
OS_COM_Send1()
OS_ISR_rx()
OS_ISR_tx()

In some cases, this is done by simply changing the define OS_UART. Refer to the con-
tents of the RTOSInit.c file for more information about which UARTS that are sup-
ported for your CPU.

17.3.4 Changing the tick frequency
Relevant defines

OS_FSYS

As noted above, embOS usually generates 1 interrupt per ms. OS_FSYS defines the
clock frequency of your system in Hz (times per second). The value of OS_FSYS is
used for calculating the desired reload counter value for the system timer for 1000
interrupts/sec. The interrupt frequency is therefore normally 1 kHz.

Different (lower or higher) interrupt rates are possible. If you choose an interrupt
frequency different from 1 kHz, the value of the time variable OS_Time will no longer
be equivalent to multiples of 1 ms. However, if you use a multiple of 1 ms as tick
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

228 CHAPTER 17 Configuration for your target system
time, the basic time unit can be made 1 ms by using the (optional) configuration
macro OS_CONFIG() (see µbelow). The basic time unit does not have to be 1 ms; it
might just as well be 100 µs or 10 ms or any other value. For most applications, 1 ms
is an appropriate value.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

229
17.4 Using non-standard ticks
OS_CONFIG() can be used for configuration of embOS in situations where the basic
timer-interrupt interval (tick) is a multiple of 1 ms and the time values for delays still
should use 1 ms as the time base. OS_CONFIG() tells embOS how many system time
units expire per embOS tick and what the system frequency is.

Examples

1. The following will increment the time variable OS_Time by 1 per RTOS timer-
interrupt. This is the default for embOS, so usage of OS_CONFIG() is not
required.
OS_CONFIG(8000000,8000); /* Configure OS : System-frequency, ticks/int */

2. The following will increment the time variable OS_Time by 2 per embOS timer-
interrupt.
OS_CONFIG(8000000,16000); /* Configure OS : System-frequency, ticks/int */

If, for example, the basic timer was initialized to 500 Hz, which would result in an
embOS timer-interrupt every 2 ms, a call of OS_Delay(10) would result in a delay of
20 ms, because all timing values are interpreted as ticks. A call of OS_CONFIG() with
the parameter shown in example 2 would compensate for the difference, resulting in
a delay of 10 ms when calling OS_Delay(10).
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

230 CHAPTER 17 Configuration for your target system
17.5 STOP / HALT / IDLE modes
Most CPUs support power-saving STOP, HALT, or IDLE modes. Using these types of
modes is one possible way to save power consumption during idle times. As long as
the timer-interrupt will wake up the system with every embOS tick, or as long as
other interrupts will activate tasks, these modes may be used for saving power con-
sumption.

If required, you may modify the OS_Idle() routine, which is part of the hardware-
dependant module RTOSInit.c, to switch the CPU to power-saving mode during idle
times. Refer to the CPU & Compiler Specifics manual of embOS documentation for
details about your processor.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

231
Chapter 18

Time measurement
embOS supports 2 types of time measurement:

� Low resolution (using a time variable)
� High resolution (using a hardware timer)

Both are explained in this chapter.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

232 CHAPTER 18 Time measurement
embOS supports two basic types of run-time measurement which may be used for
calculating the execution time of any section of user code. Low-resolution measure-
ments use a time base of ticks, while high-resolution measurements are based on a
time unit called a cycle. The length of a cycle depends on the timer clock frequency.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

233
18.1 Low-resolution measurement
The system time variable OS_Time is measured in ticks, or ms. The low-resolution
functions OS_GetTime() and OS_GetTime32() are used for returning the current con-
tents of this variable. The basic idea behind low-resolution measurement is quite
simple: The system time is returned once before the section of code to be timed and
once after, and the first value is subtracted from the second to obtain the time it took
for the code to execute.

The term low-resolution is used because the time values returned are measured in
completed ticks. Consider the following: with a normal tick of 1 ms, the variable
OS_Time is incremented with every tick-interrupt, or once every ms. This means that
the actual system time can potentially be more than what a low-resolution function
will return (for example, if an interrupt actually occurs at 1.4 ticks, the system will
still have measured only 1 tick as having elapsed). The problem becomes even
greater with runtime measurement, because the system time must be measured
twice. Each measurement can potentially be up to 1 tick less than the actual time, so
the difference between two measurements could theoretically be inaccurate by up to
two ticks.

The following diagram illustrates how low-resolution measurement works. We can see
that the section of code actually begins at 0.5 ms and ends at 5.2 ms, which means
that its actual execution time is (5.2 - 0.5) = 4.7 ms. However with a tick of 1 ms,
the first call to OS_GetTime() returns 0, and the second call returns 5. The measured
execution time of the code would therefore result in (5 - 0) = 5 ms.

For many applications, low-resolution measurement may be fully sufficient for your
needs. In some cases, it may be more desirable than high-resolution measurement
due to its ease of use and faster computation time.

OS_Time

6 ms0 ms 5 ms4 ms3 ms2 ms1 ms

Code to be timed

OS_GetTime() => 0 OS_GetTime() => 5

0.5 ms 5.2 ms
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

234 CHAPTER 18 Time measurement
18.2 Low-resolution measurement API function over-
view

Routine Description

OS_GetTime() Returns the current system time in ticks.

OS_GetTime32()
Returns the current system time in ticks as a 32-bit
value.

Table 18.1: Low-resolution measurement API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

235
18.2.1 OS_GetTime()
Description

Returns the current system time in ticks.

Prototype
int OS_GetTime (void);

Return value

The system variable OS_Time as a 16- or 32-bit integer value.

Additional Information

This function returns the system time as a 16-bit value on 8/16-bit CPUs, and as a
32-bit value on 32-bit CPUs. The OS_Time variable is a 32-bit value. Therefore, if the
return value is 32-bit, it is simply the entire contents of the OS_Time variable. If the
return value is 16-bit, it is the lower 16 bits of the OS_Time variable.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

236 CHAPTER 18 Time measurement
18.2.2 OS_GetTime32()
Description

Returns the current system time in ticks as a 32-bit value.

Prototype
U32 OS_GetTime32 (void);

Return value

The system variable OS_Time as a 32-bit integer value.

Additional Information

This function always returns the system time as a 32-bit value. Because the OS_Time
variable is also a 32-bit value, the return value is simply the entire contents of the
OS_Time variable.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

237
18.3 High-resolution measurement
High-resolution measurement uses the same routines as those used in profiling
builds of embOS, allowing for fine-tuning of time measurement. While system resolu-
tion depends on the CPU used, it is typically about 1 µs, making high-resolution mea-
surement about 1000 times more accurate than low-resolution calculations.

Instead of measuring the number of completed ticks at a given time, an internal
count is kept of the number of cycles that have been completed. Look at the illustra-
tion below, which measures the execution time of the same code used in the low-res-
olution calculation. For this example, we assume that the CPU has a timer running at
10 MHz and is counting up. The number of cycles per tick is therefore (10 MHz / 1
kHz) = 10,000. This means that with each tick-interrupt, the timer restarts at 0 and
counts up to 10,000.

The call to OS_Timing_Start() calculates the starting value at 5,000 cycles, while
the call to OS_Timing_End() calculates the ending value at 52,000 cycles (both val-
ues are kept track of internally). The measured execution time of the code in this
example would therefore be (52,000 - 5,000) = 47,000 cycles, which corresponds to
4.7 ms.

Although the function OS_Timing_GetCycles() may be used for returning the execu-
tion time in cycles as above, it is typically more common to use the function
OS_Timing_Getus(), which returns the value in microseconds (µs). In the above
example, the return value would be 4,700 µs.

Data structure

All high-resolution routines take as parameter a pointer to a data structure of type
OS_TIMING, defined as follows:

#define OS_TIMING OS_U32

OS_Time

6 ms0 ms 5 ms4 ms3 ms2 ms1 ms

Code to be timed

OS_GetTime() => 0 OS_GetTime() => 5

0.5 ms 5.2 ms
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

238 CHAPTER 18 Time measurement
18.4 High-resolution measurement API function over-
view

Routine Description

OS_TimingStart() Marks the beginning of a code section to be timed.
OS_TimingEnd() Marks the end of a code section to be timed.

OS_Timing_Getus()
Returns the execution time of the code between
OS_Timing_Start() and OS_Timing_End() in microsec-
onds.

OS_Timing_GetCycles()
Returns the execution time of the code between
OS_Timing_Start() and OS_Timing_End() in cycles.

Table 18.2: High-resolution measurement API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

239
18.4.1 OS_TimingStart()
Description

Marks the beginning of a section of code to be timed.

Prototype
void OS_Timing_Start (OS_TIMING* pCycle);

Additional Information

This function must be used with OS_Timing_End().

Parameter Description

pCycle Pointer to a data structure of type OS_TIMING.
Table 18.3: OS_TimingStart() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

240 CHAPTER 18 Time measurement
18.4.2 OS_TimingEnd()
Description

Marks the end of a section of code to be timed.

Prototype
void OS_Timing_End (OS_TIMING* pCycle);

Additional Information

This function must be used with OS_Timing_Start().

Parameter Description

pCycle Pointer to a data structure of type OS_TIMING.
Table 18.4: OS_TimingEnd() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

241
18.4.3 OS_Timing_Getus()
Description

Returns the execution time of the code between OS_Timing_Start() and
OS_Timing_End() in microseconds.

Prototype
OS_U32 OS_Timing_Getus (OS_TIMING* pCycle);

Additional Information

The execution time in microseconds (µs) as a 32-bit integer value.

Parameter Description

pCycle Pointer to a data structure of type OS_TIMING.
Table 18.5: OS_Timing_Getus() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

242 CHAPTER 18 Time measurement
18.4.4 OS_Timing_GetCycles()
Description

Returns the execution time of the code between OS_Timing_Start() and
OS_Timing_End() in cycles.

Prototype
OS_U32 OS_Timing_GetCycles (OS_TIMING* pCycle);

Return value

The execution time in cycles as a 32-bit integer.

Additional Information

Cycle length depends on the timer clock frequency.

