
embOS
Real-Time Operating System

CPU & Compiler specifics for embOS-
Classic-MPU Linux Simulation

Document: UM01087
Software Version: 5.20.0.1

Revision: 0
Date: April 16, 2025

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2025 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: April 16, 2025

Software Revision Date By Description

5.20.0.1 0 241118 MM New software version.

5.20.0.0 0 241118 TS New software version.

5.18.3.0 0 240827 MM Initial version.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

4

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

6

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS ..9

1.1 Installation .. 10
1.2 First Steps .. 11
1.3 The example application OS_StartLEDBlink.c ... 12
1.4 Stepping through the sample application ...13

2 Build your own application ..16

2.1 Introduction ...17
2.2 Required files for an embOS ..17
2.3 Select a start project configuration ...18
2.4 Add your own code .. 18
2.5 Rebuilding the embOS libraries .. 18

3 embOS simulation implementations ... 19

3.1 Introduction ...20
3.1.1 Signal implementation ... 20
3.1.2 Real-time thread implementation .. 20

3.1.2.1 Real-time priorities and the hard limit20

4 Libraries ...22

4.1 Naming conventions for prebuilt libraries .. 23

5 CPU and compiler specifics ..24

5.1 Interrupt and thread safety ...25

6 Stacks ... 26

6.1 Task stacks ... 27
6.2 System stack ...27
6.3 Interrupt stack .. 27

7 Interrupts ... 28

7.1 Introduction ...29
7.2 How interrupt simulation works ... 29
7.3 Defining interrupt handlers for simulation ..29
7.4 Interrupt priorities ..29
7.5 API functions ... 30

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

8

8 MPU support ...34

8.1 embOS-Classic-MPU Cortex-M support .. 35

9 Calling blocking non-embOS functions from tasks ... 36

9.1 Introduction ...37
9.2 API functions ... 37

10 RTT and SystemView ...40

10.1 SEGGER Real Time Transfer ...41
10.2 SEGGER SystemView .. 41

11 Technical data ...42

11.1 Resource Usage ... 43

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

Chapter 1

Using embOS

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

10 CHAPTER 1 Installation

1.1 Installation
embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation steps
are required. You will find a prepared sample start project, which you should use and modify
to write your application. So follow the instructions of section First Steps on page 11.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy the library-file to your
work-directory. The advantage is that when switching to an updated version of embOS
later in a project, you do not affect older projects that use embOS, too. embOS does in no
way rely on an IDE, it may be used without the IDE using scripts or build systems without
any problem.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

11 CHAPTER 1 First Steps

1.2 First Steps
After installation of embOS you can create your first multitasking application. You have
received one ready to go sample start project and every other files needed in the subfolder
Start. It is a good idea to use it as a starting point for all of your applications. The sample
projects are contained in the subfolder BoardSupport.

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work.
• Copy the whole folder Start which is part of your embOS distribution into your work

directory.
• Clear the read-only attribute of all files in the new Start folder.
• Open the sample project in one of the BSPs in Start\BoardSupport with your IDE (for

example, by double clicking it).
• Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

12 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application. Note that the file actually shipped with your port of
embOS may look slightly different from this one.

What happens is easy to see:
After initialization of embOS two tasks are created and started. The two tasks are activated
and executed until they run into the delay, suspend for the specified time and continue
execution.

/***
* SEGGER Microcontroller GmbH *
* The Embedded Experts *
**

-------------------------- END-OF-HEADER -----------------------------
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 a LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

/*************************** End of file ****************************/

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

13 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screen shot
below). If the debugger does not halt at the main() function, set a breakpoint at the first
instruction in the main() function.

OS_Init() is part of the embOS library; you can therefore only step into it in disassembly
mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return, unless OS_Stop() is used. Before you step into OS_Start(), you should set two
breakpoints in the two tasks as shown below.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

Step over OS_Start(), or step into OS_Start() in disassembly mode until you reach the
highest priority task. If you continue stepping, the first LED of your device will be switched
on, the HPTask() will run into its delay and therefore, embOS will start the task with the
lower priority.

Continuing to step through the program, the LPTask() will switch on the other LED and
then run into its delay.

As there is no other task ready for execution when LPTask() runs into its delay, embOS
will suspend LPTask() and switch to the idle process, which is always executed if there is
nothing else to do (no task is ready, no interrupt routine or timer executing).

