
emNet
CPU independent TCP/IP stack

for embedded applications

User Guide & Reference Manual

Document: UM07001
Software Version: 3.62.5

Revision: 0
Date: September 11, 2025

   

A product of SEGGER Microcontroller GmbH

www.segger.com

https://www.segger.com/emnet
https://www.segger.com
https://www.segger.com


2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2025 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: ticket_emnet@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com


3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: September 11, 2025

Software Revision Date By Description

3.62.5 0 250911 YR

Chapter “Core functions” updated.
    • Added new function IP_ARP_SendGratuitousARP()
Chapter “DNS Server (Add-on)” updated.
    • Added new function IP_DNS_SetDNSPort()
Chapter “SNTP client (Add-on)” updated.
    • Added new function IP_SNTPC_SetPort()
Chapter “NTP client (Add-on)” updated.
    • Added new function IP_NTP_SetPort()

3.62.4 0 250702 YR Update to latest software version.

3.62.3 0 250602 YR Update to latest software version.

3.62.2 0 250506 YR Update to latest software version.

3.62.1 0 250429 YR

Chapter “Core functions” updated.
    • Added new function IP_RemoveLinkChangeHook()
Chapter “WiFi support” updated.
    • Added new function IP_WIFI_RemoveAssociateChangeHook()
    • Added new function IP_WIFI_RemoveClientNotificationHook()
    • Added new function IP_WIFI_RemoveSignalChangeHook()

3.62.0 0 250416 YR Added diagrams for TCP and UDP sockets.

3.60.1 0 250113 JU

Chapter “Knowledge Base” added.
    • Added information about “Window Scaling”.
Chapter “DHCP Client” updated.
    • IP_DHCPC_Release() added.

3.60.0 0 241120 YR Update to latest software version.

3.58.1 0 241025 YR Update to latest software version.

3.58.0 0 241016 YR

Chapter “VLAN” updated.
    • IP_VLAN_Enable8021adSupport() added.
Chapter “Socket interface” updated.
    • SO_BINDTODEVICE added.

3.56.1 0 240819 YR Update to latest software version.

3.56.0 0 240429 YR Update to latest software version.

3.54.1 0 231211 YR Update to latest software version.

3.54.0 0 231204 YR Chapter “File system abstraction layer” updated.

3.52.0 0 230928 YR Update to latest software version.

3.50.5 1 230706 OO Chapter “UPnP (Add-on)” updated.
    • Removed link to old resource and replaced it with plain text.

3.50.5 0 230627 OO

Chapter “Address Collision Detection (ACD)” updated.
    • Added information regarding EtherNet/IP usage on page 514.
    • IP_ACD_EndAnnounce() added.
    • IP_ACD_UpdateBackgroundPeriod() added.
    • New member InitState added to structure IP_ACD_EX_CONFIG .
Chapter “Internet Protocol version 6 (IPv6) (Add-on)” updated.
    • IP_IPV6_ResolveHost() added.
Chapter “emFTP server (Add-on)” updated.
    • IP_FTPS_UseRenameToFullPath() added.

3.50.3 0 230602 OO

Fixed some images.
Chapter “Socket interface” updated.
    • IP_ERR_NO_MEM removed from possible error codes as it is replaced
with the existing IP_ERR_NOMEM .

3.50.2 0 230327 OO

Chapter “Socket interface” updated.
    • sogetopt() SO_ERROR error code IP_ERR_USER_ABORT added.
    • IP_SOCKET_AbortRead() added.
    • Description for select() updated.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



4

Software Revision Date By Description

3.50.0 1 230217 OO Chapter “Performance & resource usage” updated.
    • Corrected RAM footprint for Cortex-M3.

3.50.0 0 230215 OO

Chapter “OS integration” updated.
    • Renamed/updated IP_OS_WaitNetEvent() to
IP_OS_WaitNetEventTimed() .
    • Renamed/updated IP_OS_WaitRxEvent() to
IP_OS_WaitRxEventTimed() .
    • IP_OS_WaitItem() removed.
    • IP_OS_SignalDTaskEvent() added.
    • IP_OS_WaitDTaskEventTimed() added.
Chapter “Core functions” updated.
    • Description for IP_Task() updated.
    • Description for IP_RxTask() updated.
    • IP_TASK_Init() added.
    • IP_TASK_Exec() added.
    • IP_TASK_WaitForEvent() added.
    • IP_RXTASK_Init() added.
    • IP_RXTASK_Exec() added.
    • IP_RXTASK_WaitForEvent() added.
    • IP_PHY_ReadReg() added.
    • IP_PHY_WriteReg() added.
    • New PHY mode flag IP_PHY_MODE_NO_AUTONEG added.
    • Description for IP_SetSupportedDuplexModes() updated.
    • Description for IP_PHY_ConfigSupportedModes() updated.
    • Description for IP_TCP_DisableRxChecksum() updated.
    • Description for IP_TCP_EnableRxChecksum() updated.
Chapter “WiFi support” updated.
    • Description for IP_DTASK_Task() updated.
    • Description for IP_DTASK_Exec() updated.
    • IP_DTASK_Init() added.
    • IP_DTASK_ExecAll() added.
    • IP_DTASK_WaitForEvent() added.
    • IP_DTASK_ConfigTimeout() renamed to IP_DTASK_SetTimeout().
    • IP_DTASK_GetTimeout() added.

3.42.10 0 221212
OO/
MH

Chapter “Socket interface” updated.
    • Updated available socket options for getsockopt()/setsockopt() .

3.42.7 0 221014 OO

Chapter “Core functions” updated.
    • IP_GetMemPoolInfo() added.
    • Description for IP_SetMTU() updated (can now also increase the value
after the configuration phase).
    • Description for IP_DNS_GetServer() return value updated (return
value is actually in host endianness).
    • Description for IP_DNS_GetServerEx() return-parameter “pAddr”
updated (added endianness information).
    • IP_IGMP_ConfigV2AlwaysReport() added.
    • IP_IGMP_JoinGroup_AutoRejoin() added.
    • Descriptions for IP_IGMP_JoinGroup() and IP_IGMP_LeaveGroup()
updated.
Chapter “DHCP Client” updated.
    • IP_DHCPC_ConfigRequestLeaseTime() added.
Chapter “PTP Ordinary Clock (Add-on)” updated.
    • IP_PTP_MASTER_Config() added along with its used structures.
Chapter “SNMP agent (Add-on)” updated.
    • Added API, structures and information for SNMPv3 support.
Chapter “Socket interface” updated.
    • IP_SOCKET_ConfigSelectMultiplicator() added.
    • IP_SOCKET_GetNumRxBytes() added.
    • IP_SOCKET_SetDefaultOptions() added.
    • IP_SOCKET_SetLimit() added.
    • IP_SOCKET_SetLinger() added.
    • IP_SOCKET_SetRxTimeout() added.

3.42.5 0 220419 OO Chapter “Core functions” updated.
    • IP_Shutdown() added.

3.42.4 0 220401 OO

Chapter “Core functions” updated.
    • IP_ICMP_AddRxHook() added along with its used structures.
    • IP_ICMP_RemoveRxHook() added.
Chapter “Internet Protocol version 6 (IPv6) (Add-on)” updated.
    • IP_IPV6_GetIPPacketInfo() added.
    • IP_ICMPV6_AddRxHook() added along with its used structures.
    • IP_ICMPV6_RemoveRxHook() added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



5

Software Revision Date By Description

3.42.3 0 220324 OO

Chapter “PHY drivers” updated.
    • IP_PHY_MICREL_SWITCH_ConfigUseInternalRmiiClock() added.
Chapter “Socket interface” updated.
    • Non-blocking return value in additional information for recv() and
recvfrom() corrected.

3.42.0 0 211123
OO/
YR

Use of new version number scheme.
Chapter “Core functions” updated.
    • IP_ConfigDoNotAddLowLevelChecks_ARP() added.
    • IP_ConfigDoNotAddLowLevelChecks_UDP() added.
    • IP_ARP_ConfigAnnounceStaticIP() added.
    • IP_RemoveEtherTypeHook() added.
    • Corrected wrong default TTL value in IP_SetLocalMcTTL()
description.
Chapter “Address Collision Detection (ACD)” updated.
    • IP_ACD_Halt() added (previously forgotten).
    • IP_ACD_ActivateEx() added along with its used structures.
Chapter “DHCP Client” updated.
    • IP_DHCPC_AssignCurrentConfig() added.
    • IP_DHCPC_ConfigAssignConfigManually() added.
    • IP_DHCPC_ConfigDisableARPCheck() added.
    • IP_DHCPC_SendDeclineAndHalt() added.
    • IP_DHCPC_SendDeclineAndResetIP() added.
Chapter “MQTT client (Add-on)” updated.
    • Added MQTT 5 support.
Chapter “emFTP client (Add-on)” updated.
    • Added support for APPE(nd) command.
    • IP_FTPC_ExecCmdEx() added.
    • Structure IP_FTPC_CMD_CONFIG added.
    • FTPC_CMD_LIST sPara can now be used to specify a path to list.
Chapter “CoAP client/server (Add-on)” updated.
    • Configuration switches explanation for IP_COAP_ACK_TIMEOUT .
    • Configuration switches define IP_COAP_OBS_FORCE_CON_TIMEOUT
added.
Chapter “NTP client (Add-on)” updated.
    • IP_NTP_CLIENT_ResetAll() added.
Chapter “PPP / PPPoE (Add-on)” updated.
    • IP_MODEM_SetUartConfig() added.
    • IP_PPP_CHAP_AddWithMD5() added.
Chapter “PTP Ordinary Clock (Add-on)” updated.
    • Information regarding PTP master added.
    • New API for master and slave added.
Chapter “UDP zero-copy interface” updated.
    • Previously forgotten IP_UDP_AllocEx() added.

3.40e 0 210826 OO

Chapter “Core functions” updated.
    • IP_PHY_ConfigAfterResetDelay() added.
    • IP_SetOnIFaceSelectCallback() added.
    • Structure IP_ON_IFACE_SELECT_INFO added.
    • Callback IP_ON_IFACE_SELECT_FUNC added.
Chapter “Configuring emNet” updated.
    • Define IP_PHY_AFTER_RESET_DELAY added.
Chapter “CoAP client/server (Add-on)” updated.
    • IP_COAP_SERVER_ConfigClear() was mistakenly listed as
IP_COAP_SERVER_ConfigUnset() and was empty.
Chapter “TCP Zero-Copy” updated.
    • Some old defines such as ESHUTDOWN instead of IP_ERR_SHUTDOWN
were listed.
Chapter “SNTP client (Add-on)” updated.
    • IP_SNTPC_ConfigAcceptNoSyncSource() added.

3.40a 0 200629 OO

Chapter “DHCP server (Add-on)” updated.
    • IP_DHCPC_SetVendorOptionsCallback() renamed to
IP_DHCPS_SetVendorOptionsCallback() as it has been wrongly given the
DHCP client prefix.
Chapter “emFTP server (Add-on)” updated.
    • Structure FTPS_SEND_SIGN_ON_MSG_FUNC added.
    • IP_FTPS_SetSignOnMsgCallback() added.
    • IP_FTPS_SendFormattedString() added.
    • IP_FTPS_SendMem() added.
    • IP_FTPS_SendString() added.
    • IP_FTPS_SendUnsigned() added.
Chapter “SNMP agent (Add-on)” updated.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



6

Software Revision Date By Description
    • Updated SNMP agent requirements on page  with information
about how to transform your decimal PEN into byte BER format.
    • Added IP_SNMP_GENERIC_TRAP_OID_ENTERPRISE_SPECIFIC OID trap
define to IP_SNMP_AGENT_PrepareTrapInform() description.
Chapter “Socket interface” updated.
    • IP_SOCK_recvfrom_info() added.

3.40 0 200402 OO

Manual.
    • Product name changed from embOS/IP to emNet.
    • Chapter emWeb server removed from emNet User Guide & Reference
Manual. All emWeb related information can be found in the ’emWeb User
Guide & Reference Manual’.
Chapter “Configuring emNet” updated.
    • Information for IP_TCP_SetConnKeepaliveOpt() parameters updated.
    • Information for IP_TCP_SetRetransDelayRange() parameters
updated.
    • Configuration switches regarding TCP retransmits and keepalives
added.
Chapter “Core functions” updated.
    • IP_SetNanosecondsCallback() added.
    • IP_MDNS_ResolveHostSingleIP() added.
    • IP_NI_ConfigUsePromiscuousMode() added.
    • IP_NI_PauseRx() added.
Chapter “DHCP server (Add-on)” updated.
    • IP_DHCPS_SetVendorOptionsCallback() added.
Chapter “FTP server (Add-on)” updated.
    • New FTPS_BUFFER_SIZES structure member
NumBytesInBufBeforeFlush added.
Chapter “PTP Ordinary Clock (Add-on)” updated.
    • IP_PTP_OC_SetInfoCallback() added.
    • Structure IP_PTP_INFO added.
    • Structure IP_PTP_CORRECTION_INFO added.
    • Structure IP_PTP_OFFSET_INFO added.
    • Structure IP_PTP_MASTER_INFO added.
Chapter “WebSocket (Add-on)” updated.
    • Added more additional information to IP_WEBSOCKET_Recv() regarding
CLOSE frames and their optional application data.
Chapter “WiFi support” updated.
    • Extended the additional information of IP_WIFI_Scan() to cover scan
during connect.
Chapter “WiFi drivers” updated.
    • IP_NI_WIFI_REDPINE_RS9113_SetUpdateCallback() added.

3.30c 0 190110 OO
Chapter “Configuring emNet” updated.
    • Additional information for TCP window size configuration added.
    • Configuration switch IP_SUPPORT_TCP_DELAYED_ACK added.

3.30b 0 181026 OO

Chapter “Core functions” updated.
    • Additional information for IP_SendEtherPacket() updated.
Chapter “PHY drivers” updated.
    • Information for Microchip/Micrel KSZ8863 added.
Chapter “PTP Ordinary Clock (Add-on)” updated.
    • Information about TAI time representation added.
Chapter “RAW zero-copy interface” updated.
    • IP_RAW_ReducePayloadLen() added.
Chapter “UDP zero-copy interface” updated.
    • IP_UDP_ReducePayloadLen() added.
Chapter “Web server (Add-on)” updated.
    • Progress status WEBS_PROGRESS_STATUS_METHOD_URI_VER_PARSED
added to structure WEBS_PROGRESS_INFO .
    • Added missing “paVFiles” member to WEBS_APPLICATION structure.
Chapter “WebSocket (Add-on)” updated.
    • Link to IP_WEBS_WEBSOCKET_AddHook() added for better explanation
of samples.
Chapter “WiFi support” updated.
    • IP_WIFI_SECURITY_WPA_WPA2_MIXED added to
IP_WIFI_CONNECT_PARAMS description.

3.30 1 180709 OO Chapter “Internet Protocol version 6 (IPv6) (Add-on)” updated.
    • IP_IPV6_GetIPv6Addr() added.

3.30 0 180704 OO

Chapter “Core functions” updated.
    • IP_DisableIPv4() added.
    • Additional information for IP_AddEtherInterface() added.
    • Default values for IP_ARP_Config*() added/corrected.
Chapter “DHCP Client” updated.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



7

Software Revision Date By Description
    • IP_DHCPC_ConfigUniBcStartMode() added.
Chapter “DHCP server (Add-on)” updated.
    • IP_DHCPS_SetReservedAddresses() added.
Chapter “Internet Protocol version 6 (IPv6) (Add-on)” updated.
    • IP_ICMPV6_NDP_SetDNSSLCallback() added.
    • IP_IPV6_SetGateway() added.
Chapter “mDNS Server (Add-on)” updated.
    • Added “Flags” member to IP_DNS_SERVER_SD_CONFIG structure.
Chapter “MQTT client (Add-on)” updated.
    • Added information for publisher and subscriber using the same
connection.
    • IP_MQTT_CLIENT_Exec() added.
    • IP_MQTT_CLIENT_IsClientConnected() added.
    • IP_MQTT_CLIENT_ParsePublish() added.
Chapter “WiFi support” updated.
    • IP_WIFI_AddClientNotificationHook() added.
Chapter “Web server (Add-on)” updated.
    • IP_WEBS_SetErrorPageCallback() added.
    • IP_WEBS_AddProgressHook() added.
    • IP_WEBS_HEADER_AddFieldHook() added.
    • IP_WEBS_HEADER_CopyData() added.
    • IP_WEBS_HEADER_GetFindToken() added.
    • IP_WEBS_HEADER_SetCustomFields() added.
Chapter “WebSocket (Add-on)” updated.
    • IP_WEBSOCKET_InitClient() added.

3.22a 0 170801 OO

Chapter “Core functions” updated.
    • IP_NI_PauseRxInt() added.
Chapter “Discovery Add-on” updated.
    • Added information to structures IP_DNS_SERVER_A
and IP_DNS_SERVER_AAAA when using IP address 0.

3.22 0 170728 OO

Chapter “Core functions” updated.
    • IP_DNS_ResolveHostEx() added.
    • IP_DNS_SendDynUpdate() added.
    • IP_DNS_SetTSIGContext() added.
    • IP_MDNS_ResolveHost() added.
    • IP_NI_AddPTPDriver() added.
    • IP_SendPingCheckReply() added.
    • IP_SetMicrosecondsCallback() added.
    • IP_SetRandCallback() added.
Chapter “RAW Zero-Copy” updated.
    • Corrected IP_RAW_SendAndFree() packet free behavior.
Chapter “DHCP client” updated.
    • IP_DHCPC_AddStateChangeHook() added.
Chapter “FTP client (Add-on)” updated.
    • SSL/TLS security information added.
    • IP_FTPC_InitEx() added.
Chapter “FTP server (Add-on)” updated.
    • SSL/TLS security information added.
    • IP_FTPS_AllowOnlySecured() added.
    • IP_FTPS_IsDataSecured() added.
    • IP_FTPS_SetImplicitMode() added.
Chapter “SMTP client (Add-on)” updated.
    • UTF-8 information added.
Chapter “Socket interface” updated.
    • IP_SOCK_recvfrom_ts() added.
    • Corrected shutdown() parameters.
Chapter “NTP client (Add-on)” added.
Chapter “PTP Ordinary Clock (Add-on)” added.
Chapter “VLAN” updated.
    • Added some more information to IP_VLAN_AddInterface() about
VLAN Id bits.
    • Corrected shutdown() parameters.

3.20 0 170622 OO

Chapter “Core functions” updated.
    • IP_FRAGMENT_ConfigRx() added.
    • IP_FRAGMENT_Enable() added.
    • IP_IPV6_FRAGMENT_ConfigRx() added.
    • IP_IPV6_FRAGMENT_Enable() added.
Chapter “Configuring emNet” updated.
    • Define IP_SUPPORT_PROFILE_FIFO added.
    • Define IP_SUPPORT_PROFILE_PACKET added.
Chapter “Socket interface” updated.
    • IP_RAW_AddPacketToSocket() added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



8

Software Revision Date By Description
    • IP_TCP_Accept() added.
Chapter “mDNS Server (Add-on)” added.
Chapter “DNS Server (Add-on)” added.
Chapter “CoAP client/server (Add-on)” added.
Chapter “Web server (Add-on)” updated.
    • Minor changes.
Chapter “WiFi drivers” updated.
    • IP_NI_WIFI_REDPINE_RS9113_ConfigAntenna() added.
    • IP_NI_WIFI_REDPINE_RS9113_ConfigRegion() added.
Chapter “Profiling with SystemView” updated.

3.16 1 170410 OO Images in document are missing. Fixed.

3.16 0 170323 OO

Chapter “Core functions” updated.
    • IP_SetGlobalMcTTL() added.
    • IP_SetLocalMcTTL() added.
Chapter “DHCP client” updated.
    • IP_DHCPC_ConfigDNSManually() added.
Chapter “FTP server (Add-on)” updated.
    • IP_FTPS_ConfigBufSizes() added.
    • IP_FTPS_CountRequiredMem() added.
    • IP_FTPS_Init() added.
    • IP_FTPS_ProcessEx() added.
    • IP_FTPS_SetSignOnMsg() added.
Chapter “Web server (Add-on)” updated.
    • IP_WEBS_ConfigFindGZipFiles() added.

3.14 0 161223 OO

Chapter “MQTT client (Add-on)” added.
Chapter “WebSocket (Add-on)” added.
Chapter “Socket interface” updated.
    • Typo in example of accept() corrected.
    • Typo in example of getpeername() corrected.
Chapter “Web server (Add-on)” updated.
    • NumBytesFullUriBuf added to IP_WEBS_ConfigBufSizes()
WEBS_BUFFER_SIZES sample updated.
IP_WEBS_Process[Last][Ex]().
    • IP_WEBS_WEBSOCKET_AddHook() added.
    • Structure IP_WEBS_WEBSOCKET_API added.
Chapter “SMTP client (Add-on)” updated.
    • Updated information for sending mails with attachments (multipart
messages).
    • Corrected ROM/RAM usage.

3.12 0 161010 OO

Chapter “Core functions” updated.
    • IP_NI_ClrBPressure() added.
    • IP_NI_SetBPressure() added.
    • IP_PHY_ConfigGigabitSupport() added.
Chapter “PHY drivers” updated.
    • Marvell 88E1111 Fiber driver added.
Chapter “SMTP client (Add-on)” updated.
    • SSL/TLS support added (IP_SMTPC_MTA/IP_SMTPC_API).
Chapter “Web server (Add-on)” updated.
    • Digest authentication support added.
    • IP_WEBS_GetProtectedPath() added.
    • IP_WEBS_UseAuthDigest() added.
    • IP_WEBS_AUTH_DIGEST_CalcHA1() added.
    • IP_WEBS_AUTH_DIGEST_GetURI() added.

3.10 0 160912 OO

Chapter “Core functions” updated.
    • IP_AddLinkChangeHook() added.
    • IP_IsAllZero() added.
    • IP_NI_ConfigLinkCheckMultiplier() added.
    • IP_SetOnPacketFreeCallback() added.
Chapter “FTP client (Add-on)” updated.
    • IP_FTPC_ExecCmd() added FTPC_CMD_PROT and FTPC_CMD_PBSZ
added.
Chapter “Web server (Add-on)” updated.
    • IP_WEBS_AddPreContentOutputHook() updated.
    • IP_WEBS_SendFormattedString() added.
Chapter “WiFi support” added.
Chapter “WiFi drivers” added.

3.08a 0 160712 OO

Chapter “Core functions” updated.
    • IP_GetCurrentLinkSpeed() updated.
    • IP_GetCurrentLinkSpeedEx() updated.
Chapter “Web server (Add-on)” updated.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



9

Software Revision Date By Description
    • IP_WEBS_CountRequiredMem() added.
    • IP_WEBS_SetUploadFileSystemAPI() added.
    • IP_WEBS_SetUploadMaxFileSize() added.
    • Updated structure IP_WEBS_FILE_INFO.

3.08 0 160630 OO

Chapter “Core functions” updated.
    • IP_AddEtherTypeHook() added.
    • IP_AddOnPacketFreeHook() added.
    • IP_AllocEtherPacket() added.
    • IP_AllocEx() added.
    • IP_BSP_SetAPI() added.
    • IP_FreePacket() added.
    • IP_GetIPAddr() updated.
    • IP_PHY_DisableCheck() updated.
    • IP_PHY_DisableCheckEx() updated.
    • IP_SendEtherPacket() added.
    • IP_SYSVIEW_Init() added.
Chapter “Socket interface” updated.
    • select() updated.
Chapter “Internet Protocol version 6 (IPv6) (Add-on)” updated.
    • IP_IPV6_Add() updated.
Chapter “Web server (Add-on)” updated.
    • IP_WEBS_AddPreContentOutputHook() added.
    • IP_WEBS_ConfigUploadRootPath() added.
    • IP_WEBS_Init() description in API table updated.
    • IP_WEBS_SendLocationHeader() added.
    • IP_WEBS_SetHeaderCacheControl() added.
Chapter “Profiling with SystemView” added.

3.06 0 160511 OO

Chapter “Core functions” updated.
    • IP_NI_GetTxQueueLen() added.
    • IP_STATS module added.
Chapter “SNMP agent (Add-on)” added.

3.04a 0 160419 OO

Chapter “Core functions” updated.
    • IP_FindIFaceByIP() added.
    • IP_NI_GetAdminState() added.
    • IP_NI_GetIFaceType() added.
    • IP_NI_GetState() added.
    • IP_NI_SetAdminState() added.

3.04 0 160316 OO

Chapter “Configuring emNet” updated.
    • IP_SUPPORT_TRACE added to compile time switches.
Chapter “Core functions” updated.
    • IP_PHY_DisableCheck() updated.
    • IP_PHY_DisableCheckEx() updated.
    • IP_TCP_SetConnKeepaliveOpt() updated.
Chapter “Web server (Add-on)” updated.
    • IP_WEBS_AddRequestNotifyHook() added.

3.02b 0 151223 OO

Chapter “Core functions” updated.
    • IP_GetFreePacketCnt() added.
    • IP_GetIFaceHeaderSize() added.
    • IP_PHY_ConfigAltAddr() added.
    • IP_PHY_ConfigUseStaticFilters() added.
    • IP_PHY_ReInit() added.
Chapter “PHY drivers” updated.
    • IP_PHY_MICREL_SWITCH_ConfigLearnDisable() added.
    • IP_PHY_MICREL_SWITCH_ConfigRxEnable() added.
    • IP_PHY_MICREL_SWITCH_ConfigTxEnable() added.

3.02 0 151125 OO

Chapter “Introduction to emNet” updated.
    • Minor changes.
Chapter “Core functions” updated.
    • IP_ARP_CleanCache() added.
    • IP_ARP_CleanCacheByInterface() added.
    • IP_ConfigMaxIFaces() added.
    • IP_ConfigNumLinkUpProbes() added.
    • IP_PHY_AddDriver() added.
    • IP_PHY_ConfigAddr() added.
    • IP_PHY_SupportedModes() added.
    • IP_PHY_DisableCheckEx() added.
Chapter “Web server (Add-on)” updated.
    • IP_WEBS_UseRawEncoding() added.
    • IP_WEBS_GetConnectInfo() added.
Chapter “PHY drivers” added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



10

Software Revision Date By Description
Chapter “Tail Tagging (Add-on)” added.

3.00a 0 151007 OO

Chapter “Introduction to emNet” updated.
    • Updated guidelines for task priorities.
Chapter “Running emNet on target hardware” updated.
    • Added information regarding IP\ASM folder.
Chapter “DHCP client” updated.
    • Minor changes.
Chapter “Core functions” updated.
    • IP_ConfigNumLinkUpProbes() added.
Chapter “Socket interface” updated.
    • Added sample to accept().
    • Added sample to getpeername().
    • IP_SOCKET_GetAddrFam() added.
    • IP_SOCKET_GetLocalPort() added.

3.00 0 150813 OO

Chapter “Core functions” updated.
    • IP_GetMaxAvailPacketSize() added.
    • IP_GetMTU() added.
    • IP_IGMP_AddEx() added.
Chapter “Internet Protocol version 6 (IPv6) (Add-on)” added.
Chapter “TCP zero-copy interface” updated.
    • IP_TCP_AllocEx() added.
Chapter “Web server (Add-on)” updated.
    • IP_WEBS_AddUpload() added.
    • IP_WEBS_ConfigBufSizes() added.
    • IP_WEBS_ConfigRootPath() added.
    • IP_WEBS_Flush() added.
    • IP_WEBS_Init() added.
    • IP_WEBS_ProcessEx() added.
    • IP_WEBS_ProcessLastEx() added.
    • IP_WEBS_SendHeaderEx() added.

2.20h 0 150616 OO

Chapter “Core functions” updated.
    • IP_SetPacketToS() added.
Chapter “Socket interface” updated.
    • Description and prototype of getsockname() updated.
Chapter “DHCP client” updated.
    • IP_DHCPC_ConfigAlwaysStartInit() added.

2.20g 0 141223 OO

Chapter “Core functions” updated.
    • IP_AddVirtEthernetInterface() added.
Chapter “TFTP client/server” updated.
    • Corrected API table.

2.20f 0 141124 OO

Chapter “UDP zero-copy interface” updated.
    • Information regarding endianness of parameters updated.
Chapter “SMTP client (Add-on)” updated.
    • Corrected supported authentication from AUTH to LOGIN.

2.20e 0 141031 OO

Chapter “Core functions” updated.
    • Information for IP_GetAddrMask() corrected.
    • Information for IP_ResolveHost() updated.
    • Information for IP_TCP_SetConnKeepaliveOpt() updated.
Chapter “Socket interface” updated.
    • Information for connect() updated.

2.20b 0 141002 OO

Chapter “Core functions” updated.
    • IP_AddMemory() added.
    • IP_CACHE_SetConfig() added.
    • IP_PHY_AddResetHook() added.
    • IP_PHY_DisableCheck() added.
    • IP_PHY_SetWdTimeout() added.
    • IP_UDP_AddEchoServer() added.
Chapter “DHCP client” updated.
    • IP_DHCPC_SetClientId() added.
Chapter “UDP zero-copy interface” updated.
    • Additional information for IP_UDP_Send() updated.

2.20 0 140430 OO

Chapter “Core functions” updated.
    • IP_ConfigOffCached2Uncached() added.
    • IP_AddLoopbackInterface() added.
    • IP_AddStateChangeHook() added.
    • IP_Alloc() added.
    • IP_ARP_ConfigMaxPending() added.
    • IP_Connect() added.
    • IP_DisableIPRxChecksum() added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



11

Software Revision Date By Description
    • IP_Disconnect() added.
    • IP_DNS_SetServerEx() added.
    • IP_EnableIPRxChecksum() added.
    • IP_Err2Str() added.
    • IP_Free() added.
    • IP_GetPrimaryIFace() added.
    • IP_IsExpired() added.
    • IP_ResolveHost() added.
    • IP_SetIFaceConnectHook() added.
    • IP_SetIFaceDisconnectHook() added.
    • IP_SetPrimaryIFace() added.
    • IP_SOCKET_ConfigSelectMultiplicator() added.
    • IP_ICMP_DisableRxChecksum() added.
    • IP_ICMP_EnableRxChecksum() added.
    • IP_TCP_DisableRxChecksum() added.
    • IP_TCP_EnableRxChecksum() added.
    • IP_UDP_DisableRxChecksum() added.
    • IP_UDP_EnableRxChecksum() added.
    • IP_ConfTCPSpace() renamed to IP_ConfigTCPSpace()
Chapter “Socket interface” updated.
    • gethostbaname() parameter changed to “const char *” for standard
BSD socket compatibility.
Chapter “UDP zero-copy interface” updated.
    • IP_UDP_GetDestAddr() added.
    • IP_UDP_GetIFIndex() added.
    • IP_UDP_GetSrcAddr() added.
Chapter “RAW zero-copy interface” updated.
    • IP_RAW_GetDataSize() added.
    • IP_RAW_GetDestAddr() added.
    • IP_RAW_GetIFIndex() added.
Chapter “DHCP client” updated.
    • IP_DHCPC_ConfigOnActivate() added.
    • IP_DHCPC_ConfigOnFail() added.
    • IP_DHCPC_ConfigOnLinkDown() added.
    • IP_DHCPC_Renew() added.
Chapter “PPP / PPPoE (Add-on)” updated.
    • IP_PPP_OnTxChar() return value changed.
Chapter “Appendix A - File system application layer” updated.
    • pfIsFolder added to IP_FS_API structure.
    • pfMove added to IP_FS_API structure.
Chapter “DHCP server (Add-on)” added.
Chapter “Performance & resource usage” updated.
    • Values for ROM & RAM usage updated.
Minor changes.

2.12g 0 131216 OO Chapter “Core functions” updated.
    • IP_ConfigOffCached2Uncached() added.

2.12f 0 130909 OO

Chapter “Core functions” updated.
    • IP_AddAfterInitHook() added.
Chapter “UDP zero-copy interface” updated.
    • IP_UDP_GetDataSize() added.

2.12c 0 130515 OO

Chapter “Introduction to emNet” updated.
    • Added information regarding task priorities.
Chapter “Core functions” updated.
    • Added extended information to IP_DeInit() description.
Chapter “Web server (Add-on)” updated.
    • IP_WEBS_GetURI() added.
    • IP_WEBS_Reset() added.

2.12b 0 130419 OO Chapter “FTP client (Add-on)” updated.
    • DELE command added for IP_FTPC_ExecCmd() .

2.12 0 130312 OO

Minor updates and corrections.
Chapter “Core functions” updated.
    • IP_PHY_DisableCheck() added.
    • IP_RAW_Add() added.
    • IP_DNS_GetServer() added.
    • IP_DNS_GetServerEx() added.
Chapter “Socket interface” updated.
    • Information regarding usage of RAW sockets added.
Chapter “Web server (Add-on)” updated.
    • IP_WEBS_AddVFileHook() updated.
    • IP_WEBS_Redirect() added.
    • IP_WEBS_StoreUserContext() added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



12

Software Revision Date By Description
    • IP_WEBS_RetrieveUserContext() added.
    • IP_WEBS_GetDecodedStrLen() added.
    • IP_WEBS_METHOD_* API added.
Chapter “RAW zero-copy interface” added.
Chapter “SNTP client” added.

2.10 0 120913 OO

Minor updates and corrections.
Chapter “UPnP (Add-on)” added.
Chapter “VLAN” added.
Chapter “Core functions” updated.
    • IP_NI_ForceCaps() added.
    • IP_ARP_ConfigAgeout() added.
    • IP_ARP_ConfigAgeoutNoReply() added.
    • IP_ARP_ConfigAgeoutSniff() added.
    • IP_ARP_ConfigAllowGratuitousARP() added.
    • IP_ARP_ConfigMaxRetries() added.
    • IP_ARP_ConfigNumEntries() added.
    • IP_IFaceIsReadyEx() added.
    • IP_IGMP_Add() added.
    • IP_IGMP_JoinGroup() added.
    • IP_IGMP_LeaveGroup() added.
Chapter “UDP zero-copy interface” updated.
    • IP_UDP_GetFPort() added.
Chapter “Web server (Add-on)” updated.
    • Information regarding file uploads added.
    • More detailed description about multiple connections added.
    • IP_WEBS_AddFileTypeHook() added.
    • IP_WEBS_AddVFileHook() added.
    • IP_WEBS_ConfigSendVFileHeader() added.
    • IP_WEBS_ConfigSendVFileHookHeader() added.
    • IP_WEBS_GetParaValuePtr() added.
    • IP_WEBS_SendHeader() added.
Chapter “PPP/PPPoE (Add-on)” updated.
    • IP_MODEM_Connect() added.
    • IP_MODEM_Disconnect() added.
    • IP_MODEM_GetResponse() added.
    • IP_MODEM_SendString() added.
    • IP_MODEM_SendStringEx() added.
    • IP_MODEM_SetAuthInfo() added.
    • IP_MODEM_SetConnectTimeout() added.
    • IP_MODEM_SetInitCallback() added.
    • IP_MODEM_SetInitString() added.
    • IP_MODEM_SetSwitchToCmdDelay() added.

2.02c 0 120706 OO Minor updates and corrections.

2.02a 0 120514 OO Chapter “AutoIP” added.
Chapter “Address Collision Detection (ACD)” added.

2.02 0 120507 OO

Documentation updated for emNet V2 stack.
Chapter “API functions” updated.
    • “IP_GetRawPacketInfo()” added.
    • “IP_ICMP_Add()” added.
    • “IP_TCP_Add()” added.
    • “IP_UDP_Add()” added.
Chapter “PPP” added.
Chapter “NetBIOS” added.

1.60 0 100324 SK

Chapter “API functions” updated.
    • “IP_SetSupportedDuplexModes()” added.
Chapter “FTP client” added.
Minor updates and corrections.

1.58 0 100204 SK

Chapter “SMTP client” updated.
Chapter “Configuration” updated.
    • Section “Required buffers” updated.
Minor updates and corrections.

1.56 0 090710 SK

Chapter “API functions” updated.
    • “IP_DNSC_SetMaxTLL()” added.
Chapter “Configuring emNet” updated.
    • Macro “IP_TCP_ACCEPT_CHECKSUM_FFFF” added.

1.54b 0 090603 SK

Chapter “Web server (Add-on)” updated.
    • “IP_WEBS_Process()” updated.
    • “IP_WEBS_ProcessLast()” added.
    • “IP_WEBS_OnConnectionLimit()” updated.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



13

Software Revision Date By Description

1.54a 1 090520 SK

Chapter “API functions” updated.
    • IP_GetAddrMask() updated.
    • IP_GetGWMask() updated.
    • IP_GetIPMask() updated.
Chapter “Web server (Add-on)” updated.
    • Section “Changing the file system type” added.
    • Section “IP_WEBS_SetFileInfoCallback” updated.

1.54a 0 090508 SK

Chapter “Web server (Add-on)” updated.
    • IP_WEBS_GetNumParas() added.
    • IP_WEBS_GetParaValue() added.
    • IP_WEBS_DecodeAndCopyStr() added.
    • IP_WEBS_DecodeString() added.
    • IP_WEBS_SetFileInfoCallback() added.
    • IP_WEBS_CompareFilenameExt() added.
    • Section “Dynamic content” added
    • Section “Common Gateway interface” moved into section “Dynamic
content”.
Chapter “Socket interface”
    • getpeername() corrected.
Chapter “Network interface drivers” updated.

1.54 0 090504 SK Chapter “UDP zero-copy” updated.

1.52 1 090402 SK Chapter “SMTP client” added.

1.52 0 090223 SK

Chapter “API functions”:
    • IP_SetTxBufferSize() added.
    • IP_GetIPAddr() updated.
    • IP_PrintIPAddr() updated.

1.50 0 081210 SK

Chapter “API functions”:
    • IP_ICMP_SetRxHook() added.
    • IP_SetRxHook() added.
    • IP_SOCKET_SetDefaultOptions() added.
    • IP_SOCKET_SetLimit() added.

1.42 0 080821 SK

Chapter “Web server (Add-on)”:
    • List of valid values for CGI parameter and values added.
Chapter “FTP Server (Add-on)”:
    • Section “FTP server system time” added.
    • pfGetTimeDate() added.

1.40 0 080731 SK

Chapter “API functions”:
    • IP_TCP_SetConnKeepaliveOpt() added.
    • IP_TCP_SetRetransDelayRange() added.
    • IP_SendPacket() added.
Chapter “Socket interface”:
    • getsockopt() updated.
    • setsockopt() updated.
Chapter “OS integration”:
    • IP_OS_WaitItemTimed() added.

1.30 1 080610 SK Chapter “FTP server (Add-on)” section “Resource usage” added
Chapter “Web server (Add-on)” section “Resource usage” added

1.30 0 080423 SK Chapter “FTP server (Add-on)” added.
Chapter “Web server (Add-on)” updated.

1.24 3 080320 SK
Chapter “Socket interface”:
    • getpeername added.
    • getsockname added.

1.24 2 080222 SK Chapter “Device Driver”:
    • NXP LPC23xx/24xx driver added.

1.24 1 080124 SK

Chapter “HTTP server (Add-on)” updated.
Chapter “API functions”:
    • IP_UTIL_EncodeBase64() added.
    • IP_UTIL_DecodeBase64() added.

1.24 0 080124 SK

Chapter “HTTP server (Add-on)” added:
Chapter “API functions”:
    • IP_AllowBackPressure() added.
    • IP_GetIPAddr() added.
    • IP_SendPing() added.
    • IP_SetDefaultTTL() added.

1.22 4 071213 SK Chapter “Introduction”:
    • Section “Components of an Ethernet system” added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



14

Software Revision Date By Description
Chapter “API functions”:
    • IP_IsIFaceReady() added.
    • IP_NI_ConfigPHYAddr() added.
    • IP_NI_ConfigPHYMode() added.
    • IP_NI_ConfigBasePtr () added.
Chapter “Socket interface”:
    • All functions: parameter description enhanced.
Chapter “Device drivers” renamed to “Network interface drivers”.
Chapter “Network interface drivers”:
    • Section “ATMEL AT91SAM7X” added.
    • Section “ATMEL AT91SAM9260”added.
    • Section “Davicom DM9000”added.
    • Section “ST STR912”added.

1.22 3 071126 SK

Chapter “OS Integration”:
    • IP_OS_Sleep() removed.
    • IP_OS_Wakeup() removed.
    • IP_OS_WaitItem() added.
    • IP_OS_SignalItem() added.
Chapter “Running emNet on target hardware” updated.

1.22 2 071123 SK

Chapter “Socket interface”:
    • gethostbyname() added.
    • Structure hostent added.
Chapter “Core functions”:
    • IP_PrintIPAddr() added.
    • IP_DNS_SetServer() added.