Parameter Description

pCycle Pointer to a data structure of type OS_TIMING.
Table 18.6: OS_Timing_GetCycles() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

243
18.5 Example
The following sample demonstrates the use of low-resolution and high-resolution
measurement to return the execution time of a section of code:

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : SampleHiRes.c
Purpose : Demonstration of embOS Hires Timer
--------------END-OF-HEADER------------------------------*/

#include "RTOS.H"
#include <stdio.h>

OS_STACKPTR int Stack[1000]; /* Task stacks */
OS_TASK TCB; /* Task-control-blocks */

volatile int Dummy;
void UserCode(void) {
 for (Dummy=0; Dummy < 11000; Dummy++); /* Burn some time */
}

/*
* Measure the execution time with low resolution and return it in ms (ticks)
*/
int BenchmarkLoRes(void) {
 int t;
 t = OS_GetTime();
 UserCode(); /* Execute the user code to be benchmarked */
 t = OS_GetTime() - t;
 return t;
}

/*
* Measure the execution time with hi resolution and return it in us
*/
OS_U32 BenchmarkHiRes(void) {
 OS_U32 t;
 OS_Timing_Start(&t);
 UserCode(); /* Execute the user code to be benchmarked */
 OS_Timing_End(&t);
 return OS_Timing_Getus(&t);
}

void Task(void) {
 int tLo;
 OS_U32 tHi;
 char ac[80];
 while (1) {
 tLo = BenchmarkLoRes();
 tHi = BenchmarkHiRes();
 sprintf(ac, "LoRes: %d ms\n", tLo);
 OS_SendString(ac);
 sprintf(ac, "HiRes: %d us\n", tHi);
 OS_SendString(ac);
 }
}

/**
*
* main
*
**/

void main(void) {
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB, "HP Task", Task, 100, Stack);
 OS_Start(); /* Start multitasking */
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

244 CHAPTER 18 Time measurement
The output of the sample is as follows:

LoRes: 7 ms
HiRes: 6641 us
LoRes: 7 ms
HiRes: 6641 us
LoRes: 6 ms
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

245
Chapter 19

embOSView: Profiling and analyz-
ing
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

246 CHAPTER 19 embOSView: Profiling and analyzing
19.1 Overview
embOSView displays the state of a running application using embOS. A serial
interface (UART) is normally used for communication with the target. The hardware-
dependent routines and defines and defines available for communication with
embOSView are located in RTOSInit.c. This file has to be configured properly. For
details on how to configure this file, refer the CPU & Compiler Specifics manual of
embOS documentation. The embOSView utility is shipped as embOSView.exe with
embOS and runs under Windows 9x / NT / 2000. The latest version is available on
our website at www.segger.com

embOSView is a very helpful tool for analysis of the running target application.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

247
19.2 Task list window
embOSView shows the state of every created task of the target application in the
Task list window. The information shown depends on the library used in your
application.

The Task list window is helpful in analysis of stack usage and CPU load for every
running task.

Item Description Builds

Prio Current priority of task. All

Id Task ID, which is the address of the task control
block. All

Name Name assigned during creation. All

Status Current state of task (ready, executing, delay,
reson for suspension). All

Data Depends on status. All

Timeout Time of next activation. All

Stack Used stack size/max. stack size/stack location. S, SP, D, DP, DT

CPULoad Percentage CPU load caused by task. SP, DP, DT

Context
Switches Number of activations since reset. SP, DP, DT

Table 19.1: Task list window overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

248 CHAPTER 19 embOSView: Profiling and analyzing
19.3 System variables window
embOSView shows the actual state of major system variables in the System vari-
ables window. The information shown also depends on the library used in your
application:

Item Description Builds

OS_VERSION Current version of embOS. All

CPU Target CPU and compiler. All

LibMode Library mode used for target application. All

OS_Time Current system time in timer ticks. All

OS_NUM_TASKS Current number of defined tasks. All

OS_Status Current error code (or O.K.). All

OS_pActiveTask Active task that should be running. SP, D, DP, DT

OS_pCurrentTask Actual currently running task. SP, D, DP, DT

SysStack Used size/max. size/location of system
stack. SP, DP, DT

IntStack Used size/max. size/location of interrupt
stack. SP, DP, DT

TraceBuffer Current count/maximum size and current
state of trace buffer. All trace builds

Table 19.2: System variables window overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

249
19.4 Sharing the SIO for terminal I/O
The serial input/output (SIO) used by embOSView may also be used by the
application at the same time for both input and output. This can be very helpful.
Terminal input is often used as keyboard input, where terminal output may be used
for outputting debug messages. Input and output is done via the Terminal window,
which can be shown by selecting View/Terminal from the menu.

To ensure communication via the Terminal window in parallel with the viewer
functions, the application uses the function OS_SendString() for sending a string to
the Terminal window and the function OS_SetRxCallback() to hook a recep-
tion routine that receives one byte.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

250 CHAPTER 19 embOSView: Profiling and analyzing
19.4.1 Shared SIO API function overview

Routine Description

OS_SendString() Sends a string over SIO to the Terminal window.

OS_SetRxCallback()
Sets a callback hook to a routine for receiving one char-
acter.

Table 19.3: Shared SIO API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

251
19.4.2 OS_SendString()
Description

Sends a string over SIO to the Terminal window.

Prototype
void OS_SendString (const char* s);

Additional Information

This function uses OS_COM_Send1() which is defined in RTOSInit.c.

Parameter Description

s
Pointer to a zero-terminated string that should be sent to the
Terminal window.

Table 19.4: OS_SendString() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

252 CHAPTER 19 embOSView: Profiling and analyzing
19.4.3 OS_SetRxCallback()
Description

Sets a callback hook to a routine for receiving one character.

Prototype
typedef void OS_RX_CALLBACK (OS_U8 Data)

OS_RX_CALLBACK* OS_SetRxCallback (OS_RX_CALLBACK* cb);

Return value

OS_RX_CALLBACK* as described above. This is the pointer to the callback function that
was hooked before the call.

Additional Information

The user function is called from embOS. The received character is passed as parame-
ter. See the example below.

Example

void GUI_X_OnRx(OS_U8 Data); /* Callback ... called from Rx-interrupt */

void GUI_X_Init(void) {
 OS_SetRxCallback(&GUI_X_OnRx);
}

Parameter Description

cb
Pointer to the application routine that should be called when one
character is received over the serial interface.

Table 19.5: OS_SetRxCallback() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

253
19.5 Using the API trace
embOS versions 3.06 or higher contain a trace feature for API calls. This requires the
use of the trace build libraries in the target application.

The trace build libraries implement a buffer for 100 trace entries. Tracing of API calls
can be started and stopped from embOSView via the Trace menu, or from within the
application by using the functions OS_TraceEnable() and OS_TraceDiasable().
Individual filters may be defined to determine which API calls should be traced for
different tasks or from within interrupt or timer routines.

Once the trace is started, the API calls are recorded in the trace buffer, which is peri-
odically read by embOSView. The result is shown in the Trace window:

Every entry in the Trace list is recorded with the actual system time. In case of
calls or events from tasks, the task ID (TaskId) and task name (TaskName) (lim-
ited to 15 characters) are also recorded. Parameters of API calls are recorded if pos-
sible, and are shown as part of the APIName column. In the example above, this
can be seen with OS_Delay(3). Once the trace buffer is full, trace is automatically
stopped. The Trace list and buffer can be cleared from embOSView.

Setting up trace from embOSView

Three different kinds of trace filters are defined for tracing. These filters can be set
up from embOSView via the menu Options/Setup/Trace.

Filter 0 is not task-specific and records all specified events regardless of the task. As
the Idle loop is not a task, calls from within the idle loop are not traced.

Filter 1 is specific for interrupt service routines, software timers and all calls that
occur outside a running task. These calls may come from the idle loop or during
startup when no task is running.

Filters 2 to 4 allow trace of API calls from named tasks.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

254 CHAPTER 19 embOSView: Profiling and analyzing
To enable or disable a filter, simply check or uncheck the corresponding checkboxes
labeled Filter 4 Enable to Filter 0 Enable.

For any of these five filters, individual API functions can be enabled or disabled by
checking or unchecking the corresponding checkboxes in the list. To speed up the
process, there are two buttons available:

� Select all - enables trace of all API functions for the currently enabled (checked)
filters.

� Deselect all - disables trace of all API functions for the currently enabled
(checked) filters.

Filter 2, Filter 3, and Filter 4 allow tracing of task-specific API calls. A task name
can therefore be specified for each of these filters. In the example above, Filter 4 is
configured to trace calls of OS_Delay() from the task called MainTask. After the set-
tings are saved (via the Apply or OK button), the new settings are sent to the target
application.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

255
19.6 Trace filter setup functions
Tracing of API or user function calls can be started or stopped from embOSView. By
default, trace is initially disabled in an application program. It may be very helpful to
control the recording of trace events directly from the application, using the following
functions.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

256 CHAPTER 19 embOSView: Profiling and analyzing
19.7 Trace filter API functions

Routine Description

OS_TraceEnable() Enables tracing of filtered API calls.
OS_TraceDisable() Disables tracing of API and user function calls.

OS_TraceEnableAll()
Sets up Filter 0 (any task), enables tracing of all API
calls and then enables the trace function.

OS_TraceDisableAll()
Sets up Filter 0 (any task), disables tracing of all
API calls and also disables trace.

OS_TraceEnableId()
Sets the specified ID value in Filter 0 (any task),
thus enabling trace of the specified function, but
does not start trace.

OS_TraceDisableId()
Resets the specified ID value in Filter 0 (any task),
thus disabling trace of the specified function, but
does not stop trace.

OS_TraceEnableFilterId()
Sets the specified ID value in the specified trace fil-
ter, thus enabling trace of the specified function,
but does not start trace.

OS_TraceDisableFilterId()
Resets the specified ID value in the specified trace
filter, thus disabling trace of the specified function,
but does not stop trace.

Table 19.6: Trace filter API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

257
19.7.1 OS_TraceEnable()
Description

Enables tracing of filtered API calls.