The embOS simulation does not contain an OS_Idle() function which is implemented in
normal embOS ports.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

15 CHAPTER 1 Stepping through the sample application

When you step over the OS_TASK_Delay() function of the LPTask(), you will arrive back
in the HPTask(). As can be seen by the value of embOS timer variable OS_Global.Time,
shown in the Watch window, HPTask() continues operation after expiration of the 50 system
tick delay.

Please note, that delays seem to be longer than expected. When the debugger stops at a
breakpoint, it takes some time until the screen is updated and the OS_Global.Time variable
is examined. Therefore OS_Global.Time may show larger values than expected.

You may now disable the two breakpoints in our tasks and continue the execution of the
application to see how the simulated device runs in real time.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

17 CHAPTER 2 Introduction

2.1 Introduction
This chapter provides all information to set up your own embOS simulation project. To build
your own application, you should always start with the supplied sample project. Therefore,
select the embOS sample project as described in chapter First Steps on page 11 and modify
the project to fit your needs. Using an embOS start project as starting point has the advan-
tage that all necessary files are included and all settings for the project are already done.

2.2 Required files for an embOS
To build an application using the embOS simulation, the following files from your embOS
distribution are required and have to be included in your project:

File Usage

Start\Lib\

lib*.a One of the embOS libraries.
Start\Inc\

RTOS.h
Declares all embOS API functions and data types and has to be
included in any source file using embOS functions.
Start\BoardSupport\Simulation\Setup\

RTOSInit.c
Contains initialization code for the embOS timer interrupt han-
dling and simulation.

OS_Error.c
Contains the OS_Error() function that is called when an applica-
tion error occurs.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

18 CHAPTER 2 Select a start project configuration

2.3 Select a start project configuration
The embOS simulation comes with a start project which includes the following configura-
tions:

Configuration Description

Debug, 32-bit, Signal
Implementation

32-Bit signal implementation configuration that can be used
for development and debugging.

Release, 32-bit, Signal
Implementation

32-Bit signal implementation configuration used to build a
release executable. It may be used for demonstration pur-
poses.

Debug, 32-bit, Re-
al-time Thread Imple-
mentation

32-Bit real-time thread implementation configuration that
can be used for development and debugging.

Release, 32-bit, Re-
al-time Thread Imple-
mentation

32-Bit real-time thread implementation configuration used to
build a release executable. It may be used for demonstration
purposes.

2.4 Add your own code
For your own code, you may add a new folder to the project or add additional files to the
Application folder. You may modify or replace the sample application source file in the
Application directory.

The main() function has to be used as an entry point of the embOS simulation. Your main()
function has to initialize embOS by calling OS_Init() and OS_InitHW() prior to any other
embOS functions that are called.

2.5 Rebuilding the embOS libraries
New libraries for the embOS simulation can only be built using the source version of the
embOS simulation.
• Modify the Prep.sh bash script in the root directory of the embOS simulation source

distribution to set the path to the compiler toolchain.
• Finally start M.sh to produce a new Start\Lib\ folder which then contains the new

libraries.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

Chapter 3

embOS simulation
implementations

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

20 CHAPTER 3 Introduction

3.1 Introduction
The embOS simulation for Linux provides two implementations, a signal and a real-time
thread implementation. The signal implementation uses signals and semaphores to suspend
and resume the execution of threads. The real-time thread implementation uses threads
with the SCHED_FIFO scheduling policy which enables strict scheduling of threads resulting
in a better performance. This chapter explains the characteristics of both implementations
and how to configure the Linux for the real-time thread implementation.

3.1.1 Signal implementation
With the signal implementation the embOS simulation runs on a single core shared with all
other linux processes. The embOS scheduler and each task and ISR have their own POSIX
threads that are using the SCHED_OTHER scheduling policy which is the default scheduling
policy. All threads using the SCHED_OTHER scheduling policy have a fixed static priority of
0, which is the lowest priority, and thus will always be preempted by real-time threads.
For the embOS simulation to be able to control which thread is running signals are used to
force threads to call blocking Linux functions inside the signal handler until another signal is
received. However, whether a thread is executed still depends on the scheduling algorithm
of the Linux scheduler. Due to the many signals that are sent and the synchronization of
threads via semaphores many thread context switches are caused. Furthermore, the Linux
scheduler is free to schedule threads of other processes which also delay the execution of
the embOS simulation.

The signal implementation can be run as a normal user without the need for specific re-
source limits.