1.22 1 071122 SK

Chapter “DHCP”:
    • IP_DHCPC_Activate() updated.
Chapter “Debugging”:
    • Section “Testing stability” added.
Chapter “Socket interface”:
    • Section “Error codes” added.

1.22 0 071114 SK

Chapter “Introduction”:
    • “Request for comments” enhanced.
Chapter “API functions”:
    • IP_AddLogFilter() added.
    • IP_AddWarnFilter() added.
    • IP_GetCurrentLinkSpeed() added.
    • IP_TCP_Set2MSLDelay() added.
    • select() added.
    • Various function descriptions enhanced.
Chapter “API functions” renamed to “core functions”.
Socket functions removed from chapter “API functions”
Chapter “Socket interface” added.
Chapter “DHCP” added.
Chapter “UDP zero copy” added.
Chapter “TCP zero copy” added.
Chapter “Glossary” added.
Chapter “Index” updated.

1.00 2 071017 SK

Chapter “Introduction”:
    • Section “Features” enhanced.
    • Section “Basic concepts” added.
    • Section “Task and interrupt usage” added.
    • Section “Further readings” added.
Chapter “Running emNet” enhanced.
Chapter “API functions”:
    • IP_Init() added.
    • IP_Task() added.
    • IP_RxTask() added.
    • IP_GetVersion() added.
    • IP_SetLogFilter() added.
    • IP_SetWarnFilter() added.
    • IP_Panic() removed.
    • Structure sockaddr added.
    • Structure sockaddr_in added.
    • Structure in_addr added.
Chapter “Device driver”.
    • General information updated.
    • Section “Writing your own driver” added.
Chapter “Debugging” added.
Chapter “Performance and resource usage” added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



15

Software Revision Date By Description
Chapter “OS integration” updated.

1.00 1 071002 SK

Product name changed to “emNet”:
Chapter “API functions”:
    • IP_X_Prepare() renamed to IP_X_Config().
    • IP_AddBuffers() added.
    • IP_ConfTCPSpace() added.

1.00 0 070927 SK Initial version.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



16

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



17

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming
Language by Kernighan and Ritchie (ISBN 0--13--1103628), which describes the standard in C
programming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other
documents.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



18

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



19

Table of contents

1 Introduction to emNet ................................................................................................. 43

1.1 What is emNet ............................................................................................ 44
1.2 Features ......................................................................................................45
1.3 Basic concepts .............................................................................................46

1.3.1 emNet structure ................................................................................46
1.3.2 Encapsulation ................................................................................... 47

1.4 Tasks and interrupt usage .............................................................................48
1.5 Background information ................................................................................ 53

1.5.1 Components of an Ethernet system .....................................................53
1.5.1.1 MII / RMII / GMII / RGMII: Interface between MAC and PHY ........ 54

1.6 Further reading ............................................................................................56
1.6.1 Request for Comments (RFC) ............................................................. 56
1.6.2 Related books ...................................................................................57

1.7 Development environment (compiler) ............................................................. 58

2 Running emNet on target hardware ........................................................................... 59

2.1 Step 1: Open an embOS start project ............................................................ 60
2.2 Step 2: Adding emNet to the start project ...................................................... 61
2.3 Step 3: Build the project and test it ...............................................................65

3 Example applications .................................................................................................. 66

3.1 Overview .....................................................................................................67
3.1.1 emNet DNS client (IP_DNSClient.c) ..................................................... 67
3.1.2 emNet non-blocking connect (IP_NonBlockingConnect.c) ........................ 67
3.1.3 emNet ping (IP_Ping.c) ......................................................................68
3.1.4 emNet simple server (IP_SimpleServer.c) .............................................68
3.1.5 emNet speed client (IP_SpeedClient_TCP.c) .......................................... 68

3.1.5.1 Running the emNet speed client ...............................................68
3.1.6 emNet start (IP_Start.c) .................................................................... 69
3.1.7 emNet UDP discover (IP_UDPDiscover.c / IP_UDPDiscover_ZeroCopy.c) .... 69

4 Core functions .............................................................................................................70

4.1 API functions ............................................................................................... 71
4.2 Configuration functions ................................................................................. 80

4.2.1 IP_AddBuffers() ................................................................................ 81
4.2.2 IP_AddEtherInterface() ...................................................................... 82
4.2.3 IP_AddVirtEtherInterface() ................................................................. 83
4.2.4 IP_AddLoopbackInterface() .................................................................84
4.2.5 IP_AddMemory() ............................................................................... 85

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



20

4.2.6 IP_AllowBackPressure() ......................................................................86
4.2.7 IP_AssignMemory() ........................................................................... 87
4.2.8 IP_ARP_ConfigAgeout() ......................................................................88
4.2.9 IP_ARP_ConfigAgeoutNoReply() ...........................................................89
4.2.10 IP_ARP_ConfigAgeoutSniff() ..............................................................90
4.2.11 IP_ARP_ConfigAllowGratuitousARP() ...................................................91
4.2.12 IP_ARP_ConfigAnnounceStaticIP() ......................................................92
4.2.13 IP_ARP_ConfigMaxPending() ............................................................. 93
4.2.14 IP_ARP_ConfigMaxRetries() ...............................................................94
4.2.15 IP_ARP_ConfigNumEntries() ..............................................................95
4.2.16 IP_ARP_SendGratuitousARP() ............................................................96
4.2.17 IP_BSP_SetAPI() ............................................................................. 97
4.2.18 IP_ConfigDoNotAddLowLevelChecks_ARP() ..........................................98
4.2.19 IP_ConfigDoNotAddLowLevelChecks_UDP() ......................................... 99
4.2.20 IP_ConfigMaxIFaces() .....................................................................100
4.2.21 IP_ConfigNumLinkDownProbes() ...................................................... 101
4.2.22 IP_ConfigNumLinkUpProbes() .......................................................... 102
4.2.23 IP_ConfigOffCached2Uncached() ...................................................... 103
4.2.24 IP_ConfigReportSameMacOnNet() .................................................... 104
4.2.25 IP_ConfigTCPSpace() ......................................................................105
4.2.26 IP_DisableIPRxChecksum() ............................................................. 106
4.2.27 IP_DisableIPv4() ............................................................................107
4.2.28 IP_CACHE_SetConfig() ................................................................... 108
4.2.29 IP_DNS_GetServer() ...................................................................... 109
4.2.30 IP_DNS_GetServerEx() ...................................................................110
4.2.31 IP_DNS_ResolveHostEx() ................................................................ 111
4.2.32 IP_DNS_SendDynUpdate() .............................................................. 112
4.2.33 IP_DNS_SetTSIGContext() .............................................................. 113
4.2.34 IP_DNS_SetMaxTTL() ..................................................................... 114
4.2.35 IP_DNS_SetServer() ...................................................................... 115
4.2.36 IP_DNS_SetServerEx() ................................................................... 116
4.2.37 IP_MDNS_ResolveHost() ................................................................. 117
4.2.38 IP_MDNS_ResolveHostSingleIP() ......................................................118
4.2.39 IP_EnableIPRxChecksum() .............................................................. 119
4.2.40 IP_GetMaxAvailPacketSize() ............................................................ 120
4.2.41 IP_GetMemPoolInfo() ..................................................................... 121
4.2.42 IP_GetMTU() ................................................................................. 122
4.2.43 IP_GetPrimaryIFace() ..................................................................... 123
4.2.44 IP_ICMP_Add() ..............................................................................124
4.2.45 IP_ICMP_DisableRxChecksum() ....................................................... 125
4.2.46 IP_ICMP_EnableRxChecksum() ........................................................ 126
4.2.47 IP_IGMP_Add() ..............................................................................127
4.2.48 IP_IGMP_AddEx() .......................................................................... 128
4.2.49 IP_IGMP_ConfigV2AlwaysReport() .................................................... 129
4.2.50 IP_IGMP_JoinGroup() ..................................................................... 130
4.2.51 IP_IGMP_JoinGroup_AutoRejoin() .................................................... 131
4.2.52 IP_IGMP_LeaveGroup() ...................................................................132
4.2.53 IP_RAW_Add() .............................................................................. 133
4.2.54 IP_SetAddrMask() ..........................................................................134
4.2.55 IP_SetAddrMaskEx() .......................................................................135
4.2.56 IP_SetGWAddr() ............................................................................ 136
4.2.57 IP_SetHWAddr() ............................................................................ 137
4.2.58 IP_SetHWAddrEx() .........................................................................138
4.2.59 IP_SetMTU() ................................................................................. 139
4.2.60 IP_SetRandCallback() ..................................................................... 140
4.2.61 IP_SetOnIFaceSelectCallback() ........................................................ 141
4.2.62 IP_SetPrimaryIFace() ..................................................................... 143
4.2.63 IP_SetSupportedDuplexModes() .......................................................144
4.2.64 IP_SetTTL() ...................................................................................145
4.2.65 IP_SetGlobalMcTTL() ...................................................................... 146

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



21

4.2.66 IP_SetLocalMcTTL() ........................................................................147
4.2.67 IP_SetUseRxTask() .........................................................................148
4.2.68 IP_SOCKET_ConfigSelectMultiplicator() ............................................. 149
4.2.69 IP_SOCKET_SetDefaultOptions() ......................................................150
4.2.70 IP_SOCKET_SetLimit() ....................................................................151
4.2.71 IP_SYSVIEW_Init() .........................................................................152
4.2.72 IP_TCP_Add() ................................................................................153
4.2.73 IP_TCP_DisableRxChecksum() ......................................................... 154
4.2.74 IP_TCP_EnableRxChecksum() .......................................................... 155
4.2.75 IP_TCP_Set2MSLDelay() ................................................................. 156
4.2.76 IP_TCP_SetConnKeepaliveOpt() ....................................................... 157
4.2.77 IP_TCP_SetRetransDelayRange() ......................................................158
4.2.78 IP_UDP_Add() ............................................................................... 159
4.2.79 IP_UDP_AddEchoServer() ............................................................... 160
4.2.80 IP_UDP_DisableRxChecksum() .........................................................161
4.2.81 IP_UDP_EnableRxChecksum() ..........................................................162

4.3 Configuration functions (IP fragmentation) .....................................................163
4.3.1 IP_FRAGMENT_ConfigRx() ................................................................ 164
4.3.2 IP_FRAGMENT_Enable() ................................................................... 165
4.3.3 IP_IPV6_FRAGMENT_ConfigRx() ........................................................ 166
4.3.4 IP_IPV6_FRAGMENT_Enable() ........................................................... 167

4.4 Management functions ................................................................................ 168
4.4.1 IP_DeInit() ..................................................................................... 169
4.4.2 IP_Init() ......................................................................................... 170
4.4.3 IP_Task() ........................................................................................171
4.4.4 IP_Exec() ....................................................................................... 173
4.4.5 IP_TASK_Init() ................................................................................ 174
4.4.6 IP_TASK_Exec() .............................................................................. 176
4.4.7 IP_TASK_WaitForEvent() ...................................................................177
4.4.8 IP_RxTask() .................................................................................... 178
4.4.9 IP_RXTASK_Init() ............................................................................ 179
4.4.10 IP_RXTASK_Exec() .........................................................................181
4.4.11 IP_RXTASK_WaitForEvent() ............................................................. 182
4.4.12 IP_Shutdown() .............................................................................. 183

4.5 Network interface configuration and handling functions ................................... 184
4.5.1 IP_NI_AddPTPDriver() ...................................................................... 185
4.5.2 IP_NI_ClrBPressure() ....................................................................... 186
4.5.3 IP_NI_ConfigPoll() ........................................................................... 187
4.5.4 IP_NI_ForceCaps() ...........................................................................188
4.5.5 IP_NI_SetBPressure() ...................................................................... 189
4.5.6 IP_NI_SetTxBufferSize() ...................................................................190

4.6 PHY configuration functions ......................................................................... 191
4.6.1 IP_NI_ConfigPHYAddr() .................................................................... 192
4.6.2 IP_NI_ConfigPHYMode() ................................................................... 193
4.6.3 IP_PHY_AddDriver() .........................................................................194
4.6.4 IP_PHY_AddResetHook() ...................................................................196
4.6.5 IP_PHY_ConfigAddr() ....................................................................... 198
4.6.6 IP_PHY_ConfigAfterResetDelay() ........................................................199
4.6.7 IP_PHY_ConfigAltAddr() ....................................................................200
4.6.8 IP_PHY_ConfigGigabitSupport() ......................................................... 201
4.6.9 IP_PHY_ConfigSupportedModes() .......................................................202
4.6.10 IP_PHY_ConfigUseStaticFilters() .......................................................203
4.6.11 IP_PHY_DisableCheck() .................................................................. 204
4.6.12 IP_PHY_DisableCheckEx() ............................................................... 205
4.6.13 IP_PHY_ReadReg() .........................................................................206
4.6.14 IP_AddLinkChangeHook() ................................................................207
4.6.15 IP_AddOnPacketFreeHook() .............................................................208
4.6.16 IP_AddStateChangeHook() .............................................................. 209
4.6.17 IP_PHY_ReInit() .............................................................................210
4.6.18 IP_PHY_SetWdTimeout() .................................................................211

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



22

4.6.19 IP_PHY_WriteReg() ........................................................................ 212
4.7 Statistics functions ..................................................................................... 213

4.7.1 IP_STATS_EnableIFaceCounters() ...................................................... 214
4.7.2 IP_STATS_GetIFaceCounters() ...........................................................215
4.7.3 IP_STATS_GetLastLinkStateChange() ................................................. 216
4.7.4 IP_STATS_GetRxBytesCnt() ...............................................................217
4.7.5 IP_STATS_GetRxDiscardCnt() ............................................................ 218
4.7.6 IP_STATS_GetRxErrCnt() .................................................................. 219
4.7.7 IP_STATS_GetRxNotUnicastCnt() ....................................................... 220
4.7.8 IP_STATS_GetRxUnicastCnt() ............................................................ 221
4.7.9 IP_STATS_GetRxUnknownProtoCnt() .................................................. 222
4.7.10 IP_STATS_GetTxBytesCnt() ............................................................. 223
4.7.11 IP_STATS_GetTxDiscardCnt() .......................................................... 224
4.7.12 IP_STATS_GetTxErrCnt() .................................................................225
4.7.13 IP_STATS_GetTxNotUnicastCnt() ......................................................226
4.7.14 IP_STATS_GetTxUnicastCnt() ...........................................................227

4.8 Other IP Stack functions ............................................................................. 228
4.8.1 IP_AddAfterInitHook() ...................................................................... 229
4.8.2 IP_AddEtherTypeHook() ....................................................................230
4.8.3 IP_AddInterfaceErrorHook() .............................................................. 232
4.8.4 IP_AddLinkChangeHook() ................................................................. 233
4.8.5 IP_AddOnPacketFreeHook() .............................................................. 234
4.8.6 IP_AddStateChangeHook() ................................................................235
4.8.7 IP_Alloc() ....................................................................................... 236
4.8.8 IP_AllocEtherPacket() .......................................................................237
4.8.9 IP_AllocEx() ....................................................................................238
4.8.10 IP_ARP_CleanCache() .....................................................................239
4.8.11 IP_ARP_CleanCacheByInterface() .....................................................240
4.8.12 IP_Connect() .................................................................................241
4.8.13 IP_Disconnect() ............................................................................. 242
4.8.14 IP_Err2Str() .................................................................................. 243
4.8.15 IP_FindIFaceByIP() .........................................................................244
4.8.16 IP_Free() ......................................................................................245
4.8.17 IP_FreePacket() ............................................................................. 246
4.8.18 IP_GetAddrMask() ..........................................................................247
4.8.19 IP_GetCurrentLinkSpeed() .............................................................. 248
4.8.20 IP_GetCurrentLinkSpeedEx() ........................................................... 249
4.8.21 IP_GetFreePacketCnt() ................................................................... 250
4.8.22 IP_GetIFaceHeaderSize() ................................................................ 251
4.8.23 IP_GetGWAddr() ............................................................................252
4.8.24 IP_GetHWAddr() ............................................................................ 253
4.8.25 IP_GetIPAddr() ..............................................................................254
4.8.26 IP_GetIPPacketInfo() ......................................................................255
4.8.27 IP_GetRawPacketInfo() ...................................................................256
4.8.28 IP_GetVersion() ............................................................................. 257
4.8.29 IP_ICMP_AddRxHook() ................................................................... 258
4.8.30 IP_ICMP_SetRxHook() .................................................................... 260
4.8.31 IP_ICMP_RemoveRxHook() ..............................................................262
4.8.32 IP_IFaceIsReady() ..........................................................................263
4.8.33 IP_IFaceIsReadyEx() ...................................................................... 264
4.8.34 IP_IPV4_ParseIPv4Addr() ................................................................265
4.8.35 IP_IsAllZero() ................................................................................266
4.8.36 IP_IsExpired() ............................................................................... 267
4.8.37 IP_NI_ConfigLinkCheckMultiplier() ....................................................268
4.8.38 IP_NI_ConfigUsePromiscuousMode() .................................................269
4.8.39 IP_NI_GetAdminState() .................................................................. 270
4.8.40 IP_NI_GetIFaceType() .....................................................................271
4.8.41 IP_NI_GetState() ...........................................................................272
4.8.42 IP_NI_SetAdminState() .................................................................. 273
4.8.43 IP_NI_GetTxQueueLen() ................................................................. 274

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



23

4.8.44 IP_NI_PauseRx() ........................................................................... 275
4.8.45 IP_NI_PauseRxInt() ....................................................................... 276
4.8.46 IP_PrintIPAddr() ............................................................................ 277
4.8.47 IP_ResolveHost() ........................................................................... 278
4.8.48 IP_RemoveEtherTypeHook() ............................................................ 279
4.8.49 IP_RemoveLinkChangeHook() ..........................................................280
4.8.50 IP_SendEtherPacket() .....................................................................281
4.8.51 IP_SendPacket() ............................................................................ 282
4.8.52 IP_SendPing() ............................................................................... 283
4.8.53 IP_SendPingCheckReply() ............................................................... 284
4.8.54 IP_SendPingEx() ............................................................................285
4.8.55 IP_SetIFaceConnectHook() ..............................................................286
4.8.56 IP_SetIFaceDisconnectHook() .......................................................... 287
4.8.57 IP_SetOnPacketFreeCallback() ......................................................... 288
4.8.58 IP_SetPacketToS() ......................................................................... 289
4.8.59 IP_SetRxHook() .............................................................................290
4.8.60 IP_SetTxHook() ............................................................................. 291
4.8.61 IP_SetMicrosecondsCallback() ..........................................................292
4.8.62 IP_SetNanosecondsCallback() ..........................................................293

4.9 Stack internal functions, variables and data-structures .................................... 294
4.9.1 Structure BSP_IP_INSTALL_ISR_PARA ................................................295
4.9.2 Structure BSP_IP_API ...................................................................... 296
4.9.3 Structure SEGGER_CACHE_CONFIG ................................................... 297
4.9.4 IP_STATS_IFACE ..............................................................................298
4.9.5 IP_HOOK_ON_IF_ERROR .................................................................. 299
4.9.6 IP_ON_IFACE_SELECT_INFO ............................................................. 300
4.9.7 IP_ON_IFACE_SELECT_FUNC .............................................................301
4.9.8 IP_ON_ICMPV4_FUNC ...................................................................... 302
4.9.9 IP_MEM_POOL_INFO ........................................................................303

5 Socket interface ........................................................................................................ 304

5.1 UDP Socket Calls ........................................................................................305
5.2 TCP Socket Calls ........................................................................................ 306
5.3 API functions ............................................................................................. 307

5.3.1 accept() ......................................................................................... 309
5.3.2 bind() ............................................................................................ 311
5.3.3 closesocket() .................................................................................. 312
5.3.4 connect() ........................................................................................314
5.3.5 gethostbyname() .............................................................................316
5.3.6 getpeername() ................................................................................ 318
5.3.7 getsockname() ................................................................................ 319
5.3.8 getsockopt() ................................................................................... 320
5.3.9 listen() ...........................................................................................324
5.3.10 recv() ...........................................................................................325
5.3.11 recvfrom() .................................................................................... 326
5.3.12 select() .........................................................................................327
5.3.13 send() .......................................................................................... 330
5.3.14 sendto() ....................................................................................... 331
5.3.15 setsockopt() ..................................................................................332
5.3.16 shutdown() ................................................................................... 333
5.3.17 socket() ........................................................................................334
5.3.18 IP_RAW_AddPacketToSocket() ......................................................... 336
5.3.19 IP_SOCKET_AbortRead() .................................................................337
5.3.20 IP_SOCKET_AddGetSetOptHook() .................................................... 338
5.3.21 IP_SOCKET_CloseAll() .................................................................... 341
5.3.22 IP_SOCKET_ConfigSelectMultiplicator() ............................................. 342
5.3.23 IP_SOCKET_GetAddrFam() ..............................................................343
5.3.24 IP_SOCKET_GetErrorCode() ............................................................ 344
5.3.25 IP_SOCKET_GetLocalPort() ..............................................................345

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



24

5.3.26 IP_SOCKET_GetNumRxBytes() ........................................................ 346
5.3.27 IP_SOCKET_SetDefaultOptions() ......................................................347
5.3.28 IP_SOCKET_SetLimit() ....................................................................348
5.3.29 IP_SOCKET_SetLinger() ..................................................................349
5.3.30 IP_SOCKET_SetRxTimeout() ............................................................350
5.3.31 IP_SOCK_recvfrom_info() ............................................................... 351
5.3.32 IP_SOCK_recvfrom_ts() ..................................................................352
5.3.33 IP_TCP_Accept() ............................................................................353
5.3.34 IP_FD_CLR() ................................................................................. 354
5.3.35 IP_FD_SET() ................................................................................. 355
5.3.36 IP_FD_ISSET() .............................................................................. 356

5.4 Data structures .......................................................................................... 357
5.4.1 sockaddr ........................................................................................ 357
5.4.2 sockaddr_in .................................................................................... 358
5.4.3 in_addr .......................................................................................... 359
5.4.4 hostent .......................................................................................... 360
5.4.5 IP_SOCK_HOOK_ON_GETSETOPT_FUNC ............................................. 361
5.4.6 IP_SOCK_RECVFROM_INFO ...............................................................362

5.5 Error codes ................................................................................................363

6 TCP zero-copy interface ........................................................................................... 364

6.1 TCP zero-copy ............................................................................................365
6.1.1 Allocating, freeing and sending TCP packet buffers ...............................365
6.1.2 Callback function for TCP zero-copy ................................................... 365

6.2 Sending data with the TCP zero-copy API ......................................................366
6.2.1 Allocating a packet buffer for TCP zero-copy ....................................... 366
6.2.2 Filling the allocated buffer with data for TCP zero-copy .........................366
6.2.3 Sending the TCP zero-copy packet .....................................................366

6.3 Receiving data with the TCP zero-copy API ....................................................367
6.3.1 Writing a callback function for TCP zero-copy ...................................... 367
6.3.2 Registering the TCP zero-copy callback function ...................................367

6.4 API functions ............................................................................................. 368
6.4.1 IP_TCP_Alloc() ................................................................................ 369
6.4.2 IP_TCP_AllocEx() .............................................................................370
6.4.3 IP_TCP_Free() .................................................................................371
6.4.4 IP_TCP_Send() ................................................................................372
6.4.5 IP_TCP_SendAndFree() .................................................................... 373

7 UDP zero-copy interface ...........................................................................................374

7.1 UDP zero-copy ........................................................................................... 375
7.1.1 Allocating, freeing and sending UDP packet buffers .............................. 375
7.1.2 Callback function for UDP zero-copy .................................................. 375

7.2 Sending data with the UDP zero-copy API ..................................................... 376
7.2.1 Allocating a packet buffer for UDP zero-copy .......................................376
7.2.2 Filling the allocated buffer with data for UDP zero-copy ........................ 376
7.2.3 Sending the UDP zero-copy packet .................................................... 376

7.3 Receiving data with the UDP zero-copy API ................................................... 377
7.3.1 Writing a callback function for UDP zero-copy ..................................... 377
7.3.2 Registering the UDP zero-copy callback function .................................. 377

7.4 API functions ............................................................................................. 378
7.4.1 IP_UDP_Alloc() ................................................................................379
7.4.2 IP_UDP_AllocEx() ............................................................................ 380
7.4.3 IP_UDP_Close() ...............................................................................381
7.4.4 IP_UDP_FindFreePort() .....................................................................382
7.4.5 IP_UDP_Free() ................................................................................ 383
7.4.6 IP_UDP_GetDataSize() ..................................................................... 384
7.4.7 IP_UDP_GetDataPtr() ....................................................................... 385
7.4.8 IP_UDP_GetDestAddr() .....................................................................386
7.4.9 IP_UDP_GetFPort() .......................................................................... 387

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



25

7.4.10 IP_UDP_GetIFIndex() ..................................................................... 388
7.4.11 IP_UDP_GetLPort() .........................................................................389
7.4.12 IP_UDP_GetSrcAddr() .....................................................................390
7.4.13 IP_UDP_Open() ............................................................................. 391
7.4.14 IP_UDP_OpenEx() ..........................................................................392
7.4.15 IP_UDP_Send() ............................................................................. 393
7.4.16 IP_UDP_SendAndFree() .................................................................. 394
7.4.17 IP_UDP_ReducePayloadLen() ........................................................... 395

8 RAW zero-copy interface ..........................................................................................396

8.1 RAW zero-copy .......................................................................................... 397
8.1.1 Allocating, freeing and sending packet buffers for RAW Zero-Copy ..........397
8.1.2 Callback function for RAW Zero-Copy .................................................397

8.2 Sending data with the RAW zero-copy API .....................................................398
8.2.1 Allocating a packet buffer for RAW Zero-Copy ..................................... 398
8.2.2 Filling the allocated buffer with data for RAW Zero-Copy .......................398
8.2.3 Sending the packet ..........................................................................398

8.3 Receiving data with the RAW zero-copy API ...................................................400
8.3.1 Writing a callback function ................................................................400
8.3.2 Registering the callback function for RAW Zero-Copy ............................400

8.4 API functions ............................................................................................. 401
8.4.1 IP_RAW_Alloc() ............................................................................... 402
8.4.2 IP_RAW_Close() .............................................................................. 403
8.4.3 IP_RAW_Free() ............................................................................... 404
8.4.4 IP_RAW_GetDataPtr() ...................................................................... 405
8.4.5 IP_RAW_GetDataSize() .................................................................... 406
8.4.6 IP_RAW_GetDestAddr() .................................................................... 407
8.4.7 IP_RAW_GetIFIndex() ...................................................................... 408
8.4.8 IP_RAW_GetSrcAddr() ......................................................................409
8.4.9 IP_RAW_Open() .............................................................................. 410
8.4.10 IP_RAW_Send() .............................................................................411
8.4.11 IP_RAW_SendAndFree() ................................................................. 412
8.4.12 IP_RAW_ReducePayloadLen() .......................................................... 413

9 DHCP client .............................................................................................................. 414

9.1 DHCP backgrounds ..................................................................................... 415
9.2 API functions ............................................................................................. 416

9.2.1 IP_BOOTPC_Activate() ..................................................................... 418
9.2.2 IP_DHCPC_Activate() ....................................................................... 419
9.2.3 IP_DHCPC_AddStateChangeHook() .................................................... 421
9.2.4 IP_DHCPC_AssignCurrentConfig() ...................................................... 422
9.2.5 IP_DHCPC_ConfigAlwaysStartInit() .................................................... 423
9.2.6 IP_DHCPC_ConfigAssignConfigManually() ............................................424
9.2.7 IP_DHCPC_ConfigDisableARPCheck() ..................................................425
9.2.8 IP_DHCPC_ConfigDNSManually() ....................................................... 426
9.2.9 IP_DHCPC_ConfigRequestLeaseTime() ................................................ 427
9.2.10 IP_DHCPC_ConfigOnActivate() .........................................................428
9.2.11 IP_DHCPC_ConfigOnFail() ............................................................... 429
9.2.12 IP_DHCPC_ConfigOnLinkDown() .......................................................430
9.2.13 IP_DHCPC_ConfigUniBcStartMode() ..................................................431
9.2.14 IP_DHCPC_GetState() .................................................................... 432
9.2.15 IP_DHCPC_GetOptionRequestList() ...................................................433
9.2.16 IP_DHCPC_Halt() ........................................................................... 434
9.2.17 IP_DHCPC_Renew() ....................................................................... 435
9.2.18 IP_DHCPC_SendDeclineAndHalt() .....................................................436
9.2.19 IP_DHCPC_SendDeclineAndResetIP() ................................................437
9.2.20 IP_DHCPC_SetCallback() ................................................................ 438
9.2.21 IP_DHCPC_SetClientId() ................................................................. 439
9.2.22 IP_DHCPC_SetOnOptionCallback() ................................................... 440

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



26

9.2.23 IP_DHCPC_SetOptionRequestList() ................................................... 442
9.2.24 IP_DHCPC_SetTimeout() .................................................................443
9.2.25 IP_DHCPC_Release() ...................................................................... 444

9.3 Data structures .......................................................................................... 445
9.3.1 IP_DHCPC_ON_OPTION_INFO ........................................................... 445
9.3.2 IP_DHCPC_ON_OPTION_FUNC ...........................................................446

10 DHCP server (Add-on) ............................................................................................447

10.1 DHCP Backgrounds ................................................................................... 448
10.2 API functions ........................................................................................... 449

10.2.1 IP_DHCPS_ConfigDNSAddr() ........................................................... 450
10.2.2 IP_DHCPS_ConfigGWAddr() .............................................................451
10.2.3 IP_DHCPS_ConfigMaxLeaseTime() ....................................................452
10.2.4 IP_DHCPS_ConfigPool() .................................................................. 453
10.2.5 IP_DHCPS_Halt() ........................................................................... 454
10.2.6 IP_DHCPS_Init() ............................................................................455
10.2.7 IP_DHCPS_SetReservedAddresses() ................................................. 456
10.2.8 IP_DHCPS_SetVendorOptionsCallback() ............................................ 457
10.2.9 IP_DHCPS_Start() ..........................................................................458

10.3 Data structures ........................................................................................ 459
10.3.1 IP_DHCPS_RESERVE_ADDR .............................................................459
10.3.2 IP_DHCPS_GET_VENDOR_OPTION_INFO ...........................................460
10.3.3 IP_DHCPS_GET_VENDOR_OPTION_FUNC .......................................... 461

10.4 Resource usage ........................................................................................ 462
10.4.1 ROM usage on an ARM7 system ...................................................... 462
10.4.2 ROM usage on a Cortex-M3 system ................................................. 462
10.4.3 RAM usage ................................................................................... 462

11 mDNS Server (Add-on) ...........................................................................................463

11.1 emNet mDNS ...........................................................................................464
11.2 Feature list .............................................................................................. 465
11.3 Requirements ........................................................................................... 466
11.4 Multicast DNS background ......................................................................... 467

11.4.1 Hostname resolution ...................................................................... 467
11.4.2 Service discovery (mDNS-SD) ......................................................... 468

11.5 API functions ........................................................................................... 469
11.5.1 IP_MDNS_SERVER_Start() .............................................................. 470
11.5.2 IP_MDNS_SERVER_Stop() ...............................................................471

11.6 Data structures ........................................................................................ 472
11.6.1 Structure IP_DNS_SERVER_CONFIG .................................................472
11.6.2 Structure IP_DNS_SERVER_SD_CONFIG ........................................... 473
11.6.3 Structure IP_DNS_SERVER_A ..........................................................474
11.6.4 Structure IP_DNS_SERVER_AAAA .................................................... 475
11.6.5 Structure IP_DNS_SERVER_PTR .......................................................476
11.6.6 Structure IP_DNS_SERVER_SRV ...................................................... 477
11.6.7 Structure IP_DNS_SERVER_TXT .......................................................478

11.7 Resource usage ........................................................................................ 479
11.7.1 ROM usage on a Cortex-M4 system ................................................. 479
11.7.2 RAM usage ................................................................................... 479

12 DNS Server (Add-on) ..............................................................................................480

12.1 emNet DNS server ....................................................................................481
12.2 Feature list .............................................................................................. 482
12.3 Requirements ........................................................................................... 483
12.4 Implementation ........................................................................................ 484
12.5 API functions ........................................................................................... 485

12.5.1 IP_DNS_SERVER_Start() .................................................................486
12.5.2 IP_DNS_SERVER_Stop() ................................................................. 487

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



27

12.5.3 IP_DNS_SetDNSPort() .................................................................... 488
12.6 Resource usage ........................................................................................ 489

13 AutoIP ..................................................................................................................... 490

13.1 emNet AutoIP backgrounds ........................................................................491
13.2 API functions ........................................................................................... 492

13.2.1 IP_AutoIP_Activate() ...................................................................... 493
13.2.2 IP_AutoIP_Halt() ........................................................................... 494
13.2.3 IP_AutoIP_SetUserCallback() ...........................................................495
13.2.4 IP_AutoIP_SetStartIP() ...................................................................496

13.3 Resource usage ........................................................................................ 497
13.3.1 ROM usage on an ARM7 system ...................................................... 497
13.3.2 ROM usage on a Cortex-M3 system ................................................. 497
13.3.3 RAM usage ................................................................................... 497

14 Address Collision Detection (ACD) .........................................................................498

14.1 emNet ACD module .................................................................................. 499
14.2 API functions ........................................................................................... 500

14.2.1 IP_ACD_Activate() ......................................................................... 501
14.2.2 IP_ACD_ActivateEx() ......................................................................502
14.2.3 IP_ACD_Config() ............................................................................503
14.2.4 IP_ACD_EndAnnounce() ..................................................................504
14.2.5 IP_ACD_Halt() ...............................................................................505
14.2.6 IP_ACD_UpdateBackgroundPeriod() ..................................................506

14.3 Data structures ........................................................................................ 507
14.3.1 Structure ACD_FUNC ......................................................................507
14.3.2 IP_ACD_EX_CONFIG ...................................................................... 508
14.3.3 IP_ACD_ANNOUNCE_INFO .............................................................. 509
14.3.4 IP_ACD_COLLISION_INFO ...............................................................510
14.3.5 IP_ACD_WAIT_INFO .......................................................................511
14.3.6 IP_ACD_INFO ................................................................................512
14.3.7 IP_ACD_ON_INFO_FUNC .................................................................513

14.4 EtherNet/IP usage .................................................................................... 514
14.4.1 EtherNet/IP QuickConnect ...............................................................515
14.4.2 EtherNet/IP SemiActiveProbe .......................................................... 517

14.5 Resource usage ........................................................................................ 520
14.5.1 ROM usage on an ARM7 system ...................................................... 520
14.5.2 ROM usage on a Cortex-M3 system ................................................. 520
14.5.3 RAM usage ................................................................................... 520

15 UPnP (Add-on) ........................................................................................................521

15.1 emNet UPnP .............................................................................................522
15.2 Feature list .............................................................................................. 523
15.3 Requirements ........................................................................................... 524
15.4 Backgrounds ............................................................................................ 525

15.4.1 Using UPnP to advertise your service in the network ...........................525
15.5 API functions ........................................................................................... 533

15.5.1 IP_UPNP_Activate() ........................................................................534
15.6 Resource usage ........................................................................................ 535

15.6.1 ROM usage on an ARM7 system ...................................................... 535
15.6.2 ROM usage on a Cortex-M3 system ................................................. 535
15.6.3 RAM usage ................................................................................... 535

16 VLAN .......................................................................................................................536

16.1 emNet VLAN ............................................................................................ 537
16.2 Feature list .............................................................................................. 538
16.3 Backgrounds ............................................................................................ 539
16.4 API functions ........................................................................................... 540

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



28

16.4.1 IP_VLAN_AddInterface() ................................................................. 541
16.4.2 IP_VLAN_Add8021adInterface() .......................................................542
16.4.3 Data structures ............................................................................. 543

16.4.3.1 IP_VLAN_INIT_DATA ........................................................... 543
16.5 Resource usage ........................................................................................ 544

16.5.1 ROM usage on an ARM7 system ...................................................... 544
16.5.2 ROM usage on a Cortex-M3 system ................................................. 544
16.5.3 RAM usage ................................................................................... 544

17 Tail Tagging (Add-on) ............................................................................................. 545

17.1 emNet Tail Tagging support ........................................................................546
17.2 Feature list .............................................................................................. 547
17.3 Use cases ................................................................................................ 548
17.4 Requirements ........................................................................................... 549

17.4.1 Software requirements ................................................................... 549
17.4.2 Hardware requirements .................................................................. 549

17.5 Backgrounds ............................................................................................ 551
17.6 Optimal MTU and buffer sizes .................................................................... 552
17.7 API functions ........................................................................................... 553

17.7.1 IP_MICREL_TAIL_TAGGING_AddInterface() ....................................... 554
17.8 Resource usage ........................................................................................ 562

17.8.1 ROM usage on a Cortex-M4 system ................................................. 562
17.8.2 RAM usage ................................................................................... 562

18 WiFi support ............................................................................................................563

18.1 emNet WiFi support .................................................................................. 564
18.2 Feature list .............................................................................................. 565
18.3 Requirements ........................................................................................... 566
18.4 Background information .............................................................................567

18.4.1 Definition of a WiFi module .............................................................567
18.4.2 Benefits of using WiFi modules ........................................................567
18.4.3 Module internal vs. external TCP/IP stack ......................................... 567
18.4.4 Supported WiFi modules .................................................................568

18.5 API functions ........................................................................................... 569
18.5.1 IP_WIFI_AddAssociateChangeHook() ................................................ 570
18.5.2 IP_WIFI_RemoveAssociateChangeHook() .......................................... 571
18.5.3 IP_WIFI_AddClientNotificationHook() ................................................572
18.5.4 IP_WIFI_RemoveClientNotificationHook() .......................................... 573
18.5.5 IP_WIFI_AddInterface() ..................................................................574
18.5.6 IP_DTASK_AddExecDoneHook() ....................................................... 575
18.5.7 IP_WIFI_AddSignalChangeHook() .................................................... 576
18.5.8 IP_WIFI_RemoveSignalChangeHook() ...............................................577
18.5.9 IP_WIFI_ConfigAllowedChannels() ....................................................578
18.5.10 IP_DTASK_ConfigAlwaysSignaled() ................................................. 579
18.5.11 IP_DTASK_GetTimeout() ............................................................... 580
18.5.12 IP_DTASK_SetTimeout() ............................................................... 581
18.5.13 IP_WIFI_Connect() .......................................................................582
18.5.14 IP_WIFI_Disconnect() ...................................................................583
18.5.15 IP_DTASK_Task() ......................................................................... 584
18.5.16 IP_DTASK_Init() ...........................................................................585
18.5.17 IP_DTASK_Exec() .........................................................................587
18.5.18 IP_DTASK_ExecAll() ..................................................................... 588
18.5.19 IP_DTASK_WaitForEvent() ............................................................. 589
18.5.20 IP_WIFI_Scan() ........................................................................... 590
18.5.21 IP_WIFI_Security2String() .............................................................591
18.5.22 IP_DTASK_Signal() .......................................................................592

18.6 Data structures ........................................................................................ 593
18.6.1 Structure IP_WIFI_CONNECT_PARAMS ............................................. 594

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



29

19 Network interface drivers ........................................................................................ 595

19.1 Network interface drivers general information .............................................. 596
19.1.1 MAC address filtering ..................................................................... 596
19.1.2 Checksum computation in hardware .................................................596
19.1.3 Ethernet CRC computation ..............................................................596

19.2 Available network interface drivers ............................................................. 597
19.2.1 Configuring the driver .................................................................... 597
19.2.2 BSP configuration .......................................................................... 597
19.2.3 Driver configuration example ...........................................................597

19.3 Device driver specifics and limitations ......................................................... 598
19.3.1 ENETC ..........................................................................................599

19.4 Writing your own driver .............................................................................600
19.4.1 Network interface driver structure ................................................... 600
19.4.2 Device driver functions ...................................................................601
19.4.3 Driver template ............................................................................. 601

20 PHY drivers .............................................................................................................602

20.1 PHY drivers general information ................................................................. 603
20.1.1 When is a specific PHY driver required? ............................................ 603

20.2 Available PHY drivers ................................................................................ 604
20.2.1 Generic driver ............................................................................... 604

20.2.1.1 Generic PHY driver API functions .......................................... 604
20.2.1.2 IP_PHY_GENERIC_RemapAccess() .........................................605