Prototype
void OS_TraceEnable (void);

Additional Information

The trace filter conditions should have been set up before calling this function. This
functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

258 CHAPTER 19 embOSView: Profiling and analyzing
19.7.2 OS_TraceDisable()
Description

Disables tracing of API and user function calls.

Prototype
void OS_TraceDisable (void);

Additional Information

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

259
19.7.3 OS_TraceEnableAll()
Description

Sets up Filter 0 (any task), enables tracing of all API calls and then enables the trace
function.

Prototype
void OS_TraceEnableAll (void);

Additional Information

The trace filter conditions of all the other trace filters are not affected.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

260 CHAPTER 19 embOSView: Profiling and analyzing
19.7.4 OS_TraceDisableAll()
Description

Sets up Filter 0 (any task), disables tracing of all API calls and also disables trace.

Prototype
void OS_TraceDisableAll (void);

Additional Information

The trace filter conditions of all the other trace filters are not affected, but tracing is
stopped.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

261
19.7.5 OS_TraceEnableId()
Description

Sets the specified ID value in Filter 0 (any task), thus enabling trace of the specified
function, but does not start trace.

Prototype
void OS_TraceEnableId (OS_U8 Id);

Additional Information

To enable trace of a specific embOS API function, you must use the correct Id value.
These values are defined as symbolic constants in RTOS.h.
This function may also enable trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Table 19.7: OS_TraceEnabled() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

262 CHAPTER 19 embOSView: Profiling and analyzing
19.7.6 OS_TraceDisableId()
Description

Resets the specified ID value in Filter 0 (any task), thus disabling trace of the speci-
fied function, but does not stop trace.

Prototype
void OS_TraceDisableId (OS_U8 Id);

Additional Information

To disable trace of a specific embOS API function, you must use the correct Id value.
These values are defined as symbolic constants in RTOS.h.
This function may also be used for disabling trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Table 19.8: OS_TraceDisabledId() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

263
19.7.7 OS_TraceEnableFilterId()
Description

Sets the specified ID value in the specified trace filter, thus enabling trace of the
specified function, but does not start trace.

Prototype
void OS_TraceEnableFilterId (OS_U8 FilterIndex,

 OS_U8 Id)

Additional Information

To enable trace of a specific embOS API function, you must use the correct Id value.
These values are defined as symbolic constants in RTOS.h.
This function may also be used for enabling trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

Parameter Description

FilterIndex
Index of the filter that should be affected:
0 <= FilterIndex <= 4
0 affects Filter 0 (any task) and so on.

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Table 19.9: OS_TraceEnabledFilterId() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

264 CHAPTER 19 embOSView: Profiling and analyzing
19.7.8 OS_TraceDisableFilterId()
Description

Resets the specified ID value in the specified trace filter, thus disabling trace of the
specified function, but does not stop trace.

Prototype
void OS_TraceDisableFilterId (OS_U8 FilterIndex,

 OS_U8 Id)

Additional Information

To disable trace of a specific embOS API function, you must use the correct Id value.
These values are defined as symbolic constants in RTOS.h.
This function may also be used for disabling trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

Parameter Description

FilterIndex
Index of the filter that should be affected:
0 <= FilterIndex <= 4
0 affects Filter 0 (any task) and so on.

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Table 19.10: OS_TraceDisableFilterId() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

265
19.8 Trace record functions
The following functions are used for writing (recording) data into the trace buffer. As
long as only embOS API calls should be recorded, these functions are used internally
by the trace build libraries. If, for some reason, you want to trace your own functions
with your own parameters, you may call one of these routines.

All of these functions have the following points in common:

� To record data, trace must be enabled.
� An ID value in the range from 100 to 127 must be used as the Id parameter. ID

values from 0 to 99 are internally reserved for embOS.
� The events specified as Id have to be enabled in any of the trace filters.
� Active system time and the current task are automatically recorded together with

the specified event.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

266 CHAPTER 19 embOSView: Profiling and analyzing
19.9 Trace record API function overview

Routine Description

OS_TraceVoid()
Writes an entry identified only by its ID into the trace
buffer.

OS_TracePtr()
Writes an entry with ID and a pointer as parameter into
the trace buffer.

OS_TraceData()
Writes an entry with ID and an integer as parameter into
the trace buffer.

OS_TraceDataPtr()
Writes an entry with ID, an integer, and a pointer as
parameter into the trace buffer.

OS_TraceU32Ptr()
Writes an entry with ID, a 32-bit unsigned integer, and a
pointer as parameter into the trace buffer.

Table 19.11: Trace record API overview
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

267
19.9.1 OS_TraceVoid()
Description

Writes an entry identified only by its ID into the trace buffer.

Prototype
void OS_TraceVoid (OS_U8 Id);

Additional Information

This functionality is available in trace builds only, and the API call is not removed by
the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Table 19.12: OS_TraceVoid() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

268 CHAPTER 19 embOSView: Profiling and analyzing
19.9.2 OS_TracePtr()
Description

Writes an entry with ID and a pointer as parameter into the trace buffer.

Prototype
void OS_TracePtr (OS_U8 Id,
 void* p);

Additional Information

The pointer passed as parameter will be displayed in the trace list window of
embOSView. This functionality is available in trace builds only. In non-trace builds,
the API call is removed by the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

p Any void pointer that should be recorded as parameter.
Table 19.13: OS_TracePtr() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

269
19.9.3 OS_TraceData()
Description

Writes an entry with ID and an integer as parameter into the trace buffer.

Prototype
void OS_TraceData (OS_U8 Id,
 int v);

Additional Information

The value passed as parameter will be displayed in the trace list window of
embOSView.This functionality is available in trace builds only. In non-trace builds,
the API call is removed by the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

v Any integer value that should be recorded as parameter.
Table 19.14: OS_TraceData() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

270 CHAPTER 19 embOSView: Profiling and analyzing
19.9.4 OS_TraceDataPtr()
Description

Writes an entry with ID, an integer, and a pointer as parameter into the trace buffer.

Prototype
void OS_TraceDataPtr (OS_U8 Id,
 int v,
 void* p);

Additional Information

The values passed as parameters will be displayed in the trace list window of embOS-
View. This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

v Any integer value that should be recorded as parameter.
p Any void pointer that should be recorded as parameter.

Table 19.15: OS_TraceDataPtr() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

271
19.9.5 OS_TraceU32Ptr()
Description

Writes an entry with ID, a 32-bit unsigned integer, and a pointer as parameter into
the trace buffer.

Prototype
void OS_TraceU32Ptr (OS_U8 Id,
 OS_U32 p0,
 void* p1);

Additional Information

This function may be used for recording two pointers. The values passed as parame-
ters will be displayed in the trace list window of embOSView. This functionality is
available in trace builds only. In non-trace builds, the API call is removed by the pre-
processor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

p0 Any unsigned 32-bit value that should be recorded as parameter.
p1 Any void pointer that should be recorded as parameter.

Table 19.16: OS_TraceU32Ptr() parameter list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

272 CHAPTER 19 embOSView: Profiling and analyzing
19.10 Application-controlled trace example
As described in the previous section, the user application can enable and set up the
trace conditions without a connection or command from embOSView. The trace
record functions can also be called from any user function to write data into the trace
buffer, using ID numbers from 100 to 127.

Controlling trace from the application can be very helpful for tracing API and user
functions just after starting the application, when the communication to embOSView
is not yet available or when the embOSView setup is not complete.

The example below shows how a trace filter can be set up by the application. The
function OS_TraceEnableID() sets the trace filter 0 which affects calls from any
running task. Therefore, the first call to SetState() in the example would not be
traced because there is no task running at that moment. The additional filter setup
routine OS_TraceEnableFilterId() is called with filter 1, which results in tracing
calls from outside running tasks.

Example code

#include "RTOS.h"

#ifndef OS_TRACE_FROM_START
 #define OS_TRACE_FROM_START 1
#endif

/* Application specific trace id numbers */
#define APP_TRACE_ID_SETSTATE 100

char MainState;

/* Sample of application routine with trace */

void SetState(char* pState, char Value) {
 #if OS_TRACE
 OS_TraceDataPtr(APP_TRACE_ID_SETSTATE, Value, pState);
 #endif
 * pState = Value;
}

/* Sample main routine, that enables and setup API and function call trace
 from start */
void main(void) {
 OS_InitKern();
 OS_InitHW();
 #if (OS_TRACE && OS_TRACE_FROM_START)
 /* OS_TRACE is defined in trace builds of the library */
 OS_TraceDisableAll(); /* Disable all API trace calls */
 OS_TraceEnableId(APP_TRACE_ID_SETSTATE); /* User trace */
 OS_TraceEnableFilterId(APP_TRACE_ID_SETSTATE); /* User trace */
 OS_TraceEnable();
 #endif

 /* Application specific initilisation */
 SetState(&MainState, 1);
 OS_CREATETASK(&TCBMain, "MainTask", MainTask, PRIO_MAIN, MainStack);
 OS_Start(); /* Start multitasking -> MainTask() */
}

By default, embOSView lists all user function traces in the trace list window as Rou-
tine, followed by the specified ID and two parameters as hexadecimal values. The
example above would result in the following:

Routine100(0xabcd, 0x01)

where 0xabcd is the pointer address and 0x01 is the parameter recorded from
OS_TraceDataPtr().
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

273
19.11 User-defined functions
To use the built-in trace (available in trace builds of embOS) for application program
user functions, embOSView can be customized. This customization is done in the
setup file embOS.ini.

This setup file is parsed at the startup of embOSView. It is optional; you will not see
an error message if it cannot be found.

To enable trace setup for user functions, embOSView needs to know an ID number,
the function name and the type of two optional parameters that can be traced. The
format is explained in the following sample embOS.ini file:

Example code

File: embOS.ini
#
embOSView Setup file
#
embOSView loads this file at startup. It has to reside in the same
directory as the execuatble itself.
#
Note: The file is not required to run embOSView. You will not get
an error message if it is not found. However, you will get an error message
if the contents of the file are invalid.