Note

When a thread receives a signal while it is in a waiting state due to a blocking non-
embOS function call Linux will schedule it as soon as possible so that it can handle
the signal. In this case the thread might return from the blocking function call with
an error. Therefore, the return value and eventually errno always need to be checked
and if necessary the Linux API call must be repeated.

3.1.2 Real-time thread implementation
The real-time thread implementation makes use of the SCHED_FIFO scheduling policy which
turns threads into real-time threads. Real-time threads have a static priority greater than 0
and preempt all threads with lower priority like all normal threads with a static priority of 0
due to the SCHED_OTHER scheduling policy. The priority of real-time threads can be assigned
and changed at run time as desired. This allows the embOS simulation to control which
thread is currently running. After changing the priority of a thread, the Linux scheduler
immediately executes the thread with the highest priority that is ready to run.

To prevent real-time threads from running simultaneously on multiple cores, the CPU affinity
mask of the process is changed so that all of its threads run on the same core. Due to
how the embOS simulation is implemented there is always one embOS simulation thread
that is running. This means that the simulation will have a load of nearly 100% on the
core it is running on, preventing most other processes from being executed on it. Merely
some real-time threads with equal or higher priority are executed on that core. To avoid
the simulation from making the Linux and most applications unresponsive a CPU with at
least 2 cores is required.

3.1.2.1 Real-time priorities and the hard limit
In most cases real-time priorities from 1 to 99 can be used with 1 being the lowest real-time
priority. The embOS simulation requires the priorities 1 to 8 and thus can be preempted
by all other real-time priorities. For Linux users other than the root to be able to run appli-
cations that use real-time threads up to the priority 8, the hard real-time priority limit for

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

21 CHAPTER 3 Introduction

that user must be set to at least 8. You can check the currently set hard real-time priority
limit for the current user with the following command:

ulimit -Hr

If the displayed value is 8 or higher, the user is already able to run embOS simulation ap-
plications. Is the value lower than 8, then the hard limit for this user needs to be configured.
This can be accomplished by adding an entry for the user in the /etc/security/limit-
s.conf file. Replace the <domain> in the following entry with the user you want to increase
the hard real-time priority limit for and add the line to the limits.conf file.

<domain> hard rtprio 8

For more information on how to specify resource limits using the limits.conf file please
refer to LIMITS.CONF(5) in the Linux man pages.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

Chapter 4

Libraries

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

23 CHAPTER 4 Naming conventions for prebuilt libraries

4.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows:
libos<Implementation>32<LibMode>.a

Parameter Meaning Values

Implementation Specifies the implementation
: Signals

rt : Real-time threads

Architecture Specifies the architecture 32 : 32-bit embOS (x86)

LibMode Specifies the library mode

xr : Extreme Release
r : Release
s : Stack check
sp : Stack check + profiling
d : Debug
dp : Debug + profiling +

 Stack check
dt : Debug + profiling +

 Stack check + trace

Example

libos32dp.lib is the library for the 32-bit embOS simulation using the signal implemen-
tation with debug and profiling support.

libosrt32r.lib is the library for the 32-bit embOS simulation using the real-time thread
implementation and the embOS release build.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

Chapter 5

CPU and compiler specifics

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

25 CHAPTER 5 Interrupt and thread safety

5.1 Interrupt and thread safety
Using embOS with specific calls to standard library functions (e.g. heap management func-
tions) requires thread-safe system libraries if these functions are called from several tasks
or interrupts. The thread safety provided by GNU C library is not enough to ensure thread
safety for the embOS simulation. Therefore, system library functions that need to be thread-
safe and that are called by the simulation need to be overwritten and made thread-safe.

The Setup directory in the embOS BSP contains the file OS_ThreadSafe.c which overwrites
heap management and some other functions. This is done by providing own definitions for
the system library functions used by the simulation. These definitions then ensure thread
safety before calling the actual library function whose address was previously loaded from
the shared library. System library functions that are not yet overwritten in OS_Thread-
Safe.c must be made thread-safe in the same way as it is done for the other functions
in OS_ThreadSafe.c.

Overwriting functions by providing custom definitions works only as long as the identifiers
of the system library functions do not change. Should the identifier of a function change,
e.g. due to optimization, then the function with the changed identifier is called instead
of the thread-safe custom function implementation. The include header files of the GNU
C library use the _FORTIFY_SOURCE macro to control code hardening, which also results
in function inlining. Inlining the calls to system library functions can result in the call of
different function identifiers as expected which again results in the thread-safe custom
function implementations OS_ThreadSafe.c being omitted. Therefore, _FORTIFY_SOURCE
must be defined to 0 when the compiler is called.

gcc -U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=0 ...