20.2.2 Micrel Switch PHY driver .................................................................606
20.2.2.1 Micrel Switch PHY driver API functions ...................................606
20.2.2.2 IP_PHY_MICREL_SWITCH_AssignPortNumber() ....................... 607
20.2.2.3 IP_PHY_MICREL_SWITCH_ConfigLearnDisable() ...................... 608
20.2.2.4 IP_PHY_MICREL_SWITCH_ConfigRxEnable() ........................... 609
20.2.2.5 IP_PHY_MICREL_SWITCH_ConfigTailTagging() .........................610
20.2.2.6 IP_PHY_MICREL_SWITCH_ConfigTxEnable() ........................... 611
20.2.2.7 IP_PHY_MICREL_SWITCH_ConfigUseInternalRmiiClock() .......... 612

20.2.3 Marvell 88E1111 Fiber PHY driver .................................................... 613

21 WiFi drivers ............................................................................................................. 614

21.1 WiFi drivers general information ................................................................. 615
21.1.1 Network Interface WiFi drivers ........................................................ 615
21.1.2 WiFi PHY bridges ........................................................................... 615

21.2 List of special WiFi drivers ......................................................................... 616
21.2.1 ConnectOne IW ............................................................................. 617

21.2.1.1 Hardware access abstraction ................................................ 617
21.2.1.2 ConnectOne IW driver API functions ......................................617
21.2.1.3 IP_PHY_WIFI_CONNECTONE_IW_ConfigSPI() ......................... 618

21.2.2 Redpine Signals RS9113 .................................................................619
21.2.2.1 Redpine Signals RS9113 driver API functions ..........................619
21.2.2.2 IP_NI_WIFI_REDPINE_RS9113_ConfigAntenna() ..................... 620
21.2.2.3 IP_NI_WIFI_REDPINE_RS9113_ConfigRegion() ....................... 621
21.2.2.4 IP_NI_WIFI_REDPINE_RS9113_SetAccessPointParameters() .....622
21.2.2.5 IP_NI_WIFI_REDPINE_RS9113_SetSpiSpeedChangeCallback() ..623
21.2.2.6 IP_NI_WIFI_REDPINE_RS9113_SetUpdateCallback() ............... 624

22 Configuring emNet .................................................................................................. 625

22.1 Runtime configuration ............................................................................... 626
22.1.1 IP_X_Config() ................................................................................627
22.1.2 Driver handling ............................................................................. 631
22.1.3 Memory and buffer assignment ....................................................... 631

22.1.3.1 RAM for TCP window ...........................................................631
22.1.3.2 Required buffers ................................................................. 631

22.2 Compile-time configuration ........................................................................ 634

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



30

22.2.1 Compile-time configuration switches ................................................ 634
22.2.2 Debug level .................................................................................. 637

23 Internet Protocol version 6 (IPv6) (Add-on) ............................................................638

23.1 emNet IPv6 ............................................................................................. 639
23.2 Feature list .............................................................................................. 640
23.3 IPv6 backgrounds ..................................................................................... 641

23.3.1 Internet Protocol header comparison ................................................642
23.3.2 IPv6 address types ........................................................................ 643

23.3.2.1 Link-local unicast addresses ................................................. 643
23.3.2.2 Global unicast addresses ..................................................... 643

23.3.3 Further reading for IPv6 .................................................................644
23.3.3.1 IPv6 Request for Comments (RFC) ........................................644
23.3.3.2 Related books for IPv6 ........................................................ 645

23.4 Include IPv6 to your emNet start project .....................................................646
23.4.1 Open an emNet project and compile it ............................................. 646
23.4.2 Add the emNet IPv6 add-on to the start project ................................ 646

23.4.2.1 Enable IPv6 support ............................................................646
23.4.2.2 Configure the MTU and the Tx/Rx window sizes ...................... 646
23.4.2.3 Enable terminal output for IPv6 messages ............................. 647
23.4.2.4 Select the start application .................................................. 647

23.4.3 Build the project and test it ............................................................ 647
23.5 Configuration ........................................................................................... 649

23.5.1 IPv6 Compile time configuration ...................................................... 649
23.5.2 IPv6 Compile time configuration switches ......................................... 649
23.5.3 IPv6 Runtime configuration ............................................................. 649

23.6 IPv6 API functions .................................................................................... 650
23.6.1 IP_IPV6_Add() .............................................................................. 651
23.6.2 IP_IPV6_AddUnicastAddr() .............................................................. 653
23.6.3 IP_IPV6_ChangeDefaultConfig() .......................................................654
23.6.4 IP_IPV6_GetIPv6Addr() .................................................................. 655
23.6.5 IP_IPV6_GetIPPacketInfo() ..............................................................656
23.6.6 IP_IPV6_ParseIPv6Addr() ................................................................657
23.6.7 IP_IPV6_SetDefHopLimit() .............................................................. 658
23.6.8 IP_IPV6_SetGateway() ................................................................... 659
23.6.9 IP_IPV6_SetLinkLocalUnicastAddr() .................................................. 660
23.6.10 IP_IPV6_INFO_GetConnectionInfo() ................................................661
23.6.11 IP_ICMPV6_AddRxHook() .............................................................. 662
23.6.12 IP_ICMPV6_RemoveRxHook() ........................................................ 664
23.6.13 IP_ICMPV6_MLD_AddMulticastAddr() .............................................. 665
23.6.14 IP_ICMPV6_MLD_RemoveMulticastAddr() ........................................ 666
23.6.15 IP_ICMPV6_NDP_SetDNSSLCallback() .............................................667
23.6.16 IP_IPV6_ResolveHost() ................................................................. 668

23.7 IPv6 internal functions, variables and data-structures ....................................669
23.7.1 IP_ON_ICMPV6_FUNC .....................................................................670

23.8 IPv6 Socket API extensions ....................................................................... 671
23.8.1 Structure sockaddr_in6 .................................................................. 671

23.9 Porting an IPv4 application to IPv6 ............................................................. 672
23.9.1 Porting an IPv4 server application to IPv6 .........................................672

23.9.1.1 TCP/IPv4 server sample code ............................................... 673
23.9.1.2 Required changes to port the TCP/IPv4 server sample code to TCP/
IPv6 ................................................................................................. 674
23.9.1.3 Dual stack TCP server sample code .......................................676

23.10 Resource usage ...................................................................................... 680
23.10.1 IPv6 ROM usage .......................................................................... 680
23.10.2 RAM usage ..................................................................................680

24 SMTP client (Add-on) ............................................................................................. 681

24.1 emNet SMTP client ................................................................................... 682

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



31

24.2 Feature list .............................................................................................. 683
24.3 Requirements ........................................................................................... 684
24.4 SMTP backgrounds ....................................................................................685
24.5 Secure connections ................................................................................... 687
24.6 Attachments .............................................................................................688
24.7 SMTP client configuration ...........................................................................689

24.7.1 SMTP client compile time configuration switches ................................ 689
24.8 API functions ........................................................................................... 690

24.8.1 IP_SMTPC_Send() ..........................................................................691
24.9 Data structures ........................................................................................ 692

24.9.1 Structure IP_SMTPC_API ................................................................ 693
24.9.2 Structure IP_SMTPC_APPLICATION ...................................................695
24.9.3 Structure IP_SMTPC_MAIL_ADDR .....................................................696
24.9.4 Structure IP_SMTPC_MULTIPART_API ............................................... 698
24.9.5 Structure IP_SMTPC_MULTIPART_ITEM ............................................. 699
24.9.6 Structure IP_SMTPC_MESSAGE ........................................................700
24.9.7 Structure IP_SMTPC_MTA ............................................................... 701

24.10 Resource usage ...................................................................................... 702
24.10.1 ROM usage on a Cortex-M4 system ................................................702
24.10.2 RAM usage ..................................................................................702

25 emFTP server (Add-on) .......................................................................................... 703

25.1 emFTP server ...........................................................................................704
25.2 Feature list .............................................................................................. 705
25.3 Requirements ........................................................................................... 706
25.4 FTP basics ............................................................................................... 707

25.4.1 Active mode FTP ........................................................................... 708
25.4.2 Passive mode FTP ..........................................................................709
25.4.3 FTP reply codes .............................................................................710
25.4.4 Supported FTP commands .............................................................. 711

25.5 Using the emFTP server sample ................................................................. 712
25.5.1 Using the emFTP server Windows sample ......................................... 712
25.5.2 Running the emFTP server example on target hardware ......................712

25.6 Access control .......................................................................................... 713
25.6.1 pfFindUser() ..................................................................................713
25.6.2 pfCheckPass() ............................................................................... 714
25.6.3 pfGetDirInfo() ............................................................................... 715
25.6.4 pfGetFileInfo() ...............................................................................717

25.7 Configuration ........................................................................................... 719
25.7.1 emFTP server compile time configuration switches ............................. 719
25.7.2 emFTP server runtime configuration .................................................720
25.7.3 emFTP server system time ............................................................. 721

25.7.3.1 pfGetTimeDate() .................................................................722
25.8 API functions ........................................................................................... 723

25.8.1 IP_FTPS_ConfigBufSizes() ............................................................... 724
25.8.2 IP_FTPS_CountRequiredMem() ........................................................ 725
25.8.3 IP_FTPS_Init() ...............................................................................726
25.8.4 IP_FTPS_Process() ......................................................................... 727
25.8.5 IP_FTPS_ProcessEx() ......................................................................728
25.8.6 IP_FTPS_OnConnectionLimit() ......................................................... 729
25.8.7 IP_FTPS_SetSignOnMsg() ............................................................... 730
25.8.8 IP_FTPS_IsDataSecured() ............................................................... 731
25.8.9 IP_FTPS_AllowOnlySecured() ...........................................................732
25.8.10 IP_FTPS_SetImplicitMode() ........................................................... 733
25.8.11 IP_FTPS_UseRenameToFullPath() ....................................................734
25.8.12 IP_FTPS_SendFormattedString() .................................................... 735
25.8.13 IP_FTPS_SendMem() .................................................................... 736
25.8.14 IP_FTPS_SendString() .................................................................. 737
25.8.15 IP_FTPS_SendUnsigned() .............................................................. 738

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



32

25.8.16 IP_FTPS_SetSignOnMsgCallback() .................................................. 739
25.8.17 IP_FTPS_SetOnServerOperationCallback() ....................................... 740
25.8.18 IP_FTPS_SetOperationResultCallback() ............................................741

25.9 Data structures ........................................................................................ 742
25.9.1 IP_FTPS_API ................................................................................. 742
25.9.2 FTPS_ACCESS_CONTROL ................................................................ 743
25.9.3 FTPS_BUFFER_SIZES ..................................................................... 744
25.9.4 FTPS_SYS_API ...............................................................................745
25.9.5 FTPS_APPLICATION ........................................................................746
25.9.6 FTPS_CB_INFO .............................................................................. 748
25.9.7 FTPS_OPERATION_TYPE ..................................................................749
25.9.8 FTPS_SEND_SIGN_ON_MSG_FUNC .................................................. 751
25.9.9 FTPS_ON_SERVER_OPERATION_FUNC .............................................. 752
25.9.10 FTPS_OPERATION_RESULT_FUNC ...................................................753

25.10 Resource usage ...................................................................................... 754
25.10.1 ROM usage on a Cortex-M4 system ................................................754
25.10.2 RAM usage ..................................................................................754

26 emFTP client (Add-on) ............................................................................................755

26.1 emFTP client ............................................................................................ 756
26.2 Feature list .............................................................................................. 757
26.3 Requirements ........................................................................................... 758
26.4 FTP basics ............................................................................................... 759

26.4.1 Active mode FTP ........................................................................... 760
26.4.2 Passive mode FTP for the client .......................................................761
26.4.3 Connection security ........................................................................761

26.4.3.1 FTP implicit mode ............................................................... 761
26.4.3.2 FTP explicit mode ............................................................... 761

26.4.4 Supported FTP client commands ......................................................762
26.5 Configuration ........................................................................................... 763

26.5.1 FTP client compile time configuration switches ...................................763
26.6 API functions ........................................................................................... 764

26.6.1 IP_FTPC_Connect() ........................................................................ 765
26.6.2 IP_FTPC_Disconnect() .................................................................... 766
26.6.3 IP_FTPC_ExecCmd() .......................................................................767
26.6.4 IP_FTPC_ExecCmdEx() ................................................................... 770
26.6.5 IP_FTPC_Init() ...............................................................................771
26.6.6 IP_FTPC_InitEx() ........................................................................... 772

26.7 Data structures ........................................................................................ 773
26.7.1 Structure IP_FTPC_API ................................................................... 773
26.7.2 Structure IP_FTPC_APPLICATION ..................................................... 774
26.7.3 IP_FTPC_CMD_CONFIG ...................................................................775

26.8 Resource usage ........................................................................................ 776
26.8.1 ROM usage on an ARM7 system ...................................................... 776
26.8.2 ROM usage on a Cortex-M3 system ................................................. 776
26.8.3 RAM usage ................................................................................... 776

27 TFTP client/server ...................................................................................................777

27.1 emNet TFTP ............................................................................................. 778
27.2 Feature list .............................................................................................. 779
27.3 TFTP basics ..............................................................................................780
27.4 Using the TFTP samples ............................................................................ 781

27.4.1 Running the TFTP server example on target hardware ........................ 781
27.5 API functions ........................................................................................... 782

27.5.1 IP_TFTP_InitContext() .................................................................... 783
27.5.2 IP_TFTP_RecvFile() ........................................................................ 784
27.5.3 IP_TFTP_SendFile() ........................................................................785
27.5.4 IP_TFTP_ServerTask() .................................................................... 786

27.6 Resource usage ........................................................................................ 787

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



33

27.6.1 ROM usage on an ARM7 system ...................................................... 787
27.6.2 ROM usage on a Cortex-M3 system ................................................. 787
27.6.3 RAM usage ................................................................................... 787

28 PPP / PPPoE (Add-on) ........................................................................................... 788

28.1 emNet PPP/PPPoE ..................................................................................... 789
28.2 Feature list .............................................................................................. 790
28.3 Requirements ........................................................................................... 791
28.4 PPP backgrounds ...................................................................................... 792
28.5 API functions ........................................................................................... 793
28.6 PPPoE functions ........................................................................................795

28.6.1 IP_PPPOE_AddInterface() ................................................................796
28.6.2 IP_PPPOE_ConfigRetries() ............................................................... 797
28.6.3 IP_PPPOE_Reset() ..........................................................................798
28.6.4 IP_PPPOE_SetAuthInfo() .................................................................799
28.6.5 IP_PPPOE_SetUserCallback() ........................................................... 800

28.7 PPP functions ........................................................................................... 801
28.7.1 IP_PPP_AddInterface() ................................................................... 802
28.7.2 IP_PPP_CHAP_AddWithMD5() .......................................................... 803
28.7.3 IP_PPP_OnRx() ..............................................................................804
28.7.4 IP_PPP_OnRxChar() ....................................................................... 805
28.7.5 IP_PPP_OnTxChar() ........................................................................806
28.7.6 IP_PPP_SetUserCallback() ............................................................... 807

28.8 Modem functions ...................................................................................... 808
28.8.1 IP_MODEM_Connect() .................................................................... 809
28.8.2 IP_MODEM_Disconnect() .................................................................810
28.8.3 IP_MODEM_GetResponse() ..............................................................811
28.8.4 IP_MODEM_SendString() ................................................................ 812
28.8.5 IP_MODEM_SendStringEx() ............................................................. 813
28.8.6 IP_MODEM_SetAuthInfo() ............................................................... 815
28.8.7 IP_MODEM_SetConnectTimeout() .....................................................816
28.8.8 IP_MODEM_SetInitCallback() ...........................................................817
28.8.9 IP_MODEM_SetInitString() .............................................................. 818
28.8.10 IP_MODEM_SetUartConfig() ...........................................................819
28.8.11 IP_MODEM_SetSwitchToCmdDelay() ............................................... 820

28.9 Data structures ........................................................................................ 821
28.9.1 Structure IP_PPP_CONTEXT ............................................................ 822
28.9.2 Structure RESEND_INFO .................................................................825
28.9.3 Structure IP_PPP_LINE_DRIVER .......................................................826

28.10 PPPoE resource usage ............................................................................. 827
28.10.1 ROM usage on an ARM7 system .................................................... 827
28.10.2 ROM usage on a Cortex-M3 system ................................................827
28.10.3 RAM usage ..................................................................................827

28.11 PPP resource usage .................................................................................828
28.11.1 ROM usage on an ARM7 system .................................................... 828
28.11.2 RAM usage ..................................................................................828

29 NetBIOS (Add-on) ...................................................................................................829

29.1 emNet NetBIOS ........................................................................................830
29.2 Feature list .............................................................................................. 831
29.3 Requirements ........................................................................................... 832
29.4 NetBIOS backgrounds ............................................................................... 833
29.5 API functions ........................................................................................... 834

29.5.1 IP_NETBIOS_Init() ......................................................................... 835
29.5.2 IP_NETBIOS_Start() .......................................................................836
29.5.3 IP_NETBIOS_Stop() ....................................................................... 837
29.5.4 Structure IP_NETBIOS_NAME .......................................................... 838

29.6 Resource usage ........................................................................................ 839
29.6.1 ROM usage on an ARM7 system ...................................................... 839

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



34

29.6.2 ROM usage on a Cortex-M3 system ................................................. 839
29.6.3 RAM usage ................................................................................... 839

30 SNTP client (Add-on) ..............................................................................................840

30.1 emNet SNTP client ....................................................................................841
30.2 Feature list .............................................................................................. 842
30.3 Requirements ........................................................................................... 843
30.4 SNTP backgrounds ....................................................................................844

30.4.1 The NTP timestamp ....................................................................... 844
30.4.2 The epoch problem (year 2036 problem) .......................................... 845

30.5 API functions ........................................................................................... 846
30.5.1 IP_SNTPC_ConfigAcceptNoSyncSource() ........................................... 847
30.5.2 IP_SNTPC_ConfigTimeout() ............................................................. 848
30.5.3 IP_SNTPC_GetTimeStampFromServer() ............................................ 849
30.5.4 IP_SNTPC_SetPort() .......................................................................850
30.5.5 Structure IP_NTP_TIMESTAMP ......................................................... 851

30.6 Resource usage ........................................................................................ 852
30.6.1 ROM usage on an ARM7 system ...................................................... 852
30.6.2 ROM usage on a Cortex-M3 system ................................................. 852
30.6.3 RAM usage ................................................................................... 852

31 PTP Ordinary Clock (Add-on) .................................................................................853

31.1 emNet PTP OC ......................................................................................... 854
31.2 emNet PTP OC slave ................................................................................. 855
31.3 emNet PTP OC master .............................................................................. 856
31.4 Hardware timestamp support ..................................................................... 857
31.5 Feature list .............................................................................................. 858
31.6 Requirements ........................................................................................... 859
31.7 PTP background ........................................................................................860

31.7.1 Time representation ....................................................................... 861
31.7.2 Hardware support .......................................................................... 861

31.8 PTP configuration ......................................................................................862
31.8.1 Configuration macro types .............................................................. 862
31.8.2 Configuration switches ....................................................................862

31.9 API functions ........................................................................................... 863
31.9.1 IP_PTP_GetDefaultDsClockIdentity() .................................................864
31.9.2 IP_PTP_GetTime() ..........................................................................865
31.9.3 IP_PTP_Halt() ................................................................................866
31.9.4 IP_PTP_Init() ................................................................................ 867
31.9.5 IP_PTP_SetTime() ..........................................................................868
31.9.6 IP_PTP_Start() .............................................................................. 869
31.9.7 IP_PTP_OC_AddMasterFallbackLogic() ...............................................870
31.9.8 IP_PTP_OC_AddSlaveFallbackLogic() .................................................871
31.9.9 IP_PTP_MASTER_Add() ...................................................................872
31.9.10 IP_PTP_MASTER_Config() ..............................................................873
31.9.11 IP_PTP_MASTER_Remove() ........................................................... 874
31.9.12 IP_PTP_SLAVE_Add() ....................................................................875
31.9.13 IP_NI_AddPTPDriver() ...................................................................876
31.9.14 IP_PTP_OC_SetInfoCallback() ........................................................ 877
31.9.15 IP_PTP_OC_SetProductDescription() ............................................... 878
31.9.16 IP_PTP_OC_SetUserDescription() ................................................... 879
31.9.17 IP_PTP_OC_SetRevision() ..............................................................880
31.9.18 IP_PTP_OC_Halt() ........................................................................ 881
31.9.19 IP_PTP_OC_Start() .......................................................................882

31.10 Data structures .......................................................................................883
31.10.1 IP_PTP_TIMESTAMP ......................................................................883
31.10.2 IP_PTP_INFO ............................................................................... 884
31.10.3 IP_PTP_CORRECTION_INFO ...........................................................885
31.10.4 IP_PTP_OFFSET_INFO ...................................................................886

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



35

31.10.5 IP_PTP_PROT_TYPE ...................................................................... 887
31.10.6 IP_PTP_MASTER_PARAMS ............................................................. 888
31.10.7 IP_PTP_MASTER_INFO ..................................................................889

31.11 Resource usage ...................................................................................... 890
31.11.1 ROM usage on a Cortex-M4 system ................................................890
31.11.2 RAM usage ..................................................................................890

32 NTP client (Add-on) ................................................................................................ 891

32.1 emNet NTP client ......................................................................................892
32.2 Feature list .............................................................................................. 893
32.3 Requirements ........................................................................................... 894
32.4 NTP backgrounds ......................................................................................895

32.4.1 The NTP timestamp ....................................................................... 895
32.4.2 The epoch problem (year 2036 problem) .......................................... 896
32.4.3 Algorithm and memory ...................................................................896
32.4.4 NTP server pool .............................................................................896
32.4.5 Time function ................................................................................896

32.5 NTP client configuration .............................................................................897
32.5.1 Configuration macro types .............................................................. 897
32.5.2 Configuration switches ....................................................................897

32.6 API functions ........................................................................................... 898
32.6.1 IP_NTP_CLIENT_Start() .................................................................. 899
32.6.2 IP_NTP_CLIENT_Halt() ................................................................... 900
32.6.3 IP_NTP_CLIENT_ResetAll() .............................................................. 901
32.6.4 IP_NTP_CLIENT_Run() ....................................................................902
32.6.5 IP_NTP_CLIENT_AddServerPool() ..................................................... 903
32.6.6 IP_NTP_CLIENT_FavorLocalClock() ................................................... 904
32.6.7 IP_NTP_CLIENT_AddServerClock() ................................................... 905
32.6.8 IP_NTP_CLIENT_AddServerClockIPv6() ............................................. 906
32.6.9 IP_NTP_GetTimestamp() .................................................................907
32.6.10 IP_NTP_GetTime() ....................................................................... 908
32.6.11 IP_NTP_SetPort() ......................................................................... 909

32.7 Resource usage ........................................................................................ 910
32.7.1 Full RFC configuration .................................................................... 910

32.7.1.1 ROM usage on a Cortex-M4 system full RFC ........................... 910
32.7.1.2 RAM usage full RFC ............................................................ 910

32.7.2 Simpler configuration ..................................................................... 910
32.7.2.1 ROM usage on a Cortex-M4 system simpler version ................. 910
32.7.2.2 RAM usage simpler version .................................................. 910

33 SNMP Agent (Add-on) ............................................................................................ 911

33.1 emNet SNMP Agent .................................................................................. 912
33.2 Feature list .............................................................................................. 913
33.3 SNMP Agent requirements ......................................................................... 914
33.4 SNMP backgrounds ................................................................................... 915

33.4.1 Data organization in SNMP ............................................................. 916
33.4.2 OID value, address and index ......................................................... 917
33.4.3 SNMP data types ........................................................................... 918

33.4.3.1 Native data types ............................................................... 918
33.4.3.2 Constructed and new data types ...........................................919

33.4.4 Participants in an SNMP environment ............................................... 920
33.4.5 Differences between SNMP versions ................................................. 921
33.4.6 SNMPv3 specific information ........................................................... 923
33.4.7 SNMP communication basics ........................................................... 925
33.4.8 SNMP Agent return codes ............................................................... 926

33.5 Using the SNMP Agent samples ..................................................................928
33.5.1 IP_SNMP_AGENT_Start.c ................................................................ 928
33.5.2 IP_SNMP_AGENT_Start_ZeroCopy.c ..................................................928
33.5.3 Using the Windows SNMP Agent sample ........................................... 928

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



36

33.5.4 Features of the SNMP Agent sample application .................................929
33.5.5 SNMPv3 samples ........................................................................... 929
33.5.6 Testing the SNMP Agent sample application .......................................930

33.6 The MIB callback ...................................................................................... 932
33.7 SNMP Agent configuration ..........................................................................935

33.7.1 SNMP Agent configuration macro types ............................................ 935
33.7.2 SNMP Agent compile time configuration switches ............................... 935

33.8 API functions ........................................................................................... 936
33.8.1 IP_SNMP_AGENT_AddCommunity() .................................................. 940
33.8.2 IP_SNMP_AGENT_AddMIB() ............................................................ 941
33.8.3 IP_SNMP_AGENT_AddInformResponseHook() .................................... 942
33.8.4 IP_SNMP_AGENT_CancelInform() .....................................................943
33.8.5 IP_SNMP_AGENT_CheckInformStatus() .............................................944
33.8.6 IP_SNMP_AGENT_DeInit() ...............................................................945
33.8.7 IP_SNMP_AGENT_Exec() .................................................................946
33.8.8 IP_SNMP_AGENT_GetMessageType() ................................................ 947
33.8.9 IP_SNMP_AGENT_Init() .................................................................. 948
33.8.10 IP_SNMP_AGENT_PrepareTrapInform() ............................................949
33.8.11 IP_SNMP_AGENT_ProcessInformResponse() .....................................951
33.8.12 IP_SNMP_AGENT_ProcessMessage() ............................................... 952
33.8.13 IP_SNMP_AGENT_SendTrapInform() ............................................... 953
33.8.14 IP_SNMP_AGENT_SetCommunityPerm() ..........................................954
33.8.15 IP_SNMP_AGENT_MPV3_Add() .......................................................955
33.8.16 IP_SNMP_AGENT_SetInformReportCallback() ...................................956
33.8.17 IP_SNMP_AGENT_SM_USM_Add() .................................................. 957
33.8.18 IP_SNMP_AGENT_SM_USM_CalcKey() .............................................958
33.8.19 IP_SNMP_AGENT_SM_USM_SetUserTable() ......................................959
33.8.20 IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetIetfMib2Interfaces() ......960
33.8.21 IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetIetfMib2System() ......... 961
33.8.22 IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetPrivateEnterprise() ....... 962
33.8.23 IP_SNMP_AGENT_CloseVarbind() ................................................... 963
33.8.24 IP_SNMP_AGENT_OpenVarbind() ....................................................964
33.8.25 IP_SNMP_AGENT_StoreBits() .........................................................965
33.8.26 IP_SNMP_AGENT_StoreCounter() ................................................... 966
33.8.27 IP_SNMP_AGENT_StoreCounter32() ............................................... 967
33.8.28 IP_SNMP_AGENT_StoreCounter64() ............................................... 968
33.8.29 IP_SNMP_AGENT_StoreCurrentMibOidAndIndex() ............................. 969
33.8.30 IP_SNMP_AGENT_StoreDouble() .................................................... 970
33.8.31 IP_SNMP_AGENT_StoreFloat() ....................................................... 971
33.8.32 IP_SNMP_AGENT_StoreGauge() ..................................................... 972
33.8.33 IP_SNMP_AGENT_StoreGauge32() ..................................................973
33.8.34 IP_SNMP_AGENT_StoreInstanceNA() .............................................. 974
33.8.35 IP_SNMP_AGENT_StoreInteger() ....................................................975
33.8.36 IP_SNMP_AGENT_StoreInteger32() ................................................ 976
33.8.37 IP_SNMP_AGENT_StoreInteger64() ................................................ 977
33.8.38 IP_SNMP_AGENT_StoreIpAddress() ................................................ 978
33.8.39 IP_SNMP_AGENT_StoreOctetString() .............................................. 979
33.8.40 IP_SNMP_AGENT_StoreOID() ........................................................ 980
33.8.41 IP_SNMP_AGENT_StoreOpaque() ................................................... 981
33.8.42 IP_SNMP_AGENT_StoreTimeTicks() .................................................982
33.8.43 IP_SNMP_AGENT_StoreUnsigned32() ..............................................983
33.8.44 IP_SNMP_AGENT_StoreUnsigned64() ..............................................984
33.8.45 IP_SNMP_AGENT_ParseBits() .........................................................985
33.8.46 IP_SNMP_AGENT_ParseCounter() ................................................... 986
33.8.47 IP_SNMP_AGENT_ParseCounter32() ............................................... 987
33.8.48 IP_SNMP_AGENT_ParseCounter64() ............................................... 988
33.8.49 IP_SNMP_AGENT_ParseDouble() .................................................... 989
33.8.50 IP_SNMP_AGENT_ParseFloat() ....................................................... 990
33.8.51 IP_SNMP_AGENT_ParseGauge() ..................................................... 991
33.8.52 IP_SNMP_AGENT_ParseGauge32() ..................................................992

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



37

33.8.53 IP_SNMP_AGENT_ParseInteger() ....................................................993
33.8.54 IP_SNMP_AGENT_ParseInteger32() ................................................ 994
33.8.55 IP_SNMP_AGENT_ParseInteger64() ................................................ 995
33.8.56 IP_SNMP_AGENT_ParseIpAddress() ................................................ 996
33.8.57 IP_SNMP_AGENT_ParseOctetString() .............................................. 997
33.8.58 IP_SNMP_AGENT_ParseOID() ........................................................ 998
33.8.59 IP_SNMP_AGENT_ParseOpaque() ................................................... 999
33.8.60 IP_SNMP_AGENT_ParseTimeTicks() ...............................................1000
33.8.61 IP_SNMP_AGENT_ParseUnsigned32() ............................................ 1001
33.8.62 IP_SNMP_AGENT_ParseUnsigned64() ............................................ 1002
33.8.63 IP_SNMP_AGENT_DecodeOIDValue() ............................................ 1003
33.8.64 IP_SNMP_AGENT_EncodeOIDValue() .............................................1004
33.8.65 IP_SNMP_AGENT_TRAP_INFORM_SetIPv4AddrPort() ....................... 1005
33.8.66 IP_SNMP_AGENT_TRAP_INFORM_SetIPv6AddrPort() ....................... 1006
33.8.67 IP_SNMP_AGENT_TRAP_INFORM_SetType() ...................................1007
33.8.68 IP_SNMP_AGENT_TRAP_INFORM_SetCommunity() ......................... 1008
33.8.69 IP_SNMP_AGENT_TRAP_INFORM_SetUser() ................................... 1009
33.8.70 IP_SNMP_AGENT_TRAP_INFORM_SetTimeoutRetries() .................... 1010
33.8.71 IP_SNMP_AGENT_TRAP_INFORM_SetMPFlags() .............................. 1011
33.8.72 IP_SNMP_SM_USM_USER_SetEngine() ..........................................1012
33.8.73 IP_SNMP_SM_USM_USER_SetUsername() ..................................... 1013
33.8.74 IP_SNMP_SM_USM_USER_SetPerm() ............................................ 1014
33.8.75 IP_SNMP_SM_USM_USER_SetAuthParamsAndKey() ........................ 1015
33.8.76 IP_SNMP_SM_USM_USER_SetPrivParamsAndKey() ......................... 1016

33.9 Data structures .......................................................................................1017
33.9.1 Structure IP_SNMP_AGENT_API ..................................................... 1017
33.9.2 Structure IP_SNMP_AGENT_PERM .................................................. 1018
33.9.3 Structure IP_SNMP_AGENT_MIB2_SYSTEM_API ............................... 1019
33.9.4 Structure IP_SNMP_AGENT_MIB2_INTERFACES_API ......................... 1020
33.9.5 IP_SNMP_HASH_INIT_FUNC .......................................................... 1021
33.9.6 IP_SNMP_HASH_ADD_FUNC .......................................................... 1022
33.9.7 IP_SNMP_HASH_FINAL_FUNC ........................................................ 1023
33.9.8 IP_SNMP_HASH_API .....................................................................1024
33.9.9 IP_SNMP_SM_USM_AUTH_PARAMS ................................................ 1025
33.9.10 IP_SNMP_SM_USM_PRIV_API_EXEC_FUNC .................................... 1026
33.9.11 IP_SNMP_SM_USM_PRIV_API ...................................................... 1027
33.9.12 IP_SNMP_CIPHER_INIT_FUNC ......................................................1028
33.9.13 IP_SNMP_CIPHER_EXEC_FUNC .....................................................1029
33.9.14 IP_SNMP_CIPHER_FINAL_FUNC ....................................................1030
33.9.15 IP_SNMP_CIPHER_API ................................................................ 1031
33.9.16 IP_SNMP_SM_USM_PRIV_PARAMS ................................................1032
33.9.17 IP_SNMP_SM_USM_ENGINE_ENTRY ..............................................1033
33.9.18 IP_SNMP_AGENT_SM_USM_CONFIG ............................................. 1034
33.9.19 IP_SNMP_SM_USM_USER_TABLE_ENTRY .......................................1035
33.9.20 IP_SNMP_USM_ENGINE_INFO ......................................................1037
33.9.21 IP_SNMP_AGENT_MPV3_CONFIG ..................................................1038
33.9.22 IP_SNMP_AGENT_ON_INFORM_REPORT_FUNC ............................... 1039

33.10 Resource usage (SNMPv2c) .................................................................... 1040
33.10.1 ROM usage on a Cortex-M4 system .............................................. 1040
33.10.2 RAM usage ................................................................................ 1040

33.11 Resource usage (SNMPv3 USM) .............................................................. 1041
33.11.1 ROM usage on a Cortex-M4 system .............................................. 1041
33.11.2 RAM usage ................................................................................ 1041

34 CoAP client/server (Add-on) ................................................................................. 1042

34.1 emNet CoAP ...........................................................................................1043
34.2 Feature list ............................................................................................ 1044
34.3 Requirements ......................................................................................... 1045
34.4 CoAP background ....................................................................................1046

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



38

34.4.1 Protocol overview .........................................................................1046
34.4.2 Message format ........................................................................... 1048
34.4.3 Response code ............................................................................ 1049
34.4.4 CoAP options ...............................................................................1050
34.4.5 Retry mechanism ......................................................................... 1050
34.4.6 Block transfer ..............................................................................1051
34.4.7 Observe ......................................................................................1052
34.4.8 Built-In resource discovery ............................................................1053
34.4.9 Implementation choices ................................................................ 1054

34.5 Using the CoAP samples .......................................................................... 1055
34.5.1 Running the sample on target hardware ......................................... 1055
34.5.2 Using the Windows samples .......................................................... 1055
34.5.3 Sample CoAP server application .....................................................1055
34.5.4 Server callbacks description .......................................................... 1055
34.5.5 Testing the server ........................................................................1056
34.5.6 Sample CoAP client application ...................................................... 1056
34.5.7 Client callbacks description ........................................................... 1057

34.6 CoAP configuration ..................................................................................1058
34.6.1 CoAP configuration macro types .....................................................1058
34.6.2 Configuration switches ..................................................................1058

34.7 API functions ..........................................................................................1060
34.7.1 Server ........................................................................................ 1063

34.7.1.1 IP_COAP_SERVER_Init() .................................................... 1064
34.7.1.2 IP_COAP_SERVER_Process() ...............................................1066
34.7.1.3 IP_COAP_SERVER_GetMsgBuffer() ...................................... 1067
34.7.1.4 IP_COAP_SERVER_AddData() ............................................. 1068
34.7.1.5 IP_COAP_SERVER_RemoveData() ........................................1069
34.7.1.6 IP_COAP_SERVER_AddClientBuffer() ....................................1070
34.7.1.7 IP_COAP_SERVER_AddObserverBuffer() ............................... 1071
34.7.1.8 IP_COAP_SERVER_UpdateData() .........................................1072
34.7.1.9 IP_COAP_SERVER_SetDefaultBlockSize() ..............................1073
34.7.1.10 IP_COAP_SERVER_SetPOSTHandler() .................................1074
34.7.1.11 IP_COAP_SERVER_ConfigSet() .......................................... 1075
34.7.1.12 IP_COAP_SERVER_ConfigClear() ....................................... 1076
34.7.1.13 IP_COAP_SERVER_SetURIPort() ........................................ 1077
34.7.1.14 IP_COAP_SERVER_SetHostName() .....................................1078
34.7.1.15 IP_COAP_SERVER_SetErrorDescription() ............................ 1079

34.7.2 Client ......................................................................................... 1080
34.7.2.1 IP_COAP_CLIENT_Init() ..................................................... 1081
34.7.2.2 IP_COAP_CLIENT_Process() ................................................1082
34.7.2.3 IP_COAP_CLIENT_GetFreeRequestIdx() ................................1083
34.7.2.4 IP_COAP_CLIENT_AbortRequestIdx() ................................... 1084
34.7.2.5 IP_COAP_CLIENT_SetServerAddress() ................................. 1085
34.7.2.6 IP_COAP_CLIENT_SetDefaultBlockSize() ...............................1086
34.7.2.7 IP_COAP_CLIENT_SetCommand() ....................................... 1087
34.7.2.8 IP_COAP_CLIENT_SetToken() ............................................. 1088
34.7.2.9 IP_COAP_CLIENT_SetPayloadHandler() ................................ 1089
34.7.2.10 IP_COAP_CLIENT_SetReplyWaitTime() ............................... 1090
34.7.2.11 IP_COAP_CLIENT_BuildAndSend() ..................................... 1091
34.7.2.12 IP_COAP_CLIENT_GetLastResult() ..................................... 1092
34.7.2.13 IP_COAP_CLIENT_GetMsgBuffer() ......................................1093
34.7.2.14 IP_COAP_CLIENT_GetLocationPath() .................................. 1094
34.7.2.15 IP_COAP_CLIENT_GetLocationQuery() ................................1095
34.7.2.16 IP_COAP_CLIENT_SetOptionURIPath() ................................1096
34.7.2.17 IP_COAP_CLIENT_SetOptionURIHost() ............................... 1097
34.7.2.18 IP_COAP_CLIENT_SetOptionURIPort() ................................ 1098
34.7.2.19 IP_COAP_CLIENT_SetOptionURIQuery() ............................. 1099
34.7.2.20 IP_COAP_CLIENT_SetOptionETag() .................................... 1100
34.7.2.21 IP_COAP_CLIENT_SetOptionBlock() ................................... 1101
34.7.2.22 IP_COAP_CLIENT_SetOptionAccept() ................................. 1102

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



39

34.7.2.23 IP_COAP_CLIENT_SetOptionContentFormat() ...................... 1103
34.7.2.24 IP_COAP_CLIENT_SetOptionIfNoneMatch() ......................... 1104
34.7.2.25 IP_COAP_CLIENT_SetOptionLocationPath() ......................... 1105
34.7.2.26 IP_COAP_CLIENT_SetOptionLocationQuery() .......................1106
34.7.2.27 IP_COAP_CLIENT_SetOptionProxyURI() ..............................1107
34.7.2.28 IP_COAP_CLIENT_SetOptionProxyScheme() ........................ 1108
34.7.2.29 IP_COAP_CLIENT_SetOptionSize1() ................................... 1109
34.7.2.30 IP_COAP_CLIENT_SetOptionAddIFMatch() .......................... 1110
34.7.2.31 IP_COAP_CLIENT_OBS_Init() ............................................ 1111
34.7.2.32 IP_COAP_CLIENT_OBS_Abort() ......................................... 1112
34.7.2.33 IP_COAP_CLIENT_OBS_SetEndCallback() ........................... 1113

34.7.3 Utility ......................................................................................... 1114
34.7.3.1 IP_COAP_CheckAcceptFormat() ...........................................1115
34.7.3.2 IP_COAP_GetAcceptFormat() .............................................. 1116
34.7.3.3 IP_COAP_CheckContentFormat() ......................................... 1117
34.7.3.4 IP_COAP_GetContentFormat() ............................................ 1118
34.7.3.5 IP_COAP_IsLastBlock() ...................................................... 1119
34.7.3.6 IP_COAP_GetURIHost() ......................................................1120
34.7.3.7 IP_COAP_GetURIPath() ......................................................1121
34.7.3.8 IP_COAP_GetURIPort() ...................................................... 1122
34.7.3.9 IP_COAP_GetQuery() .........................................................1123
34.7.3.10 IP_COAP_GetETag() .........................................................1124
34.7.3.11 IP_COAP_GetMaxAge() .................................................... 1125
34.7.3.12 IP_COAP_GetSize1() ........................................................1126
34.7.3.13 IP_COAP_GetSize2() ........................................................1127
34.7.3.14 IP_COAP_GetLocationPath() ..............................................1128
34.7.3.15 IP_COAP_GetLocationQuery() ........................................... 1129