#
Define add. API functions.
Syntax: API(<Index>, <Routinename> [parameters])
Index: Integer, between 100 and 127
Routinename: Identifier for the routine. Should be no more than 32 characters
parameters: Optional paramters. A max. of 2 parameters can be specified.
Valid parameters are:
int
ptr
Every parameter has to be preceeded by a colon.
#
API(100, "Routine100")
API(101, "Routine101", int)
API(102, "Routine102", int, ptr)
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

274 CHAPTER 19 embOSView: Profiling and analyzing
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

275
Chapter 20

Debugging
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

276 CHAPTER 20 Debugging
20.1 Runtime errors
Some error conditions can be detected during runtime. These are:

� Usage of uninitialized data structures
� Invalid pointers
� Unused resource that has not been used by this task before
� OS_LeaveRegion() called more often than OS_EnterRegion()
� Stack overflow (this feature is not available for some processors)

Which runtime errors that can be detected depend on how much checking is per-
formed. Unfortunately, additional checking costs memory and speed (it is not that
significant, but there is a difference). If embOS detects a runtime error, it calls the
following routine:

void OS_Error(int ErrCode);

This routine is shipped as source code as part of the module OS_Error.c. It simply
disables further task switches and then, after re-enabling interrupts, loops forever as
follows:

Example

/*
 Run time error reaction
*/
void OS_Error(int ErrCode) {
 OS_EnterRegion(); /* Avoid further task switches */
 OS_DICnt =0; /* Allow interrupts so we can communicate */
 OS_EI();
 OS_Status = ErrCode;
 while (OS_Status);
}

If you are using embOSView, you can see the value and meaning of OS_Status in the
system variable window.

When using an emulator, you should set a breakpoint at the beginning of this routine
or simply stop the program after a failure. The error code is passed to the function as
parameter.

You can modify the routine to accommodate your own hardware; this could mean
that your target hardware sets an error-indicating LED or shows a little message on
the display.

Note: When modifying the OS_Error() routine, the first statement needs
to be the disabling of scheduler via OS_EnterRegion(); the last statement
needs to be the infinite loop.

If you look at the OS_Error() routine, you will see that it is more complicated than
necessary. The actual error code is assigned to the global variable OS_Status. The
program then waits for this variable to be reset. Simply reset this variable to 0 using
your in circuit-emulator, and you can easily step back to the program sequence
causing the problem. Most of the time, looking at this part of the program will make
the problem clear.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

277
20.2 List of error codes

Value Define Explanation

100 OS_ERR_ISR_INDEX
Index value out of bounds during inter-
rupt controller initilization or interrupt
installation.

101 OS_ERR_ISR_VECTOR
Default interrupt handler called, but
interrupt vector not initialized.

120 OS_ERR_STACK Stack overflow or invalid stack.
121 OS_ERR_CSEMA_OVERFLOW Counting semaphore overflow.

128 OS_ERR_INV_TASK
Task control block invalid, not initial-
ized or overwritten.

129 OS_ERR_INV_TIMER
Timer control block invalid, not initial-
ized or overwritten.

130 OS_ERR_INV_MAILBOX
Mailbox control block invalid, not ini-
tialized or overwritten.

132 OS_ERR_INV_CSEMA
Control block for counting semaphore
invalid, not initialized or overwritten.

133 OS_ERR_INV_RSEMA
Control block for resource semaphore
invalid, not initialized or overwritten.

135 OS_ERR_MAILBOX_NOT1

One of the following 1-byte mailbox
functions has been used on a multi-
byte mailbox:
OS_PutMail1()
OS_PutMailCond1
()OS_GetMail1()
OS_GetMailCond1().

136 OS_ERR_MAILBOX_DELETE
OS_DeleteMB() was called on a mail-
box with waiting tasks.

137 OS_ERR_CSEMA_DELETE
OS_DeleteCSema() was called on a
counting semaphore with waiting
tasks.

138 OS_ERR_RSEMA_DELETE
OS_DeleteRSema() was called on a
resource semaphore which is claimed
by a task.

140 OS_ERR_MAILBOX_NOT_IN_LIST

The mailbox is not in the list of mail-
boxes as expected. Possible reasons
may be that one mailbox data struc-
ture was overwritten.

142 OS_ERR_TASKLIST_CORRUPT The OS internal tasklist is destroyed.

150 OS_ERR_UNUSE_BEFORE_USE
OS_Unuse() has been called before
OS_Use().

151 OS_ERR_LEAVEREGION_BEFORE_ENTE
RREGION

OS_LeaveRegion() has been called
before OS_EnterRegion().

152 OS_ERR_LEAVEINT Error in OS_LeaveInterrupt().

153 OS_ERR_DICNT

The interrupt disable counter
(OS_DICnt) is out of range (0-15). The
counter is affected by the following API
calls:
OS_IncDI()
OS_DecRI()
OS_EnterInterrupt()
OS_LeaveInterrupt()

154 OS_ERR_INTERRUPT_DISABLED
OS_Delay() or OS_DelayUntil() called
from inside a critical region with inter-
rupts disabled.

Table 20.1: Error code list
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

278 CHAPTER 20 Debugging
156 OS_ERR_RESOURCE_OWNER
OS_Unuse() has been called from a
task which does not own the resource.

160 OS_ERR_ILLEGAL_IN_ISR

Illegal function call in an interrupt ser-
vice routine:A routine that may not be
called from within an ISR has been
called from within an ISR.

161 OS_ERR_ILLEGAL_IN_TIMER

Illegal function call in an interrupt ser-
vice routine:A routine that may not be
called from within a software timer
has been called from within a timer.

162 OS_ERR_ILLEGAL_OUT_ISR
embOS timer tick handler or UART han-
dler for embOSView was called without
a call of OS_EnterInterrupt().

170 OS_ERR_2USE_TASK
Task control block has been initialized
by calling a create function twice.

171 OS_ERR_2USE_TIMER
Timer control block has been initialized
by calling a create function twice.

172 OS_ERR_2USE_MAILBOX
Mailbox control block has been initial-
ized by calling a create function twice.

173 OS_ERR_2USE_BSEMA
Binary semaphore has been initialized
by calling a create function twice.

174 OS_ERR_2USE_CSEMA
Counting semaphore has been initial-
ized by calling a create function twice.

175 OS_ERR_2USE_RSEMA
Resource semaphore has been initial-
ized by calling a create function twice.

176 OS_ERR_2USE_MEMF
Fixed size memory pool has been ini-
tialized by calling a create function
twice.

180 OS_ERR_NESTED_RX_INT
OS_Rx interrupt handler for embOS-
View is nested. Disable nestable inter-
rupts.

190 OS_ERR_MEMF_INV
Fixed size memory block control struc-
ture not created before use.

191 OS_ERR_MEMF_INV_PTR
Pointer to memory block does not
belong to memory pool on Release

192 OS_ERR_MEMF_PTR_FREE
Pointer to memory block is already free
when calling OS_MEMF_Release(). Pos-
sibly, same pointer was released twice.

193 OS_ERR_MEMF_RELEASE

OS_MEMF_Release() was called for a
memory pool, that had no memory
block allocated (all available blocks
were already free before).

194 OS_ERR_POOLADDR
OS_MEMF_Create() was called with a
memory pool base address which is not
located at a word aligned base address

195 OS_ERR_BLOCKSIZE
OS_MEMF_Create() was called with a
data block size which is not a multiple
of processors word size.

200 OS_ERR_SUSPEND_TOO_OFTEN
Nested call of OS_Suspend() exceeded
OS_MAX_SUSPEND_CNT

201 OS_ERR_RESUME_BEFORE_SUSPEND
OS_Resume() called on a task that was
not suspended.

Value Define Explanation

Table 20.1: Error code list (Continued)
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

279
The latest version of the defined error table is part of the comment just before the
OS_Error() function declaration in the source file OS_Error.c.

202 OS_ERR_TASK_PRIORITY

OS_CreateTask() was called with a
task priority which is already assigned
to another task. This error can only
occur when embOS was compiled with-
out round robin support.

210 OS_ERR_EVENT_INVALID
An OS_EVENT object was used before it
was created.

211 OS_ERR_2USE_EVENTOBJ An OS_EVENT object was created twice.

212 OS_ERR_EVENT_DELETE
An OS_EVENT object was deleted with
waiting tasks

Value Define Explanation

Table 20.1: Error code list (Continued)
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

280 CHAPTER 20 Debugging
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

281
Chapter 21

Performance and resource usage
This chapter covers the performance and resource usage of embOS. It explains how
to benchmark embOS and contains information about the memory requirements in
typical systems which can be used to obtain sufficient estimates for most target sys-
tems.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

282 CHAPTER 21 Performance and resource usage
21.1 Introduction
High performance combined with low resource usage has always been a major design
consideration. embOS runs on 8/16/32-bit CPUs. Depending on which features are
being used, even single-chip systems with less than 2 Kbytes ROM and 1 Kbyte RAM
can be supported by embOS. The actual performance and resource usage depends on
many factors (CPU, compiler, memory model, optimization, configuration, etc.).
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

283
21.2 Memory requirements
The memory requirements of embOS (RAM and ROM) differs depending on the used
features of the library. The following table shows the memory requirements for the
different modules.

* Depends on CPU, compiler, and library model used

Module Memory type Memory requirements

embOS kernel ROM 1100 - 1600 bytes *

embOS kernel RAM 18 - 25 bytes *

Mailbox RAM 9 - 15 bytes *

Binary and counting semaphores RAM 3 bytes

Recource semaphore RAM 4 - 5 bytes *

Timer RAM 9 - 11 bytes *

Event RAM 0 bytes

Table 21.1: embOS memory requirements
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

284 CHAPTER 21 Performance and resource usage
21.3 Performance
The following section shows how to benchmark embOS with the supplied example
programs.

21.4 Benchmarking
embOS is designed to perform fast context switches. This section describes two dif-
ferent methods to calculate the execution time of a context switch from a task with
lower priority to a task with a higher priority.

The first method uses port pins and requires an oscilloscope. The second method
uses the high-resolution measurement functions. Example programs for both meth-
ods are supplied in the \Sample directory of your embOS shipment.

Segger uses these programs to benchmark the embOS performance. You can use
these examples to evaluate the benchmark results. Note, that the actual perfor-
mance depends on many factors (CPU, clock speed, toolchain, memory model, opti-
mization, configuration, etc.).