With GNU C library versions prior to 2.34 it is not possible to overwrite heap management
functions and retrieve their address from the shared library. In this case malloc hooks are
used which were removed with version 2.34. OS_ThreadSafe.c automatically checks the
GNU C library version and uses the appropriate implementation.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

Chapter 6

Stacks

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

27 CHAPTER 6 Task stacks

6.1 Task stacks
Every embOS task has to have its own stack. Task stacks can be located in any RAM memory
location. In embOS simulation, every task runs as a separate thread. The real “task” stack
is managed by Linux. Declaration and size of task stacks in your application are necessary
for generic embOS functions, but do not affect the stack size of the generated Linux thread.
A stack check and stack overflows are not simulated.

6.2 System stack
The system stack used during startup is managed by Linux. A stack check and stack over-
flows are not simulated.

6.3 Interrupt stack
Simulated interrupts in the embOS simulation run as Linux thread. ISR stacks are managed
by Linux. Since every ISR has its own stack, embOS cannot simulate interrupt stack check
and stack overflows.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

Chapter 7

Interrupts

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

29 CHAPTER 7 Introduction

7.1 Introduction
With the embOS simulation, interrupts have to be simulated and thus differ from those
used in your embedded application. The following chapter describes interrupt simulation
and handling in the embOS simulation.

7.2 How interrupt simulation works
With the embOS simulation, all interrupt handler functions are started as individual threads.
Because embOS might have to disable interrupts when embOS internal operations are
performed, the embOS simulation has to be able to suspend and resume interrupt handler
threads. This requires, that all interrupt handler threads have to be created and installed
by the special embOS simulation API function OS_SIM_CreateISRThread().

Interrupt simulation under embOS simulation works as follows:
• An interrupt handler is written as a normal “C”-function without parameters or return

value.
• The interrupt handler function is initialized and started as a thread by using the embOS

API function OS_SIM_CreateISRThread().
• The interrupt handler function should contain an endless loop which calls a blocking

function (e.g. usleep()) that returns when the ISR has to be executed. Blocking functions
may return unexpectedly when the thread receives a signal. Thus, the return value and
errno should be checked and the blocking call eventually be repeated before executing
the ISR by mistake.

• Interrupts can be deleted by letting the ISRs return from the ISR or by calling
OS_SIM_DeleteISRThread() which will send a cancellation request that lets the ISR
thread terminate asynchronously.

7.3 Defining interrupt handlers for simulation
Interrupt handlers used in the embOS simulation can not handle the real hardware nor-
mally used in your target application. The interrupt handler functions of your real target
application have to be replaced by a modified version which can be used in the simulation.

Simple ISR example:

static void _ISRTimerThread(void) {
 // Perform one-time initialization here
 while (1) {
 usleep(1000); // Suspend until delay expires
 OS_INT_Enter(); // Tell embOS that interrupt code is running
 DoTimerHandling(); // Any functionality can be added here
 OS_INT_Leave(); // Tell embOS that interrupt code ends
 }
}

7.4 Interrupt priorities
All interrupts have the same priority and nesting of interrupts is not supported. With the
real-time thread implementation, the real-time priority is above all other threads. If two ISR
threads are ready for execution it is up to the Linux scheduler which one is being executed.
With the non-real-time thread implementation, ISR threads have the same priority as all
other threads and the scheduling of them is up to the Linux scheduler. In between calls to
OS_INT_Enter*() and OS_INT_Leave(), no other ISR has the chance to run, as interrupts
are disabled. However, the code outside these calls are not seen as part of the interrupt
handler and may be preempted by other threads.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

30 CHAPTER 7 API functions

7.5 API functions

Routine Description

m
ai

n

T
as

k

IS
R

T
im

er

OS_SIM_CreateISRThread() Installs an ISR handler. ● ● ● ●

OS_SIM_CreateISRThreadEx()
Installs an ISR handler and sets a
name. ● ● ● ●

OS_SIM_DeleteISRThread() Uninstalls an ISR handler. ● ●

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

31 CHAPTER 7 API functions

7.5.1 OS_SIM_CreateISRThread()

Description

OS_SIM_CreateISRThread() installs an embOS simulation ISR handler.