34.8 Data structures .......................................................................................1130
34.8.1 IP_COAP_SERVER_CONTEXT ......................................................... 1131
34.8.2 IP_COAP_SERVER_DATA ............................................................... 1133
34.8.3 PF_POST_HANDLER ......................................................................1136
34.8.4 IP_COAP_pfGETPayload ................................................................ 1138
34.8.5 IP_COAP_pfPUTPayload .................................................................1141
34.8.6 IP_COAP_pfDELHandler .................................................................1143
34.8.7 IP_COAP_CLIENT_CONTEXT .......................................................... 1144
34.8.8 PF_OBS_END_TRANSFER .............................................................. 1145
34.8.9 PF_CLIENT_PAYLOAD ....................................................................1146
34.8.10 IP_COAP_API .............................................................................1148
34.8.11 IP_COAP_CALLBACK_PARAM ........................................................1149
34.8.12 IP_COAP_OPTIONS_INFO ............................................................ 1150
34.8.13 IP_COAP_IF_MATCH_INFO ...........................................................1152
34.8.14 IP_COAP_HEADER_INFO ............................................................. 1153
34.8.15 IP_COAP_BLOCK_INFO ................................................................1154
34.8.16 IP_COAP_CONN_INFO .................................................................1155
34.8.17 IP_COAP_pfReceive .................................................................... 1156
34.8.18 IP_COAP_pfSend ........................................................................ 1157
34.8.19 IP_COAP_pfGetTimeMs ................................................................1158

34.9 Resource usage ...................................................................................... 1159
34.9.1 Server ROM usage on a Cortex-M4 system ......................................1159
34.9.2 Client ROM usage on a Cortex-M4 system .......................................1159
34.9.3 Server RAM usage. ...................................................................... 1159
34.9.4 Client RAM usage. ........................................................................1159

35 MQTT client (Add-on) ........................................................................................... 1160

35.1 emMQTT client ....................................................................................... 1161
35.2 Feature list ............................................................................................ 1162
35.3 Requirements ......................................................................................... 1163
35.4 MQTT backgrounds ..................................................................................1164

35.4.1 MQTT Quality of service ................................................................1165

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



40

35.5 emMQTT client configuration .................................................................... 1167
35.6 API functions ..........................................................................................1168

35.6.1 IP_MQTT_CLIENT_Init() ................................................................ 1169
35.6.2 IP_MQTT_CLIENT_SetLastWill() ......................................................1170
35.6.3 IP_MQTT_CLIENT_SetUserPass() .................................................... 1171
35.6.4 IP_MQTT_CLIENT_SetKeepAlive() ...................................................1172
35.6.5 IP_MQTT_CLIENT_ConnectEx() ...................................................... 1173
35.6.6 IP_MQTT_CLIENT_Disconnect() ......................................................1174
35.6.7 IP_MQTT_CLIENT_Publish() ........................................................... 1175
35.6.8 IP_MQTT_CLIENT_Subscribe() ....................................................... 1176
35.6.9 IP_MQTT_CLIENT_Unsubscribe() .................................................... 1177
35.6.10 IP_MQTT_CLIENT_WaitForNextMessage() .......................................1178
35.6.11 IP_MQTT_CLIENT_Recv() .............................................................1179
35.6.12 IP_MQTT_CLIENT_Timer() ........................................................... 1180
35.6.13 IP_MQTT_CLIENT_CheckMessageTimeouts() ...................................1181
35.6.14 IP_MQTT_CLIENT_Exec() .............................................................1182
35.6.15 IP_MQTT_CLIENT_ParsePublishEx() ...............................................1183
35.6.16 IP_MQTT_CLIENT_IsClientConnected() .......................................... 1184
35.6.17 IP_MQTT_Property2String() ......................................................... 1185
35.6.18 IP_MQTT_ReasonCode2String() .................................................... 1186
35.6.19 IP_MQTT_CLIENT_Connect() ........................................................ 1187
35.6.20 IP_MQTT_CLIENT_ParsePublish() ..................................................1188

35.7 Data structures .......................................................................................1189
35.7.1 IP_MQTT_CLIENT_TRANSPORT_API ................................................ 1190
35.7.2 IP_MQTT_CLIENT_APP_API ............................................................1191
35.7.3 IP_MQTT_CLIENT_MESSAGE ..........................................................1192
35.7.4 IP_MQTT_CLIENT_TOPIC_FILTER ....................................................1193
35.7.5 IP_MQTT_CLIENT_SUBSCRIBE ....................................................... 1194
35.7.6 IP_MQTT_PROPERTY .....................................................................1195
35.7.7 IP_MQTT_CONNECT_PARAM .......................................................... 1196
35.7.8 IP_MQTT_STR_PAIR_DATA ............................................................ 1197
35.7.9 IP_MQTT_STR_DATA .....................................................................1198
35.7.10 IP_MQTT_BIN_DATA ................................................................... 1199

35.8 IP_MQTT_CLIENT_TRANSPORT_API in detail ...............................................1200
35.8.0.1 IP_MQTT_CLIENT_CONNECT ...............................................1200
35.8.0.2 IP_MQTT_CLIENT_DISCONNECT ..........................................1201
35.8.0.3 IP_MQTT_CLIENT_RECEIVE ................................................ 1202
35.8.0.4 IP_MQTT_CLIENT_SEND .....................................................1203

35.9 IP_MQTT_CLIENT_APP_API in detail .......................................................... 1204
35.9.0.1 IP_MQTT_CLIENT_GEN_RANDOM ........................................ 1204
35.9.0.2 IP_MQTT_CLIENT_ALLOC ................................................... 1205
35.9.0.3 IP_MQTT_CLIENT_FREE ..................................................... 1206
35.9.0.4 IP_MQTT_CLIENT_LOCK .....................................................1207
35.9.0.5 IP_MQTT_CLIENT_UNLOCK .................................................1208
35.9.0.6 IP_MQTT_CLIENT_RECV_MESSAGE ......................................1209
35.9.0.7 IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM .......................... 1210
35.9.0.8 IP_MQTT_CLIENT_HANDLE_ERROR ......................................1211
35.9.0.9 IP_MQTT_CLIENT_HANDLE_DISCONNECT .............................1212
35.9.0.10 IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM_EX ................... 1213
35.9.0.11 IP_MQTT_CLIENT_RECV_MESSAGE_EX ...............................1214
35.9.0.12 IP_MQTT_CLIENT_ON_PROPERTY ...................................... 1215
35.9.0.13 IP_MQTT_CLIENT_CHECK_TIMEOUT_CB ............................. 1216

35.10 Resource usage .....................................................................................1217
35.10.1 Resource usage on a Cortex-M4 system ........................................ 1217

35.10.1.1 ROM usage .....................................................................1217
35.10.1.2 RAM usage ..................................................................... 1217

36 WebSocket (Add-on) .............................................................................................1218

36.1 emNet WebSocket support ....................................................................... 1219

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



41

36.2 Feature list ............................................................................................ 1220
36.3 Requirements ......................................................................................... 1221
36.4 Backgrounds .......................................................................................... 1222

36.4.1 Establishing a WebSocket connection ..............................................1223
36.4.2 Accepting a WebSocket connection .................................................1224
36.4.3 Closing a WebSocket connection .................................................... 1225
36.4.4 WebSocket data framing ............................................................... 1225
36.4.5 WebSocket frame types ................................................................ 1227

36.5 Using the WebSocket samples .................................................................. 1228
36.5.1 IP_WEBSOCKET_printf_Server.c ..................................................... 1228
36.5.2 GUI_VNC_X_StartServer.c ............................................................. 1230
36.5.3 Using the Windows sample ........................................................... 1232

36.6 Configuration ..........................................................................................1233
36.7 API functions ..........................................................................................1234

36.7.1 IP_WEBSOCKET_Close() ............................................................... 1235
36.7.2 IP_WEBSOCKET_DiscardMessage() .................................................1236
36.7.3 IP_WEBSOCKET_GenerateAcceptKey() ............................................ 1237
36.7.4 IP_WEBSOCKET_InitClient() .......................................................... 1238
36.7.5 IP_WEBSOCKET_InitServer() ......................................................... 1239
36.7.6 IP_WEBSOCKET_Recv() ................................................................ 1240
36.7.7 IP_WEBSOCKET_Send() ................................................................1241
36.7.8 IP_WEBSOCKET_WaitForNextMessage() .......................................... 1242

36.8 Data structures .......................................................................................1243
36.8.1 Structure IP_WEBSOCKET_TRANSPORT_API .................................... 1243

36.9 Resource usage ...................................................................................... 1244
36.9.1 ROM usage on a Cortex-M4 system ................................................1244
36.9.2 RAM usage ..................................................................................1244

37 Profiling with SystemView .....................................................................................1245

37.1 Profiling overview ................................................................................... 1246
37.2 Additional files for profiling ...................................................................... 1247

37.2.1 Additional files on target side ........................................................ 1247
37.2.2 Additional files on PC side .............................................................1247

37.3 Enable profiling .......................................................................................1248
37.4 Recording and analyzing profiling information .............................................1249

38 Debugging .............................................................................................................1250

38.1 Message output ...................................................................................... 1251
38.2 Testing stability ...................................................................................... 1252
38.3 API functions ..........................................................................................1253

38.3.1 IP_Log() ..................................................................................... 1254
38.3.2 IP_Warn() ................................................................................... 1255
38.3.3 IP_Logf_Application() ................................................................... 1256
38.3.4 IP_Warnf_Application() ................................................................. 1257
38.3.5 IP_AddLogFilter() ......................................................................... 1258
38.3.6 IP_RemoveLogFilter() ................................................................... 1259
38.3.7 IP_AddWarnFilter() .......................................................................1260
38.3.8 IP_RemoveWarnFilter() ................................................................. 1261
38.3.9 IP_SetLogFilter() ..........................................................................1262
38.3.10 IP_SetWarnFilter() ......................................................................1263
38.3.11 IP_PrintStatus() ......................................................................... 1264
38.3.12 IP_PANIC() ................................................................................1265
38.3.13 IP_Panic() ................................................................................. 1266

38.4 Message types ........................................................................................1267
38.5 Using a network sniffer to analyze communication problems ......................... 1269

39 OS integration ....................................................................................................... 1270

39.1 OS integration general information ............................................................1271

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



42

39.1.1 Examples .................................................................................... 1272
39.1.2 IP_OS_Delay() .............................................................................1273
39.1.3 IP_OS_DisableInterrupt() .............................................................. 1274
39.1.4 IP_OS_EnableInterrupt() ...............................................................1275
39.1.5 IP_OS_GetTime32() ..................................................................... 1276
39.1.6 IP_OS_Init() ................................................................................1277
39.1.7 IP_OS_Lock() .............................................................................. 1278
39.1.8 IP_OS_Unlock() ........................................................................... 1279
39.1.9 IP_OS_SignalNetEvent() ............................................................... 1280
39.1.10 IP_OS_WaitNetEventTimed() ........................................................1281
39.1.11 IP_OS_SignalRxEvent() ...............................................................1282
39.1.12 IP_OS_WaitDTaskEventTimed() .................................................... 1283
39.1.13 IP_OS_SignalDTaskEvent() .......................................................... 1284
39.1.14 IP_OS_WaitRxEventTimed() .........................................................1285
39.1.15 IP_OS_WaitItemTimed() ..............................................................1286
39.1.16 IP_OS_SignalItem() ....................................................................1287

40 Knowledge Base ................................................................................................... 1288

40.1 Window Scaling ...................................................................................... 1289

41 Performance & resource usage ............................................................................1290

41.1 emNet Memory footprint ..........................................................................1291
41.1.1 emNet on ARM7 system ............................................................... 1291

41.1.1.1 ROM usage ARM7 ............................................................. 1291
41.1.1.2 RAM usage ARM7 ..............................................................1291

41.1.2 emNet on Cortex-M3 system ......................................................... 1292
41.1.2.1 ROM usage Cortex-M3 ....................................................... 1292
41.1.2.2 RAM usage Cortex-M3 ....................................................... 1292

41.2 emNet performance ................................................................................ 1293
41.2.1 Performance on ARM7 system ....................................................... 1293
41.2.2 Performance on Cortex-M3 system .................................................1294

42 Appendix A - File system abstraction layer .......................................................... 1295

42.1 File system abstraction layer .................................................................... 1296
42.2 File system abstraction layer function table ................................................ 1297

42.2.1 emFile interface ...........................................................................1299
42.2.2 Read-only file system ................................................................... 1300
42.2.3 Using the read-only file system ..................................................... 1301
42.2.4 Windows file system interface ....................................................... 1302

43 Support ..................................................................................................................1303

43.1 Contacting support ..................................................................................1304

44 Glossary ................................................................................................................ 1305

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 1
 
Introduction to emNet

This chapter provides an introduction to using emNet. It explains the basic concepts behind
emNet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



44 CHAPTER 1 What is emNet

1.1    What is emNet
emNet is a CPU-independent TCP/IP stack.

emNet is a high-performance library that has been optimized for speed, versatility and
small memory footprint.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



45 CHAPTER 1 Features

1.2    Features
emNet is written in ANSI C and can be used on virtually any CPU.

Some features of emNet:
• Standard socket interface.
• High performance.
• Small footprint.
• No configuration required.
• Runs “out-of-the-box”.
• Very simple network interface driver structure.
• Works seamlessly with embOS in multitasking environment.
• Zero data copy for ultra fast performance.
• Non-blocking versions of all functions.
• Connections limited only by memory availability.
• Delayed ACKs.
• Handling gratuitous ARP packets
• Support for VLAN
• BSD style “keep-alive” option.
• Support for messages and warnings in debug build.
• Drivers for most common Ethernet controllers available.
• Support for driver side (hardware) checksum computation.
• Royalty-free.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



46 CHAPTER 1 Basic concepts

1.3    Basic concepts

1.3.1    emNet structure
emNet is organized in different layers, as shown in the following illustration.

A short description of each layer’s functionality follows below.

Application layer

The application layer is the interface between emNet and the user application. It uses the
emNet API to transmit data over an TCP/IP network. The emNet API provides functions in
BSD (Berkeley Software Distribution) socket style, such as connect(), bind(), listen(),
etc.

Transport layer

The transport layer provides end-to-end communication services for applications. The two
relevant protocols of the Transport layer protocol are the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP). TCP is a reliable connection-oriented
transport service. It provides end-to-end reliability, resequencing, and flow control. UDP is
a connectionless transport service.

Internet layer

All protocols of the transport layer use the Internet Protocol (IP) to carry data from source
host to destination host. IP is a connectionless service, providing no end-to-end delivery
guarantees. IP datagrams may arrive at the destination host damaged, duplicated, out of
order, or not at all. The transport layer is responsible for reliable delivery of the datagrams
when it is required. The IP protocol includes provision for addressing, type-of-service
specification, fragmentation and reassembly, and security information.

Link layer

The link layer provides the implementation of the communication protocol used to interface
to the directly-connected network. A variety of communication protocols have been
developed and standardized. The most commonly used protocol is Ethernet (IEEE 802.3).
In this version of emNet only Ethernet is supported.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



47 CHAPTER 1 Basic concepts

1.3.2    Encapsulation
The four layers structure is defined in [RFC 1122]. The data flow starts at the application
layer and goes over the transport layer, the network layer, and the link layer. Every protocol
adds a protocol-specific header and encapsulates the data and header from the layer above
as data. On the receiving side, the data will be extracted in the complementary direction.
The opposed protocols do not know which protocol on the above and below layers are used.

The following illustration shows the encapsulation of data within an UDP datagram within
an IP packet.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



48 CHAPTER 1 Tasks and interrupt usage

1.4    Tasks and interrupt usage
emNet can be used in an application in three different ways.
• One task dedicated to the stack (IP_Task)
• Two tasks dedicated to the stack (IP_Task, IP_RxTask)
• Zero tasks dedicated to the stack (Superloop)

The default task structure is one task dedicated to the stack. The priority of the management
task IP_Task should be higher then the priority of all application tasks that use the stack
to allow optimal performance. The IP_RxTask (if available) should run at the highest single
task priority of all IP related task as it is an interrupt moved into a task.

Task priorities

IP task priorities are independent from other (non IP) task priorities. However as soon as a
task calls an IP API it should follow these priority rules for the best performance of the stack:
1. The IP_RxTask (if used at all) should have the highest single priority of all tasks that

make use of the IP API, having a higher priority than the IP_Task .
2. The IP_Task should have a higher task priority than any other task that makes use of

the IP API. It should have a lower priority than the IP_RxTask (if used at all).
3. All tasks that make use of the IP API should use a task priority below the IP_Task to

allow optimal performance.

Task priorities for tasks not using the IP API can be freely chosen.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



49 CHAPTER 1 Tasks and interrupt usage

One task dedicated to the stack

Using one task dedicated to the stack is the simplest way to use the TCP/IP stack. It is
called IP_Task and handles housekeeping operations, resending and handling of incoming
packets. The “Read packet” operation is performed from within the ISR. Because the “Read
packet” operation is called directly from the ISR, no additional task is required. The length
of the interrupt latency will be extended for the time period which is required to process
the “Read packet” operation. Refer to IP_Task on page 171 for more information and an
example about how to include the IP_Task into your project.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



50 CHAPTER 1 Tasks and interrupt usage

Two tasks dedicated to the stack

The first task is called the IP_Task and handles housekeeping operations, resends, and
handling of incoming packets. The second is called IP_RxTask and handles the “Read
packet” operation. IP_RxTask is woken up from the interrupt service routine if new packets
are available. The interrupt latency is not extended, because the “Read packet” operation
has been moved from the interrupt service routine to IP_RxTask. Refer to IP_Task on
page 171 and IP_RxTask on page 178 for more information. IP_RxTask should have a
higher priority than IP_Task as it is treated as interrupt in task form and should not be
interrupted by IP_Task or any other IP task.

  

Note

Initializing the IP stack with two task concept from main()

Packets might receive as soon as Ethernet is initialized by IP_Init() and the (receive)
interrupt is enabled. The internal switch between the single task and two task concept
gets set automatically upon the first execution of IP_RxTask() . Initializing the stack
from main() typically means to initialize it before a task scheduler is active.

If a packet is received between IP_Init() and the first run of IP_RxTask() the packet
will be processed like in the single task concept. This should typically cause no problem
to the application and the mode is automatically switched to the two task concept as
soon as IP_RxTask() has run for the first time.

If it is desired to completely avoid this to happen, the following steps need to be taken
care of:
1. Call IP_SetUseRxTask() manually (best placed after calling IP_Init() and adding

the two tasks) to switch to the two task concept early.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



51 CHAPTER 1 Tasks and interrupt usage

2. The Ethernet interrupt enable (typically in BSP_IP.c) needs to be manually moved
to after calling IP_Init() and IP_SetUseRxTask() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



52 CHAPTER 1 Tasks and interrupt usage

Zero tasks dedicated to the stack (Superloop)

emNet can also be used without any additional task for the stack if an application task
calls IP_Exec() periodically. The “Read packet” operation is performed from within the ISR.
Because the “Read packet” operation is called directly from the ISR, no additional task is
required. The length of the interrupt latency will be extended for the time period which is
required to process the “Read packet” operation.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



53 CHAPTER 1 Background information

1.5    Background information

1.5.1    Components of an Ethernet system
Main parts of an Ethernet system are the Media Access Controller (MAC) and the Physical
device (PHY). The MAC handles generating and parsing physical frames and the PHY handles
how this data is actually moved to or from the wire.

MCUs with integrated MAC

Some modern MCUs (for example, the ATMEL SAM7X or the ST STR912) include the MAC
and use the internal RAM to store the Ethernet data. The following block diagram illustrates
such a configuration.

External Ethernet controllers with MAC and PHY

Chips without integrated MAC can use fully integrated single chip Ethernet MAC controller
with integrated PHY and a general processor interface. The following schematic illustrates
such a configuration.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



54 CHAPTER 1 Background information

1.5.1.1    MII / RMII / GMII / RGMII: Interface between MAC and PHY
The MAC communicates with the PHY via the Media Independent Interface (MII) or the
Reduced Media Independent Interface (RMII).The MII is defined in IEEE 802.3u. The RMII
is a subset of the MII and is defined in the RMI specification. The MII/RMII can handle
control over the PHY which allows for selection of such transmission criteria as line speed,
duplex mode, etc.

Note

While the specification uses “MII” specifically for Fast Ethernet (100 Mbit/s), emNet
is not limited to just MII and RMII support, the higher speed interfaces are supported
as well (Gigabit Media Independent Interface (GMII), Reduced Gigabit Media
Independent Interface (RGMII), etc.). Mentioning all types of media-independent
interfaces goes beyond the scope of this documentation.

In theory, up to 32 PHYs can be connected to a single MAC. In praxis, this is never done;
only one PHY is connected. In order to allow multiple PHYs to be connected to a single
MAC, individual 5-bit addresses have to be assigned to the different PHYs. If only one PHY
is connected, the emNet driver automatically finds the address of it.

The standard defines 32 16-bit PHY registers. The first 6 are defined by the standard.

Register Description

BMCR Basic Mode Control Register
BSR Basic Mode Status Register
PHYSID1 PHYS ID 1
PHYSID2 PHYS ID 2
ANAR Auto-Negotiation Advertisement Register
LPAR Link Partner Ability register

The drivers automatically recognize any PHY connected, no manual configuration of PHY
address is required.

The MII and RMII interface are capable of both 10Mb/s and 100Mb/s data rates as described
in the IEEE 802.3u standard.

  

The intent of the RMII is to provide a reduced pin count alternative to the IEEE 802.3u
MII. It uses 2 bits for transmit (TXD0 and TXD1) and two bits for receive (RXD0 and RXD1).
There is a Transmit Enable (TX_EN), a Receive Error (RX_ER), a Carrier Sense (CRS), and
a 50 MHz Reference Clock (TX_CLK) for 100Mb/s data rate. The pins used by the MII and
RMII interfaces are described in the following table.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



55 CHAPTER 1 Background information

Signal MII RMII

TX_CLK Transmit Clock (25 MHz) Reference Clock (50 MHz)
TX_EN Transmit Enable Transmit Enable
TXD[0:1] 4-bit Transmit Data 2-bit Transmit Data
TXD[2:3] 4-bit Transmit Data (cont’d) N/A
PHYCLK PHY Clock Output PHY Clock Output
CRS Carrier Sense N/A
COL Collision Detect N/A
MDIO Management data I/O Management data I/O

MDC
Data Transfer Timing Reference
Clock

Data Transfer Timing Reference
Clock

RX_CLK Receive Clock N/A
RXD[0:1] 4-bit Receive Data 2-bit Receive Data
RXD[2:3] 4-bit Receive Data (cont’d) N/A
RX_DV Data Valid Carrier Sense/Data Valid
RX_ER Receive Error Receive Error

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



56 CHAPTER 1 Further reading

1.6    Further reading
This guide explains the usage of the emNet protocol stack. It describes all functions which
are required to build a network application. For a deeper understanding about how the
protocols of the Internet protocol suite works use the following references.

The following Request for Comments (RFC) define the relevant protocols of the Internet
protocol suite and have been used to build the protocol stack. They contain all required
technical specifications. The listed books are simpler to read as the RFCs and give a general
survey about the interconnection of the different protocols.

1.6.1    Request for Comments (RFC)

RFC# Description

[RFC 768] UDP - User Datagram Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc768.txt

[RFC 791] IP - Internet Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc791.txt

[RFC 792] ICMP - Internet Control Message Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc792.txt

[RFC 793] TCP - Transmission Control Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc793.txt

[RFC 821] SMTP - Simple Mail Transfer Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc826.txt

[RFC 826] ARP - Ethernet Address Resolution Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc826.txt

[RFC 951] BOOTP - Bootstrap Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc951.txt

[RFC 959] FTP - File Transfer Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc959.txt

[RFC 1034] DNS - Domain names - concepts and facilities
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1034.txt

[RFC 1035] DNS - Domain names - implementation and specification
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1035.txt

[RFC 1042] IE-EEE - Transmission of IP datagrams over IEEE 802 networks
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1042.txt

[RFC 1122] Requirements for Internet Hosts - Communication Layers
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1122.txt

[RFC 1123] Requirements for Internet Hosts - Application and Support
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1123.txt

[RFC 1661] PPP - Point-to-Point Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1661.txt

[RFC 1939] POP3 - Post Office Protocol - Version 3
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1939.txt

[RFC 2131] DHCP - Dynamic Host Configuration Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc2131.txt

[RFC 2616] HTTP - Hypertext Transfer Protocol -- HTTP/1.1
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



57 CHAPTER 1 Further reading

1.6.2    Related books
• [Comer] - Computer Networks and Internets, Douglas E Comer and Ralph E. Droms -

ISBN: 978-0131433519
• [Tannenbaum] - Computer Networks, Andrew S. Tannenbaum ISBN: 978-0130661029
• [StevensV1] - TCP/IP Illustrated, Volume 1, W. Richard Stevens ISBN:

978-0201633467.
• [StevensV2] - TCP/IP Illustrated, Volume 2, W. Richard Stevens and Gary R. Wright -

ISBN: 978-0201633542.
• [StevensV3] - TCP/IP Illustrated, Volume 3, W. Richard Stevens ISBN:

978-0201634952.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



58 CHAPTER 1 Development environment (compiler)

1.7    Development environment (compiler)
The CPU used is of no importance; only an ANSI-compliant C compiler complying with at
least one of the following international standard is required:
• ISO/IEC/ANSI 9899:1990 (C90) with support for C++ style comments (//)
• ISO/IEC 9899:1999 (C99)
• ISO/IEC 14882:1998 (C++)

If your compiler has some limitations, let us know and we will inform you if these will be
a problem when compiling the software. Any compiler for 16/32/64-bit CPUs or DSPs that
we know of can be used; most 8-bit compilers can be used as well.

A C++ compiler is not required, but can be used. The application program can therefore
also be programmed in C++ if desired.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 2
 
Running emNet on target
hardware

This chapter explains how to integrate and run emNet on your target hardware. It explains
this process step-by-step.

Integrating emNet

The emNet default configuration is preconfigured with valid values, which matches the
requirements of the most applications. emNet is designed to be used with embOS, SEGGER’s
real-time operating system. We recommend to start with an embOS sample project and
include emNet into this project. We assume that you are familiar with the tools you have
selected for your project (compiler, project manager, linker, etc.). You should therefore be
able to add files, add directories to the include search path, and so on. In this document
the SEGGER Embedded Studio is used for all examples and screenshots, but every other
ANSI C toolchain can also be used. It is also possible to use make files; in this case, when
we say “add to the project”, this translates into “add to the make file”.

Procedure to follow

Integration of emNet is a relatively simple process, which consists of the following steps:
• Step 1: Open an embOS project and compile it.
• Step 2: Add emNet to the start project
• Step 3: Compile the project

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



60 CHAPTER 2 Step 1: Open an embOS start project

2.1    Step 1: Open an embOS start project
We recommend that you use one of the supplied embOS start projects for your target
system. Compile the project and run it on your target hardware.

 

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



61 CHAPTER 2 Step 2: Adding emNet to the start project

2.2    Step 2: Adding emNet to the start project
emNet shipments can consist of an emNet BASE or PRO package, a Driver, an Add-On, or
an RTOS Layer.

The structure of the emNet BASE/PRO shipment looks like following:

Directory Content

.\Windows\
Contains some PC Samples to test together with the
Target Samples (e.g. running SpeedTestServer on PC and
IP_SpeedClient_TCP.c on the embedded Target).

.\Shared\ Contains the File System API and Webserver Samples.

.\SEGGER\ Contains some optimized MCU and/or compiler-specific files.

.\Sample\ Contains the Driver Template and an RTOS Layer for embOS.

.\IP\ Contains the emNet source files.

.\Inc\ Contains some BSP includes.

.\Doc\
Contains the emNet Documentation and Migration Guide which
shall be considered when migrating a project from a previous
version.

.\Config\
Contains the config files. These can be modified by the user
according to their needs.

.\Application\
Contains Sample Applications to test various emNet
functionalities out-of-the-box.

Add all the IP source files from the shipment to your project.

The Config folder includes all configuration files of emNet. The configuration files are pre-
configured with valid values, which match the requirements of most applications. Add the
hardware configuration IP_Config_<TargetName>.c supplied with the driver shipment.

emNet works best with an RTOS. In Sample\IP\OS, the shipment includes an RTOS Layer
for embOS (IP_OS_embOS.c). Besides embOS, several other RTOS Abstraction Layers are
available for emNet. If no RTOS is used, you may add IP_OS_None.c to the project. For
more information regarding RTOS integration, please refer to the chapter OS integration
on page 1270.

The IP\ASM folder contains files for various CPUs and toolchains with routines optimized
in assembler code. Typically only one of these files needs to be added to your project
and the rest should be excluded (e.g. RX_IP_cksum_IAR.s for Renesas RX MCUs with IAR
Compiler). The optimized routines are used by overwriting a specific macro that typically
can be found in Config_Conf.h.

For emNet PRO (and some Add-Ons), the Shared\IP folder contains the File
System APIs and some Dynamic Content Samples for the Webserver. In Shared\IP
\IP_FS, there are File System Layers for emFile, read-only use, etc. for all kinds
of use-cases. IP_FS_emFile.c is needed when using emFile. IP_FS_ReadOnly.c and
IP_FS_ReadOnly_2018.c are read-only versions that do not require a separate file system.

The Webserver Samples show how to use dynamic content in combination with the
Webserver Sample from Application. For more information, please refer to the emWeb
Documentation UM07002.

Note

If you have any personal modifications in your emNet files, please be careful to not
overwrite these modifications when updating your files with a new emNet version.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



62 CHAPTER 2 Step 2: Adding emNet to the start project

Keeping the project structure as similar as possible to the shipment makes it easier to
update emNet when a new version is released.

BSP support

IP drivers need hardware settings from the BSP file (like port settings for example). Some
older drivers are supplied with BSP.c and BSP.h that need to replace the one supplied with
embOS shipment.

Newer and updated drivers have a separate BSP_IP.c file instead. Depending on your case,
either replace BSP.c and BSP.h of your embOS start project or add BSP_IP.c.

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases where
the included files (typically header files, .h) do not reside in the same directory as the C
file to compile, an include path needs to be set. In order to build the project with all added
files, you will need to add the following IP directories to your include path:
• Shared
• Config
• Inc
• SEGGER
• IP

Drivers

For an emNet Driver, the shipments looks like the following:

Directory Content

.\IP\ Contains the driver source files.

.\Inc\ Contains some BSP includes.

.\BSP\
Contains the BSP_IP and IP_Config for the supported boards.
Customers need to include the one for the board that is used by
them.

In IP, the driver itself is found. Please add the driver to your emNet source files.

Please replace the BSP_IP.h from your emNet shipment with the one from Inc.

For BSP, plrease refer to BSP support and the information from the previous paragraphs.

Some drivers (e.g. Synopsis or EtherC) include configs for multiple MCUs. Thus, please
use the according Setup files (BSP_IP.c, IP_Config_<TargetName>.c) for the MCU you
are using.

Additional Modules

There are also several Add-Ons available for emNet. These include emFTP Server and Client,
emWeb, PPP, SNTP, SNMP, emMQTT and many more. Any Add-On can be added to your
project in the same way as a normal emNet shipment would.

For an Add-On, the shipment may look like the following (Not every Add-On contains all
of these folders):

Directory Content

.\Windows\ Contains PC Samples to test the Target with.

.\Shared\ Contains the File System API.

.\SEGGER\ Contains some SEGGER files.

.\IP\ Contains the Add-On source files.

.\Doc\ Contains documentation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



63 CHAPTER 2 Step 2: Adding emNet to the start project

Directory Content

.\Config\
Contains some config files. These can be modified by the user
according to their needs.

.\Application\
Contains Sample Applications to test various emNet
functionalities out-of-the-box.

The files in these folders can be added to the files from your emNet BASE/PRO shipment.

Note

Always make sure that you only have one version of each file!

Warning

It is frequently a major problem when updating to a new version of emNet, and you
have old files included and therefore mix different versions. If you keep emNet in the
directories as suggested (and only in these), this type of problem cannot occur. When
updating to a newer version, you should be able to keep your configuration files and
leave them unchanged. For safety reasons, we recommend backing up (or at least
renaming) the emNet directories before updating.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



64 CHAPTER 2 Step 2: Adding emNet to the start project

Select the start application

For quick and easy testing of your emNet integration, start with the code found in
the folder Application. Add one of the applications to your project (for example
IP_SimpleServer.c).

 

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



65 CHAPTER 2 Step 3: Build the project and test it

2.3    Step 3: Build the project and test it
Build the project. It should compile without errors and warnings. If you encounter any
problem during the build process, check your include path and your project configuration
settings. To test the project, download the output into your target and start the application.

By default, ICMP is activated. This means that you could ping your target. Open the
command line interface of your operating system and enter ping <TargetAddress>, to
check if the stack runs on your target. The target should answer all pings without any error.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 3
 
Example applications

In this chapter, you will find a description of each emNet example application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



67 CHAPTER 3 Overview

3.1    Overview
Various example applications for emNet are supplied. These can be used for testing the
correct installation and proper function of the device running emNet.

The following start application files are provided:

File Description

IP_DNSClient.c Demonstrates the use of the integrated DNS client.

IP_NonBlockingConnect.c
Demonstrates how to connect to a server using
non-blocking sockets.

IP_Ping.c
Demonstrates how to send ICMP echo requests and
how to process ICMP replies in application.

IP_SimpleServer.c
Demonstrates setup of a simple server which
simply sends back the target system tick for every
character received.

IP_SpeedClient_TCP.c
Demonstrates the TCP send and receive
performance of the device running emNet.

IP_Start.c

Demonstrates use of the IP stack without any
server or client program. To ping the target, use
the command line: ping <target-ip> where
<target-ip> represents the IP address of the
target, which depends on the configuration and is
usually 192.168.2.252 if the DHCP client is not
enabled.

IP_UDPDiscover.c

Demonstrates setup of a simple UDP application
which replies to UDP broadcasts. The application
sends an answer for every received discover packet.
The related host application sends discover packets
as UDP broadcasts and waits for the feedback of the
targets which are available in the subnet.

IP_UDPDiscover_ZeroCopy.c

Demonstrates setup of a simple UDP application
which replies to UDP broadcasts. The application
uses the the emNet zero-copy interface. It sends
an answer for every received discover packet. The
related host application sends discover packets as
UDP broadcasts and waits for the feedback of the
targets which are available in the subnet.

The example applications for the target-side are supplied in source code in the Application
directory.

3.1.1    emNet DNS client (IP_DNSClient.c)
The emNet DNS client resolves a hostname (for example, segger.com) to an IP address
and outputs the resolved address via terminal I/O.

3.1.2    emNet non-blocking connect
(IP_NonBlockingConnect.c)

The emNet non-blocking connect sample demonstrates how to connect to a server using
non-blocking sockets. The target tries to connect to TCP server with an non-blocking socket.
The sample can be used with any TCP server independent of the application which is
listening on the port. The client only opens a TCP connection to the server and closes it
without any further communication. The terminal I/O output in your debugger should be
similar to the following out:

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



68 CHAPTER 3 Overview

Connecting using non-blocking socket...
Successfully connected after 2ms!
1 of 1 tries were successful.

Connecting using non-blocking socket...
Successfully connected after 1ms!
2 of 2 tries were successful.

3.1.3    emNet ping (IP_Ping.c)
The emNet ping sample demonstrates how to send ICMP echo requests and how to process
received ICMP packets in your application. A callback function is implemented which outputs
a message if an ICMP echo reply or an ICMP echo request has been received.

To test the emNet ICMP implementation, you have to perform the following steps:
1. Customize the Local defines, configurable section of IP_Ping.c. Change the macro

HOST_TO_PING according to your configuration. For example, if the Windows host PC
which you want to ping use the IP address 192.168.5.15, change the HOST_TO_PING
macro to 0xC0A8050F.

2. Open the command line interface and enter:

ping [IP_ADDRESS _OF_YOUR_TARGET_RUNNING_EMNET]

The terminal I/O output in your debugger should be similar to the following out:

ICMP echo reply received!
ICMP echo request received!
ICMP echo reply received!
ICMP echo reply received!
ICMP echo reply received!
ICMP echo reply received!
ICMP echo request received!
ICMP echo reply received!
ICMP echo reply received!
ICMP echo reply received!

3.1.4    emNet simple server (IP_SimpleServer.c)
Demonstrates setup of a simple server which simply sends back the target system tick
for every character received. It opens TCP-port 23 (telnet) and waits for a connection. To
connect to the target, use the command line: telnet <target-ip> where <target-ip>
represents the IP address of the target, which depends on the configuration and is usually
192.168.2.252 if the DHCP client is not enabled.

3.1.5    emNet speed client (IP_SpeedClient_TCP.c)
The emNet speed client is a small application to detect the TCP send and receive
performance of emNet on your hardware.

3.1.5.1    Running the emNet speed client
To test the emNet performance, you have to perform the following steps:
1. Start the Windows speed test server. The example application for the host-side is

supplied as executable and in source code in the Windows\SpeedTestServer\ directory.
To run the speed test server, simply start the executable, for example by double-clicking
it or open the supplied Visual C project and compile and start the application.

2. Add IP_SpeedClient.c to your project.
3. Customize the Local defines, configurable section of IP_SpeedClient.c. Change

the macro SERVER_IP_ADDR according to your configuration. For example, if the
Windows host PC running the speed test server uses the IP address 192.168.5.15,

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



69 CHAPTER 3 Overview

change the SERVER_IP_ADDR macro to 0xC0A8050F. If you have changed the port which
the Windows host application uses to listen, change the macro SERVER_PORT accordingly.

4. Build and download the speed client into your target. The target connects to the server
and starts the transmission.

  

3.1.6    emNet start (IP_Start.c)
Demonstrates use of the IP stack without any server or client program. To ping the target,
use the command line: ping <target-ip> where <target-ip> represents the IP address
of the target, which depends on the configuration and is usually 192.168.2.252 if the DHCP
client is not enabled.

3.1.7    emNet UDP discover (IP_UDPDiscover.c /
IP_UDPDiscover_ZeroCopy.c)

To test the emNet UDP discover example, you have to perform the following steps:
1. Start the Windows UDP discover example application. The example application for the

host-side is supplied as executable and in source code in the Windows\UDPDiscover\
directory. To run the UDP discover example, simply start the executable, for example
by double-clicking it or open the supplied Visual C project and compile and start the
application.

2. Add IP_UDPDiscover.c to your project.
3. Customize the Local defines, configurable section of IP_UDPDiscover.c. By

default, the example uses port 50020. If you have changed the port that the Windows
host application uses, change the macro PORT accordingly.

4. Build and download the UDP discover example into your target. The target sends an
answer for every received discover packet. The related host application sends discover
packets as UDP broadcasts and waits for the feedback of the targets which are available
in the subnet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 4
 
Core functions

In this chapter, you will find a description of each emNet core function.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



71 CHAPTER 4 API functions

4.1    API functions
The table below lists the available API functions within their respective categories.

Function Description

Configuration functions

IP_AddBuffers() Adds buffers to the TCP/IP stack.
IP_AddEtherInterface() Adds an Ethernet interface to the stack.

IP_AddVirtEtherInterface()
Adds a virtual interface to the stack
that uses a hardware interface for
communication.

IP_AddLoopbackInterface() Adds a loopback interface to the stack.

IP_AddMemory()
This function is called from the application
to add additional memory to the stack.

IP_AllowBackPressure()
Allows back pressure if the driver supports
this feature.

IP_AssignMemory() Assigns memory to the stack.

IP_ARP_ConfigAgeout()
Configures the timeout for cached ARP
entries.

IP_ARP_ConfigAgeoutNoReply()

Configures the timeout for an ARP entry
that has been added due to sending an
ARP request to the network that has not
been answered yet.

IP_ARP_ConfigAgeoutSniff()
Configures the age out value for ARP
entries, which we have created by looking
up addresses of received IP packets.

IP_ARP_ConfigAllowGratuitousARP()
Configures if gratuitous ARP packets from
other network members are allowed to
update the ARP cache.

IP_ARP_ConfigAnnounceStaticIP()
Configures whether to announce using a
static IP in the network using gratuitous
ARP packets.

IP_ARP_ConfigMaxPending()
Configures the maximum number packets
that can be queued waiting for an ARP
reply.

IP_ARP_ConfigMaxRetries()
Configures how often an ARP request is
resent before considering the request
failed.

IP_ARP_ConfigNumEntries()
Configures the maximum number of
possible entries in the ARP cache.

IP_ARP_SendGratuitousARP()
Sends a gratuitous ARP to announce usage
of an address.

IP_BSP_SetAPI()
Sets an API to be used for BSP related
abstraction like initializing hardware and
installing interrupt handlers.