The following table gives an overview about the variations of the context switch time
depending on the memory type and the CPU mode:

All named example performance values in the following section are determined with
the following system configuration:

ATMEL AT91SAM7S256 running with 48 MHz clock speed. All sources are compiled
with IAR Embedded Workbench version 4.40A using thumb or arm mode with high
optimization level.

Target OS version Memory CPU mode Time

ATMEL
AT91SAM7S256 3.50b Flash Thumb 7.562us

ATMEL
AT91SAM7S256 3.50b Flash ARM 7.875us

ATMEL
AT91SAM7S256 3.50b RAM ARM 5.896us

ATMEL
AT91SAM7S256 3.50b RAM Thumb 6.187us

Table 21.2: embOS context switch times
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

285
21.4.1 Measurement with port pins and oscilloscope
The example file MeasureCST_Scope.c uses the LED.c module to set and clear a port
pin. This allows measuring the context switch time with an oscilloscope.

The following source code is excerpt from MeasureCST_Scope.c:

#include "RTOS.h"
#include "LED.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks

/***
*
* HPTask
*/
static void HPTask(void) {
 while (1) {
 OS_Suspend(NULL); // Suspend high priority task
 LED_ClrLED0(); // Stop measurement
 }
}

/***
*
* LPTask
*/
static void LPTask(void) {
 while (1) {
 OS_Delay(100); // Syncronize to tick to avoid jitter
 //
 // Display measurement overhead
 //
 LED_SetLED0();
 LED_ClrLED0();
 //
 // Perform measurement
 //
 LED_SetLED0(); // Start measurement
 OS_Resume(&TCBHP); // Resume high priority task to force task switch
 }
}

/***
*
* main
*/
int main(void) {
 OS_IncDI(); // Initially disable interrupts
 OS_InitKern(); // Initialize OS
 OS_InitHW(); // Initialize Hardware for OS
 LED_Init(); // Initialize LED ports
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 99, StackLP);
 OS_Start(); // Start multitasking
 return 0;
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

286 CHAPTER 21 Performance and resource usage
21.4.1.1 Oscilloscope analysis
The context switch time is the time between switching the LED on and off. If the LED
is switched on with an active high signal, the context switch time is the time between
rising and falling edge of the signal. If the LED is switched on with an active low sig-
nal, the signal polarity is reversed.

The real context switch time is shorter, because the signal also contains the overhead
of switching the LED on and off. The time of this overhead is also displayed on the
oscilloscope as a small peak right before the task switch time display and has to be
subtracted from the displayed context switch time. The picture below shows a simpli-
fied oscilloscope signal with an active-low LED signal (low means LED is illuminated).
There are switching points to determine:

� A = LED is switched on for overhead measurement
� B = LED is switched off for overhead measurement
� C = LED is switched on right before context switch in low-prio task
� D = LED is switched off right after context switch in high-prio task

The time needed to switch the LED on and off in subroutines is marked as time tAB.
The time needed for a complete context switch including the time needed to switch
the LED on and off in subroutines is marked as time tCD.

The context switching time tCS is calculated as follows:

tCS = tCD - tAB

Voltage [V]

A B C D

tAB tCD
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

287
21.4.1.2 Example measurements AT91SAM7S, ARM code in RAM
Task switching time has been measured with the pararmeters listed below:

embOS Version V3.50b
Application program: MeasureCST_Scope.c
Hardware: AT91SAM7S256 processor with 48MHz
Program is executing in RAM
ARM mode is used
Compiler used: IAR V4.40A
CPU frequency (fCPU): 47.9232MHz
CPU clock cycle (tCycle): tCycle = 1 / fCPU = 1 / 47.9232MHz = 20,866ns

Measuring tAB and tCD

Resulting context switching time and number of cycles

The time which is required for the pure context switch is:
tCS = tCD - tAB = 298Cycles - 15Cycles = 283Cycles
=> 283Cycles (5.9us @48MHz).

tAB is measured as 312ns.
The number of cycles calcu-
lates as follows:
CyclesAB = tAB / tCycle
=312ns / 20.866ns
= 14.952Cycles
=> 15Cycles

tCD is measured as 6217.6ns.
The number of cycles calcu-
lates as follows:
CyclesCD = tCD / tCycle
= 6217.6ns / 20.866ns
= 297.977Cycles
=> 298Cycles
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

288 CHAPTER 21 Performance and resource usage
21.4.1.3 Example measurements AT91SAM7S, Thumb code in FLASH
Task switching time has been measured with the pararmeters listed below:

embOS Version V3.50b
Application program: MeasureCST_Scope.c
Hardware: AT91SAM7S256 processor with 48MHz
Program is executing in FLASH
Thumb mode is used
Compiler used: IAR V4.40A
CPU frequency (fCPU): 47.9232MHz
CPU clock cycle (tCycle): tCycle = 1 / fCPU = 1 / 47.9232MHz = 20,866ns

Measuring tAB and tCD

Resulting context switching time and number of cycles

The time which is required for the pure context switch is:
tCS = tCD - tAB = 384Cycles - 21Cycles = 363Cycles
=> 363Cycles (7.56us @48MHz).

tAB is measured as 436.8ns.
The number of cycles calcu-
lates as follows:
CyclesAB = tAB / tCycle
=436.8ns / 20.866ns
= 20.933Cycles
=> 21Cycles

tCD is measured as 8012ns.
The number of cycles calcu-
lates as follows:
CyclesCD = tCD / tCycle
= 8012ns / 20.866ns
= 383.973Cycles
=> 384Cycles
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

289
21.4.1.4 Measurement with high-resolution timer
The context switch time may be measured with the high-resolution timer. Refer to
section High-resolution measurement on page 237 for detailed information about the
embOS high-resolution measurement.

The example MeasureCST_HRTimer_embOSView.c uses a high resolution timer to
measure the context switch time from a low priority task to a high priority task and
displays the results on embOSView.

#include "RTOS.h"
#include "stdio.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks
static OS_U32 _Time; // Timer values

/***
*
* HPTask
*/
static void HPTask(void) {
 while (1) {
 OS_Suspend(NULL); // Suspend high priority task
 OS_Timing_End(&_Time); // Stop measurement
 }
}

/***
*
* LPTask
*/
static void LPTask(void) {
 char acBuffer[100]; // Output buffer
 OS_U32 MeasureOverhead; // Time for Measure Overhead
 OS_U32 v;

 //
 // Measure Overhead for time measurement so we can take
 // this into account by subtracting it
 //
 OS_Timing_Start(&MeasureOverhead);
 OS_Timing_End(&MeasureOverhead);
 //
 // Perform measurements in endless loop
 //
 while (1) {
 OS_Delay(100); // Sync. to tick to avoid jitter
 OS_Timing_Start(&_Time); // Start measurement
 OS_Resume(&TCBHP); // Resume high priority task to force task switch
 v = OS_Timing_GetCycles(&_Time) - OS_Timing_GetCycles(&MeasureOverhead);
 v = OS_ConvertCycles2us(1000 * v); // Convert cycles to nano-seconds
 sprintf(acBuffer, "Context switch time: %u.%.3u usec\r", v / 1000, v % 1000);
 OS_SendString(acBuffer);
 }
}

The example program calculates and subtracts the measurement overhead itself, so
there is no need to do this. The results will be transmitted to embOSView, so the
example runs on every target that supports UART communication to embOSView.

The example program MeasureCST_HRTimer_Printf.c is equal to the example pro-
gram MeasureCST_HRTimer_embOSView.c but displays the results with the printf()
function for those debuggers which support terminal output emulation.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

290 CHAPTER 21 Performance and resource usage
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

291
Chapter 22

Supported development tools
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

292 CHAPTER 22 Supported development tools
embOS has been developed with and for a specific C compiler version for the selected
target processor. Check the file RELEASE.HTML for details. It works with the specified
C compiler only, because other compilers may use different calling conventions
(incompatible object file formats) and therefore might be incompatible. However, if
you prefer to use a different C compiler, contact us and we will do our best to satisfy
your needs in the shortest possible time.

Reentrance

All routines that can be used from different tasks at the same time have to be fully
reentrant. A routine is in use from the moment it is called until it returns or the task
that has called it is terminated.

All routines supplied with your real-time operating system are fully reentrant. If for
some reason you need to have non-reentrant routines in your program that can be
used from more than one task, it is recommended to use a resource semaphore to
avoid this kind of problem.

C routines and reentrance

Normally, the C compiler generates code that is fully reentrant. However, the com-
piler may have options that force it to generate non-reentrant code. It is recom-
mended not to use these options, although it is possible to do so under certain
circumstances.

Assembly routines and reentrance

As long as assembly functions access local variables and parameters only, they are
fully reentrant. Everything else has to be thought about carefully.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

293
Chapter 23

Limitations
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

294 CHAPTER 23 Limitations
The following limitations exist for embOS:

We appreciate your feedback regarding possible additional functions and we will do
our best to implement these functions if they fit into the concept.

Do not hesitate to contact us. If you need to make changes to embOS, the full source
code is available.

Max. no. of tasks: limited by available RAM only
Max. no. of priorities: 255
Max. no. of semaphores: limited by available RAM only
Max. no. of mailboxes: limited by available RAM only
Max. no. of queues: limited by available RAM only
Max. size. of queues: limited by available RAM only
Max. no. of timers limited by available RAM only
Task specific Event flags : 8 bits / task
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

295
Chapter 24

Source code of kernel and library
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

296 CHAPTER 24 Source code of kernel and library
embOS is available in two versions:

1. Object version: Object code + hardware initialization source.
2. Full source version: Complete source code.

Because this document describes the object version, the internal data structures are
not explained in detail. The object version offers the full functionality of embOS
including all supported memory models of the compiler, the debug libraries as
described and the source code for idle task and hardware initialization. However, the
object version does not allow source-level debugging of the library routines and the
kernel.

The full source version gives you the ultimate options: embOS can be recompiled for
different data sizes; different compile options give you full control of the generated
code, making it possible to optimize the system for versatility or minimum memory
requirements. You can debug the entire system and even modify it for new memory
models or other CPUs.