Prototype

void* OS_SIM_CreateISRThread(OS_ISR_HANDLER* pfStartAddress);

typedef void OS_ISR_HANDLER(void);

Parameters

Parameter Description

pStartAddress Pointer to void function which serves as simulated interrupt handler.

Return Value

A handle to the created interrupt simulation thread which can be used with
OS_SIM_DeleteISRThread().

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

32 CHAPTER 7 API functions

7.5.2 OS_SIM_CreateISRThreadEx()

Description

OS_SIM_CreateISRThreadEx() installs an embOS simulation ISR handler.

Prototype

void* OS_SIM_CreateISRThreadEx(OS_ISR_HANDLER* pfStartAddress,
 const char* sThreadName);

typedef void OS_ISR_HANDLER(void);

Parameters

Parameter Description

pStartAddress Pointer to void function which serves as simulated interrupt handler.
sThreadName Interrupt handler name.

Return Value

A handle to the created interrupt simulation thread which can be used with
OS_SIM_DeleteISRThread().

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

33 CHAPTER 7 API functions

7.5.3 OS_SIM_DeleteISRThread()

Description

OS_SIM_DeleteISRThread() uninstalls an embOS simulation ISR handler.

Prototype

void OS_SIM_DeleteISRThread(void* pThreadHandle);

Parameters

Parameter Description

ThreadHandle
Handle to the ISR which was returned by OS_SIM_Cre-
ateISRThread().

Additional Information

The ISR thread is detached and will be terminated asynchronously. This can result in un-
defined behavior, why terminating an ISR by letting it return from the ISR function is rec-
ommended.

Example

The following example shows an ISR handler and how it can be uninstalled by adding a new
function DeInitSystemTick(). DeInitSystemTick() can then be called after OS_Stop()
and OS_DeInit().

static void* _ISRThreadHandle;

/***
*
* _ISRThread()
*/
static void _ISRThread(void) {
 //
 // ... initialization
 //
 while (1) {
 usleep(1000);
 OS_INT_Enter();
 //
 // ...
 //
 OS_INT_Leave();
 }
}

/***
*
* _InitMyISR()
*/
static void _InitMyISR(void) {
 _ISRThreadHandle = OS_SIM_CreateISRThread(_ISRTickThread);
}

/***
*
* DeInitSystemTick()
*/
static void DeInitMyISR(void) {
 OS_SIM_DeleteISRThread(_ISRThreadHandle);
}

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

Chapter 8

MPU support

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

35 CHAPTER 8 embOS-Classic-MPU Cortex-M support

8.1 embOS-Classic-MPU Cortex-M support
embOS-Classic-MPU Sim Linux can compile the code of applications that are written for
embOS-Classic-MPU and Cortex-M architectures. It provides the same port-specific em-
bOS-Classic-MPU API functions, structures and macros so that no modifications to the code
is required. The simulation also performs all non-hardware related debug checks and as-
sertions to locate incorrect use of the embOS-Classic-MPU API. However, the behavior of
the Cortex-M MPU hardware is not simulated.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

Chapter 9

Calling blocking non-embOS
functions from tasks

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

37 CHAPTER 9 Introduction

9.1 Introduction
The embOS simulation is typically used to simulate real embedded applications. This may
require the usage of potentially blocking non-embOS functions from tasks. Calling blocking
embOS functions will suspend the task for the time it is waiting and allows tasks with lower
priority to be scheduled by embOS. Calling blocking non-embOS functions will freeze the
calling task and no other task with lower priority will be scheduled. This may cause the
whole simulation to stop until the blocking task continues execution. To avoid this, two
embOS API functions are available to manage the call of blocking non-embOS functions.

Similar to handling critical regions, there is one entry function (OS_SIM_EnterSysCall()),
which has to be called before the blocking non-embOS function, and one exit function
(OS_SIM_LeaveSysCall()), which has to be called after the blocking non-embOS function.

The Application folder of the embOS shipment contains the sample application OS_Sim-
Blocked.c, which demonstrates these functions’ usage on blocking non-embOS function
calls.

9.2 API functions

Routine Description

m
ai

n

T
as

k

IS
R

T
im

er

OS_SIM_EnterSysCall()
Must be called prior to calling any blocking
non-embOS function from a task. ●

OS_SIM_LeaveSysCall()
Must be called after calling any blocking non-
embOS API function from a task, and before
any other embOS API function is called.

●

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

38 CHAPTER 9 API functions

9.2.1 OS_SIM_EnterSysCall()

Description

OS_SIM_EnterSysCall() has to be called before a blocking non-embOS function is called
from a task.