IP_ConfigDoNotAddLowLevelChecks_ARP()
Tells the stack to not add low level ARP
checks when initializing the stack with
IP_Init().

IP_ConfigDoNotAddLowLevelChecks_UDP()
Tells the stack to not add low level UDP
checks when initializing the stack with
IP_Init().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



72 CHAPTER 4 API functions

Function Description

IP_ConfigMaxIFaces()
Configures the maximum number of
interfaces that can be added to the
system.

IP_ConfigNumLinkDownProbes()
Configures the number of continuous link
down probes to take before the stack
accepts the link down status.

IP_ConfigNumLinkUpProbes()
Configures the number of continuous link
up probes to take before the stack accepts
the link up status.

IP_ConfigOffCached2Uncached()
Configures the offset from a cached
memory area to its uncached equivalent
for uncached access.

IP_ConfigReportSameMacOnNet()

Configures if the stack warns about
receiving an Ethernet packet from the
same HW address as the interface the
packet came in.

IP_ConfigTCPSpace()
Configures the size of the TCP send and
receive window size.

IP_DisableIPRxChecksum()
Disables checksum verification of the
checksum in the IP header for incoming
packets.

IP_DisableIPv4()
Disables IPv4 in the stack as good as
possible.

IP_CACHE_SetConfig()

Configures cache related functionality
that might be required by the stack for
several purposes such as cache handling in
drivers.

IP_DNS_GetServer()
Retrieves the first DNS server configured
of the first interface.

IP_DNS_GetServerEx()
Retrieves a DNS server configured for an
interface.

IP_DNS_ResolveHostEx() Sends a query to the DNS server.
IP_DNS_SendDynUpdate() Build a dynamic update request.

IP_DNS_SetTSIGContext()
Set the TSIG signature context with the
parameters needed to perform Secured
Dynamic Updates signed with TSIG.

IP_DNS_SetMaxTTL()
Sets the maximum Time To Live (TTL) of a
DNS entry in seconds.

IP_DNS_SetServer()
Sets the DNS server address of the first
interface.

IP_DNS_SetServerEx()
Sets the IP address of the available DNS
servers for an interface.

IP_MDNS_ResolveHost() Sends a query using Multicast DNS.
IP_MDNS_ResolveHostSingleIP() Sends a query using Multicast DNS.

IP_EnableIPRxChecksum()
Enables the IP Rx checksum calculation in
the IP header for incoming packets.

IP_GetMaxAvailPacketSize()
Asks the stack for the maximum available
free packet size that can then be allocated.

IP_GetMemPoolInfo()
Collects data about a memory pool such as
its size and free bytes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



73 CHAPTER 4 API functions

Function Description

IP_GetMTU()
Retrieves the configured TCP MTU size for
an interface.

IP_GetPrimaryIFace()
Retrieves the currently set primary
interface index.

IP_ICMP_Add() Adds ICMP Protocol function to the stack.

IP_ICMP_DisableRxChecksum()
Disables the ICMP Rx checksum
calculation.

IP_ICMP_EnableRxChecksum() Enables the ICMP Rx checksum calculation.
IP_IGMP_Add() Adds the IGMP protocol to interface #0.
IP_IGMP_AddEx() Adds the IGMP protocol to an interface.

IP_IGMP_ConfigV2AlwaysReport()
Configures if upon every IGMPv2 QUERY a
REPORT shall be sent back.

IP_IGMP_JoinGroup() Joins an IGMP group.

IP_IGMP_JoinGroup_AutoRejoin()
Joins an IGMP group and rejoins when the
interface link state changes.

IP_IGMP_LeaveGroup() Leaves an IGMP group.
IP_RAW_Add() Adds RAW socket function to stack.

IP_SetAddrMask()
Sets the IP address and subnet mask of an
interface.

IP_SetAddrMaskEx()
Sets the IP address and subnet mask of an
interface.

IP_SetGWAddr()
Sets the default gateway address of the
selected interface.

IP_SetHWAddr()
Sets the Media Access Control address
(MAC) of the interface 0.

IP_SetHWAddrEx()
Sets the Media Access Control address
(MAC) of the selected interface.

IP_SetMTU()
Allows to set the maximum transmission
unit (MTU) of an interface.

IP_SetMicrosecondsCallback()
Sets a callback that is used to get a
timestamp in microseconds.

IP_SetNanosecondsCallback()
Sets a callback that is used to get a
timestamp in nanoseconds.

IP_SetOnIFaceSelectCallback()
Sets a callback that gets notified about an
internal interface selection by the stack
and allows to override it.

IP_SetPrimaryIFace() Sets the primary interface index.

IP_SetSupportedDuplexModes()
Sets the supported duplex/speed of the
device to be advertised during Auto-
Negotiation.

IP_SetTTL()
Sets the default value for the Time-To-Live
IP header field.

IP_SetGlobalMcTTL()
Sets the default value for the Time-To-
Live IP header field for global multicast
packets.

IP_SetLocalMcTTL()
Sets the default value for the Time-To-Live
IP header field for local multicast packets.

IP_SetUseRxTask()
Sets the internal flag for using the
IP_RxTask() manually.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



74 CHAPTER 4 API functions

Function Description

IP_SOCKET_ConfigSelectMultiplicator()
Configures the multiplicator for the
timeout parameter of select().

IP_SOCKET_SetDefaultOptions() Sets the socket options enabled by default.

IP_SOCKET_SetLimit()
Sets the maximum number of allowed
sockets.

IP_SYSVIEW_Init()
Initializes the profile instrumentation of
the stack and SystemView as profiling
implementation.

IP_TCP_Add() Adds TCP Protocol function to the stack.
IP_TCP_DisableRxChecksum() Disables the TCP Rx checksum calculation.

IP_TCP_EnableRxChecksum()
Enables checksum verification of the
checksum in the TCP header for incoming
packets.

IP_TCP_Set2MSLDelay()
Sets the maximum segment lifetime
(MSL).

IP_TCP_SetConnKeepaliveOpt() Sets the keepalive options.
IP_TCP_SetRetransDelayRange() Sets retransmission delay range.
IP_UDP_Add() Adds UDP Protocol support to the stack.

IP_UDP_AddEchoServer()
Adds a simple echo server for UDP packets
that can be used for UDP pings and other
tests.

IP_UDP_DisableRxChecksum()
Disables checksum verification of the
checksum in the UDP header for incoming
packets.

IP_UDP_EnableRxChecksum()
Enables checksum verification of the
checksum in the TCP header for incoming
packets.

Configuration functions (IP fragmentation)

IP_FRAGMENT_ConfigRx()
Modifies the default settings for IPv4
fragmentation.

IP_FRAGMENT_Enable()
Initializes the required variables and adds
a timer to the stack to handle outdated
fragment queues.

IP_IPV6_FRAGMENT_ConfigRx()
Modifies the default settings for IPv6
fragmentation.

IP_IPV6_FRAGMENT_Enable()
Initializes the required variables and adds
a timer to the stack to handle outdated
fragment queues.

Management functions

IP_DeInit() Deinitializes the TCP/IP stack.
IP_Init() Initializes the TCP/IP stack.
IP_Task() Main task for handling the stack.

IP_Exec()
Processes received packets and handles
timers and other jobs.

IP_TASK_Init()
Initializes the main IP task context when
not using IP_Task().

IP_TASK_Exec()
Processes received packets and handles
timers and other jobs.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



75 CHAPTER 4 API functions

Function Description

IP_TASK_WaitForEvent()
Waits for an event for the main IP task to
be signaled.

IP_RxTask()
Optional task to reduce time spent in
receive interrupts.

IP_RXTASK_Init()
Initializes the RxTask context when not
using IP_RxTask().

IP_RXTASK_Exec()
Copies received packets from driver to
stack in a task context instead of from an
interrupt.

IP_RXTASK_WaitForEvent()
Waits for an event for the IP_RxTask to be
signaled.

IP_Shutdown()
Prepare network stack related tasks for a
graceful shutdown.

Network interface configuration and handling functions

IP_NI_AddPTPDriver()
Adds an NI specific PTP driver for HW
timestamp support.

IP_NI_ClrBPressure()

Disables usage of back pressure (sending
a jam signal to signal when we run into
a shortage where the hardware can not
receive more data).

IP_NI_ConfigPoll()
Select polled mode for the network
interface.

IP_NI_ForceCaps()
Allows to force capabilities to be set for an
interface.

IP_NI_SetBPressure()

Enables usage of back pressure (sending
a jam signal to signal when we run into
a shortage where the hardware can not
receive more data).

IP_NI_SetTxBufferSize()
Sets the size of the Tx buffer of the
network interface.

PHY configuration functions

IP_NI_ConfigPHYAddr() Configure the PHY Addr.
IP_NI_ConfigPHYMode() Configure the PHY mode.

IP_PHY_AddDriver()
Adds a PHY driver and assigns it to an
interface.

IP_PHY_AddResetHook()
This function adds a hook function to the
IP_HOOK_ON_PHY_RESET list.

IP_PHY_ConfigAddr() Configures the PHY address to use.

IP_PHY_ConfigAfterResetDelay()
Configures the delay between
(soft) resetting the PHY and further
communication with it.

IP_PHY_ConfigAltAddr()
Sets a list of PHY addresses that can
alternately be checked for the link state.

IP_PHY_ConfigGigabitSupport()
Configures if the MAC supports Gigabit
Ethernet.

IP_PHY_ConfigSupportedModes()
Configures the supported duplex/speed of
the device to be advertised during Auto-
Negotiation.

IP_PHY_ConfigUseStaticFilters()
Tells the stack if using PHY static MAC filter
is allowed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



76 CHAPTER 4 API functions

Function Description

IP_PHY_DisableCheck() Disables PHY checks for all interfaces.
IP_PHY_DisableCheckEx() Disables PHY checks for one interface.
IP_PHY_ReadReg() Reads a PHY register.
IP_PHY_ReInit() Re-initializes the PHY.

IP_PHY_SetWdTimeout()
Sets the watchdog timeout for watching if
the PHY reached an unstable state.

IP_PHY_WriteReg() Writes a PHY register.
Statistics functions

IP_STATS_EnableIFaceCounters()
Enables statistic counters for a specific
interface.

IP_STATS_GetIFaceCounters()
Retrieves a pointer to the statistic counters
for a specific interface.

IP_STATS_GetLastLinkStateChange()
Retrieves the tick count when an interface
entered its current state.

IP_STATS_GetRxBytesCnt()
Retrieves the number of bytes received on
an interface.

IP_STATS_GetRxDiscardCnt()
Retrieves the number of packets received
but discarded although they were O.K.

IP_STATS_GetRxErrCnt() Retrieves the number of receive errors.

IP_STATS_GetRxNotUnicastCnt()
Retrieves the number of packets received
on an interface that were not unicasts.

IP_STATS_GetRxUnicastCnt()
Retrieves the number of unicast packets
received on an interface.

IP_STATS_GetRxUnknownProtoCnt()
Retrieves the number of unknown
protocols received.

IP_STATS_GetTxBytesCnt()
Retrieves the number of bytes sent on an
interface.

IP_STATS_GetTxDiscardCnt()
Retrieves the number of packets to send
but discarded although they were O.K.

IP_STATS_GetTxErrCnt()
Retrieves the number of send errors on an
interface.

IP_STATS_GetTxNotUnicastCnt()
Retrieves the number of packets sent on
an interface that were not unicasts.

IP_STATS_GetTxUnicastCnt()
Retrieves the number of unicast packets
sent on an interface.

Other IP stack functions

IP_AddAfterInitHook()

Adds a hook to a callback that is executed
at the end of IP_Init() to allow adding
initializations to be executed right after the
stack itself has been initialized and all API
can be used.

IP_AddEtherTypeHook()
This function registers a callback to
be called for received packets with the
registered Ethernet type.

IP_AddInterfaceErrorHook()
Adds a hook function which will be called if
initialization fails for an interface.

IP_AddLinkChangeHook()
Adds a callback that gets executed each
time the link state changes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



77 CHAPTER 4 API functions

Function Description

IP_AddOnPacketFreeHook()
This function adds a hook function to the
IP_HOOK_ON_PACKET_FREE list.

IP_AddStateChangeHook()
Adds a hook to a callback that is executed
when the AdminState or HWState of an
interface changes.

IP_Alloc()
Thread safe memory allocation from main
IP stack memory pool.

IP_AllocEtherPacket()
Allocates a packet to store the raw data of
an Ethernet packet of up to NumBytes at
the location returned by ppBuffer.

IP_AllocEx()

Thread safe memory allocation from
a specific memory pool managed by
the stack that has been added using
IP_AddMemory().

IP_ARP_CleanCache()
Cleans all ARP entries that are not static
entries.

IP_ARP_CleanCacheByInterface()
Cleans all ARP entries that are known to
belong to a specific interface and are not
static entries.

IP_Connect()
Calls a previously registered hook
for the interface if any was set using
IP_SetIFaceConnectHook().

IP_Disconnect()
Calls a previously registered hook
for the interface if any was set using
IP_SetIFaceDisconnectHook().

IP_Err2Str()
Converts IP stack error code to a readable
string by simply using the defines name.

IP_FindIFaceByIP()
Tries to find out the interface number
when only the IP address is known.

IP_Free()
Thread safe memory free to IP stack
memory pools.

IP_FreePacket() Frees a packet back to the stack.

IP_GetAddrMask()
Retrieves the IP address and subnet mask
of an interface.

IP_GetCurrentLinkSpeed()
Returns the current link speed of the first
interface (interface ID 0).

IP_GetCurrentLinkSpeedEx()
Returns the current link speed of the
requested interface.

IP_GetFreePacketCnt()
Checks how many packets for a specific
size or greater are currently available in
the system.

IP_GetIFaceHeaderSize()
Retrieves the size of the header necessary
for the transport medium that is used by a
specific interface.

IP_GetGWAddr()
Returns the gateway address of the
interface in host endianness.

IP_GetHWAddr()
Returns the hardware address (Media
Access Control address) of the interface.

IP_GetIPAddr()
Returns the IP address of the interface in
host endianness.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



78 CHAPTER 4 API functions

Function Description

IP_GetIPPacketInfo()
Returns the start address of the data part
of an IPv4 packet.

IP_GetRawPacketInfo()
Returns the start address of the raw data
of an IP_PACKET.

IP_GetVersion() Returns the version of the stack.

IP_ICMP_AddRxHook()
This function adds a callback that is
executed upon receiving an ICMPv4
packet.

IP_ICMP_SetRxHook()
Sets a hook function which will be called if
target receives a ping packet.

IP_ICMP_RemoveRxHook()
This function removes a hook function
from the IP_HOOK_ON_ICMPV4 list.

IP_IFaceIsReady() Checks if the interface is ready for usage.

IP_IFaceIsReadyEx()
Checks if the specified interface is ready
for usage.

IP_IPV4_ParseIPv4Addr()
Transforms an IPv4 address separated by
dots into a byte stream (big endian byte
order).

IP_IsAllZero()
Checks if there are zeros at the given
pointer.

IP_IsExpired()
Checks if the given system timestamp has
already expired.

IP_NI_ConfigLinkCheckMultiplier()
Configures the multiplier of the period
between interface link checks typically
executed each second.

IP_NI_ConfigUsePromiscuousMode()

Configures if the driver tries to use its
hardware precise and hash filters as
available before switching to promiscuous
mode or if promiscuous mode will be used
in any case.

IP_NI_GetAdminState()
Retrieves the admin state of the given
interface.

IP_NI_GetIFaceType()
Retrieves a short textual description of the
interface type.

IP_NI_GetState()
Returns the hardware state of the
interface.

IP_NI_SetAdminState() Sets the AdminState of the interface.

IP_NI_GetTxQueueLen()
Retrieves the current length of the Tx
queue of an interface.

IP_NI_PauseRx()
Pauses the Rx handling of an interface by
disabling it temporary.

IP_NI_PauseRxInt()
Pauses the Rx interrupt of an interface by
disabling it temporary.

IP_PrintIPAddr()
Convert a 4-byte IP address to a dots-and-
number string.

IP_ResolveHost()
Resolve a host name string to its IP
address by using a configured DNS server.

IP_RemoveEtherTypeHook()
This function removes a hook function for
a previously registered Ethernet type.

IP_RemoveLinkChangeHook()
Removes a callback which was previously
added via IP_AddLinkChangeHook().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



79 CHAPTER 4 API functions

Function Description

IP_SendEtherPacket()
Sends a previously allocated Ethernet
packet.

IP_SendPacket()
Sends a user defined packet on the
interface.

IP_SendPing()
Sends a single ICMP echo request (“ping”)
to the specified host.

IP_SendPingCheckReply()
Sends a single ICMP echo request (“ping”)
to the specified host using the selected
interface and waits for the reply.

IP_SendPingEx()
Sends a single ICMP echo request (“ping”)
to the specified host using the selected
interface.

IP_SetIFaceConnectHook()
Sets a hook for an interface that is
executed when IP_Connect() is called.

IP_SetIFaceDisconnectHook()
Sets a hook for an interface that is
executed when IP_Disconnect() is called.

IP_SetOnPacketFreeCallback()
This function sets a callback to be
executed once the packet has been freed.

IP_SetPacketToS()
Sets the value of the ToS/DSCP byte in the
IP header of a packet to be sent via the
zero-copy API.

IP_SetRxHook()
Sets a hook function which will be called if
target receives a packet.

IP_SetTxHook()
Sets a hook function which will be called if
target transmits a packet.

IP_SetRandCallback()
Sets a callback that can provide random
data.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



80 CHAPTER 4 Configuration functions

4.2    Configuration functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



81 CHAPTER 4 Configuration functions

4.2.1    IP_AddBuffers()

Description

Adds buffers to the TCP/IP stack. This is a configuration function, typically called from
IP_X_Config(). It needs to be called 2 times, one per buffer size.

Prototype

void IP_AddBuffers(int NumBuffers,
                   int BytesPerBuffer);

Parameters

Parameter Description

NumBuffers The number of buffers.
BytesPerBuffer Size of buffers in bytes.

Additional information

The stack requires small and large buffers. We recommend to define the size of the big
buffers to 1536 to allow a full Ethernet packet to fit. The small buffers are used to store
packets which encapsulates no or few application data like protocol management packets
(TCP SYNs, TCP ACKs, etc.). We recommend to define the size of the small buffers to 256
bytes.

Example

IP_AddBuffers(20, 256);          // 20 small buffers, each 256 bytes.
IP_AddBuffers(12, 1536);         // 12 big buffers, each 1536 bytes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



82 CHAPTER 4 Configuration functions

4.2.2    IP_AddEtherInterface()

Description

Adds an Ethernet interface to the stack.

Prototype

int IP_AddEtherInterface(const IP_HW_DRIVER * pDriver);

Parameters

Parameter Description

pDriver Pointer to a network interface driver structure.

Return value

≥ 0 Zero-based interface index of the newly created interface.
< 0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using IP_ConfigMaxIFaces() needs to be done before adding any interface and
must not be changed later.

While the order in which interfaces are added to the stack does not matter to the stack
itself, it might be important for the driver to add.

Typically drivers for CPU integrated controllers are expected to be added first. Next drivers
for external controllers can be added. As external controllers can be used as an extension
to internal controllers they do not rely on a specific interface order.

To fill in gaps in the order of interfaces added, a dummy driver IP_Driver_Dummy can be
added. A sample of such a configuration would be an application that relies on the following
order: - IFace0: Internal controller - IFace1: External WiFi module The same hardware
might be produced with a different configuration like only providing WiFi but using a cheaper
CPU without internal controller. In this case the dummy driver can be used to keep up the
same order: - IFace0: Dummy - IFace1: External WiFi module

For drivers and hardware that supports dual Ethernet the requirement to add drivers for
internal controllers remain. For using both internal controllers this means: - IFace0: First
internal controller - IFace1: Second internal controller - IFace2: External WiFi module When
using only the second internal controller the interface index needs to be pushed by using
the dummy driver again: - IFace0: Dummy - IFace1: Second internal controller - IFace2:
External WiFi module However for using only the first controller of a driver that supports a
dual unit, no dummy needs to be added before adding additional external drivers: - IFace0:
First internal controller, second is not used. - IFace1: External WiFi module

Additional information

Refer to Available network interface drivers on page 597 for a list of available network
interface drivers.

Example

IP_AddEtherInterface(&IP_Driver_SAM7X);  // Add Ethernet driver for your hardware

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



83 CHAPTER 4 Configuration functions

4.2.3    IP_AddVirtEtherInterface()

Description

Adds a virtual interface to the stack that uses a hardware interface for communication.

Prototype

int IP_AddVirtEtherInterface(unsigned HWIFaceId);

Parameters

Parameter Description

HWIFaceId Zero-based interface index of the hardware interface.

Return value

≥ 0 Zero-based interface index of the newly created interface.
< 0 Error.

Additional information

Virtual interfaces can be added to allow configuration of multiple IP addresses on the same
target. One configuration can be assigned per interface.

Optional configuration of the maximum number of interfaces that can be added to the
system using IP_ConfigMaxIFaces() needs to be done before adding any interface and
must not be changed later.

Example

int IFaceId;

IFaceId = IP_AddEtherInterface(&IP_Driver_SAM7X);  // Add HW Ethernet driver
IP_AddVirtEtherInterface(IFaceId);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



84 CHAPTER 4 Configuration functions

4.2.4    IP_AddLoopbackInterface()

Description

Adds a loopback interface to the stack.

Prototype

int IP_AddLoopbackInterface(void);

Return value

≥ 0 Zero-based interface index of the newly created interface.
< 0 Error.

Additional information

The loopback interface will be added with the pre-configured static IP addresse of
127.0.0.1/8.

Optional configuration of the maximum number of interfaces that can be added to the
system using IP_ConfigMaxIFaces() needs to be done before adding any interface and
must not be changed later.

Example

IP_AddLoopbackInterface();  // Add an Ethernet loopback interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



85 CHAPTER 4 Configuration functions

4.2.5    IP_AddMemory()

Description

This function is called from the application to add additional memory to the stack.
IP_AssignMemory() needs to be called first.

Prototype

void IP_AddMemory(U32 * pMem,
                  U32   NumBytes);

Parameters

Parameter Description

pMem
A pointer to the start of the memory region which should be
added.

NumBytes Number of bytes which should be added.

Additional information

This function can be used to add additional memory to the stack that can then be requested
by application level modules such as Web server or FTP server directly from the stacks
memory management.

For further information about the available memory management functions, refer to
IP_Alloc on page 236 and IP_Free on page 245.

Example

#define MEM_SIZE  0x8000  // Size of memory to add to the stack in bytes.
U32 _aMem[MEM_SIZE / 4];  // Memory area to add to the stack.

IP_AddMemory(_aMem, sizeof(_aMem));

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



86 CHAPTER 4 Configuration functions

4.2.6    IP_AllowBackPressure()

Description

Allows back pressure if the driver supports this feature.

Prototype

void IP_AllowBackPressure(char v);

Parameters

Parameter Description

v 0 to disable, 1 to enable back pressure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



87 CHAPTER 4 Configuration functions

4.2.7    IP_AssignMemory()

Description

Assigns memory to the stack.

Prototype

void IP_AssignMemory(U32 * pMem,
                     U32   NumBytes);

Parameters

Parameter Description

pMem
A pointer to the start of the memory region which should be
assigned.

NumBytes Number of bytes which should be assigned.

Additional information

IP_AssignMemory() should be the first function which is called in IP_X_Config(). The
amount of RAM required depends on the configuration and the respective application
purpose. The assigned memory pool is required for the socket buffers, memory buffers, etc.

Example

#define ALLOC_SIZE      0x8000 
  // Size of memory dedicated to the stack in bytes
U32 _aPool[ALLOC_SIZE / 4];      // Memory area used by the stack.

IP_AssignMemory(_aPool, sizeof(_aPool));

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



88 CHAPTER 4 Configuration functions

4.2.8    IP_ARP_ConfigAgeout()

Description

Configures the timeout for cached ARP entries. The ARP timer removes entries which have
not been used for a time longer than AgeOut.

Prototype

void IP_ARP_ConfigAgeout(U32 Ageout);

Parameters

Parameter Description

Ageout
 in  Timeout in ms after which an entry is deleted from the
ARP cache. Default: 30s.

Additional information

Only effective after adding at least one interface that is capable of using ARP (all kinds of
Ethernet interfaces). Might be overwritten if set before adding the first Ethernet interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



89 CHAPTER 4 Configuration functions

4.2.9    IP_ARP_ConfigAgeoutNoReply()

Description

Configures the timeout for an ARP entry that has been added due to sending an ARP request
to the network that has not been answered yet.

Prototype

void IP_ARP_ConfigAgeoutNoReply(U32 Ageout);

Parameters

Parameter Description

Ageout
 in  Timeout in ms after which an entry is deleted in case we
are still waiting for an ARP response. Default: 3s.

Additional information

Only effective after adding at least one interface that is capable of using ARP (all kinds of
Ethernet interfaces). Might be overwritten if set before adding the first Ethernet interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



90 CHAPTER 4 Configuration functions

4.2.10    IP_ARP_ConfigAgeoutSniff()

Description

Configures the age out value for ARP entries, which we have created by looking up addresses
of received IP packets. The ARP timer removes entries which have not been used for a time
longer than AgeOut.

Prototype

void IP_ARP_ConfigAgeoutSniff(U32 Ageout);

Parameters

Parameter Description

Ageout
Timeout in ms after which an entry is deleted from the ARP
cache. Default: 500ms.

Additional information

Only effective after adding at least one interface that is capable of using ARP (all kinds of
Ethernet interfaces). Might be overwritten if set before adding the first Ethernet interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



91 CHAPTER 4 Configuration functions

4.2.11    IP_ARP_ConfigAllowGratuitousARP()

Description

Configures if gratuitous ARP packets from other network members are allowed to update
the ARP cache.

Prototype

void IP_ARP_ConfigAllowGratuitousARP(U8 OnOff);

Parameters

Parameter Description

OnOff
Default: On.
• 0: Off.
• 1: On.

Additional information

Gratuitous ARP packets allow the network to update itself by sending out informations about
changes regarding IP and hardware ID assignments. As this behaviour helps the network
to become more stable and helps to manage itself it is on by default.

In case you consider gratuitous ARP packets as a security risk
IP_ARP_ConfigAllowGratuitousARP() can be used to disallow this behaviour.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



92 CHAPTER 4 Configuration functions

4.2.12    IP_ARP_ConfigAnnounceStaticIP()

Description

Configures whether to announce using a static IP in the network using gratuitous ARP
packets.

Prototype

void IP_ARP_ConfigAnnounceStaticIP(unsigned IFaceId,
                                   U8       NumAnnouncements);

Parameters

Parameter Description

IFaceId Zero-based interface index.
NumAnnouncements Number of gARPs to send.

Additional information

Configures the stack to send a number of gARP packets when a static IP is configured and/
or a link-UP for an interface with a static IP set occurs. The gARPs are typically sent with
one second delay between them.

A race condition exists between setting a static IP and recognizing a link-UP event that
can lead to sending up to twice as many gARPs as configured. As this is not harmful, only
occurring very rarely and would need a lot of overhead to prevent this to happen, this
should be taken into account when using this feature.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



93 CHAPTER 4 Configuration functions

4.2.13    IP_ARP_ConfigMaxPending()

Description

Configures the maximum number packets that can be queued waiting for an ARP reply.

Prototype

void IP_ARP_ConfigMaxPending(unsigned NumPackets);

Parameters

Parameter Description

NumPackets
Maximum number of packets that can be pending for one
ARP entry. Default: 3.

Additional information

Only effective after adding at least one interface that is capable of using ARP (all kinds of
Ethernet interfaces). Might be overwritten if set before adding the first Ethernet interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



94 CHAPTER 4 Configuration functions

4.2.14    IP_ARP_ConfigMaxRetries()

Description

Configures how often an ARP request is resent before considering the request failed.

Prototype

void IP_ARP_ConfigMaxRetries(unsigned Retries);

Parameters

Parameter Description

Retries Number of retries for sending an ARP request. Default: 8.

Additional information

Only effective after adding at least one interface that is capable of using ARP (all kinds of
Ethernet interfaces). Might be overwritten if set before adding the first Ethernet interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



95 CHAPTER 4 Configuration functions

4.2.15    IP_ARP_ConfigNumEntries()

Description

Configures the maximum number of possible entries in the ARP cache.

Prototype

int IP_ARP_ConfigNumEntries(unsigned MaxNumEntries);

Parameters

Parameter Description

MaxNumEntries New value to use as number of entries. Default: 8.

Return value

0 OK, stack will try to allocate the requested number of ARP entries.
-1 Error, called after IP_Init().

Additional information

Needs to be called early in IP_X_Config(), typically before adding interfaces.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



96 CHAPTER 4 Configuration functions

4.2.16    IP_ARP_SendGratuitousARP()

Description

Sends a gratuitous ARP to announce usage of an address. A gARP qualifies by sender and
destination IP address being the same.

Prototype

int IP_ARP_SendGratuitousARP(unsigned IFaceId,
                             U32      IPAddr);

Parameters

Parameter Description

IFaceId Zero-based interface index.
IPAddr IP address to announce.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



97 CHAPTER 4 Configuration functions

4.2.17    IP_BSP_SetAPI()

Description

Sets an API to be used for BSP related abstraction like initializing hardware and installing
interrupt handlers.

Prototype

void IP_BSP_SetAPI(      unsigned     IFaceId,
                   const BSP_IP_API * pAPI);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pAPI
Pointer to function table to use. For further information
regarding BSP_IP_API please refer to Structure BSP_IP_API.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



98 CHAPTER 4 Configuration functions

4.2.18    IP_ConfigDoNotAddLowLevelChecks_ARP()

Description

Tells the stack to not add low level ARP checks when initializing the stack with IP_Init() .

Prototype

void IP_ConfigDoNotAddLowLevelChecks_ARP(void);

Additional information

Please refer to IP_ConfigDoNotAddLowLevelChecks() for more information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



99 CHAPTER 4 Configuration functions

4.2.19    IP_ConfigDoNotAddLowLevelChecks_UDP()

Description

Tells the stack to not add low level UDP checks when initializing the stack with IP_Init() .

Prototype

void IP_ConfigDoNotAddLowLevelChecks_UDP(void);

Additional information

Please refer to IP_ConfigDoNotAddLowLevelChecks() for more information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



100 CHAPTER 4 Configuration functions

4.2.20    IP_ConfigMaxIFaces()

Description

Configures the maximum number of interfaces that can be added to the system.

Prototype

void IP_ConfigMaxIFaces(unsigned NumIFaces);

Parameters

Parameter Description

NumIFaces Number of interfaces to allocate memory for.

Additional information

The memory for the driver list will be pre-allocated for the maximum allowed number of
interfaces. The system uses the default value of IP_MAX_IFACES if not configured else with
this function. To save some memory the maximum number of interfaces should be only the
number of interfaces that are really required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



101 CHAPTER 4 Configuration functions

4.2.21    IP_ConfigNumLinkDownProbes()

Description

Configures the number of continuous link down probes to take before the stack accepts
the link down status.

Prototype

void IP_ConfigNumLinkDownProbes(U8 IFaceId,
                                U8 NumProbes);

Parameters

Parameter Description

IFaceId Zero-based interface index.

NumProbes
Number of continuous link down probes to take before link
down is set in the stack.

Additional information

On unstable hardware or unstable network hardware like a switch a link jitter might occur.
This jitter might lead to disconnects on upper protocol layers like TCP that might be
disconnected once a link down is recognized. To prevent this to happen due to link jitter,
multiple samples of a link down state can be taken before actually accepting the link down.

Typically the link status is checked once per second. Therefore by default NumProbes =
seconds after which the link state in the stack is allowed to really get down after the first
link down reported by the driver.

This routine is only effective in case the define IP_NUM_LINK_DOWN_PROBES is not 0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



102 CHAPTER 4 Configuration functions

4.2.22    IP_ConfigNumLinkUpProbes()

Description

Configures the number of continuous link up probes to take before the stack accepts the
link up status.

Prototype

void IP_ConfigNumLinkUpProbes(U8 IFaceId,
                              U8 NumProbes);

Parameters

Parameter Description

IFaceId Zero-based interface index.

NumProbes
Number of continuous link up probes to take before link up is
set in the stack.

Additional information

Some switches might already report a link between switch and target but are not
immediately operational resulting in packets getting lost until fully operational.

Typically the link status is checked once per second. Therefore by default NumProbes =
seconds after which the link state in the stack is allowed to really get up after the first link
up reported by the driver.

At the moment this only applies to Ethernet interfaces to address this behavior with some
Ethernet switches.

This routine is only effective in case the define IP_NUM_LINK_UP_PROBES is not 0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



103 CHAPTER 4 Configuration functions

4.2.23    IP_ConfigOffCached2Uncached()

Description

Configures the offset from a cached memory area to its uncached equivalent for uncached
access.

Prototype

void IP_ConfigOffCached2Uncached(I32 Off);

Parameters

Parameter Description

Off
Offset from cached to uncached area. Can be negative if
uncached area is before cached area.

Additional information

This function needs to be called in case the microcontroller is utilizing cache. Typically the
data area that is used by default is accessed cached. In this case the stack needs to know
where it can bypass the cache to write hardware related data such as driver descriptors
that will be accessed by a DMA.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



104 CHAPTER 4 Configuration functions

4.2.24    IP_ConfigReportSameMacOnNet()

Description

Configures if the stack warns about receiving an Ethernet packet from the same HW address
as the interface the packet came in.

Prototype

void IP_ConfigReportSameMacOnNet(unsigned   OnOff,
                                 void     * p);

Parameters

Parameter Description

OnOff
• = 0: Disabled.
• ≠ 0: Enabled, reports a warning if a duplicate MAC
is seen on the network.

p Reserved for future extensions of this API.

Additional information

The generated warning uses the filter type IP_MTYPE_APPLICATION .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



105 CHAPTER 4 Configuration functions

4.2.25    IP_ConfigTCPSpace()

Description

Configures the size of the TCP send and receive window size.

Prototype

void IP_ConfigTCPSpace(unsigned SendSpace,
                       unsigned RecvSpace);

Parameters

Parameter Description

SendSpace Transmit window size.
RecvSpace Receive window size.

Additional information

The receive window size is the amount of unacknowledged data a sender can send to the
receiver on a particular TCP connection before it gets an acknowledgment.

For more information, please refer to Window Scaling on page 1289.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



106 CHAPTER 4 Configuration functions

4.2.26    IP_DisableIPRxChecksum()

Description

Disables checksum verification of the checksum in the IP header for incoming packets.

Prototype

void IP_DisableIPRxChecksum(U8 IFace);

Parameters

Parameter Description

IFace Zero-based interface index.

Additional information

In a typical network all data contained in a transferred frame have already been verified by
the hardware checking the transmitted frames checksum and it is unlikely that data within
this frame are corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



107 CHAPTER 4 Configuration functions

4.2.27    IP_DisableIPv4()

Description

Disables IPv4 in the stack as good as possible.

Prototype

void IP_DisableIPv4(void);

Additional information

Needs to be called before IP_Init() or during IP_X_Config() . As IPv4 is a base
component of the stack, disabling IPv4 will be done to the best as possible.

Also disables other IPv4 related protocols like ARP and ICMPv4.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



108 CHAPTER 4 Configuration functions

4.2.28    IP_CACHE_SetConfig()

Description

Configures cache related functionality that might be required by the stack for several
purposes such as cache handling in drivers.

Prototype

void IP_CACHE_SetConfig(const SEGGER_CACHE_CONFIG * pConfig,
                              unsigned              ConfSize);

Parameters

Parameter Description

pConfig Pointer to an element of SEGGER_CACHE_CONFIG .

ConfSize
Size of the passed structure in case library and header size
of the structure differs.

Additional information

IP_CACHE_SetConfig() has to be called before IP_Init() or during IP_X_Config().
Typically used together with IP_ConfigOffCached2Uncached()

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



109 CHAPTER 4 Configuration functions

4.2.29    IP_DNS_GetServer()

Description

Retrieves the first DNS server configured of the first interface.

Prototype

U32 IP_DNS_GetServer(void);

Return value

IP address of the DNS server in host-byte-order.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



110 CHAPTER 4 Configuration functions

4.2.30    IP_DNS_GetServerEx()

Description

Retrieves a DNS server configured for an interface.

Prototype

void IP_DNS_GetServerEx(unsigned   IFaceId,
                        U8         DNSIndex,
                        U8       * pAddr,
                        int      * pAddrLen);

Parameters

Parameter Description

IFaceId Zero-based interface index.
DNSIndex Zero-based index of the server to retrieve from interface.

pAddr
Pointer to a U32 variable to store the IPv4 DNS address in
host-byte-order.

pAddrLen Length of DNS addr. in bytes. Typically 4 for IPv4.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



111 CHAPTER 4 Configuration functions

4.2.31    IP_DNS_ResolveHostEx()

Description

Sends a query to the DNS server. The functions blocks until the reply is received or for a
maximum time.

Prototype

int IP_DNS_ResolveHostEx(      unsigned           IFaceId,
                         const IP_DNSSD_REQUEST * pRequest,
                               unsigned           ms);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pRequest Pointer to the request description.

ms
Maximum time to wait for a reply (around 5s for all
attempts).

Return value

= 0 Request is valid.
= 1 No reply. All attempts not done.
< 0 No reply all attempts done or request invalid.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



112 CHAPTER 4 Configuration functions

4.2.32    IP_DNS_SendDynUpdate()

Description

Build a dynamic update request. It could send the IPv4 address and/or a request to clear
all previous records.

Prototype

int IP_DNS_SendDynUpdate(      unsigned   IFaceId,
                         const char     * sHost,
                         const char     * sDomain,
                               U32        IPv4Addr,
                               int        ClearPreviousRR,
                               U32        ms);

Parameters

Parameter Description

IFaceId Index of the interface.
sHost Null-terminated string of the host to update.
sDomain Null-terminated string of the domain name.
IPv4Addr IPv4 address used for the update. Set to 0 to ignore.
ClearPreviousRR Sent an update request to remove all previous records.

ms
Time in ms that the function is waiting for a reply. The reply
might still be fulfilled after the timeout.

Return value

= 1 Send is pending
= 0 Success
< 0 Error

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



113 CHAPTER 4 Configuration functions

4.2.33    IP_DNS_SetTSIGContext()

Description

Set the TSIG signature context with the parameters needed to perform Secured Dynamic
Updates signed with TSIG.

Prototype

void IP_DNS_SetTSIGContext
      (char * KeyName,
       char * KeyAlgoName,
       int    ( *pfSign)
(U8 * pData , U16 DataLength , U8 * pDigest , int DigestMaxSize ),
       int    ( *pfGetTime)(U32 * pSeconds ));

Parameters

Parameter Description

KeyName
Pointer to the string containing the key name. Only the
pointer is kept so the string must be static.

KeyAlgoName
Pointer to the string containing the algorithm name. Only the
pointer is kept so the string must be static.

pfSign
Function pointer on the function which is called to do the
crypto signature.

pfGetTime
Function pointer on the function used to get the current time
in seconds since 1th January 1970.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



114 CHAPTER 4 Configuration functions

4.2.34    IP_DNS_SetMaxTTL()

Description

Sets the maximum Time To Live (TTL) of a DNS entry in seconds.

Prototype

void IP_DNS_SetMaxTTL(U32 TTL);

Parameters

Parameter Description

TTL Maximum TTL of a DNS entry in seconds.

Additional information

The real TTL is the minimum of this value and the TTL specified by the DNS server for the
entry. The default for the maximum TTL of a DNS entry is 600 seconds.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



115 CHAPTER 4 Configuration functions

4.2.35    IP_DNS_SetServer()

Description

Sets the DNS server address of the first interface.

Prototype

void IP_DNS_SetServer(U32 DNSServerAddr);

Parameters

Parameter Description

DNSServerAddr IP address of the DNS server.

Additional information

If a DHCP server is used for configuring your target, IP_DNS_SetServer() should not be
called. The DNS server settings are normally part of the DHCP configuration setup. The DNS
server has to be defined before calling gethostbyname() to resolve an internet address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



116 CHAPTER 4 Configuration functions

4.2.36    IP_DNS_SetServerEx()

Description

Sets the IP address of the available DNS servers for an interface.

Prototype

int IP_DNS_SetServerEx(      unsigned   IFaceId,
                             U8         DNSIndex,
                       const U8       * pDNSAddr,
                             int        AddrLen);

Parameters

Parameter Description

IFaceId Zero-based interface index.
DNSIndex Zero-based index of DNS servers.

pDNSAddr
Pointer to memory location holding the DNS address to set.
Typically a 4-byte IP address.