The source code distribution of embOS contains the following additional files:

� The CPU folder contains all CPU and compiler specific source code and header
files used for building the embOS libraries. It also contains the sample start
project, workspace, and source files for the embOS demo project delivered in the
Start folder. Normally, you should not modify any of the files in the CPU folder.

� The GenOSSrc folder contains all embOS sources and a batch file used for compil-
ing all of them in batch mode as described in the following section.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

297
24.1 Building embOS libraries
The embOS libraries can only be built if you have purchased a source code version of
embOS.

In the root path of embOS, you will find a DOS batch file PREP.BAT, which needs to
be modified to match the installation directory of your C compiler. Once this is done,
you can call the batch file M.BAT to build all embOS libraries for your CPU.

Note: Rebuilding the embOS libraries using the M.bat file will delete and
rebuild the entire Start folder. If you made any modifications or built own
projects in the Start folder, make a copy of your start folder before rebuild-
ing embOS.

The build process should run without any error or warning message. If the build
process reports any problem, check the following:

� Are you using the same compiler version as mentioned in the file RELEASE.HTML?
� Can you compile a simple test file after running PREP.BAT and does it really use

the compiler version you have specified?
� Is there anything mentioned about possible compiler warnings in the

RELEASE.HTML?

If you still have a problem, let us know.

The whole build process is controlled with a few amount of batch files which are
located in the root directory of your source code distribution:

� Prep.bat: Sets up the environment for the compiler, assembler, and linker.
Ensure, that this file sets the path and additional include directories which are
needed for your compiler. Normally, this batch file is the only one which might
have to be modified to build the embOS libraries. Normally, this file is called from
M.bat during the build process of all libraries.

� Clean.bat: Deletes the whole output of the embOS library build process. It is
called automatically during the build process, before new libraries are generated.
Normally it deletes the Start folder. Therefore, be careful not to call this batch
file accidentally. Normally, this file is called initially by M.bat during the build
process of all libraries.

� cc.bat: This batch file calls the compiler and is used for compiling one embOS
source file without debug information output. Most compiler options are defined
in this file and should normally not be modified. For your purposes, you might
activate debug output and may also modify the optimization level. All modifica-
tions should be done with care. Normally, this file is called from the embOS inter-
nal batch file CC_OS.bat and can not be called directly.

� ccd.bat: This batch file calls the compiler and is used for compiling OS_Global.c
which contains all global variables. All compiler settings are equal to those used
in cc.bat, except debug output is activated to enable debugging of global vari-
ables when using embOS libraries. Normally, this file is called from the embOS
internal batch file CC_OS.bat and can not be called directly.

� asm.bat: This batch file calls the assembler and is used for assembling the
assembly part of embOS which normally contains the task switch functionality.
Normally this file is called from the embOS internal batch file CC_OS.bat and can
not be called directly.

� MakeH.bat: Builds the embOS header file RTOS.h which is composed from the
CPU/compiler-specific part OS_Chip.h and the generic part OS_RAW.h. Normally,
RTOS.h is output in the subfolder Start\Inc.

� M1.bat: This batch file is called from M.bat and is used for building one specific
embOS library, it can not be called directly.

� M.bat: This batch file has to be called to generate all embOS libraries. It initially
calls Clean.bat and therefore deletes the whole Start folder. The generated
libraries are then placed in a new Start folder which contains start projects,
libraries, header, and sample start programs.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

298 CHAPTER 24 Source code of kernel and library
24.2 Major compile time switches
Many features of embOS may be modified by compile-time switches. All of them are
predefined to reasonable values in the distribution of embOS. The compile-time
switches must not be changed in RTOS.h. When the compile-time switches should be
modified to alter any of the embOS features, the modification has to be done in
OS_RAW.h or has to be passed as parameters during the library build process. embOS
sources have to be recompiled and RTOS.h has to be rebuilt with the modified
switches.

24.2.1 OS_RR_SUPPORTED
This switch defines whether round robin scheduling algorithm is supported. All
embOS versions enable round robin scheduling by default. If you never use round
robin scheduling and all of your tasks run on different individual priorities, you may
disable round robin scheduling by defining this switch to 0. This will save RAM and
ROM and will also speed up the task-switching process. Ensure that none of your
tasks ever run on the same priority when you disable round robin scheduling. This
compile time switch must not be modified in RTOS.h. It has to be modified in
OS_RAW.h before embOS libraries are rebuilt.

24.2.2 OS_SUPPORT_CLEANUP_ON_TERMINATE
This compile time switch is new since version 3.26 of embOS. If enabled, it allows
termination of tasks which are claiming resource semaphores or are suspended on
any synchronization object.

Note: By default, this switch is activated for 16- and 32-bit CPUs.
For 8-bit CPUs it is disabled.

Even though the overhead is minimal and execution time is not affected significantly,
you may define this switch to zero when you do not terminate tasks in your applica-
tion, or if your application ensures, that tasks are never suspended on any synchro-
nization object or claim any resource semaphores when they are terminated.

Disabling this switch will save some RAM in the task control structure and will also
speed up the wait functions for synchronization objects.

When using an 8-bit CPU, you have to enable this switch (define it to be unequal to
0) to enable termination of tasks which are suspended on synchronization objects or
claim resource semaphores.

This compile time switch must not be modified in RTOS.h. It can only be modified in
OS_RAW.h or has to be passed as define during the build process when embOS librar-
ies are rebuilt.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

299
Chapter 25

Additional modules
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

300 CHAPTER 25 Additional modules
25.1 Keyboard manager: KEYMAN.C
Keyboard driver module supplied in C. It serves both as an example and as a module
that can actually be used in your application. The module can be used in most
applications with only little changes to the hardware-specific portion. It needs to be
initialized on startup and creates a task that checks the keyboard 50 times per
second.

Changes required for your hardware

void ReadKeys(void);

Example of how to implement into your program

void main(void) {
 OS_InitKern(); /* Initialize OS (should be first !) */
 OS_InitHW(); /* Initialize Hardware for OS (see RtosInit.c)*/
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0); /* Create Task0*/
 OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1); / *Create Task1*/
 InitKeyMan(); /* Initialize keyboard manager */
 OS_Start();
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

301
25.2 Additional libraries and modules
For all embOS-compatible real-time operating systems, there are additional libraries
and modules available. However, these modules can also be used without embOS or
with a different operating system. Because these libraries are written in ANSI C, they
can be used on any target CPU for which an ANSI C compiler exists. In general, these
modules are highly optimized for both low memory consumption (especially in RAM)
and high speed.

The modules can be scaled for optimum performance at minimum memory consump-
tion using compile-time switches. Unused portions of the modules are not even com-

piled; your program stays lean and fast.

emWin The complete solution for graphical LCDs.
A fully scaleable graphical user interface featuring:

� different fonts (from 4*6 to 16*32)
� line drawing, bitmap drawing
� advanced drawing (for example circles)
� display routines for strings, dec/hex/bin values, mul-

tiple windows
� ultra-fast, yet still very compact (typically between 8

and 20 Kbytes ROM)
Everything you need for graphic displays!
Any LCD * Any LCD controller * Any CPU
Both monochrome and color versions available, as well as bit-
mapconverter, font converter, PC simulation and viewer. Check
out our website!

emLoad Boot-loader software
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

302 CHAPTER 25 Additional modules
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

303
Chapter 26

FAQ (frequently asked questions)
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

304 CHAPTER 26 FAQ (frequently asked questions)
Q: Can I implement different priority scheduling algorithms ?
A: Yes, the system is fully dynamic, which means that task priorities can be changed

while the system is running (using OS_SetPriority()). This feature can be used
for changing priorities in a way so that basically every desired algorithm can be
implemented. One way would be to have a task control task with a priority higher
than that of all other tasks that dynamically changes priorities. Normally, the
priority-controlled round-robin algorithm is perfect for real-time applications.

Q: Can I use a different interrupt source for embOS ?
A: Yes, any periodical signal can be used, that is any internal timer, but it could also

be an external signal.

Q: What interrupt priorities can I use for the interrupts my program uses?
A: Any.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

305
Chapter 27

Glossary
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

306 CHAPTER 27 Glossary
Active task Only one task can execute at any given time. The task that is
currently executing is called the active task.

Cooperative
multitasking

A scheduling system in which each task is allowed to run until
it gives up the CPU; an ISR can make a higher priority task
ready, but the interrupted task will be returned to and finished
first.

Counting sema-
phore

A type of semaphore that keeps track of multiple resources.
Used when a task must wait for something that can be sig-
naled more than once.

CPU Central Processing Unit. The "brain" of a microcontroller; the
part of a processor that carries out instructions.

Critical region A section of code which must be executed without interrup-
tion.

Event A message sent to a single, specified task that something has
occurred. The task then becomes ready.

ISR Interrupt Service Routine. The routine is called automatically
by the processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all registers).

Mailbox A data buffer managed by the RTOS, used for sending mes-
sages to a task or interrupt handler.

Message An item of data (sent to a mailbox, queue, or other container
for data).

Multitasking The execution of multiple software routines independently of
one another. The OS divides the processor's time so that the
different routines (tasks) appear to be happening simulta-
neously.

NMI Non-Maskable Interrupt. An interrupt that cannot be masked
(disabled) by software. Example: Watchdog timer-interrupt.

Preemptive multi-
tasking

A scheduling system in which the highest priority task that is
ready will always be executed. If an ISR makes a higher prior-
ity task ready, that task will be executed before the inter-
rupted task is returned to.

Processor Short for microprocessor. The CPU core of a controller

Priority The relative importance of one task to another. Every task in
an RTOS has a priority.

Priority inversion A situation in which a high priority task is delayed while it
waits for access to a shared resource which is in use by a
lower priority task. The lower priority task temporarily gets
the highest priority until it releases the resource.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

307
Queue Like a mailbox, but used for sending larger messages, or mes-
sages of individual size, to a task or an interrupt handler.

Resource Anything in the computer system with limited availability (for
example memory, timers, computation time). Essentially, any-
thing used by a task.