Prototype

void OS_SIM_EnterSysCall(void);

Additional information

After calling OS_SIM_EnterSysCall(), no further embOS API function except
OS_SIM_LeaveSysCall() must be called.

Example

...
OS_SIM_EnterSysCall();
// Any blocking non-embOS function may be called now.
...
recv (socket, pBuf, len, flags);
// Any other code may follow.
// No embOS function must be called except OS_SIM_LeaveSysCall().
...
OS_SIM_LeaveSysCall();
// From now on, calling other embOS functions is allowed.
...

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

39 CHAPTER 9 API functions

9.2.2 OS_SIM_LeaveSysCall()

Description

OS_SIM_LeaveSysCall() has to be called after execution of a blocking non-embOS function,
before any other embOS function is called.

Prototype

void OS_SIM_LeaveSysCall(void);

Additional information

It must be called only when OS_SIM_LeaveSysCall() has been called by the same task
before.

Example

...
OS_SIM_EnterSysCall();
// Any blocking non-embOS function may be called now.
...
recv (socket, pBuf, len, flags);
// Any other code may follow.
// No embOS function must be called except OS_SIM_LeaveSysCall().
...
OS_SIM_LeaveSysCall();
// From now on, calling other embOS functions is allowed.
...

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

Chapter 10

RTT and SystemView

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

41 CHAPTER 10 SEGGER Real Time Transfer

10.1 SEGGER Real Time Transfer
With SEGGER’s Real Time Transfer (RTT) it is possible to output information from the target
microcontroller as well as sending input to the application at a very high speed without
affecting the target’s real time behavior. SEGGER RTT can be used with any J-Link model
and any supported target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application’s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

10.2 SEGGER SystemView
SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemView, is not shipped with embOS. Instead, the most recent version of that applica-
tion is available for download from our website.

SystemView is initialized by calling SEGGER_SYSVIEW_Conf() on the target microcontroller.
This call is performed within OS_InitHW() of the respective RTOSInit*.c file. As soon as
this function was called, the connection of the SystemView desktop application to the target
can be started. In order to remove SystemView from the target application, remove the
SEGGER_SYSVIEW_Conf() call, the SEGGER_SYSVIEW.h include directive as well as any other
reference to SEGGER_SYSVIEW_* like SEGGER_SYSVIEW_TickCnt.

For more information on SEGGER SystemView and the download of the SystemView desktop
application, refer to segger.com/systemview.

Note

SystemView uses embOS timing API to get at start the current system time. This re-
quires that OS_TIME_ConfigSysTimer() was called before SEGGER_SYSVIEW_Start()
is called or the SystemView PC application is started.

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt
https://www.segger.com/systemview

Chapter 11

Technical data

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

43 CHAPTER 11 Resource Usage

11.1 Resource Usage
The memory requirements of embOS for RAM differs depending on the used features, CPU,
compiler, and library model. The following values are measured using embOS library mode
OS_LIBMODE_XR.

Module Memory type Memory requirements

embOS kernel RAM 156 bytes
Task control block RAM 332 bytes
Software timer RAM 20 bytes
Task event RAM 0 bytes
Event object RAM 16 bytes
Mutex RAM 16 bytes
Semaphore RAM 8 bytes
RWLock RAM 28 bytes
Mailbox RAM 24 bytes
Queue RAM 32 bytes
Watchdog RAM 12 bytes
Fixed Block Size Memory Pool RAM 32 bytes

embOS-Classic-MPU Linux Simulation © 2025 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Select a start project configuration
	Add your own code
	Rebuilding the embOS libraries

	embOS simulation implementations
	Introduction
	Signal implementation
	Real-time thread implementation
	Real-time priorities and the hard limit

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	Interrupt and thread safety

	Stacks
	Task stacks
	System stack
	Interrupt stack

	Interrupts
	Introduction
	How interrupt simulation works
	Defining interrupt handlers for simulation
	Interrupt priorities
	API functions
	OS_SIM_CreateISRThread()
	OS_SIM_CreateISRThreadEx()
	OS_SIM_DeleteISRThread()

	MPU support
	embOS-Classic-MPU Cortex-M support

	Calling blocking non-embOS functions from tasks
	Introduction
	API functions
	OS_SIM_EnterSysCall()
	OS_SIM_LeaveSysCall()

	RTT and SystemView
	SEGGER Real Time Transfer
	SEGGER SystemView

	Technical data
	Resource Usage