AddrLen Length of IP address of server. Typically 4-bytes.

Return value

0 OK.
1 - Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



117 CHAPTER 4 Configuration functions

4.2.37    IP_MDNS_ResolveHost()

Description

Sends a query using Multicast DNS. The functions blocks until the reply is received or for
a maximum time.

Prototype

int IP_MDNS_ResolveHost(      unsigned           IFaceId,
                        const IP_DNSSD_REQUEST * pRequest,
                              unsigned           ms);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pRequest Pointer to the request description.

ms
Maximum time [ms] to wait for a reply (around 5s for all
attempts).

Return value

= 0 Request is valid.
= 1 No reply. All attempts not done.
< 0 No reply all attempts done or request invalid.

Additional information

When the requested type is A (IPv4 address) or AAAA (IPv6 address), the request is sent
for both Apple mDNS and Microsoft LLMNR. Other DNS-SD request are sent only on mDNS.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



118 CHAPTER 4 Configuration functions

4.2.38    IP_MDNS_ResolveHostSingleIP()

Description

Sends a query using Multicast DNS. The functions blocks until the reply is received or for a
maximum time. Only the first reply is returned, all others will be discarded.

Prototype

int IP_MDNS_ResolveHostSingleIP(      unsigned   IFaceId,
                                      void     * pIP,
                                const char     * sHost,
                                      U16        Type,
                                      unsigned   ms);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pIP
Pointer where to store the result. Make sure that enough
space is available to store a 4-bytes IPv4 (in host
endianness) or 16-bytes IPv6 as requested.

sHost Hostname to resolve.

Type
Type of desired result:
• IP_DNS_SERVER_TYPE_A
• IP_DNS_SERVER_TYPE_AAAA

ms
Maximum time [ms] to wait for a reply (around 5s for all
attempts).

Return value

= 0 Request is valid.
= 1 No reply. All attempts not done.
< 0 No reply all attempts done or request invalid.

Additional information

The requested is sent for both Apple mDNS and Microsoft LLMNR.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



119 CHAPTER 4 Configuration functions

4.2.39    IP_EnableIPRxChecksum()

Description

Enables the IP Rx checksum calculation in the IP header for incoming packets. This is the
default behaviour of the stack.

Prototype

void IP_EnableIPRxChecksum(U8 IFace);

Parameters

Parameter Description

IFace Zero-based interface index.

Additional information

In a typical network all data contained in a transferred frame have already been verified by
the hardware checking the transmitted frames checksum and it is unlikely that data within
this frame are corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



120 CHAPTER 4 Configuration functions

4.2.40    IP_GetMaxAvailPacketSize()

Description

Asks the stack for the maximum available free packet size that can then be allocated. (e.g.
with a zero-copy alloc).

Prototype

U32 IP_GetMaxAvailPacketSize(int IFaceId);

Parameters

Parameter Description

IFaceId
Zero-based interface index for which the packet shall be
allocated.

Return value

No free packet is available at all: 0. Other : Max. packet size that is free.

Additional information

The packet size returned does not contain any protocol headers other than the transport
layer (for Ethernet typically 14 bytes/for PPP typically 6 bytes). Other protocol header such
as IPvX and UDPvX need to be subtracted from the value returned.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



121 CHAPTER 4 Configuration functions

4.2.41    IP_GetMemPoolInfo()

Description

Collects data about a memory pool such as its size and free bytes.

Prototype

int IP_GetMemPoolInfo(void             * pPoolAddr,
                      IP_MEM_POOL_INFO * pInfo);

Parameters

Parameter Description

pPoolAddr
Memory pool to retrieve information for. NULL for the main
memory pool added with IP_AssignMemory() .

pInfo
Pointer to structure of IP_MEM_POOL_INFO where to store
information about the selected pool.

Return value

= 0 O.K.
≠ 0 Error, memory pool not found ?

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



122 CHAPTER 4 Configuration functions

4.2.42    IP_GetMTU()

Description

Retrieves the configured TCP MTU size for an interface.

Prototype

U32 IP_GetMTU(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

MTU configured for the interface, either set as default when adding the interface or set
via IP_SetMTU().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



123 CHAPTER 4 Configuration functions

4.2.43    IP_GetPrimaryIFace()

Description

Retrieves the currently set primary interface index.

Prototype

int IP_GetPrimaryIFace(void);

Return value

Currently set primary interface index. Default is 0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



124 CHAPTER 4 Configuration functions

4.2.44    IP_ICMP_Add()

Description

Adds ICMP Protocol function to the stack.

Prototype

void IP_ICMP_Add(void);

Additional information

IP_ICMP_Add() adds ICMP to the stack. The function should be called during the
initialization of the stack. In the supplied sample configuration files IP_ICMP_Add() is called
from IP_X_Config(). If you remove the call of IP_ICMP_Add(), the ICMP code will not be
available in your application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



125 CHAPTER 4 Configuration functions

4.2.45    IP_ICMP_DisableRxChecksum()

Description

Disables the ICMP Rx checksum calculation. The ICMP checksum computation can be
disabled to improve the performance of the stack.

Prototype

void IP_ICMP_DisableRxChecksum(U8 IFace);

Parameters

Parameter Description

IFace Interface index.

Additional information

In a typical network all data contained in a transferred frame have already been verified by
the hardware by checking the trasmitted frames checksum. It is unlikely that data within
this frame is corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



126 CHAPTER 4 Configuration functions

4.2.46    IP_ICMP_EnableRxChecksum()

Description

Enables the ICMP Rx checksum calculation. This is the default behaviour of the stack. The
ICMP checksum computation can be disabled to improve the performance of the stack.

Prototype

void IP_ICMP_EnableRxChecksum(U8 IFace);

Parameters

Parameter Description

IFace Zero-based interface index.

Additional information

In a typical network all data contained in a transferred frame have already been verified by
the hardware by checking the trasmitted frames checksum. It is unlikely that data within
this frame is corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



127 CHAPTER 4 Configuration functions

4.2.47    IP_IGMP_Add()

Description

Adds the IGMP protocol to interface #0.

Prototype

int IP_IGMP_Add(void);

Return value

= 0 O.K.
≠ 0 Error.

Additional information

The IGMP (Internet Group Management Protocol) allows a host to JOIN (or subscribe) to a
multicast group and receive messages for it. If the switch supports “IGMP snooping” it can
then forward multicast packets only to hosts that are subscribed to a group while saving
bandwidth on other ports where no host is subscribed to that group. A typical usage example
is any form of broadcasting like IPTV where a video feed is sent to a multicast group but
switches/routers will only deliver it to the hosts actually interested in receiving the content.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



128 CHAPTER 4 Configuration functions

4.2.48    IP_IGMP_AddEx()

Description

Adds the IGMP protocol to an interface.

Prototype

int IP_IGMP_AddEx(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

The IGMP (Internet Group Management Protocol) allows a host to JOIN (or subscribe) to a
multicast group and receive messages for it. If the switch supports “IGMP snooping” it can
then forward multicast packets only to hosts that are subscribed to a group while saving
bandwidth on other ports where no host is subscribed to that group. A typical usage example
is any form of broadcasting like IPTV where a video feed is sent to a multicast group but
switches/routers will only deliver it to the hosts actually interested in receiving the content.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



129 CHAPTER 4 Configuration functions

4.2.49    IP_IGMP_ConfigV2AlwaysReport()

Description

Configures if upon every IGMPv2 QUERY a REPORT shall be sent back.

Prototype

void IP_IGMP_ConfigV2AlwaysReport(unsigned IFaceId,
                                  U8       OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff

• 0: Default. Do not send a REPORT if another
host has already sent a REPORT for a QUERY.
• 1: Send a REPORT even if a REPORT from another
host has been seen.

Additional information

According to RFC 2236 duplicate REPORTs for the same group shall be avoided. With
IGMP snooping on the switch/router this should never happen as REPORTs should not be
forwarded anyhow. However there are some faulty switches/routers that forward REPORTs
and in such a case we have to respond with a REPORT even if it seems like IGMP snooping
is not in use and duplicates should be avoided. Otherwise we might loose our group
membership with IGMP snooping due to this faulty implementation on the switch/router.

This behavior can be configured per interface as it might be the case that on a multi interface
device one interface is part of a network behaving entirely correct and the other interface
being part of a network with faulty switches/routers.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



130 CHAPTER 4 Configuration functions

4.2.50    IP_IGMP_JoinGroup()

Description

Joins an IGMP group.

Prototype

int IP_IGMP_JoinGroup(unsigned IFaceId,
                      IP_ADDR  GroupIP);

Parameters

Parameter Description

IFaceId Zero-based interface index.
GroupIP IGMP group IP to join in host endianness.

Return value

= 0 O.K.
< 0 Error, no memory ?

Additional information

Multicast is a technique to distribute a packet to multiple receivers in a network by sending
only one packet. Handling of who will receive the packet is not done by the sender but
instead is done by network hardware such as routers or switches that will duplicate the
packet and send it to everyone that participates the chosen group.

After sending an initial JOIN REPORT the target does not actively participate by sending
more unsolicitied messages. The network hardware periodically sends a membership QUERY
either to all hosts or specific groups to check that these groups are still in use and if we
still want to be part of it.

The “all-systems”/“all-hosts” group 224.0.0.1 is automatically “joined” by opening receive
filters for it. This group is a special case as it is a receive only group. In older versions
this group had to be joined manually. When calling JOIN for this group it is now ignored
and returns O.K.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



131 CHAPTER 4 Configuration functions

4.2.51    IP_IGMP_JoinGroup_AutoRejoin()

Description

Joins an IGMP group and rejoins when the interface link state changes. Executed on link
DOWN to UP or different in speed/duplex.

Prototype

int IP_IGMP_JoinGroup_AutoRejoin(unsigned IFaceId,
                                 IP_ADDR  GroupIP);

Parameters

Parameter Description

IFaceId Zero-based interface index.
GroupIP IGMP group IP to join in host endianness.

Return value

= 0 O.K.
< 0 Error, no memory ?

Additional information

Multicast is a technique to distribute a packet to multiple receivers in a network by sending
only one packet. Handling of who will receive the packet is not done by the sender but
instead is done by network hardware such as routers or switches that will duplicate the
packet and send it to everyone that participates the chosen group.

After sending an initial JOIN REPORT the target does not actively participate by sending
more unsolicitied messages. The network hardware periodically sends a membership QUERY
either to all hosts or specific groups to check that these groups are still in use and if we
still want to be part of it.

The “all-systems”/“all-hosts” group 224.0.0.1 is automatically “joined” by opening receive
filters for it. This group is a special case as it is a receive only group. In older versions
this group had to be joined manually. When calling JOIN for this group it is now ignored
and returns O.K.

Rejoining groups sends a mesaage immediately after the link change is reported by the
system followed by a randomly delayed second message in case the first one got lost
(same as for a regular join). To avoid the first message getting lost due to the link change
being reported but not immediately being stable/usable, please configure a delay using
IP_ConfigNumLinkUpProbes() .

Example

/* Excerpt from the UPnP code */
#define SSDP_IP  0xEFFFFFFA  // Simple service discovery prot. IP,
 239.255.255.250

IP_IGMP_Add();  // IGMP is needed for UPnP
//
// Join the IGMP group for SSDP .
//
IP_IGMP_JoinGroup_AutoRejoin(0, SSDP_IP);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



132 CHAPTER 4 Configuration functions

4.2.52    IP_IGMP_LeaveGroup()

Description

Leaves an IGMP group.

Prototype

void IP_IGMP_LeaveGroup(unsigned IFaceId,
                        IP_ADDR  GroupIP);

Parameters

Parameter Description

IFaceId Zero-based interface index.
GroupIP IGMP group IP to leave in host endianness.

Example

/* Excerpt from the UPnP code */
#define SSDP_IP  0xEFFFFFFA  // Simple service discovery prot. IP,
 239.255.255.250

//
// Leave the IGMP group for SSDP .
//
IP_IGMP_LeaveGroup(0, SSDP_IP);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



133 CHAPTER 4 Configuration functions

4.2.53    IP_RAW_Add()

Description

Adds RAW socket function to stack

Prototype

void IP_RAW_Add(void);

Additional information

IP_RAW_Add() adds RAW socket support to the stack. The function should be called during
the initialization of the stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



134 CHAPTER 4 Configuration functions

4.2.54    IP_SetAddrMask()

Description

Sets the IP address and subnet mask of an interface. Operates on interface 0.

Prototype

void IP_SetAddrMask(U32 Addr,
                    U32 Mask);

Parameters

Parameter Description

Addr IP address in host endianness.
Mask Subnet mask in host endianness.

Additional information

The address mask should only be set if no DHCP server is used to obtain IP address, subnet
mask and default gateway.

Refer to chapter DHCP client on page 414 for detailed information about the usage of the
emNet DHCP client.

Example

IP_SetAddrMask(0xC0A80505, 0xFFFF0000);     // IP: 192.168.5.5
                                            // Subnet mask: 255.255.0.0

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



135 CHAPTER 4 Configuration functions

4.2.55    IP_SetAddrMaskEx()

Description

Sets the IP address and subnet mask of an interface.

Prototype

void IP_SetAddrMaskEx(U8  IFace,
                      U32 Addr,
                      U32 Mask);

Parameters

Parameter Description

IFace Interface number.
Addr IP address in host endianness.
Mask Subnet mask in host endianness.

Additional information

The address mask should only be set if no DHCP server is used to obtain IP address, subnet
mask and default gateway.

Refer to chapter DHCP client on page 414 for detailed information about the usage of the
emNet DHCP client.

Example

IP_SetAddrMaskEx(0, 0xC0A80505, 0xFFFF0000);     // IP: 192.168.5.5
                                                 // Subnet mask: 255.255.0.0

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



136 CHAPTER 4 Configuration functions

4.2.56    IP_SetGWAddr()

Description

Sets the default gateway address of the selected interface.

Prototype

void IP_SetGWAddr(U8  IFace,
                  U32 GWAddr);

Parameters

Parameter Description

IFace Zero-based interface index.
GWAddr 4-byte gateway address in host endianness.

Additional information

The address mask should only be set if no DHCP server is used to obtain IP address, subnet
mask and default gateway.

Refer to chapter DHCP client on page 414 for detailed information about the usage of the
emNet DHCP client.

Example

IP_SetGWAddr(0, 0xC0A80101);     // Interface: 0
                                 // IPv4 address of the GW: 192.168.1.1

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



137 CHAPTER 4 Configuration functions

4.2.57    IP_SetHWAddr()

Description

Sets the Media Access Control address (MAC) of the interface 0.

Prototype

void IP_SetHWAddr(const U8 * pHWAddr);

Parameters

Parameter Description

pHWAddr 6 bytes MAC address.

Additional information

The MAC address needs to be unique for production units.

Example

IP_SetHWAddr("\x00\x22\x33\x44\x55\x66");

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



138 CHAPTER 4 Configuration functions

4.2.58    IP_SetHWAddrEx()

Description

Sets the Media Access Control address (MAC) of the selected interface.

Prototype

void IP_SetHWAddrEx(      unsigned   IFaceId,
                    const U8       * pHWAddr,
                          unsigned   NumBytes);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pHWAddr Pointer to the MAC address.
NumBytes Number of bytes of the MAC address (typically 6).

Additional information

The MAC address needs to be unique for production units.

Example

IP_SetHWAddrEx(0, "\x00\x22\x33\x44\x55\x66", 6);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



139 CHAPTER 4 Configuration functions

4.2.59    IP_SetMTU()

Description

Allows to set the maximum transmission unit (MTU) of an interface.

Prototype

void IP_SetMTU(unsigned IFaceId,
               U32      Mtu);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Mtu Size of maximum transmission unit in bytes.

Additional information

The Maximum Transmission Unit is the MTU from an IP standpoint, so the size of the IP-
packet without local net header. A typical value for ethernet is 1500, since the maximum
size of an Ethernet packet is 1518 bytes. Since Ethernet uses 12 bytes for MAC addresses,
2 bytes for type and 4 bytes for CRC, 1500 bytes “payload” remain. The minimum size
of the MTU is 576 according to RFC 879. Refer to [RFC 879] - TCP - The TCP Maximum
Segment Size and Related Topics for more information about the MTU.

All TCP connections are guaranteed to work with any MTU in the permitted range of 576
- 1500 bytes. The advantage of a smaller MTU is that smaller packets are sent in TCP
communication, resulting in reduced RAM requirements, especially if the window size is
also reduced. The disadvantage is a loss of communication speed.

When being called from IP_X_Config() during the configuration phase, the MTU can only
be reduced to avoid configuring an MTU bigger than what the interface is capable of. The
initial MTU for an interface is set by the stack automatically when an interface is added.
After the configuration phase the MTU can freely be set and the application is responsible
to make sure to read the initially set MTU using IP_GetMTU() and to not configure an MTU
higher than that.

Note:

In the supplied emNet example configurations, the MTU is used to configure the maximum
packet size that the stack can handle. This means that if you lower the MTU (for example,
set it to 576 bytes), the stack can only handle packets up to that size. If you plan to use
larger UDP packets, change the configuration according to your requirements. For further
information about the configuration of the stack, refer to Configuring emNet on page 625.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



140 CHAPTER 4 Configuration functions

4.2.60    IP_SetRandCallback()

Description

Sets a callback that can provide random data.

Prototype

void IP_SetRandCallback(void ( *pfGetRand)(U8 * pBuffer , unsigned NumBytes ));

Parameters

Parameter Description

pfGetRand Callback function that provides randomized data.

Example

/********************************************************************
*
*       _cbRand()
*
*  Function description
*    Provides a source of randomness.
*
*  Parameters
*    pBuffer : Pointer where to store the random data.
*    NumBytes: Number of random bytes to store.
*/
static void _cbRand(U8* pBuffer, unsigned NumBytes) {
  //
  // Generate NumBytes of random data and store it at pBuffer.
  //
}

IP_SetRandCallback(_cbRand);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



141 CHAPTER 4 Configuration functions

4.2.61    IP_SetOnIFaceSelectCallback()

Description

Sets a callback that gets notified about an internal interface selection by the stack and
allows to override it.

Prototype

void IP_SetOnIFaceSelectCallback(IP_ON_IFACE_SELECT_FUNC * pf);

Parameters

Parameter Description

pf
Callback to execute when an interface is selected. Use NULL
to remove the callback.

Example

/*********************************************************************
*
*  _OnIFaceSelect()
*
*  Function description
*    Callback executed for an internal interface selection. The
*    proposed interface selected internally can be overridden.
*
*  Parameters
*    pFamily: Protocol family (at the moment only PF_INET or PF_INET6).
*    pInfo  : Further information of type IP_ON_IFACE_SELECT_INFO
*             about the interface selection parameters as well as
*             the proposed interface, selected internally based upon
*             these parameters.
*
*  Return value
*    == -1: No suitable interface.
*    >=  0: Interface index to use.
*/
static int _OnIFaceSelect(int PFamily, IP_ON_IFACE_SELECT_INFO* pInfo) {
 //
 // Example: IPv4 firewall out-filter.
 //   Blocking communication with a specific foreign host.
 //   This does not necessarily block communicaton if the
 //   initial transfer was started by the peer as in this
 //   case we might get our interface assigned based on the
 //   interface it came in on. This only causes us to not
 //   find a suitable interface if we do the initial
 //   communication like a connect() to a host.
 //
 if (PFamily == PF_INET) { // We define rules for IPv4 only.
   if (pInfo->pFAddrV4 != NULL) {
     if (htonl(*pInfo->pFAddrV4) == IP_BYTES2ADDR(192, 168, 2, 3)) {
       return -1; // No interface.
     }
   }
 }
 //
 // Do not care about other cases and accept the proposed
 // interface as selected by the stack internally.
 //
 return pInfo->IFaceId;
}

/*********************************************************************
*

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



142 CHAPTER 4 Configuration functions

*  MainTask()
*
*  Function description
*    Main task executed by the RTOS to create further resources and
*    running the main application.
*/
void MainTask(void) {
 IP_Init();
 //
 // Set callback that gets notified when the stack has internally
 // selected an interface.
 //
 IP_SetOnIFaceSelectCallback(_OnIFaceSelect);
 ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



143 CHAPTER 4 Configuration functions

4.2.62    IP_SetPrimaryIFace()

Description

Sets the primary interface index.

Prototype

int IP_SetPrimaryIFace(int IFaceId);

Parameters

Parameter Description

IFaceId
Zero-based interface index to use as primary interface of the
system. Default is 0.

Return value

= 0 OK.
< 0 Error.

Additional information

The primary interface is given priority for several purposes in multi interface setups. One
example would be to use a preferred interface when looking for a DNS server to use in case
multiple interface have set DNS servers.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



144 CHAPTER 4 Configuration functions

4.2.63    IP_SetSupportedDuplexModes()

Description

Sets the supported duplex/speed of the device to be advertised during Auto-Negotiation.

Prototype

int IP_SetSupportedDuplexModes(unsigned IFaceId,
                               unsigned DuplexMode);

Parameters

Parameter Description

IFaceId Zero-based interface index.

DuplexMode

Bitwise-OR combination of the following supported modes:
• IP_PHY_MODE_10_HALF
• IP_PHY_MODE_10_FULL
• IP_PHY_MODE_100_HALF
• IP_PHY_MODE_100_FULL
• IP_PHY_MODE_1000_HALF
• IP_PHY_MODE_1000_FULL

Return value

= 0 Success
< 0 Not supported.

Additional information

Combining one of the supported duplex/speed modes with IP_PHY_MODE_NO_AUTONEG
disables the Auto-Negotiation advertisement and configures a fixed duplex/speed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



145 CHAPTER 4 Configuration functions

4.2.64    IP_SetTTL()

Description

Sets the default value for the Time-To-Live IP header field.

Prototype

void IP_SetTTL(int v);

Parameters

Parameter Description

v Time-To-Live value.

Additional information

By default, the TTL (Time-To-Live) is 64. The TTL field length of the IP is 8 bits. The
maximum value of the TTL field is therefore 255.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



146 CHAPTER 4 Configuration functions

4.2.65    IP_SetGlobalMcTTL()

Description

Sets the default value for the Time-To-Live IP header field for global multicast packets.

Prototype

void IP_SetGlobalMcTTL(int v);

Parameters

Parameter Description

v Time-To-Live value.

Additional information

By default, the TTL (Time-To-Live) is 64. The TTL field length of the IP is 8 bits. The
maximum value of the TTL field is therefore 255.

Global multicast packets are packets with destinations outside the following networks:
• 224.0.0.x
• 239.x.x.x

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



147 CHAPTER 4 Configuration functions

4.2.66    IP_SetLocalMcTTL()

Description

Sets the default value for the Time-To-Live IP header field for local multicast packets.

Prototype

void IP_SetLocalMcTTL(int v);

Parameters

Parameter Description

v Time-To-Live value.

Additional information

By default, the TTL (Time-To-Live) is 1. The TTL field length of the IP is 8 bits. The maximum
value of the TTL field is therefore 255.

Local multicast packets are packets with destinations inside the following networks:
• 224.0.0.x
• 239.x.x.x

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



148 CHAPTER 4 Configuration functions

4.2.67    IP_SetUseRxTask()

Description

Sets the internal flag for using the IP_RxTask() manually.

Prototype

void IP_SetUseRxTask(void);

Additional information

The IP_RxTask flag has to be set before enabling the interrupt as otherwise it would still be
possible for an Rx interrupt to fire before the IP_RxTask flag has been set on first execution
of said task. Processing the first interrupt(s) without IP_RxTask however should not hurt
and a device should not be offended by interrupt delay during or directly after init when
the task scheduler gets started.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



149 CHAPTER 4 Configuration functions

4.2.68    IP_SOCKET_ConfigSelectMultiplicator()

Description

Configures the multiplicator for the timeout parameter of select(). Default multiplicator
is 1.

Prototype

void IP_SOCKET_ConfigSelectMultiplicator(U32 v);

Parameters

Parameter Description

v Multiplicator to be used.

Additional information

By default the select() timeout is given in ticks of 1 ms. The UNIX standard takes the
timeout in a structue including seconds. The multiplicator can be configured but as it is
more common for an embedded system we will stick to units of 1 tick (typically 1 ms) for
the default.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



150 CHAPTER 4 Configuration functions

4.2.69    IP_SOCKET_SetDefaultOptions()

Description

Sets the socket options enabled by default.

Prototype

void IP_SOCKET_SetDefaultOptions(U16 v);

Parameters

Parameter Description

v Socket options which should be enabled.

Additional information

By default, keepalive (SO_KEEPALIVE ) socket option is enabled. Refer to setsockopt()
for a list of supported socket options. This only applies for socket options that are ’binary’,
i.e. something like SO_KEEPALIVE which is either set or not, and not for options like
SO_RCVTIMEO that also require a timeout parameter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



151 CHAPTER 4 Configuration functions

4.2.70    IP_SOCKET_SetLimit()

Description

Sets the maximum number of allowed sockets.

Prototype

void IP_SOCKET_SetLimit(unsigned Limit);

Parameters

Parameter Description

Limit
Sets a limit on number of sockets which can be created. The
default is 0 which means that no limit is set.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



152 CHAPTER 4 Configuration functions

4.2.71    IP_SYSVIEW_Init()

Description

Initializes the profile instrumentation of the stack and SystemView as profiling
implementation.

Prototype

void IP_SYSVIEW_Init(void);

Additional information

For further information regarding the SysView profiling implementation in emNet please
refer to the chapter Profiling with SystemView on page 1245.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



153 CHAPTER 4 Configuration functions

4.2.72    IP_TCP_Add()

Description

Adds TCP Protocol function to the stack.

Prototype

void IP_TCP_Add(void);

Additional information

IP_TCP_Add() adds TCP to the stack. The function should be called during the initialization
of the stack. In the supplied sample configuration files IP_TCP_Add() is called from
IP_X_Config(). If you remove the call of IP_TCP_Add(), the TCP code will not be available
in your application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



154 CHAPTER 4 Configuration functions

4.2.73    IP_TCP_DisableRxChecksum()

Description

Disables the TCP Rx checksum calculation. The TCP checksum computation can be disabled
to improve the performance of the stack.

Prototype

void IP_TCP_DisableRxChecksum(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Additional information

In a typical network all data contained in a transferred frame has already been verified by
the hardware checking the trasmitted frames checksum and it is unlikely that data within
this frame is corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

This only affects the checksum calculation in software. In case the hardware supports TCP
Rx checksum calculation it might still discard a received frame in which the TCP checksum
is invalid. When supported by hardware, the software calculation is disabled by default and
enabled by default if not supported in hardware.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



155 CHAPTER 4 Configuration functions

4.2.74    IP_TCP_EnableRxChecksum()

Description

Enables checksum verification of the checksum in the TCP header for incoming packets.

Prototype

void IP_TCP_EnableRxChecksum(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Additional information

In a typical network all data contained in a transferred frame has already been verified by
the hardware checking the trasmitted frames checksum and it is unlikely that data within
this frame is corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

This only affects the checksum calculation in software. In case the hardware supports TCP
Rx checksum calculation it might still discard a received frame in which the TCP checksum
is invalid. When supported by hardware, the software calculation is disabled by default and
enabled by default if not supported in hardware.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



156 CHAPTER 4 Configuration functions

4.2.75    IP_TCP_Set2MSLDelay()

Description

Sets the maximum segment lifetime (MSL).

Prototype

void IP_TCP_Set2MSLDelay(unsigned v);

Parameters

Parameter Description

v Maximum segment lifetime. The default is 2 seconds.

Additional information

The maximum segment lifetime is the amount of time any segment can exist in the network
before being discarded. This time limit is constricted. When TCP performs an active close
the connection must stay in TIME_WAIT (2MSL) state for twice the MSL after sending the
final ACK.

Refer to [RFC 793] - TCP - Transmission Control Protocol for more information about TCP
states.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



157 CHAPTER 4 Configuration functions

4.2.76    IP_TCP_SetConnKeepaliveOpt()

Description

Sets the keepalive options.

Prototype

void IP_TCP_SetConnKeepaliveOpt(U32 Init,
                                U32 Idle,
                                U32 Period,
                                U32 MaxRep);

Parameters

Parameter Description

Init
Maximum time [ms] after TCP-connection open (response to
SYN) in ms in case no data transfer takes place. The default
is IP_TCP_KEEPALIVE_INIT .

Idle
Time [ms] of TCP-inactivity before first keepalive probe is
sent. The default is IP_TCP_KEEPALIVE_IDLE .

Period
Time [ms] of TCP-inactivity between keepalive probes. The
default is IP_TCP_KEEPALIVE_PERIOD .

MaxRep
Number of keepalive probes before we give up and close
the connection. The default is IP_TCP_KEEPALIVE_MAX_REPS
repetitions.

Additional information

Keepalives are not part of the TCP specification, since they can cause good connections to
be dropped during transient failures. For example, if the keepalive probes are sent during
the time that an intermediate router has crashed and is rebooting, TCP will think that the
client’s host has crashed, which is not what has happened. Nevertheless, the keepalive
feature is very useful for embedded server applications that might tie up resources on
behalf of a client, and want to know if the client host crashes.

Keepalives will be sent if the TCP connection sits idle for Idle ms and will then start sending
a keepalive each Period ms for MaxRep. Each time a keepalive is ACked by the peer, the
next keepalive will again be sent after Idle ms.

By design keepalives are retransmissions of already sent and ACKed data. Depending on
the used IP stack a retransmit is typically one byte sent with the current sequence number -
1, so that the peer will discard the data itself as it has already been received and ACKed but
will send an ACK back to notify the sender that it has been received and to not send it again.

Other stacks might even send a TCP packet with zero data and the current sequence
number, forcing the other side to practically answer back to a duplicate ACK. Keepalives
might not be displayed correctly by tools like Wireshark. A zero length keepalive is typically
seen like a duplicate ACK while a one byte keepalive might actually be a one byte retransmit
if sending chunks of one byte and one of them has not been ACKed.

The Init value configured is the connect timeout that will be used for connect().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



158 CHAPTER 4 Configuration functions

4.2.77    IP_TCP_SetRetransDelayRange()

Description

Sets retransmission delay range.

Prototype

void IP_TCP_SetRetransDelayRange(unsigned RetransDelayMin,
                                 unsigned RetransDelayMax);

Parameters

Parameter Description

RetransDelayMin

Minimum time [ms] before first retransmission. The
default is IP_TCP_RETRANS_MIN . Please note that setting a
minimum value below the minimum value of the peer is not
recommended and might break delayed ACKs. The default
for many stacks is ~200ms, therefore the minimum should
be set slightly higher.

RetransDelayMax
Maximum time [ms] to wait before a retransmission. The
default is IP_TCP_RETRANS_MAX .

Additional information

TCP is a reliable transport layer. One of the ways it provides reliability is for each end to
acknowledge the data it receives from the communication partner. But data segments and
acknowledgments can get lost. TCP handles this by setting a timeout when it sends data,
and if the data is not acknowledged when the timeout expires, it retransmits the data. The
timeout and retransmission is the measurement of the round-trip time (RTT) experienced on
a given connection. The RTT can change over time, as routes might change and as network
traffic changes, and TCP should track these changes and modify its timeout accordingly.
IP_TCP_SetRetransDelayRange() should be called if the default limits are not sufficient
for your application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



159 CHAPTER 4 Configuration functions

4.2.78    IP_UDP_Add()

Description

Adds UDP Protocol support to the stack.

Prototype

void IP_UDP_Add(void);

Additional information

IP_UDP_Add() adds UDP to the stack. The function should be called during the initialization
of the stack. In the supplied sample configuration files IP_UDP_Add() is called from
IP_X_Config(). If you remove the call of IP_UDP_Add(), the UDP code will not be available
in your application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



160 CHAPTER 4 Configuration functions

4.2.79    IP_UDP_AddEchoServer()

Description

Adds a simple echo server for UDP packets that can be used for UDP pings and other tests.

Prototype

IP_UDP_CONNECTION *IP_UDP_AddEchoServer(U16 LPort);

Parameters

Parameter Description

LPort Local port on which to listen for incoming packets.

Return value

≠ NULL O.K. Pointer to the connection.
= NULL Error.

Additional information

The echo server will simply send back the incoming packet to the sender.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



161 CHAPTER 4 Configuration functions

4.2.80    IP_UDP_DisableRxChecksum()

Description

Disables checksum verification of the checksum in the UDP header for incoming packets.

Prototype

void IP_UDP_DisableRxChecksum(void);

Additional information

In a typical network all data contained in a transfered frame have already been verified by
the hardware checking the trasmitted frames checksum and it is unlikely that data within
this frame are corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



162 CHAPTER 4 Configuration functions

4.2.81    IP_UDP_EnableRxChecksum()

Description

Enables checksum verification of the checksum in the TCP header for incoming packets.

Prototype

void IP_UDP_EnableRxChecksum(void);

Additional information

In a typical network all data contained in a transfered frame have already been verified by
the hardware checking the trasmitted frames checksum and it is unlikely that data within
this frame are corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



163 CHAPTER 4 Configuration functions (IP fragmentation)

4.3    Configuration functions (IP fragmentation)

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



164 CHAPTER 4 Configuration functions (IP fragmentation)

4.3.1    IP_FRAGMENT_ConfigRx()

Description

Modifies the default settings for IPv4 fragmentation.

Prototype

void IP_FRAGMENT_ConfigRx(U16 MaxFragments,
                          U32 Timeout,
                          U8  KeepOOO);

Parameters

Parameter Description

MaxFragments
Maximum number of fragments which are allowed for a
fragmented packet. Currently 0..255 fragments are allowed.

Timeout Timeout [ms] before discarding fragment queues.

KeepOOO
Keep Out Of Order fragments.
• 0: Discard (default).
• 1: Keep.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



165 CHAPTER 4 Configuration functions (IP fragmentation)

4.3.2    IP_FRAGMENT_Enable()

Description

Initializes the required variables and adds a timer to the stack to handle outdated fragment
queues.

Prototype

void IP_FRAGMENT_Enable(void);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



166 CHAPTER 4 Configuration functions (IP fragmentation)

4.3.3    IP_IPV6_FRAGMENT_ConfigRx()

Description

Modifies the default settings for IPv6 fragmentation.

Prototype

void IP_IPV6_FRAGMENT_ConfigRx(U16 MaxFragments,
                               U32 Timeout,
                               U8  KeepOOO);

Parameters

Parameter Description

MaxFragments
Maximum number of fragments which are allowed for a
fragmented packet.

Timeout Timeout [ms] before discarding fragment queues.

KeepOOO
Keep Out Of Order fragments.
• 0: Discard (default).
• 1: Keep.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



167 CHAPTER 4 Configuration functions (IP fragmentation)

4.3.4    IP_IPV6_FRAGMENT_Enable()

Description

Initializes the required variables and adds a timer to the stack to handle outdated fragment
queues.

Prototype

void IP_IPV6_FRAGMENT_Enable(void);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



168 CHAPTER 4 Management functions

4.4    Management functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



169 CHAPTER 4 Management functions

4.4.1    IP_DeInit()

Description

Deinitializes the TCP/IP stack.

Prototype

void IP_DeInit(void);

Additional information

IP_DeInit() de-initializes the IP stack. This function should be the very last function of the
stack called by the application and is typically not needed if you do not need to shutdown
your whole application for a special reason.

For a clean de-initialization IP_Disconnect() and IP_Shutdown() should be called first.

De-initialization should be done in the exact reversed order of initialization. This means
terminating any created task that uses the IP API, terminating the IP_RxTask (if used),
terminating the IP_Task and finally calling IP_DeInit() to close down the stack. The
whole de-initialization should be done with Ethernet interrupts disabled and task switching
disabled to prevent the de-initialization being interrupted by an Ethernet event.

De-init has to be supported by the driver as well. If your driver does not yet support
IP_DeInit() you will end up in IP_Panic(). Please contact our support address and ask
for IP_DeInit() support to be added to your driver.

Example

#include "IP.h"

void main(void) {
  IP_Init();
  //
  // Create IP tasks and use the stack
  //
  ...
  //
  // Disable Ethernet interrupt
  //
  OS_EnterRegion();  // Prevent task switching
  //
  // Terminate all application tasks that make use of the IP API
  //
  //
  // Terminate IP_RxTask first (if used) and IP_Task
  //
  IP_DeInit();
  OS_LeaveRegion();  // Allow task switching
 }

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



170 CHAPTER 4 Management functions

4.4.2    IP_Init()

Description

Initializes the TCP/IP stack.

Prototype

int IP_Init(void);

Return value

= 0 O.K.
< 0 Error.

Additional information

IP_Init() initializes the IP stack and creates resources required for an OS integration. This
function must be called before any other function of the stack is called.

Does not detect memory allocation problems during IP_Init() at this time. A sufficient
memory pool size should be checked by running an IP_DEBUG enabled build with
IP_PANIC() checks first as this will help to discover other problems with the setup as well.

Example

#include "IP.h"

void main(void) {
  IP_Init();
  /*
   *  Use the stack
   */
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



171 CHAPTER 4 Management functions

4.4.3    IP_Task()

Description

Main task for handling the stack.

Prototype

void IP_Task(void);

Additional information

Implementing this task is the simplest way to include the stack into your project. An
example for typical task stack usage is defined by TASK_STACK_SIZE_IP_TASK .

For best performance this task should be given a task priority higher than any other IP
stack related application task. It however must not have a higher or the same priority
than the IP_RxTask() or its API alternatives IP_RXTASK_Init(), IP_RXTASK_Exec() and
IP_RXTASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt usage
on page 48 .

After startup, this routine settles into a loop, handling received packets and executing other
jobs. This loop sleeps until signaled by a driver or a stack internal job being ready for
execution.

In case of de-initializing the stack with IP_DeInit(), it is possible to leave the loop
gracefully by using IP_ShutDown() .

Example

#include <stdio.h>
#include "RTOS.h"
#include "BSP.h"
#include "IP.h"
#include "IP_Int.h"

static OS_STACKPTR int _Stack0[512];     // Task stacks
static OS_TASK         _TCB0;            // Task-control-blocks
static OS_STACKPTR int _IPStack[1024];   // Task stacks
static OS_TASK         _IPTCB;           // Task-control-blocks

/*********************************************************************
*
*       MainTask
*/
void MainTask(void);
void MainTask(void) {
  printf("****************************************\nProgram start\n");
  IP_Init();
  OS_SetPriority(OS_GetTaskID(), 255);    // This task has highest prio!
  OS_CREATETASK(&_IPTCB, "IP_Task", IP_Task, 150, _IPStack);
  while (1) {
    BSP_ToggleLED(1);
    OS_Delay (200);
  }
}

/**********************************************************
*
*       main
*/
void main(void) {
  BSP_Init();
  BSP_SetLED(0);
  OS_IncDI();           /* Initially disable interrupts  */

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



172 CHAPTER 4 Management functions

  OS_InitKern();        /* initialize OS                 */
  OS_InitHW();          /* initialize Hardware for OS    */
  OS_CREATETASK(&_TCB0, "MainTask", MainTask, 100, _Stack0);
  OS_Start();
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



173 CHAPTER 4 Management functions

4.4.4    IP_Exec()

Description

Processes received packets and handles timers and other jobs.

Prototype

U32 IP_Exec(void);

Return value

Value of the next timeout [ms].

Additional information

This function is normally called internally from an endless loop in IP_Task() . If no dedicated
task running IP_Task() is implemented in your project e.g. when using a superloop,
IP_Exec() should be called regularly.

When being called from a task context, the same task priority rules as for IP_Task() apply.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



174 CHAPTER 4 Management functions

4.4.5    IP_TASK_Init()

Description

Initializes the main IP task context when not using IP_Task() .

Prototype

void IP_TASK_Init(void);

Additional information

The IP_TASK_* API is an alternative to using the IP_Task() . It allows finer control over
the internal steps done in IP_Task() . This can be utilized for example to feed a watchdog
from the same task periodically.

Note

This routine is not intended to be used when using IP_Task() or IP_Exec() instead.
It needs to be called before IP_TASK_Exec() or IP_TASK_WaitForEvent() is used.

For best performance the IP_TASK_* API should be called with a task priority higher
than any other IP stack related application task.