Resource sema-
phore A type of semaphore used for managing resources by ensuring

that only one task has access to a resource at a time.

RTOS Real-time Operating System.

Scheduler The program section of an RTOS that selects the active task,
based on which tasks are ready to run, their relative priorities,
and the scheduling system being used.

Semaphore A data structure used for synchronizing tasks.

Software timer A data structure which calls a user-specified routine after a
specified delay.

Stack An area of memory with LIFO storage of parameters, auto-
matic variables, return addresses, and other information that
needs to be maintained across function calls. In multitasking
systems, each task normally has its own stack.

Superloop A program that runs in an infinite loop and uses no real-time
kernel. ISRs are used for real-time parts of the software.

Task A program running on a processor. A multitasking system
allows multiple tasks to execute independently from one
another.

Tick The OS timer interrupt. Usually equals 1 ms.

Timeslice The time (number of ticks) for which a task will be executed
until a round-robin task change may occur.
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

308 CHAPTER 27 Glossary
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

309
Index
A
Additional modules 299

B
Baudrate for embOSView 227

C
C startup ..30
Compiler .. 292
Configuration defines 226
Configuration, of embOS 223�230
Counting Semaphores95
Critical regions24, 213�217

D
Debug version, of embOS32
Debugging 275�279

error codes 277
runtime errors 276

Development tools 291

E
embOS

building libraries of 297
different builds of32
features of17

embOS features17
embOS profiling32
embOSView 245�273

API trace .. 253
overview .. 246
SIO ... 249
system variables window 248
task list window 247
trace filter setup functions 255
trace record functions 265

emLoad .. 301
emWin ... 301
Error codes 277
Events26, 139�160

I
Internal data-structures222
Interrupt control macros206
Interrupt level 21
Interrupt service routines 21, 190
Interrupts189�211

enabling/disabling203
interrupt handler195

ISR ..190

K
Keyboard manager300
KEYMAN.C ...300

L
Libraries, building297
Limitations, of embOS293

M
Mailboxes 26, 109�126

basics ..111
single-byte113

Measurement233
high-resolution237
low-resolution233

Memory management
fixed block size165
heap memory161

Memory pools165�179
Multitasking systems 22

cooperative multitasking 22
preemptives multitasking 23

N
Nesting interrupts207
Non-maskable interrupts211

O
OS 36, 198�199
OS_BAUDRATE226
OS_CallISR()198
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

310 Index
OS_CallNestableISR() 199
OS_ClearEvents() 148
OS_ClearMB() 124
OS_COM_Init() 225
OS_COM_Send1() 225
OS_ConvertCycles2us() 225
OS_CREATECSEMA() 98
OS_CreateCSema() 99
OS_CREATEMB() 115
OS_CREATERSEMA() 87
OS_CREATETASK() 36
OS_CreateTask() 37
OS_CREATETASK_EX() 39
OS_CreateTaskEx() 40
OS_CREATETIMER() 60
OS_CreateTimer() 61
OS_CREATETIMER_EX() 71
OS_CreateTimerEx() 72
OS_CSemaRequest() 104
OS_DecRI() 204
OS_Delay() .. 41
OS_DelayUntil() 42
OS_DeleteCSema() 107
OS_DeleteMB() 126
OS_DeleteTimer() 66
OS_DeleteTimerEx() 77
OS_DI() ... 205
OS_EI() ... 205
OS_EnterInterrupt() 200, 202
OS_EnterNestableInterrupt() 208
OS_EnterRegion() 216
OS_EVENT_Create() 152
OS_EVENT_Delete() 160
OS_EVENT_Get() 159
OS_EVENT_Pulse() 158
OS_EVENT_Reset() 157
OS_EVENT_Set() 155
OS_EVENT_Wait() 153
OS_EVENT_WaitTimed() 154
OS_ExtendTaskContext() 43
OS_free() ... 163
OS_FSYS .. 226
OS_GetCSemaValue() 105�106
OS_GetEventsOccurred() 147
OS_GetMail() 120
OS_GetMail1() 120
OS_GetMailCond() 121
OS_GetMailCond1() 121
OS_GetMailTimed() 122
OS_GetMessageCnt() 125
OS_GetpCurrentTask() 45
OS_GetpCurrentTimer()70, 81
OS_GetPriority() 46
OS_GetResourceOwner 93
OS_GetSemaValue() 92
OS_GetStackSpace() 187
OS_GetTaskID() 48
OS_GetTime() 235
OS_GetTime_Cycles() 225
OS_GetTime32() 236
OS_GetTimerPeriod() 67
OS_GetTimerPeriodEx() 78
OS_GetTimerStatus() 69
OS_GetTimerStatusEx() 80
OS_GetTimerValue() 68
OS_GetTimerValueEx() 79
OS_Idle() 225, 230

OS_IncDI() 204
OS_InitHW() 225
OS_ISR_rx() 225
OS_ISR_Tick() 225
OS_ISR_tx() 225
OS_IsTask() ..49
OS_LeaveInterrupt() 201�202
OS_LeaveInterruptNoSwitch() 202
OS_LeaveNestableInterrupt() 209
OS_LeaveNestableInterruptNoSwitch() . 210
OS_LeaveRegion() 217
OS_malloc() 163
OS_MEMF_Alloc() 170
OS_MEMF_AllocTimed() 171
OS_MEMF_Create() 168
OS_MEMF_Delete() 169
OS_MEMF_FreeBlock() 174
OS_MEMF_GetBlockSize() 176
OS_MEMF_GetMaxUsed() 178
OS_MEMF_GetNumBlocks() 175
OS_MEMF_GetNumFreeBlocks() 177
OS_MEMF_IsInPool() 179
OS_MEMF_Release() 173
OS_MEMF_Request() 172
OS_PutMail() 116
OS_PutMail1() 116
OS_PutMailCond() 117
OS_PutMailCond1() 117
OS_PutMailFront() 118
OS_PutMailFront1() 118
OS_PutMailFrontCond() 119
OS_PutMailFrontCond1() 119
OS_Q_Clear() 137
OS_Q_Create() 131
OS_Q_GetMessageCnt() 138
OS_Q_GetPtr() 133
OS_Q_GetPtrCond() 134
OS_Q_GetPtrTimed() 135
OS_Q_Purge() 136
OS_Q_Put() 132
OS_realloc() 163
OS_Request()91
OS_RestoreI() 205
OS_Resume()50
OS_RetriggerTimer()64
OS_RetriggerTimerEx()75
OS_SendString() 251
OS_SetPriority()51
OS_SetRxCallback() 252
OS_SetTimerPeriod()65
OS_SetTimerPeriodEx()76
OS_SetTimeSlice()52
OS_SignalCSema() 100�101
OS_SignalEvent() 146
OS_StartTimer()62
OS_StartTimerEx()73
OS_StopTimer()63
OS_StopTimerEx()74
OS_Suspend()53
OS_Terminate()54
OS_Time .. 221
OS_TimeDex 221
OS_Timing_GetCycles() 242
OS_Timing_Getus() 241
OS_TimingEnd() 240
OS_TimingStart() 239
OS_TraceData() 269
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

Index 311
OS_TraceDataPtr() 270
OS_TraceDisable() 258
OS_TraceDisableAll() 260
OS_TraceDisableFilterId() 264
OS_TraceDisableId() 262
OS_TraceEnable() 257
OS_TraceEnableAll() 259
OS_TraceEnableFilterId() 263
OS_TraceEnableId() 261
OS_TracePtr() 268
OS_TraceU32Ptr() 271
OS_TraceVoid() 267
OS_UART .. 226
OS_Unuse() ..90
OS_USE() ...88
OS_WaitCSema() 102
OS_WaitCSemaTimed() 103
OS_WaitEvent() 142
OS_WaitEventTimed() 144
OS_WaitMail() 123
OS_WaitSingleEvent() 143
OS_WaitSingleEventTimed() 145
OS_WakeTask()55

P
Preemptive multitasking23
Priority ...24
Priority inversion25
Profiling ..32

Q
Queues26, 127�138

R
Reentrance 292
Release version, of embOS32
Resource semaphores83
Round-robin ..24
RTOSInit.c configuration 224
Runtime errors 276

S
Scheduler ...24
Semaphores ..26

Counting95�107
Resource 83�94

Software timer 57�70
Software timers API overview59
Stack27, 181�187
Stack pointer27
Stacks

switching ..28
Superloop ...21
Switching stacks28
Syntax, conventions used 7
System variables 219�222

T
Task communication26
Task control block 27, 34
Task routines 33�56
Tasks ...20

communication26
global variables26

multitasking systems 22
single-task systems 21
status ... 29
superloop .. 21
switching ... 27

TCB ... 27
Tick ..229
Time measurement231�244
Time variables221
Timer-interrupt interval229

U
UART ..246
UART, for embOS227
Using non-standard ticks229

V
Vector table file227
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

312 Index
User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

	About this document
	Table of Contents
	Introduction to embOS
	1.1 What is embOS
	1.2 Features

	Basic concepts
	2.1 Tasks
	2.2 Single-task systems (superloop)
	2.3 Multitasking systems
	2.3.1 Cooperative multitasking
	2.3.2 Preemptives multitasking

	2.4 Scheduling
	2.4.1 Round-robin scheduling algorithm
	2.4.2 Priority-controlled scheduling algorithm
	2.4.3 Priority inversion

	2.5 Communication between tasks
	2.5.1 Global variables
	2.5.2 Communication mechanisms
	2.5.3 Mailboxes and queues
	2.5.4 Semaphores
	2.5.5 Events

	2.6 How task-switching works
	2.7 Switching stacks
	2.8 Change of task status
	2.9 How the OS gains control
	2.10 Different builds of embOS
	2.10.1 Profiling
	2.10.2 List of libraries