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the IP_RxTask() or its API alternatives
IP_RXTASK_Init(), IP_RXTASK_Exec() and IP_RXTASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

Example

/*********************************************************************
*
*       _IP_Task()
*
*  Function description
*    Application specific implementation of IP_Task() .
*
*  Additional information
*    Allows to insert your own code like feeding a watchdog
*    in-between the separate steps that would be executed by the
*    original task API provided by the stack.
*/
static void _IP_Task(void) {
  unsigned Timeout;

  //
  // Initialize.
  //
  IP_TASK_Init();
  //
  // Task-loop.
  //
  for (;;) {
    //
    // Process received packets and execute pending jobs.
    // The timeout returned is when the next timer-event is due.
    //
    Timeout = IP_TASK_Exec();

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



175 CHAPTER 4 Management functions

    //
    // Sleep until the next timer-event is due or an event like
    // new packets have been received is signaled.
    //
    IP_TASK_WaitForEvent(Timeout);
  }
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



176 CHAPTER 4 Management functions

4.4.6    IP_TASK_Exec()

Description

Processes received packets and handles timers and other jobs.

Prototype

unsigned IP_TASK_Exec(void);

Return value

Value of the next timeout [ms].

Additional information

The IP_TASK_* API is an alternative to using the IP_Task() . It allows finer control over
the internal steps done in IP_Task() . This can be utilized for example to feed a watchdog
from the same task periodically.

Note

This routine is not intended to be used when using IP_Task() or IP_Exec() instead.

For best performance the IP_TASK_* API should be called with a task priority higher
than any other IP stack related application task.

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the IP_RxTask() or its API alternatives
IP_RXTASK_Init(), IP_RXTASK_Exec() and IP_RXTASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



177 CHAPTER 4 Management functions

4.4.7    IP_TASK_WaitForEvent()

Description

Waits for an event for the main IP task to be signaled.

Prototype

unsigned IP_TASK_WaitForEvent(unsigned Timeout);

Parameters

Parameter Description

Timeout

Timeout [ms] to wait for an event. 0 for INFINITE is
currently not supported (but can be used) and is internally
changed to 1 . Typically the timeout value returned by
IP_TASK_Exec() should be used.

Return value

= 0 An event was signaled.
≠ 0 Timeout.

Additional information

The IP_TASK_* API is an alternative to using the IP_Task() . It allows finer control over
the internal steps done in IP_Task() . This can be utilized for example to feed a watchdog
from the same task periodically.

Note

This routine is not intended to be used when using IP_Task() or IP_Exec() instead.

For best performance the IP_TASK_* API should be called with a task priority higher
than any other IP stack related application task.

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the IP_RxTask() or its API alternatives
IP_RXTASK_Init(), IP_RXTASK_Exec() and IP_RXTASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



178 CHAPTER 4 Management functions

4.4.8    IP_RxTask()

Description

Optional task to reduce time spent in receive interrupts.

Prototype

void IP_RxTask(void);

Additional information

This optional task can be implementing into your project to reduce the time spent
in Ethernet receive interrupts. An example for typical task stack usage is defined by
TASK_STACK_SIZE_IP_RX_TASK .

Warning

This task operates as a pseudo-interrupt executed from task context and is not secured
against other API or tasks of the stack. It therefore needs to be given a task priority
above all tasks that make use of the API of the stack or one of the other tasks of the
stack like the IP_Task() or its API alternatives like IP_TASK_Init() , IP_TASK_Exec()
and IP_TASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

After startup, this routine settles into a loop, receiving/copying packets in a task context
instead of from the interrupt itself to reduce interrupt latency. This loop sleeps until signaled
by a driver.

In case of de-initializing the stack with IP_DeInit(), it is possible to leave the loop
gracefully by using IP_ShutDown() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



179 CHAPTER 4 Management functions

4.4.9    IP_RXTASK_Init()

Description

Initializes the RxTask context when not using IP_RxTask() .

Prototype

void IP_RXTASK_Init(void);

Additional information

The IP_RXTASK_* API is an alternative to using the IP_RxTask() . It allows finer control
over the internal steps done in IP_RxTask() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using IP_RxTask() instead. It needs to
be called before IP_RXTASK_Exec() or IP_RXTASK_WaitForEvent() is used.

Warning

This routine is part of a pseudo-interrupt executed from task context and is not secured
against other API or tasks of the stack. The task priority from which this routine is
executed has to be above all tasks that make use of the API of the stack or one of the
other tasks of the stack like the IP_Task() or its API alternatives like IP_TASK_Init(),
IP_TASK_Exec() and IP_TASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

It can however be used from a lower task priority when locking the API with
IP_OS_LOCK() before and unlocking with IP_OS_UNLOCK() after calling this routine.

Example

/*********************************************************************
*
*       _IP_RxTask()
*
*  Function description
*    Application specific implementation of IP_RxTask() .
*
*  Additional information
*    Allows to insert your own code like feeding a watchdog
*    in-between the separate steps that would be executed by the
*    original task API provided by the stack.
*/
static void _IP_RxTask(void) {
  //
  // Initialize.
  //
  IP_RXTASK_Init();
  //
  // Task-loop.
  //
  for (;;) {
    //
    // Wait with timeout [ms] (here INFINITE) for the next event to be
    // signaled. Typically the signal is triggered by an interrupt
    // from the driver when receiving new packets.
    //

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



180 CHAPTER 4 Management functions

    IP_RXTASK_WaitForEvent(0u);
    //
    // Handle received packets and copy them into the stack.
    //
    IP_RXTASK_Exec();
  }
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



181 CHAPTER 4 Management functions

4.4.10    IP_RXTASK_Exec()

Description

Copies received packets from driver to stack in a task context instead of from an interrupt.

Prototype

void IP_RXTASK_Exec(void);

Additional information

The IP_RXTASK_* API is an alternative to using the IP_RxTask() . It allows finer control
over the internal steps done in IP_RxTask() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using IP_RxTask() instead.

Warning

This routine is part of a pseudo-interrupt executed from task context and is not secured
against other API or tasks of the stack. The task priority from which this routine is
executed has to be above all tasks that make use of the API of the stack or one of the
other tasks of the stack like the IP_Task() or its API alternatives like IP_TASK_Init(),
IP_TASK_Exec() and IP_TASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

It can however be used from a lower task priority when locking the API with
IP_OS_LOCK() before and unlocking with IP_OS_UNLOCK() after calling this routine. In
this case you might have to manually remove the IP_DEBUG check in the IP_OS layer
that ensures that the task priorities are used correctly.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



182 CHAPTER 4 Management functions

4.4.11    IP_RXTASK_WaitForEvent()

Description

Waits for an event for the IP_RxTask to be signaled.

Prototype

unsigned IP_RXTASK_WaitForEvent(unsigned Timeout);

Parameters

Parameter Description

Timeout Timeout [ms] to wait for an event. 0 for INFINITE .

Return value

= 0 An event was signaled.
≠ 0 Timeout.

Additional information

The IP_RXTASK_* API is an alternative to using the IP_RxTask() . It allows finer control
over the internal steps done in IP_RxTask() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using IP_RxTask() instead.

Warning

This routine is part of a pseudo-interrupt executed from task context and is not secured
against other API or tasks of the stack. The task priority from which this routine is
executed has to be above all tasks that make use of the API of the stack or one of the
other tasks of the stack like the IP_Task() or its API alternatives like IP_TASK_Init(),
IP_TASK_Exec() and IP_TASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

It can however be used from a lower task priority when locking the API with
IP_OS_LOCK() before and unlocking with IP_OS_UNLOCK() after calling this routine. In
this case you might have to manually remove the IP_DEBUG check in the IP_OS layer
that ensures that the task priorities are used correctly.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



183 CHAPTER 4 Management functions

4.4.12    IP_Shutdown()

Description

Prepare network stack related tasks for a graceful shutdown.

Prototype

unsigned IP_Shutdown(unsigned LeaveTaskLoop,
                     U32      Timeout);

Parameters

Parameter Description

LeaveTaskLoop
Leave the task loop(s) of the stack when shutting down the
tasks.

Timeout

Timeout [ms] after which the routine returns regardless of
all tasks being able to shut down or not. A timeout of 0 ms
for immediate return can be used but the tasks will only be
shut down for sure if all of them have a higher priority than
the task calling this routine. A non-zero timeout is therefore
advised.

Return value

= 0 All tasks have been shut down successfully.
≠ 0 Mask of IP_TASK_* bits for the tasks that have not been shut down within the

timeout.

Additional information

Before calling IP_DeInit() all application tasks should stop calling network API and all
tasks that belong directly to the stack like IP_Task() should be stopped as well. The later
of both is not as easy as the application has no knowledge about the current execution
status of these tasks and it might happen that for example IP_Task() is currently deep
into some protocol like TCP or even deeper like in a callback back into the application.

By calling this routine a graceful stop of these tasks can be requested to prepare them for
having their tasks completely removed in the next step.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



184 CHAPTER 4 Network interface configuration and handling
functions

4.5    Network interface configuration and handling
functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



185 CHAPTER 4 Network interface configuration and handling
functions

4.5.1    IP_NI_AddPTPDriver()

Description

Adds an NI specific PTP driver for HW timestamp support.

Prototype

int IP_NI_AddPTPDriver(      unsigned        IFaceId,
                       const IP_PTP_DRIVER * pPTPDriver,
                             U32             Clock);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pPTPDriver PTP driver to add.
Clock Clock [Hz] of the PTP timer. Can not be 0.

Return value

-1 Error, not supported
0 OK
1 Error, called after driver initialization has been completed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



186 CHAPTER 4 Network interface configuration and handling
functions

4.5.2    IP_NI_ClrBPressure()

Description

Disables usage of back pressure (sending a jam signal to signal when we run into a shortage
where the hardware can not receive more data).

Prototype

void IP_NI_ClrBPressure(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



187 CHAPTER 4 Network interface configuration and handling
functions

4.5.3    IP_NI_ConfigPoll()

Description

Select polled mode for the network interface. This should be used only if the NI can not
activate an ISR itself.

Prototype

void IP_NI_ConfigPoll(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



188 CHAPTER 4 Network interface configuration and handling
functions

4.5.4    IP_NI_ForceCaps()

Description

Allows to force capabilities to be set for an interface. Typically this is used to allow the
checksum calculation capabilities to be set manually. Typically this is used to give the target
a performance boost in high traffic applications on stable networks, where the occurence
of wrong checksums is unlikely.

Prototype

void IP_NI_ForceCaps(unsigned IFaceId,
                     U8       CapsForcedMask,
                     U8       CapsForcedValue);

Parameters

Parameter Description

IFaceId Zero-based index network interfaces.

CapsForcedMask
Defines which bits in the Caps byte will be modified. A
1 in the mask will allow the Caps to be modified by the
corresponding bit in CapsForcedValue.

CapsForcedValue

Values for the corresponding bits in CapsForcedMask.
Usually an OR of the following values:
• IP_NI_CAPS_WRITE_IP_CHKSUM
• IP_NI_CAPS_WRITE_UDP_CHKSUM
• IP_NI_CAPS_WRITE_TCP_CHKSUM
• IP_NI_CAPS_WRITE_ICMP_CHKSUM
• IP_NI_CAPS_CHECK_IP_CHKSUM
• IP_NI_CAPS_CHECK_UDP_CHKSUM
• IP_NI_CAPS_CHECK_TCP_CHKSUM
• IP_NI_CAPS_CHECK_ICMP_CHKSUM

Example

Forcing the capability bits 0 to value ’0’ and bit 2 to value ’1’ for the first interface can be
done as shown in the code example below:

IP_NI_ForceCaps(0, 5, 4);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



189 CHAPTER 4 Network interface configuration and handling
functions

4.5.5    IP_NI_SetBPressure()

Description

Enables usage of back pressure (sending a jam signal to signal when we run into a shortage
where the hardware can not receive more data).

Prototype

void IP_NI_SetBPressure(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



190 CHAPTER 4 Network interface configuration and handling
functions

4.5.6    IP_NI_SetTxBufferSize()

Description

Sets the size of the Tx buffer of the network interface.

Prototype

int IP_NI_SetTxBufferSize(unsigned IFaceId,
                          unsigned NumBytes);

Parameters

Parameter Description

IFaceId Zero-based interface index.

NumBytes
Size of the Tx buffer (at least size of the MTU + 16 bytes for
Ethernet).

Return value

-1 Error, not supported
0 OK
1 Error, called after driver initialization has been completed.

Additional information

The default Tx buffer size is 1536 bytes. It can be useful to reduce the buffer size on systems
with less RAM and an application that uses a small MTU. According to RFC 576 bytes is
the smallest possible MTU. The size of the Tx buffer should be at least MTU + 16 bytes for
Ethernet header and footer. The function should be called in IP_X_Config().

Note:

This function is not implemented in all network interface drivers, since not all Media Access
Controllers (MAC) support variable buffer sizes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



191 CHAPTER 4 PHY configuration functions

4.6    PHY configuration functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



192 CHAPTER 4 PHY configuration functions

4.6.1    IP_NI_ConfigPHYAddr()

Description

Configure the PHY Addr.

Prototype

void IP_NI_ConfigPHYAddr(unsigned IFaceId,
                         U8       Addr);

Parameters

Parameter Description

IFaceId Zero-based interface number.
Addr 5-bit address.

Additional information

The PHY address is a 5-bit value. The generic PHY driver tries to detect the PHY
address automatically, therefore this should not be called if not explicitly needed. If you
use this function to set the address explicitly, the function must be called from within
IP_X_Config().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



193 CHAPTER 4 PHY configuration functions

4.6.2    IP_NI_ConfigPHYMode()

Description

Configure the PHY mode.

Prototype

void IP_NI_ConfigPHYMode(unsigned IFaceId,
                         U8       Mode);

Parameters

Parameter Description

IFaceId Zero-based interface number.
Mode The operating mode of the PHY.

Valid values for parameter Mode

Value Description

IP_PHY_MODE_MII
Phy uses the Media Independent
Interface (MII).

IP_PHY_MODE_RMII
Phy uses the Reduced Media
Independent Interface (RMII).

Additional information

The PHY can be connected to the MAC via two different modes, MII or RMII. Refer to section
MII / RMII: Interface between MAC and PHY on page  for detailed information about
the differences of the MII and RMII modes.

The selection which mode is used is normally done correctly by the hardware. The mode
is typically sampled during power-on RESET. If you use this function to set the mode
explicitly, the function must be called from within IP_X_Config(). Refer to IP_X_Config
on page 627.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



194 CHAPTER 4 PHY configuration functions

4.6.3    IP_PHY_AddDriver()

Description

Adds a PHY driver and assigns it to an interface.

Prototype

void IP_PHY_AddDriver(      unsigned           IFaceId,
                      const IP_PHY_HW_DRIVER * pDriver,
                      const void             * pAccess,
                            IP_PHY_pfConfig    pf);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pDriver Pointer to driver function table.

pAccess
Pointer to function table containing routines for hardware
access, depending on the driver to add.

pf Callback to PHY config routine.

Additional information

If a driver has already been added for the selected interface the driver will not be
overwritten. The same applies for the hardware access functions and the config callback.
This allows settings different parameters like the driver and access routines from different
places.

Typically the network interface driver will try to add the generic PHY driver so it is not
necessary to update an existing IP_X_Config() unless new IP_PHY_* functions shall be
used or a driver other than the generic PHY driver shall be used.

Example

The following is an excerpt from an IP_Config_*.c file:

/*********************************************************************
*
*       _ConfigPHY()
*
*  Function description
*    Callback executed during the PHY init of the stack to configure
*    PHY settings once the hardware interface has been initialized.
*
*  Parameters
*    IFaceId: Zero-based interface index.
*/
static void _ConfigPHY(unsigned IFaceId) {
  //
  // Further PHY configuration can be added here by calling
  // IP_PHY_*() functions for generic or specific PHY configuration.
  //
}

/*********************************************************************
*
*       IP_X_Config()
*
* Function description
*   This function is called by the IP stack during IP_Init().
*/
void IP_X_Config(void) {
  ...

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



195 CHAPTER 4 PHY configuration functions

  //
  // Add the generic PHY driver for interface #0 and register
  // a PHY config routine executed when the PHY driver is initialized.
  //
  IP_PHY_AddDriver(0, &IP_PHY_Driver_Generic, NULL, &_ConfigPHY);
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



196 CHAPTER 4 PHY configuration functions

4.6.4    IP_PHY_AddResetHook()

Description

This function adds a hook function to the IP_HOOK_ON_PHY_RESET list. Registered hooks will
be called after a PHY reset has been executed and the generic init has been finished. This
allows the user to apply further settings to the PHY if needed.

Prototype

void IP_PHY_AddResetHook(IP_HOOK_ON_PHY_RESET * pHook,
                         IP_NI_pfOnPhyReset     pf);

Parameters

Parameter Description

pHook
Pointer to static element of IP_HOOK_ON_PHY_RESET that can
be internally used by the stack.

pf Function pointer to the callback that will be executed.

Additional information

In some cases it might be necessary to apply a custom configuration to the PHY. The
generic PHY module used by the stack in most cases will only apply a minimal configuration.
Registering a callback custom settings can be applied to this configuration.

If you are changing the PHY register page you need to reset it back to page 0 before
returning from the callback.

Example

//
// Excerpt of content of IP_Config_*.c
//
static IP_HOOK_ON_PHY_RESET _Hook;

/*********************************************************************
*
*       _OnPhyReset()
*
* Function description
*   Callback called after a PHY reset and generic initialization has
*   been applied by the stack to allow the user to apply his own
*   settings if necessary.
*
* Parameters
*   IFaceId : Zero-based interface ID.
*   pContext: PHY context.
*   pApi    : PHY access API.
*/
static void _OnPhyReset(unsigned IFaceId, void *pContext, const IP_PHY_API *pApi) {
  U16 v;

  v = pApi->pfRead(pContext, 0);  // Read PHY register 0.
  ...                             // Modify value read.
  pApi->pfWrite(pContext, 0, v);  // Write modified value back to PHY register 0.
}

void IP_X_Config(void) {
  ...
  IP_PHY_AddResetHook(&_Hook, _OnPhyReset);  // Register _OnPhyReset() to
                                             // be executed after a PHY
                                             // software reset.
  ...

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



197 CHAPTER 4 PHY configuration functions

}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



198 CHAPTER 4 PHY configuration functions

4.6.5    IP_PHY_ConfigAddr()

Description

Configures the PHY address to use.

Prototype

void IP_PHY_ConfigAddr(unsigned IFaceId,
                       unsigned Addr);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Addr PHY address.

Additional information

New version of the old function IP_NI_ConfigPHYAddr() that makes direct use of the PHY
module.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



199 CHAPTER 4 PHY configuration functions

4.6.6    IP_PHY_ConfigAfterResetDelay()

Description

Configures the delay between (soft) resetting the PHY and further communication with it.

Prototype

void IP_PHY_ConfigAfterResetDelay(unsigned IFaceId,
                                  U16      ms);

Parameters

Parameter Description

IFaceId Zero-based interface index.

ms
Delay between (soft) resetting the PHY and further
communication with it.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



200 CHAPTER 4 PHY configuration functions

4.6.7    IP_PHY_ConfigAltAddr()

Description

Sets a list of PHY addresses that can alternately be checked for the link state.

Prototype

void IP_PHY_ConfigAltAddr(      unsigned                     IFaceId,
                          const IP_PHY_ALT_LINK_STATE_ADDR * pAltPhyAddr);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pAltPhyAddr List of alternate PHY addresses.

Additional information

A typical setup would be using a switch where the first PHY/port uses the PHY addr. 0x01
and the second PHY/port uses the addr. 0x02. The PHY driver by default might only support
one addr. to check the link state (e.g. on PHY addr. 0x01) and will ignore the link state
on any other PHY addr. Using this alternate list of addr. these will be checked as well if
supported by the driver.

Example

//
// PHY addresses of switch ports 2 - 4 (port 1 with addr. 0x01 will be
// found automatically).
//
const U8 aAltPhyAddr[] = { 0x02, 0x03, 0x04 };

const IP_PHY_ALT_LINK_STATE_ADDR AltPhyAddr = {
  aAltPhyAddr,
  SEGGER_COUNTOF(aAltPhyAddr)
};

void IP_X_Config(void) {
  ...
  IFaceId = IP_AddEtherInterface(DRIVER);
  IP_PHY_ConfigAltAddr(IFaceId, &AltPhyAddr);
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



201 CHAPTER 4 PHY configuration functions

4.6.8    IP_PHY_ConfigGigabitSupport()

Description

Configures if the MAC supports Gigabit Ethernet. If the MAC does not support Gigabit
Ethernet (default) then the PHY driver does not have to handle it in case it is not supported
anyhow.

Prototype

void IP_PHY_ConfigGigabitSupport(unsigned IFaceId,
                                 unsigned OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0: MAC does not support Gigabit Ethernet.
• 1: MAC supports Gigabit Ethernet. If the PHY is Gigabit
capable as well it can be used.

Additional information

Typically only required if a PHY driver other than the generic PHY driver is used.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



202 CHAPTER 4 PHY configuration functions

4.6.9    IP_PHY_ConfigSupportedModes()

Description

Configures the supported duplex/speed of the device to be advertised during Auto-
Negotiation.

Prototype

void IP_PHY_ConfigSupportedModes(unsigned IFaceId,
                                 unsigned Modes);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Modes

Bitwise-OR combination of the following supported modes:
• IP_PHY_MODE_10_HALF
• IP_PHY_MODE_10_FULL
• IP_PHY_MODE_100_HALF
• IP_PHY_MODE_100_FULL
• IP_PHY_MODE_1000_HALF
• IP_PHY_MODE_1000_FULL

Additional information

New version of the old function IP_SetSupportedDuplexModes() that makes direct use of
the PHY module.

Combining one of the supported duplex/speed modes with IP_PHY_MODE_NO_AUTONEG
disables the Auto-Negotiation advertisement and configures a fixed duplex/speed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



203 CHAPTER 4 PHY configuration functions

4.6.10    IP_PHY_ConfigUseStaticFilters()

Description

Tells the stack if using PHY static MAC filter is allowed.

Prototype

void IP_PHY_ConfigUseStaticFilters(unsigned IFaceId,
                                   unsigned OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0: Do not use the PHY static filters.
• 1: Use the PHY static filters.

Additional information

By default the stack is allowed to use PHY filters if available. Can be disabled using this
function if a custom filtering by the user shall be used.

Needs to be used with a hardware interface (typically #0). Does have no effect when being
used with virtual interfaces like Tail Tagging interfaces.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



204 CHAPTER 4 PHY configuration functions

4.6.11    IP_PHY_DisableCheck()

Description

Disables PHY checks for all interfaces. This might be necessary for some PHYs that are not
fully IEEE 802.3u compliant.

Prototype

void IP_PHY_DisableCheck(U32 Mask);

Parameters

Parameter Description

Mask

Bitwise-OR bit mask of checks to disable:
• PHY_DISABLE_CHECK_ID
• PHY_DISABLE_CHECK_LINK_STATE_AFTER_UP
• PHY_DISABLE_WATCHDOG

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



205 CHAPTER 4 PHY configuration functions

4.6.12    IP_PHY_DisableCheckEx()

Description

Disables PHY checks for one interface. This might be necessary for some PHYs that are not
fully IEEE 802.3u compliant.

Prototype

void IP_PHY_DisableCheckEx(unsigned IFaceId,
                           U32      Mask);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Mask

Bitwise-OR bit mask of checks to disable:
• PHY_DISABLE_CHECK_ID
• PHY_DISABLE_CHECK_LINK_STATE_AFTER_UP
• PHY_DISABLE_WATCHDOG

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



206 CHAPTER 4 PHY configuration functions

4.6.13    IP_PHY_ReadReg()

Description

Reads a PHY register.

Prototype

int IP_PHY_ReadReg(unsigned   IFaceId,
                   unsigned   RegIndex,
                   unsigned * pData);

Parameters

Parameter Description

IFaceId Zero-based interface index.
RegIndex Register index to read.
pData Pointer where to store the register value read.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

At the moment PHY access is only implemented as a blocking operation including actively
waiting for the access to finish. PHY access routines that operate according to the IEEE
802.3 standard have a maximum clock speed of 2.5 MHz. Frequent access to PHY registers
might block other operations in the stack.

Example

static IP_HOOK_ON_LINK_CHANGE _LinkChangeHook;

static void _OnLinkChange(unsigned IFaceId, U32 Duplex, U32 Speed) {
  unsigned Reg;

  IP_USE_PARA(Duplex);

  if (Speed != 0u) {  // Only on LINK-UP .
    (void)IP_PHY_ReadReg(IFaceId, 0x06u, &Reg);
    if (Reg & 1u) {
      IP_Logf_Application("AutoNeg advertised by peer.");
    } else {
      IP_Logf_Application("No AutoNeg advertised by peer.");
    }
  }
}

/********************************************************************
*
*       MainTask()
*/
void MainTask(void) {
  IP_Init();
  IP_AddLinkChangeHook(&_LinkChangeHook, _OnLinkChange);
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



207 CHAPTER 4 PHY configuration functions

4.6.14    IP_AddLinkChangeHook()

Description

Adds a callback that gets executed each time the link state changes.

Prototype

void IP_AddLinkChangeHook
      (IP_HOOK_ON_LINK_CHANGE * pHook,
       void                     ( *pf)
(unsigned IFaceId , U32 Duplex , U32 Speed ));

Parameters

Parameter Description

pHook Management element of type IP_HOOK_ON_LINK_CHANGE.
pf Callback to execute on a link state change.

Example

static IP_HOOK_ON_LINK_CHANGE _Hook;

static void _OnLinkChange(unsigned IFaceId, U32 Duplex, U32 Speed) {
  ...
}

void main(void) {
  ...
  IP_AddLinkChangeHook(&_Hook, _OnLinkChange);  // Register _OnLinkChange() to be
                                              
  // executed when interface changes.
  // Connect dial-up interface.
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



208 CHAPTER 4 PHY configuration functions

4.6.15    IP_AddOnPacketFreeHook()

Description

This function adds a hook function to the IP_HOOK_ON_PACKET_FREE list. Registered hooks
will be called in case a packet gets freed.

Prototype

void IP_AddOnPacketFreeHook(IP_HOOK_ON_PACKET_FREE * pHook,
                            void                     ( *pf)(IP_PACKET * pPacket ));

Parameters

Parameter Description

pHook Element of type IP_HOOK_ON_PACKET_FREE to register.
pf Callback that is notified on a packet free.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



209 CHAPTER 4 PHY configuration functions

4.6.16    IP_AddStateChangeHook()

Description

Adds a hook to a callback that is executed when the AdminState or HWState of an interface
changes.

Prototype

void IP_AddStateChangeHook
      (IP_HOOK_ON_STATE_CHANGE * pHook,
       void                      ( *pf)
(unsigned IFaceId , U8 AdminState , U8 HWState ));

Parameters

Parameter Description

pHook
Pointer to static element of IP_HOOK_ON_STATE_CHANGE that
can be internally used by the stack.

pf Function pointer to the callback that will be executed.

Additional information

A state change hook can be used to be notified about an interface disconnect that has not
been triggered by the application. Typical example would be a peer that closes a dial-up
connection and the application needs to get notified of this event to call a disconnect itself.
Examples of this behavior can be found in the samples shipped with the stack.

Example

static IP_HOOK_ON_STATE_CHANGE _Hook;

static void _OnChange(unsigned IFaceId, U8 AdminState, U8 HWState) {
  ...
}

void main(void) {
  ...
  IP_AddStateChangeHook(&_Hook, _OnChange);  // Register _OnState() to be
                                             // executed when interface changes.
  // Connect dial-up interface.
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



210 CHAPTER 4 PHY configuration functions

4.6.17    IP_PHY_ReInit()

Description

Re-initializes the PHY.

Prototype

void IP_PHY_ReInit(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



211 CHAPTER 4 PHY configuration functions

4.6.18    IP_PHY_SetWdTimeout()

Description

Sets the watchdog timeout for watching if the PHY reached an unstable state.

Prototype

void IP_PHY_SetWdTimeout(int ShiftCnt);

Parameters

Parameter Description

ShiftCnt Timeout comparison mask is (1 << ShiftCnt) - 1.

Additional information

For optimization reasons the comparison is done by using a bitmask instead of a division.
The bitmask is not allowed to contain a zero bit on a lower value position than a one bit.
To reach this we pass a shift count instead of a typical timeout.

A PHY watchdog timeout might occur due to a link down of the interface if it had a link up
before. In this case the stack resets the PHY as well to make sure it is not in a bad state
and is kept functional.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



212 CHAPTER 4 PHY configuration functions

4.6.19    IP_PHY_WriteReg()

Description

Writes a PHY register.

Prototype

int IP_PHY_WriteReg(unsigned IFaceId,
                    unsigned RegIndex,
                    unsigned Data);

Parameters

Parameter Description

IFaceId Zero-based interface index.
RegIndex Register index to write.
Data Data to write to the register.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

At the moment PHY access is only implemented as a blocking operation including actively
waiting for the access to finish. PHY access routines that operate according to the IEEE
802.3 standard have a maximum clock speed of 2.5 MHz. Frequent access to PHY registers
might block other operations in the stack.

Writes to the PHY registers 0-5 might use an internal caching of the values written. This
cache is currently not updated when using this routine and might therefore result in working
with wrong values and resetting values when these registers are written by the stack after
they have been modified by the application using this routine.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



213 CHAPTER 4 Statistics functions

4.7    Statistics functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



214 CHAPTER 4 Statistics functions

4.7.1    IP_STATS_EnableIFaceCounters()

Description

Enables statistic counters for a specific interface.

Prototype

void IP_STATS_EnableIFaceCounters(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



215 CHAPTER 4 Statistics functions

4.7.2    IP_STATS_GetIFaceCounters()

Description

Retrieves a pointer to the statistic counters for a specific interface.

Prototype

IP_STATS_IFACE *IP_STATS_GetIFaceCounters(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Success: Pointer to structure of type IP_STATS_IFACE. Error : NULL

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



216 CHAPTER 4 Statistics functions

4.7.3    IP_STATS_GetLastLinkStateChange()

Description

Retrieves the tick count when an interface entered its current state.

Prototype

U32 IP_STATS_GetLastLinkStateChange(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Timestamp in system ticks (typically 1ms).

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



217 CHAPTER 4 Statistics functions

4.7.4    IP_STATS_GetRxBytesCnt()

Description

Retrieves the number of bytes received on an interface.

Prototype

U32 IP_STATS_GetRxBytesCnt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Number of bytes received on this interface.

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



218 CHAPTER 4 Statistics functions

4.7.5    IP_STATS_GetRxDiscardCnt()

Description

Retrieves the number of packets received but discarded although they were O.K. .

Prototype

U32 IP_STATS_GetRxDiscardCnt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Number of packets received but discarded although they were O.K. .

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



219 CHAPTER 4 Statistics functions

4.7.6    IP_STATS_GetRxErrCnt()

Description

Retrieves the number of receive errors.

Prototype

U32 IP_STATS_GetRxErrCnt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Number of receive errors.

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



220 CHAPTER 4 Statistics functions

4.7.7    IP_STATS_GetRxNotUnicastCnt()

Description

Retrieves the number of packets received on an interface that were not unicasts.

Prototype

U32 IP_STATS_GetRxNotUnicastCnt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Number of packets received on this interface that were not unicasts.

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



221 CHAPTER 4 Statistics functions

4.7.8    IP_STATS_GetRxUnicastCnt()

Description

Retrieves the number of unicast packets received on an interface.

Prototype

U32 IP_STATS_GetRxUnicastCnt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Number of unicast packets received on this interface.

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



222 CHAPTER 4 Statistics functions

4.7.9    IP_STATS_GetRxUnknownProtoCnt()

Description

Retrieves the number of unknown protocols received.

Prototype

U32 IP_STATS_GetRxUnknownProtoCnt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Number of unknown protocols received.

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



223 CHAPTER 4 Statistics functions

4.7.10    IP_STATS_GetTxBytesCnt()

Description

Retrieves the number of bytes sent on an interface.

Prototype

U32 IP_STATS_GetTxBytesCnt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Number of bytes sent on this interface.

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



224 CHAPTER 4 Statistics functions

4.7.11    IP_STATS_GetTxDiscardCnt()

Description

Retrieves the number of packets to send but discarded although they were O.K. .

Prototype

U32 IP_STATS_GetTxDiscardCnt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Number of packets to send but discarded although they were O.K. .

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



225 CHAPTER 4 Statistics functions

4.7.12    IP_STATS_GetTxErrCnt()

Description

Retrieves the number of send errors on an interface.

Prototype

U32 IP_STATS_GetTxErrCnt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Number of send errors.

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



226 CHAPTER 4 Statistics functions

4.7.13    IP_STATS_GetTxNotUnicastCnt()

Description

Retrieves the number of packets sent on an interface that were not unicasts.

Prototype

U32 IP_STATS_GetTxNotUnicastCnt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Number of packets sent on this interface that were not unicasts.

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



227 CHAPTER 4 Statistics functions

4.7.14    IP_STATS_GetTxUnicastCnt()

Description

Retrieves the number of unicast packets sent on an interface.

Prototype

U32 IP_STATS_GetTxUnicastCnt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Number of unicast packets sent on this interface.

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



228 CHAPTER 4 Other IP Stack functions

4.8    Other IP Stack functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



229 CHAPTER 4 Other IP Stack functions

4.8.1    IP_AddAfterInitHook()

Description

Adds a hook to a callback that is executed at the end of IP_Init() to allow adding
initializations to be executed right after the stack itself has been initialized and all API can
be used.

Prototype

void IP_AddAfterInitHook(IP_HOOK_AFTER_INIT * pHook,
                         void                 ( *pf)());

Parameters

Parameter Description

pHook
Pointer to static element of IP_HOOK_AFTER_INIT that can be
internally used by the stack.

pf Function pointer to the callback that will be executed.

Additional information

Adding a callback to be executed right after IP_Init() can be helpful for various things.
For example this allows using a centralized initialization that is not located in the main
routine that calls IP_Init() and has to make use of IP API that is only valid to be used
after IP_Init() .

Example

//
// Excerpt of content of IP_Config_*.c
//
static IP_HOOK_AFTER_INIT _Hook;

static void _Connect(void) {
  ...
}

void IP_X_Config(void) {
  ...
  IP_AddAfterInitHook(&_Hook, _Connect);  // Register _Connect() to be
                                          // executed at end of IP_Init()
  ...
}

//
// Excerpt of content of main.c
//
void main(void) {
  ...
  IP_Init();
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



230 CHAPTER 4 Other IP Stack functions

4.8.2    IP_AddEtherTypeHook()

Description

This function registers a callback to be called for received packets with the registered
Ethernet type.

Prototype

void IP_AddEtherTypeHook
      (IP_HOOK_ON_ETH_TYPE * pHook,
       int                   ( *pf)
(unsigned IFaceId , IP_PACKET * pPacket , void * pBuffer , U32 NumBytes ),
       U16                   Type);

Parameters

Parameter Description

pHook Hook resource of type IP_HOOK_ON_ETH_TYPE.
pf Callback to call for the registered Ethernet type.
Type Ethernet type that triggers the callback in host endianness.

Example

static IP_HOOK_ON_ETH_TYPE _Hook;

/********************************************************************
*
*       _OnARP()
*
*  Function description
*    This function allocates a packet to mirror back a received ARP
*    packet to the network. This is of no use but demonstrates how
*    to use the API.
*    The received packet will be handled regularly by the stack as
*    well by returning IP_OK_TRY_OTHER_HANDLER.
*
*  Parameters
*    IFaceId : Zero-based interface index.
*    pPacket : Pointer to received packet.
*    pBuffer : Pointer to start of data of the received packet.
*    NumBytes: NumBytes data received in the packet.
*
*  Return value
*    Original packet has not been changed and the stack shall
*    process it: IP_OK_TRY_OTHER_HANDLER
*    Original packet has been freed or reused by the callback:
*    Other like IP_OK or IP_RX_ERROR.
*/
static int _OnARP(unsigned IFaceId,IP_PACKET* pPacket,void* pBuffer,U32 NumBytes) {
  IP_PACKET* pPacketOut;
  U8*        p;

  pPacketOut = IP_AllocEtherPacket(IFaceId, NumBytes, &p);
  if (pPacketOut != NULL) {
    IP_MEMCPY(p, pBuffer, NumBytes);
    IP_SendEtherPacket(IFaceId, pPacketOut, NumBytes);
  }
  return IP_OK_TRY_OTHER_HANDLER;
}

/********************************************************************
*
*       MainTask()

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



231 CHAPTER 4 Other IP Stack functions

*/
void MainTask(void) {
  IP_Init();
  IP_AddEtherTypeHook(&_Hook, _OnARP, 0x0806);
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



232 CHAPTER 4 Other IP Stack functions

4.8.3    IP_AddInterfaceErrorHook()

Description

Adds a hook function which will be called if initialization fails for an interface.

Prototype

void IP_AddInterfaceErrorHook(IP_HOOK_ON_IF_ERROR * pfOnInterfaceError);

Parameters

Parameter Description

pfOnInterfaceError
Pointer to the callback function of type
IP_HOOK_ON_IF_ERROR.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



233 CHAPTER 4 Other IP Stack functions

4.8.4    IP_AddLinkChangeHook()

Description

Adds a callback that gets executed each time the link state changes.

Prototype

void IP_AddLinkChangeHook
      (IP_HOOK_ON_LINK_CHANGE * pHook,
       void                     ( *pf)
(unsigned IFaceId , U32 Duplex , U32 Speed ));

Parameters

Parameter Description

pHook Management element of type IP_HOOK_ON_LINK_CHANGE.
pf Callback to execute on a link state change.

Example

static IP_HOOK_ON_LINK_CHANGE _Hook;

static void _OnLinkChange(unsigned IFaceId, U32 Duplex, U32 Speed) {
  ...
}

void main(void) {
  ...
  IP_AddLinkChangeHook(&_Hook, _OnLinkChange);  // Register _OnLinkChange() to be
                                              
  // executed when interface changes.
  // Connect dial-up interface.
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



234 CHAPTER 4 Other IP Stack functions

4.8.5    IP_AddOnPacketFreeHook()

Description

This function adds a hook function to the IP_HOOK_ON_PACKET_FREE list. Registered hooks
will be called in case a packet gets freed.

Prototype

void IP_AddOnPacketFreeHook(IP_HOOK_ON_PACKET_FREE * pHook,
                            void                     ( *pf)(IP_PACKET * pPacket ));

Parameters

Parameter Description

pHook Element of type IP_HOOK_ON_PACKET_FREE to register.
pf Callback that is notified on a packet free.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



235 CHAPTER 4 Other IP Stack functions

4.8.6    IP_AddStateChangeHook()

Description

Adds a hook to a callback that is executed when the AdminState or HWState of an interface
changes.

Prototype

void IP_AddStateChangeHook
      (IP_HOOK_ON_STATE_CHANGE * pHook,
       void                      ( *pf)
(unsigned IFaceId , U8 AdminState , U8 HWState ));

Parameters

Parameter Description

pHook
Pointer to static element of IP_HOOK_ON_STATE_CHANGE that
can be internally used by the stack.

pf Function pointer to the callback that will be executed.

Additional information

A state change hook can be used to be notified about an interface disconnect that has not
been triggered by the application. Typical example would be a peer that closes a dial-up
connection and the application needs to get notified of this event to call a disconnect itself.
Examples of this behavior can be found in the samples shipped with the stack.

Example

static IP_HOOK_ON_STATE_CHANGE _Hook;

static void _OnChange(unsigned IFaceId, U8 AdminState, U8 HWState) {
  ...
}

void main(void) {
  ...
  IP_AddStateChangeHook(&_Hook, _OnChange);  // Register _OnState() to be
                                             // executed when interface changes.
  // Connect dial-up interface.
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



236 CHAPTER 4 Other IP Stack functions

4.8.7    IP_Alloc()

Description

Thread safe memory allocation from main IP stack memory pool.

Prototype

void *IP_Alloc(U32 NumBytesReq);

Parameters

Parameter Description

NumBytesReq Number of bytes to allocate.

Return value

= NULL Error.
≠ NULL O.K. Pointer to allocated memory

Additional information

Memory allocated with this function has to be freed with IP_Free().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



237 CHAPTER 4 Other IP Stack functions

4.8.8    IP_AllocEtherPacket()

Description

Allocates a packet to store the raw data of an Ethernet packet of up to NumBytes at the
location returned by ppBuffer.

Prototype

IP_PACKET *IP_AllocEtherPacket(unsigned    IFaceId,
                               U32         NumBytes,
                               U8       ** ppBuffer);

Parameters

Parameter Description

IFaceId Zero-based interface index.
NumBytes Minimum buffer size the packet has to provide.

ppBuffer
Pointer where to store the pointer to the beginning of the
packet buffer.

Return value

O.K. : Pointer to packet allocated. Error: NULL.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



238 CHAPTER 4 Other IP Stack functions

4.8.9    IP_AllocEx()

Description

Thread safe memory allocation from a specific memory pool managed by the stack that
has been added using IP_AddMemory().