	Task routines
	3.1 Task routine API function overview
	3.1.1 OS_CREATETASK()
	3.1.2 OS_CreateTask()
	3.1.3 OS_CREATETASK_EX()
	3.1.4 OS_CreateTaskEx()
	3.1.5 OS_Delay()
	3.1.6 OS_DelayUntil()
	3.1.7 OS_ExtendTaskContext()
	3.1.8 OS_GetpCurrentTask()
	3.1.9 OS_GetPriority()
	3.1.10 OS_GetSuspendCnt()
	3.1.11 OS_GetTaskID()
	3.1.12 OS_IsTask()
	3.1.13 OS_Resume()
	3.1.14 OS_SetPriority()
	3.1.15 OS_SetTimeSlice()
	3.1.16 OS_Suspend()
	3.1.17 OS_Terminate()
	3.1.18 OS_WakeTask()
	3.1.19 OS_Yield()

	Software timers
	4.1 Software timers API function overview
	4.1.1 OS_CREATETIMER()
	4.1.2 OS_CreateTimer()
	4.1.3 OS_StartTimer()
	4.1.4 OS_StopTimer()
	4.1.5 OS_RetriggerTimer()
	4.1.6 OS_SetTimerPeriod()
	4.1.7 OS_DeleteTimer()
	4.1.8 OS_GetTimerPeriod()
	4.1.9 OS_GetTimerValue()
	4.1.10 OS_GetTimerStatus()
	4.1.11 OS_GetpCurrentTimer()
	4.1.12 OS_CREATETIMER_EX()
	4.1.13 OS_CreateTimerEx()
	4.1.14 OS_StartTimerEx()
	4.1.15 OS_StopTimerEx()
	4.1.16 OS_RetriggerTimerEx()
	4.1.17 OS_SetTimerPeriodEx()
	4.1.18 OS_DeleteTimerEx()
	4.1.19 OS_GetTimerPeriodEx()
	4.1.20 OS_GetTimerValueEx()
	4.1.21 OS_GetTimerStatusEx()
	4.1.22 OS_GetpCurrentTimerEx()

	Resource semaphores
	5.1 Resource semaphores API function overview
	5.1.1 OS_CREATERSEMA()
	5.1.2 OS_Use()
	5.1.3 OS_Unuse()
	5.1.4 OS_Request()
	5.1.5 OS_GetSemaValue()
	5.1.6 OS_GetResourceOwner()
	5.1.7 OS_DeleteRSema()

	Counting Semaphores
	6.1 Counting semaphores API function overview
	6.1.1 OS_CREATECSEMA()
	6.1.2 OS_CreateCSema()
	6.1.3 OS_SignalCSema()
	6.1.4 OS_SignalCSemaMax()
	6.1.5 OS_WaitCSema()
	6.1.6 OS_WaitCSemaTimed()
	6.1.7 OS_CSemaRequest()
	6.1.8 OS_GetCSemaValue()
	6.1.9 OS_SetCSemaValue()
	6.1.10 OS_DeleteCSema()

	Mailboxes
	7.1 Why mailboxes?
	7.2 Basics
	7.3 Typical applications
	7.4 Single-byte mailbox functions
	7.5 Mailboxes API function overview
	7.5.1 OS_CREATEMB()
	7.5.2 OS_PutMail() / OS_PutMail1()
	7.5.3 OS_PutMailCond() / OS_PutMailCond1()
	7.5.4 OS_PutMailFront() / OS_PutMailFront1()
	7.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()
	7.5.6 OS_GetMail() / OS_GetMail1()
	7.5.7 OS_GetMailCond() / OS_GetMailCond1()
	7.5.8 OS_GetMailTimed()
	7.5.9 OS_WaitMail()
	7.5.10 OS_ClearMB()
	7.5.11 OS_GetMessageCnt()
	7.5.12 OS_DeleteMB()

	Queues
	8.1 Why queues?
	8.2 Basics
	8.3 Queues API function overview
	8.3.1 OS_Q_Create()
	8.3.2 OS_Q_Put()
	8.3.3 OS_Q_GetPtr()
	8.3.4 OS_Q_GetPtrCond()
	8.3.5 OS_Q_GetPtrTimed()
	8.3.6 OS_Q_Purge()
	8.3.7 OS_Q_Clear()
	8.3.8 OS_Q_GetMessageCnt()

	Task events
	9.1 Events API function overview
	9.1.1 OS_WaitEvent()
	9.1.2 OS_WaitSingleEvent()
	9.1.3 OS_WaitEventTimed()
	9.1.4 OS_WaitSingleEventTimed()
	9.1.5 OS_SignalEvent()
	9.1.6 OS_GetEventsOccurred()
	9.1.7 OS_ClearEvents()

	Event objects
	10.1 Event object API function overview
	10.1.1 OS_EVENT_Create()
	10.1.2 OS_EVENT_Wait()
	10.1.3 OS_EVENT_WaitTimed()
	10.1.4 OS_EVENT_Set()
	10.1.5 OS_EVENT_Reset()
	10.1.6 OS_EVENT_Pulse()
	10.1.7 OS_EVENT_Get()
	10.1.8 OS_EVENT_Delete()

	Heap type memory management
	11.1 Heap type memory manager API reference

	Fixed block size memory pools
	12.1 Memory pools API reference overview
	12.1.1 OS_MEMF_Create()
	12.1.2 OS_MEMF_Delete()
	12.1.3 OS_MEMF_Alloc()
	12.1.4 OS_MEMF_AllocTimed()
	12.1.5 OS_MEMF_Request()
	12.1.6 OS_MEMF_Release()
	12.1.7 OS_MEMF_FreeBlock()
	12.1.8 OS_MEMF_GetNumBlocks()
	12.1.9 OS_MEMF_GetBlockSize()
	12.1.10 OS_MEMF_GetNumFreeBlocks()
	12.1.11 OS_MEMF_GetMaxUsed()
	12.1.12 OS_MEMF_IsInPool()

	Stacks
	13.1 System stack
	13.2 Task stack
	13.3 Interrupt stack
	13.4 Stacks API function overview
	13.4.1 OS_GetStackSpace()

	Interrupts
	14.1 Interrupt latency
	14.1.1 Causes of interrupt latencies
	14.1.2 Additional causes for interrupt latencies

	14.2 Zero interrupt latency
	14.3 High / low priority interrupts
	14.4 Rules for interrupt handlers
	14.4.1 General rules
	14.4.2 Additional rules for preemptive multitasking

	14.5 Calling embOS routines from within an ISR
	14.5.1 Interrupts API function overview
	14.5.2 OS_CallISR()
	14.5.3 OS_CallNestableISR()
	14.5.4 OS_EnterInterrupt()
	14.5.5 OS_LeaveInterrupt()
	14.5.6 OS_LeaveInterruptNoSwitch()
	14.5.7 Example using OS_EnterInterrupt()/OS_LeaveInterrupt()

	14.6 Enabling / disabling interrupts from C
	14.6.1 OS_IncDI() / OS_DecRI()
	14.6.2 OS_DI() / OS_EI() / OS_RestoreI()

	14.7 Definitions of interrupt control macros (in RTOS.h)
	14.8 Nesting interrupt routines
	14.8.1 OS_EnterNestableInterrupt()
	14.8.2 OS_LeaveNestableInterrupt()
	14.8.3 OS_LeaveNestableInterruptNoSwitch()

	14.9 Non-maskable interrupts (NMIs)

	Critical Regions
	15.1 Critical regions API function overview
	15.1.1 OS_EnterRegion()
	15.1.2 OS_LeaveRegion()

	System variables
	16.1 Time variables
	16.1.1 OS_Time
	16.1.2 OS_TimeDex

	16.2 OS internal variables and data-structures

	Configuration for your target system
	17.1 Hardware-specific routines
	17.2 Configuration defines
	17.3 How to change settings
	17.3.1 Setting the system frequency OS_FSYS
	17.3.2 Using a different timer to generate the tick-interrupts for embOS
	17.3.3 Using a different UART or baudrate for embOSView
	17.3.4 Changing the tick frequency

	17.4 Using non-standard ticks
	17.5 STOP / HALT / IDLE modes

	Time measurement
	18.1 Low-resolution measurement
	18.2 Low-resolution measurement API function overview
	18.2.1 OS_GetTime()
	18.2.2 OS_GetTime32()

	18.3 High-resolution measurement
	18.4 High-resolution measurement API function overview
	18.4.1 OS_TimingStart()
	18.4.2 OS_TimingEnd()
	18.4.3 OS_Timing_Getus()
	18.4.4 OS_Timing_GetCycles()

	18.5 Example

	embOSView: Profiling and analyzing
	19.1 Overview
	19.2 Task list window
	19.3 System variables window
	19.4 Sharing the SIO for terminal I/O
	19.4.1 Shared SIO API function overview
	19.4.2 OS_SendString()
	19.4.3 OS_SetRxCallback()

	19.5 Using the API trace
	19.6 Trace filter setup functions
	19.7 Trace filter API functions
	19.7.1 OS_TraceEnable()
	19.7.2 OS_TraceDisable()
	19.7.3 OS_TraceEnableAll()
	19.7.4 OS_TraceDisableAll()
	19.7.5 OS_TraceEnableId()
	19.7.6 OS_TraceDisableId()
	19.7.7 OS_TraceEnableFilterId()
	19.7.8 OS_TraceDisableFilterId()

	19.8 Trace record functions
	19.9 Trace record API function overview
	19.9.1 OS_TraceVoid()
	19.9.2 OS_TracePtr()
	19.9.3 OS_TraceData()
	19.9.4 OS_TraceDataPtr()
	19.9.5 OS_TraceU32Ptr()

	19.10 Application-controlled trace example
	19.11 User-defined functions

	Debugging
	20.1 Runtime errors
	20.2 List of error codes

	Performance and resource usage
	21.1 Introduction
	21.2 Memory requirements
	21.3 Performance
	21.4 Benchmarking
	21.4.1 Measurement with port pins and oscilloscope

	Supported development tools
	Limitations
	Source code of kernel and library
	24.1 Building embOS libraries
	24.2 Major compile time switches
	24.2.1 OS_RR_SUPPORTED
	24.2.2 OS_SUPPORT_CLEANUP_ON_TERMINATE

	Additional modules
	25.1 Keyboard manager: KEYMAN.C
	25.2 Additional libraries and modules

	FAQ (frequently asked questions)
	Glossary
	Index
	A
	B
	C
	D
	E
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