Prototype

void *IP_AllocEx(U32 * pPoolAddr,
                 U32   NumBytesReq);

Parameters

Parameter Description

pPoolAddr Base address of the memory pool.
NumBytesReq Number of bytes to allocate.

Return value

= NULL Error.
≠ NULL O.K. Pointer to allocated memory

Additional information

Memory allocated with this function has to be freed with IP_Free().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



239 CHAPTER 4 Other IP Stack functions

4.8.10    IP_ARP_CleanCache()

Description

Cleans all ARP entries that are not static entries.

Prototype

void IP_ARP_CleanCache(void);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



240 CHAPTER 4 Other IP Stack functions

4.8.11    IP_ARP_CleanCacheByInterface()

Description

Cleans all ARP entries that are known to belong to a specific interface and are not static
entries.

Prototype

void IP_ARP_CleanCacheByInterface(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



241 CHAPTER 4 Other IP Stack functions

4.8.12    IP_Connect()

Description

Calls a previously registered hook for the interface if any was set using
IP_SetIFaceConnectHook() .

Prototype

int IP_Connect(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 O.K. or no callback set.
< 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



242 CHAPTER 4 Other IP Stack functions

4.8.13    IP_Disconnect()

Description

Calls a previously registered hook for the interface if any was set using
IP_SetIFaceDisconnectHook() .

Prototype

int IP_Disconnect(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 O.K. or no callback set.
< 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



243 CHAPTER 4 Other IP Stack functions

4.8.14    IP_Err2Str()

Description

Converts IP stack error code to a readable string by simply using the defines name.

Prototype

char *IP_Err2Str(int x);

Parameters

Parameter Description

x Error code returned by API of the stack.

Return value

Pointer to string of the define name.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



244 CHAPTER 4 Other IP Stack functions

4.8.15    IP_FindIFaceByIP()

Description

Tries to find out the interface number when only the IP address is known.

Prototype

int IP_FindIFaceByIP(void     * pAddr,
                     unsigned   Len);

Parameters

Parameter Description

pAddr
Pointer to a variable holding the address to find in host
endianness.

Len Length of address at pAddr.

Return value

= -1 Interface not found.
≥ 0 Interface found.

Additional information

For the moment only IPv4 is supported.

Example

The following sample tries to find an interface that has previously been configured to a
fixed IP address of 192.168.2.10.

int IFaceId;
U32 IPAddr;

IPAddr  = IP_BYTES2ADDR(192, 168, 2, 10);
IFaceId = IP_FindIFaceByIP(&IPAddr, sizeof(IPAddr));

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



245 CHAPTER 4 Other IP Stack functions

4.8.16    IP_Free()

Description

Thread safe memory free to IP stack memory pools.

Prototype

void IP_Free(void * p);

Parameters

Parameter Description

p
Pointer to memory block previously allocated with
IP_Alloc().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



246 CHAPTER 4 Other IP Stack functions

4.8.17    IP_FreePacket()

Description

Frees a packet back to the stack.

Prototype

void IP_FreePacket(IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Packet to free.

Additional information

This routine can be used to typically free any allocated packet regardless of the API used
to allocate it.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



247 CHAPTER 4 Other IP Stack functions

4.8.18    IP_GetAddrMask()

Description

Retrieves the IP address and subnet mask of an interface. The values are stored in host
bytes order. (for example, 192.168.1.1 is returned as 0xC0A80101).

Prototype

void IP_GetAddrMask(U8    IFace,
                    U32 * pAddr,
                    U32 * pMask);

Parameters

Parameter Description

IFace Zero-based interface index.
pAddr Address to store the IP address in host order. Can be NULL.

pMask
Address to store the subnet mask in host order. Can be
NULL.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



248 CHAPTER 4 Other IP Stack functions

4.8.19    IP_GetCurrentLinkSpeed()

Description

Returns the current link speed of the first interface (interface ID 0).

Prototype

int IP_GetCurrentLinkSpeed(void);

Return value

Current link speed in Hertz.

Additional information

The application should check if the link is up before a packet will be sent. It can take 2-3
seconds till the link is up if the PHY has been reset.

Example

//
// Wait until link is up.
//
while (IP_GetCurrentLinkSpeed() == 0) {
  OS_IP_Delay(100);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



249 CHAPTER 4 Other IP Stack functions

4.8.20    IP_GetCurrentLinkSpeedEx()

Description

Returns the current link speed of the requested interface.

Prototype

int IP_GetCurrentLinkSpeedEx(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface number.

Return value

Current link speed in Hertz.

Additional information

The application should check if the link is up before a packet will be sent. It can take 2-3
seconds till the link is up if the PHY has been reset.

Example

//
// Wait until link is up.
//
while (IP_GetCurrentLinkSpeedEx(0) == 0) {
  OS_IP_Delay(100);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



250 CHAPTER 4 Other IP Stack functions

4.8.21    IP_GetFreePacketCnt()

Description

Checks how many packets for a specific size or greater are currently available in the system.

Prototype

U32 IP_GetFreePacketCnt(U32 NumBytes);

Parameters

Parameter Description

NumBytes Minimum size of packets to find.

Return value

Number of packets available for this size.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



251 CHAPTER 4 Other IP Stack functions

4.8.22    IP_GetIFaceHeaderSize()

Description

Retrieves the size of the header necessary for the transport medium that is used by a
specific interface. Example: Ethernet: 14 bytes header + 2 bytes padding.

Prototype

U32 IP_GetIFaceHeaderSize(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Size of header for this interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



252 CHAPTER 4 Other IP Stack functions

4.8.23    IP_GetGWAddr()

Description

Returns the gateway address of the interface in host endianness. (for example, 192.168.1.1
is returned as 0xc0a80101).

Prototype

U32 IP_GetGWAddr(U8 IFace);

Parameters

Parameter Description

IFace Zero-based interface index.

Return value

The gateway address of the interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



253 CHAPTER 4 Other IP Stack functions

4.8.24    IP_GetHWAddr()

Description

Returns the hardware address (Media Access Control address) of the interface.

Prototype

void IP_GetHWAddr(unsigned   IFaceId,
                  U8       * pDest,
                  unsigned   Len);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pDest Address of the buffer to store the 48-bit MAC address.
Len Size of the buffer. Should be at least 6-bytes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



254 CHAPTER 4 Other IP Stack functions

4.8.25    IP_GetIPAddr()

Description

Returns the IP address of the interface in host endianness. Example: 192.168.0.1 is
returned as 0xc0a80001 for a big endian target, 0x0100a8c0 for a little endian target.

Prototype

U32 IP_GetIPAddr(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface number.

Return value

IP address of the interface in host endianness.

Example

void PrintIFaceIPAddr(void) {
  char ac[16];
  U32 IPAddr;

  IPAddr = IP_GetIPAddr(0);
  IP_PrintIPAddr(ac, IPAddr, sizeof(ac));
  printf("IP Addr: %s\n", ac);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



255 CHAPTER 4 Other IP Stack functions

4.8.26    IP_GetIPPacketInfo()

Description

Returns the start address of the data part of an IPv4 packet.

Prototype

U8 *IP_GetIPPacketInfo(IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to an IP_PACKET .

Return value

≠ NULL Pointer to the data part of the IPv4 packet.
= NULL Error.

Example

/*********************************************************************
*
*       _pfOnRxICMP
*/
static int _pfOnRxICMP(IP_PACKET* pPacket) {
  const U8* pData;

  pData = IP_GetIPPacketInfo(pPacket);
  if(*pData == 0x08) {
    printf("ICMP echo request received!\n");
  }
  if(*pData == 0x00) {
    printf("ICMP echo reply received!\n");
  }
  return 0;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



256 CHAPTER 4 Other IP Stack functions

4.8.27    IP_GetRawPacketInfo()

Description

Returns the start address of the raw data of an IP_PACKET.

Prototype

char *IP_GetRawPacketInfo(const IP_PACKET * pPacket,
                                U16       * pNumBytes);

Parameters

Parameter Description

pPacket Pointer to an IP_PACKET structure.
pNumBytes Output length of the packet.

Return value

> 0 Start address of the raw data part of the IP packet.
= 0 On failure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



257 CHAPTER 4 Other IP Stack functions

4.8.28    IP_GetVersion()

Description

Returns the version of the stack.

Prototype

int IP_GetVersion(void);

Return value

Version number.

Additional information

The format of the version number: <Major><Minor><Minor><Revision><Revision> . For
example, the return value 10201 means version 1.02a.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



258 CHAPTER 4 Other IP Stack functions

4.8.29    IP_ICMP_AddRxHook()

Description

This function adds a callback that is executed upon receiving an ICMPv4 packet.

Prototype

void IP_ICMP_AddRxHook(IP_HOOK_ON_ICMPV4 * pHook,
                       IP_ON_ICMPV4_FUNC * pf,
                       void              * pUserContext);

Parameters

Parameter Description

pHook
Pointer to static element of IP_HOOK_ON_ICMPV4 that can be
internally used by the stack.

pf Function pointer to the callback to execute.
pUserContext User defined context top pass to the callback.

Example

static IP_HOOK_ON_ICMPV4 _Hook;

/*********************************************************************
*
*       _cbOnRx()
*
*  Function description
*    Callback executed when an ICMPv4 packet is received.
*
*  Parameters
*    IFaceId     : Zero-based interface index.
*    pPacket     : Packet that has been received.
*    pUserContext: User context given when adding the hook.
*    p           : Reserved for future extensions of this API.
*
*  Return value
*    == IP_OK                  : Packet has been handled (freed or reused).
*    == IP_OK_TRY_OTHER_HANDLER: Packet is untouched and stack shall try another
 handler.
*
*  Additional information
*    The callback can remove its own hook using IP_ICMP_RemoveRxHook() .
*/
static int _cbOnRx(unsigned   IFaceId,
                   IP_PACKET* pPacket,
                   void*      pUserContext,
                   void*      p) {
  const U8* pData;

  IP_USE_PARA(IFaceId);
  IP_USE_PARA(pUserContext);
  IP_USE_PARA(p);

  pData = IP_GetIPPacketInfo(pPacket);
  if(*pData == IP_ICMP_TYPE_ECHO_REQUEST) {
    IP_Logf_Application("ICMP echo request received!");
  }
  if(*pData == IP_ICMP_TYPE_ECHO_REPLY) {
    IP_Logf_Application("ICMP echo reply received!");
  }
  //
  // Optional: Remove the hook once no longer needed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



259 CHAPTER 4 Other IP Stack functions

  //
  IP_ICMP_RemoveRxHook(SEGGER_PTR2PTR(IP_HOOK_ON_ICMPV4, pUserContext));
  return IP_OK_TRY_OTHER_HANDLER;  // Let the stack handle the message.
}

/*********************************************************************
*
*  MainTask()
*
*  Function description
*    Main task executed by the RTOS to create further resources and
*    running the main application.
*/
void MainTask(void) {
 IP_Init();
 //
 // Add a hook that gets notified about received ICMP messages.
 // In this example the pointer to the hook item itself is passed as
 // user context to demonstrate the hook removing itself.
 //
 IP_ICMP_AddRxHook(&_Hook, _cbOnRx, &_Hook);
 ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



260 CHAPTER 4 Other IP Stack functions

4.8.30    IP_ICMP_SetRxHook()

Description

Sets a hook function which will be called if target receives a ping packet.

Prototype

void IP_ICMP_SetRxHook(IP_RX_HOOK * pfRxHook);

Parameters

Parameter Description

pfRxHook Pointer to the callback function of type IP_RX_HOOK.

Additional information

The return value of the callback function is relevant for the further processing of the ICMP
packet. A return value of 0 indicates that the stack has to process the packet after the
callback has returned. A return value of 1 indicates that the packet will be freed directly
after the callback has returned.

The callback is executed AFTER evaluating ICMP replies to our requests but BEFORE
answering to foreign requests.

Example

/*********************************************************************
*
*       Local defines, configurable
*
**********************************************************************
*/
#define HOST_TO_PING      0xC0A80101

/*********************************************************************
*
*       _pfOnRxICMP
*/
static int _pfOnRxICMP(IP_PACKET * pPacket) {
  const char * pData;

  pData = IP_GetIPPacketInfo(pPacket);
  if(*pData == 0x08) {
    printf("ICMP echo request received!\n");
  }
  if(*pData == 0x00) {
    printf("ICMP echo reply received!\n");
  }
  return 0; // Give packet back to the stack for further processing.
}
/*********************************************************************
*
*       PingTask
*/
void PingTask(void) {
  int Seq;
  char * s = "This is a ICMP echo request!";

  while (IP_IFaceIsReady() == 0) {
    OS_Delay(50);
  }
  IP_ICMP_SetRxHook(_pfOnRxICMP);
  Seq = 1111;
  while (1) {

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



261 CHAPTER 4 Other IP Stack functions

    BSP_ToggleLED(1);
    OS_Delay (200);
    IP_SendPing(htonl(HOST_TO_PING), s, strlen(s), Seq++);
  }
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



262 CHAPTER 4 Other IP Stack functions

4.8.31    IP_ICMP_RemoveRxHook()

Description

This function removes a hook function from the IP_HOOK_ON_ICMPV4 list.

Prototype

void IP_ICMP_RemoveRxHook(IP_HOOK_ON_ICMPV4 * pHook);

Parameters

Parameter Description

pHook Element of type IP_HOOK_ON_ICMPV4 to remove from list.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



263 CHAPTER 4 Other IP Stack functions

4.8.32    IP_IFaceIsReady()

Description

Checks if the interface is ready for usage. Ready for usage means that the target has a
physical link detected and a valid IP address. Operates on interface 0.

Prototype

int IP_IFaceIsReady(void);

Return value

1 Network interface is ready.
0 Network interface is not ready.

Additional information

The application has to check if the link is up before a packet will be sent and if the interface
is configured. If a DHCP server is used for configuring your target, this function has to be
called to assure that no application data will be sent before the target is ready.

Example

//
// Wait until interface is ready.
//
while (IP_IFaceIsReady() == 0) {
  OS_Delay(100);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



264 CHAPTER 4 Other IP Stack functions

4.8.33    IP_IFaceIsReadyEx()

Description

Checks if the specified interface is ready for usage. Ready for usage means that the target
has a physical link detected and a valid IP address.

Prototype

int IP_IFaceIsReadyEx(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface number.

Return value

1 Interface is ready.
0 Interface is not ready.

Additional information

The application has to check if the link is up before a packet will be sent and if the interface
is configured. If a DHCP server is used for configuring your target, this function has to be
called to assure that no application data will be sent before the target is ready.

Example

//
// Wait until second interface is ready.
//
while (IP_IFaceIsReadyEx(1) == 0) {
  OS_Delay(100);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



265 CHAPTER 4 Other IP Stack functions

4.8.34    IP_IPV4_ParseIPv4Addr()

Description

Transforms an IPv4 address separated by dots into a byte stream (big endian byte order).

Prototype

int IP_IPV4_ParseIPv4Addr(const char    * sHost,
                                IP_ADDR * pIPv4Addr);

Parameters

Parameter Description

sHost Pointer to the IPv4 address string to parse.

pIPv4Addr
Pointer to an IPv4 address structure to store the converted
byte stream.

Return value

0 OK.
-1 Error. Not every character in address are decimal values (0-9) or dots (.).
-2 Error. Too many characters for 8bit block.
-5 Error. Address string to long.
-6 Error. Too many dots.
-7 Error. Parameter invalid

Additional information

IPv4 addresses are represented in four 8-bit blocks. Each 8-bit block is converted to a 3-
digit decimal number and separated by dots. For example: 192.168.11.100.

Example

static void _ParseAndPrintIPv4Addr (void) {
  IP_ADDR IPv4Addr;
  char    IPAddr[16];
  int     r;

  r = IP_IPV4_ParseIPv4Addr("192.168.11.100", &IPv4Addr);
  if (r < 0) {
    IP_PANIC("Illegal IP Address.");
  }
  IP_PrintIPAddr(IPAddr, htonl(IPv4Addr), sizeof(IPAddr));
  IP_Logf_Application("IPv4 addr.: %s", IPAddr);
}

Output:

IPv4 addr.: 192.168.11.100

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



266 CHAPTER 4 Other IP Stack functions

4.8.35    IP_IsAllZero()

Description

Checks if there are zeros at the given pointer.

Prototype

unsigned IP_IsAllZero(const U8       * p,
                            unsigned   NumBytes);

Parameters

Parameter Description

p Pointer to location to check for zeros.
NumBytes Number of bytes to check to be zero.

Return value

0 NOT all bytes are 0x00 at the pointer.
1 All bytes are 0x00 at the pointer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



267 CHAPTER 4 Other IP Stack functions

4.8.36    IP_IsExpired()

Description

Checks if the given system timestamp has already expired.

Prototype

unsigned IP_IsExpired(U32 Time);

Parameters

Parameter Description

Time System timestamp as used by OS abstraction layer.

Return value

1 Time has expired.
0 Time has not yet expired.

Example

U32 Timeout;

//
// Get current system time [ms] and timeout in one second.
//
Timeout = IP_OS_GET_TIME() + 1000;
//
// Wait until timeout expires.
//
do {
  OS_Delay(1);
} while (IP_IsExpired(Timeout) == 0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



268 CHAPTER 4 Other IP Stack functions

4.8.37    IP_NI_ConfigLinkCheckMultiplier()

Description

Configures the multiplier of the period between interface link checks typically executed
each second.

Prototype

int IP_NI_ConfigLinkCheckMultiplier(unsigned IFaceId,
                                    unsigned Multiplier);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Multiplier Multiplier of the link check period (default 1s).

Return value

= 0 O.K.
≠ 0 Error/Not supported.

Additional information

The default period between link checks is one second which is fine for reacting on a link
change. For other interfaces like WiFi it might not be necessary to check for the link status
each second or it might even be worth reducing link checks to a minimum if this interferes
with packet transactions on the same interface like a single SPI.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



269 CHAPTER 4 Other IP Stack functions

4.8.38    IP_NI_ConfigUsePromiscuousMode()

Description

Configures if the driver tries to use its hardware precise and hash filters as available before
switching to promiscuous mode or if promiscuous mode will be used in any case.

Prototype

void IP_NI_ConfigUsePromiscuousMode(unsigned IFaceId,
                                    unsigned OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0: Driver will try to use its hardware filters (default).
• 1: Driver will be using promiscuous mode.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



270 CHAPTER 4 Other IP Stack functions

4.8.39    IP_NI_GetAdminState()

Description

Retrieves the admin state of the given interface.

Prototype

int IP_NI_GetAdminState(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

0 Interface disabled.
1 Interface enabled.
-1 Invalid interface ID.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



271 CHAPTER 4 Other IP Stack functions

4.8.40    IP_NI_GetIFaceType()

Description

Retrieves a short textual description of the interface type.

Prototype

int IP_NI_GetIFaceType(unsigned   IFaceId,
                       char     * pBuffer,
                       U32      * pNumBytes);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pBuffer Pointer to the buffer where to store the string.

pNumBytes
Pointer to the size of the buffer at pBuffer and where to
store the length of the string (without termination).

Return value

= 0 O.K.
≠ 0 Error.

Additional information

If the buffer is big enough this function will terminate the string in the buffer as well. The
length of the string is always stored at pNumBytes.

Example

char ac[10];  // Should be big enough to hold all short interface descriptions.
U32 NumBytes;

//
// Get the type of interface #0 .
//
NumBytes = sizeof(ac);
IP_NI_GetIFaceType(0, &ac[0], &NumBytes);
printf("Interface #0 is of type \"%s\"", &ac[0]);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



272 CHAPTER 4 Other IP Stack functions

4.8.41    IP_NI_GetState()

Description

Returns the hardware state of the interface.

Prototype

int IP_NI_GetState(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

0 Interface is down
1 Interface is up
-1 Invalid interface ID

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



273 CHAPTER 4 Other IP Stack functions

4.8.42    IP_NI_SetAdminState()

Description

Sets the AdminState of the interface.

Prototype

void IP_NI_SetAdminState(unsigned IFaceId,
                         int      AdminState);

Parameters

Parameter Description

IFaceId Zero-based interface index.

AdminState
Admin state to set.
• 0: DOWN
• 1: UP

Additional information

For most interfaces like Ethernet, WiFi and virtual interfaces like VLAN the state is UP by
default. Connection oriented interfaces like PPP or PPPoE use the state for a connect request
and therefore start with state DOWN.

Setting an interface like Ethernet to DOWN will try to disable this interface to the best possible.
A software filter for interfaces with state DOWN discards packets that can not be filtered
using other mechanisms.
• Best case: The Rx interrupt of the interface gets disabled, reducing the CPU load for

the disabled interface.
• Worst case: Only software filtering is applied. The CPU load for processing incoming

packets will remain like for an interface with state UP.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



274 CHAPTER 4 Other IP Stack functions

4.8.43    IP_NI_GetTxQueueLen()

Description

Retrieves the current length of the Tx queue of an interface.

Prototype

int IP_NI_GetTxQueueLen(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

≥ 0 Current Tx queue length.
< 0 Error.

Additional information

IP_SUPPORT_STATS_IFACE or IP_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



275 CHAPTER 4 Other IP Stack functions

4.8.44    IP_NI_PauseRx()

Description

Pauses the Rx handling of an interface by disabling it temporary. The Rx handling will be
automatically re-enabled after the specified pause time.

Prototype

int IP_NI_PauseRx(unsigned IFaceId,
                  U32      Pause);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Pause Time to pause the Rx handling [ms].

Return value

= 0 O.K.
< 0 Error or disable Rx not supported by driver.

Additional information

Can be called from an interrupt context!

While most of the API is using an API lock that can not be used from an interrupt, this API
can be called from an interrupt context as this is the typical case when being flooded with
incoming packets. Calling this API from a task might not succeed anymore as the CPU is
held constantly busy by Rx.

Unlike IP_NI_PauseRxInt() this routine disables the complete Rx logic of the driver which
will also prevent being kept busy processing received data from any hardware RxFIFO. By
disabling the Rx path completely the RxFIFO no longer is fed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



276 CHAPTER 4 Other IP Stack functions

4.8.45    IP_NI_PauseRxInt()

Description

Pauses the Rx interrupt of an interface by disabling it temporary. The Rx interrupt will be
automatically re-enabled after the specified pause time.

Prototype

int IP_NI_PauseRxInt(unsigned IFaceId,
                     U32      Pause);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Pause Time to pause the Rx interrupt [ms].

Return value

= 0 O.K.
< 0 Error or disable Rx interrupt not supported by driver.

Additional information

Can be called from an interrupt context!

While most of the API is using an API lock that can not be used from an interrupt, this API
can be called from an interrupt context as this is the typical case when being flooded with
incoming packets. Calling this API from a task might not succeed anymore as the CPU is
held constantly busy by Rx interrupts.

For plain anti-flooding measurements please use IP_NI_PauseRx() .

Pausing the Rx interrupt of an interface can be used as countermeasure to flood situations.
It does not prevent the flood of packets being received at the interface itself. It will prevent
new Rx interrupts to occur for a certain period of time but will not abort already started
Rx handling from a previous interrupt. This means that if the flood keeps on feeding
the hardwares RxFIFO for example, it is possible that Rx handling will continue until the
hardware is able to read away all incoming data and return to an idle state.

Pausing the Rx interrupt alone but keeping the Rx logic in general enabled can be used
to continue receiving incoming data in a flood situation using the IP_RxTask while making
sure to give Rx a pause once the flooding stops for a moment.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



277 CHAPTER 4 Other IP Stack functions

4.8.46    IP_PrintIPAddr()

Description

Convert a 4-byte IP address to a dots-and-number string.

Prototype

int IP_PrintIPAddr(char * pBuffer,
                   U32    IPAddr,
                   int    BufferSize);

Parameters

Parameter Description

pBuffer Pointer to a buffer where to store the string.
IPAddr IPv4 addresse in host byte order.

BufferSize
Size of buffer at pBuffer. Should be at least 16 bytes to
store xxx.xxx.xxx.xxx .

Return value

> 0 Length of string stored into the buffer without string termination character.
= 0 Buffer is too small.

Additional information

IPAddr is given in host order. Example: 192.168.0.1 is 0xC0A80001 for big endian targets
0x0100A8C0 for little endian targets.

Example

void PrintIPAddr(void) {
  U32 IPAddr;
  char ac[16];

  IPAddr = 0xC0A80801;             // IP address: 192.168.8.1
  IP_PrintIPAddr(ac, IPAddr, sizeof(ac));
  printf("IP address: %s\n", ac);  // Output: IP address: 192.168.8.1
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



278 CHAPTER 4 Other IP Stack functions

4.8.47    IP_ResolveHost()

Description

Resolve a host name string to its IP address by using a configured DNS server.

Prototype

int IP_ResolveHost(const char * sHost,
                         U32  * pIPAddr,
                         U32    ms);

Parameters

Parameter Description

sHost Host name string to resolve.

pIPAddr
Pointer to where to store the resolved IP addr. in network
order.

ms Timeout in ms to wait for the DNS server to answer.

Return value

= 0 O.K., host name resolved.
< 0 Error: Could not resolve host name.

Additional information

In contrast to the standard socket function gethostbyname(), this function allows resolving
a host name in a thread safe way and should therefore be used whenever possible. The
retrieved IP address will be returned in network order so it can be directly used with the
BSD socket API.

When setting the ms (timeout) parameter, it should be taken into account that the
_DNSc_cbTimer only runs every second and could thus cause the retry time to exceed
DNS_FIRST_RETRY by up to one second. ms should be set large enough to accomodate this.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



279 CHAPTER 4 Other IP Stack functions

4.8.48    IP_RemoveEtherTypeHook()

Description

This function removes a hook function for a previously registered Ethernet type.

Prototype

void IP_RemoveEtherTypeHook(IP_HOOK_ON_ETH_TYPE * pHook);

Parameters

Parameter Description

pHook Element of type IP_HOOK_ON_ETH_TYPE to remove.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



280 CHAPTER 4 Other IP Stack functions

4.8.49    IP_RemoveLinkChangeHook()

Description

Removes a callback which was previously added via IP_AddLinkChangeHook().

Prototype

void IP_RemoveLinkChangeHook(IP_HOOK_ON_LINK_CHANGE * pHook);

Parameters

Parameter Description

pHook Management element of type IP_HOOK_ON_LINK_CHANGE.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



281 CHAPTER 4 Other IP Stack functions

4.8.50    IP_SendEtherPacket()

Description

Sends a previously allocated Ethernet packet.

Prototype

int IP_SendEtherPacket(unsigned    IFaceId,
                       IP_PACKET * pPacket,
                       U32         NumBytes);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pPacket Previously allocated Ethernet packet to send.
NumBytes Number of bytes that have been stored in the packet buffer.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

The packet gets freed by the stack whether the return code is success or error. The packet
can not be reused by the application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



282 CHAPTER 4 Other IP Stack functions

4.8.51    IP_SendPacket()

Description

Sends a user defined packet on the interface. The packet will not be modified by the stack.
IP_SendPacket() allocates a packet control block (IP_PACKET) and adds it to the out queue
of the interface.

Prototype

int IP_SendPacket(unsigned   IFace,
                  void     * pData,
                  unsigned   NumBytes);

Parameters

Parameter Description

IFace Zero-based interface index.
pData Pointer to user data to send.
NumBytes Length of data to send.

Return value

-1 Could not allocate a packet for sending.
0 Packet in out queue.
1 Interface can not send.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



283 CHAPTER 4 Other IP Stack functions

4.8.52    IP_SendPing()

Description

Sends a single ICMP echo request (“ping”) to the specified host. Function uses always
interface 0.

Prototype

int IP_SendPing(U32        FHost,
                char     * pData,
                unsigned   NumBytes,
                U16        SeqNum);

Parameters

Parameter Description

FHost
4-byte IPv4 address in network endian byte order of the
target.

pData Pointer to the ping data, NULL if do not care.
NumBytes Length of data to attach to ping request.
SeqNum Ping sequence number.

Return value

= 0 ICMP echo request was successfully sent.
< 0 Error

Additional information

If you call this function with activated logging, the ICMP reply or (in case of an error) the
error message will be sent to stdout. To enable the output of ICMP status messages, add
the message type IP_MTYPE_ICMP to the log filter and the warn filter. Refer to Debugging
on page 1250 for detailed information about logging.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



284 CHAPTER 4 Other IP Stack functions

4.8.53    IP_SendPingCheckReply()

Description

Sends a single ICMP echo request (“ping”) to the specified host using the selected interface
and waits for the reply.

Prototype

int IP_SendPingCheckReply(U32        IFaceId,
                          U32        FHost,
                          char     * pData,
                          unsigned   NumBytes,
                          unsigned   ms);

Parameters

Parameter Description

IFaceId Zero-based interface index.

FHost
4-byte IPv4 address in network endian byte order of the
target.

pData Pointer to the ping data, NULL if do not care.
NumBytes Length of data to attach to ping request.
ms Number of ms to wait for the reply.

Return value

= 0 OK, ping sent and reply received.
= IP_ERR_TIMEDOUT Timeout, ping sent but no reply received.
< 0 Error.

Additional information

If you call this function with activated logging, the ICMP reply or (in case of an error) the
error message will be sent to stdout. To enable the output of ICMP status messages, add
the message type IP_MTYPE_ICMP to the log filter and the warn filter. Refer to Debugging
on page 1250 for detailed information about logging.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



285 CHAPTER 4 Other IP Stack functions

4.8.54    IP_SendPingEx()

Description

Sends a single ICMP echo request (“ping”) to the specified host using the selected interface.

Prototype

int IP_SendPingEx(U32        IFaceId,
                  U32        FHost,
                  char     * pData,
                  unsigned   NumBytes,
                  U16        SeqNum);

Parameters

Parameter Description

IFaceId Zero-based interface index.

FHost
4-byte IPv4 address in network endian byte order of the
target.

pData Pointer to the ping data, NULL if do not care.
NumBytes Length of data to attach to ping request.
SeqNum Ping sequence number.

Return value

= 0 OK
< 0 Error

Additional information

If you call this function with activated logging, the ICMP reply or (in case of an error) the
error message will be sent to stdout. To enable the output of ICMP status messages, add
the message type IP_MTYPE_ICMP to the log filter and the warn filter. Refer to Debugging
on page 1250 for detailed information about logging.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



286 CHAPTER 4 Other IP Stack functions

4.8.55    IP_SetIFaceConnectHook()

Description

Sets a hook for an interface that is executed when IP_Connect() is called.

Prototype

void IP_SetIFaceConnectHook(unsigned IFaceId,
                            int      ( *pf)(unsigned IFaceId ));

Parameters

Parameter Description

IFaceId Zero-based interface index.
pf Hook that is called on IP_Connect().

Additional information

Typically for a pure Ethernet interface this functionality is not needed. Typically it is
used with dial-up interfaces or interfaces that need more configurations to be set by the
application to work.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



287 CHAPTER 4 Other IP Stack functions

4.8.56    IP_SetIFaceDisconnectHook()

Description

Sets a hook for an interface that is executed when IP_Disconnect() is called.

Prototype

void IP_SetIFaceDisconnectHook(unsigned IFaceId,
                               int      ( *pf)(unsigned IFaceId ));

Parameters

Parameter Description

IFaceId Zero-based interface index.
pf Hook that is called on IP_Disconnect().

Additional information

Typically for a pure Ethernet interface this functionality is not needed. Typically it is
used with dial-up interfaces or interfaces that need more configurations to be set by the
application to work.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



288 CHAPTER 4 Other IP Stack functions

4.8.57    IP_SetOnPacketFreeCallback()

Description

This function sets a callback to be executed once the packet has been freed.

Prototype

void IP_SetOnPacketFreeCallback
           (IP_PACKET * pPacket,
            void        ( *pfOnFreeCB)(IP_PACKET * pPacketCB , void * pContextCB ),
            void      * pContext);

Parameters

Parameter Description

pPacket Pointer to the packet.
pfOnFreeCB Callback that is notified on a packet free.

pContext
Application context that will be passed to the callback once
the packet gets freed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



289 CHAPTER 4 Other IP Stack functions

4.8.58    IP_SetPacketToS()

Description

Sets the value of the ToS/DSCP byte in the IP header of a packet to be sent via the zero-
copy API.

Prototype

void IP_SetPacketToS(IP_PACKET * pPacket,
                     U8          ToS);

Parameters

Parameter Description

pPacket Pointer to packet buffer.
ToS ToS byte to use in packet when being sent.

Additional information

The ToS (Type of Service) byte in the IPv4 header has been reused as DSCP (Differentiated
Services Code Point) byte with its values remaining somewhat compatible between both
use cases.

While the ToS field is only present for IPv4, the DSCP field is present in the same way for
IPv4 and IPv6 . If the user intends to explicitly set a ToS value, it is the users responsibility
to make sure that he is applying it to an IPv4 packet only.

A good starting point regarding the ToS/DSCP field and its value can be found at the
following location: https://en.wikipedia.org/wiki/Type_of_service

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://en.wikipedia.org/wiki/Type_of_service


290 CHAPTER 4 Other IP Stack functions

4.8.59    IP_SetRxHook()

Description

Sets a hook function which will be called if target receives a packet.

Prototype

void IP_SetRxHook(IP_RX_HOOK * pfRxHook);

Parameters

Parameter Description

pfRxHook Pointer to the callback function of type IP_RX_HOOK.

Additional information

The return value of the callback function is relevant for the further processing of the packet.
A return value of 0 indicates that the stack has to process the packet after the callback
has returned. A return value of >0 indicates that the packet will be freed directly after the
callback has returned.

The prototype for the callback function is defined as follows:

typedef int (IP_RX_HOOK)(IP_PACKET * pPacket);

Example

Refer to IP_ICMP_SetRxHook on page 260 for an example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



291 CHAPTER 4 Other IP Stack functions

4.8.60    IP_SetTxHook()

Description

Sets a hook function which will be called if target transmits a packet.

Prototype

void IP_SetTxHook(IP_TX_HOOK * pfTxHook);

Parameters

Parameter Description

pfTxHook Pointer to the callback function of type IP_TX_HOOK.

Additional information

The prototype for the callback function is defined as follows:

typedef void (IP_TX_HOOK)(IP_PACKET * pPacket);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



292 CHAPTER 4 Other IP Stack functions

4.8.61    IP_SetMicrosecondsCallback()

Description

Sets a callback that is used to get a timestamp in microseconds.

Prototype

void IP_SetMicrosecondsCallback(U64 ( *pfGetTime_us)());

Parameters

Parameter Description

pfGetTime_us The callback to set.

Additional information

Replaces a previously set IP_SetNanosecondsCallback() with an internal conversion
routine. If your system can provide a nanosecond precise timestamp use
IP_SetNanosecondsCallback() only.

Example

IP_SetMicrosecondsCallback(OS_GetTime_us64);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



293 CHAPTER 4 Other IP Stack functions

4.8.62    IP_SetNanosecondsCallback()

Description

Sets a callback that is used to get a timestamp in nanoseconds.

Prototype

void IP_SetNanosecondsCallback(U64 ( *pfGetTime_ns)());

Parameters

Parameter Description

pfGetTime_ns The callback to set.

Additional information

Replaces previously set time callbacks of different time bases with an internal conversion
as required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



294 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9    Stack internal functions, variables and data-
structures

emNet internal functions, variables and data-structures are not explained here as they are
in no way required to use emNet. Your application should not rely on any of the internal
elements, as only the documented API functions are guaranteed to remain unchanged in
future versions of emNet. The following data-structures are meant for public usage together
with the documented API.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



295 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.1    Structure BSP_IP_INSTALL_ISR_PARA

Description

Used to pass parameters for installing an ISR handler between driver and hardware specific
callback.

Prototype

typedef struct {
  void (*pfISR)(void);
  int ISRIndex;
  int Prio;
} BSP_IP_INSTALL_ISR_PARA;

Member Description

pfISR Interrupt handler to register.

ISRIndex
Interrupt index given by the driver as reference. The index might
differ from hardware to hardware.

Prio
Interrupt priority given by the driver as reference. Override this with
a priority that best fits your system.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



296 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.2    Structure BSP_IP_API

Description

Used to set callbacks for a driver to call hardware specific functions that can not be handled
in a generic way by the driver itself.

Prototype

typedef struct {
  void          (*pfInit)       (unsigned IFaceId);
  void          (*pfDeInit)     (unsigned IFaceId);
  void        
  (*pfInstallISR) (unsigned IFaceId, BSP_IP_INSTALL_ISR_PARA* pPara);
  unsigned      (*pfGetMiiMode) (unsigned IFaceId);
  unsigned long (*pfGetEthClock)(void);
} BSP_IP_API;

Member Description

pfInit Initializes port pins and clocks for Ethernet. Can be NULL.
pfDeInit De-initializes port pins and clocks for Ethernet. Can be NULL.

pfInstallISR
Installs the driver interrupt handler. Can be NULL. For further
information regarding BSP_IP_INSTALL_ISR_PARA please refer to
Structure BSP_IP_INSTALL_ISR_PARA on page 295.

pfGetMiiMode
Returns the MII mode that the pins have been configured for (0: MII,
1: RMII). Can be NULL.

pfGetEthClock
Returns the clock frequency [Hz] used by the Ethernet peripheral for
auto-configuration of internal parameters. Can be NULL.

Additional information

For further information about how this structure is used please refer to IP_BSP_SetAPI on
page 97.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



297 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.3    Structure SEGGER_CACHE_CONFIG

Description

Used to pass cache configuration and callback function pointers to the stack.

Prototype

typedef struct {
  int  CacheLineSize;
  void (*pfDMB)       (void);
  void (*pfClean)     (void *p, unsigned NumBytes);
  void (*pfInvalidate)(void *p, unsigned NumBytes);
} SEGGER_CACHE_CONFIG;

Member Description

CacheLineSize

Length of one cache line of the CPU.
= 0: No Cache.
> 0: Cache line size in bytes.
Most Systems such as ARM9 use a 32 bytes cache line size.

pfDMB
Pointer to a callback function that executes a DMB (Data Memory
Barrier) instruction to make sure all memory operations are
completed. Can be NULL.

pfClean
Pointer to a callback function that executes a clean operation on
cached memory. Can be NULL.

pfInvalidate
Pointer to a callback function that executes a clean operation on
cached memory. Can be NULL.

Additional information

For further information about how this structure is used please refer to
IP_CACHE_SetConfig on page 108.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



298 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.4    IP_STATS_IFACE

Description

Used to access the whole structure that can be accessed individually using the IP_STATS_*
functions. Primary usage for these information is utilizing them for SNMP statistics,
therefore their SNMP usage is explained.

Prototype

typedef struct {
  U32 LastLinkStateChange;
  U32 RxBytesCnt;
  U32 RxUnicastCnt;
  U32 RxNotUnicastCnt;
  U32 RxDiscardCnt;
  U32 RxErrCnt;
  U32 RxUnknownProtoCnt;
  U32 TxBytesCnt;
  U32 TxUnicastCnt;
  U32 TxNotUnicastCnt;
  U32 TxDiscardCnt;
  U32 TxErrCnt;
} IP_STATS_IFACE;

Member Description (SNMP usage)

LastLinkStateChange
SNMP: ifLastChange [TimeTicks]. Needs to be converted into
in 1/100 seconds since SNMP epoch.

RxBytesCnt SNMP: ifInOctets [Counter].
RxUnicastCnt SNMP: ifInUcastPkts [Counter].
RxNotUnicastCnt SNMP: ifInNUcastPkts [Counter].
RxDiscardCnt SNMP: ifInDiscards [Counter].
RxErrCnt SNMP: ifInErrors [Counter].
RxUnknownProtoCnt SNMP: ifInUnknownProtos [Counter].
TxBytesCnt SNMP: ifOutOctets [Counter].
TxUnicastCnt SNMP: ifOutUcastPkts [Counter].
TxNotUnicastCnt SNMP: ifOutNUcastPkts [Counter].
TxDiscardCnt SNMP: ifOutDiscards [Counter].
TxErrCnt SNMP: ifOutErrors [Counter].

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



299 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.5    IP_HOOK_ON_IF_ERROR

Description

Callback executed for an error during interface initialization.

Type definition

typedef void (IP_HOOK_ON_IF_ERROR)(IP_DRIVER_INTERFACE_ERROR init,
                                   int                       IFaceId,
                                   int                       Errcode);

Parameters

Parameter Description

init

Gives information about which init failed.
• init = IP_DRIVER_INTERFACE_INIT_ERROR: Error during

driver init.
• init = IP_DRIVER_INTERFACE_PHY_ERROR: Error during

PHY Init.
IFaceId Number of interface that failed.
ErrCode Error Code.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



300 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.6    IP_ON_IFACE_SELECT_INFO

Description

Provides information about an internal interface selection for an operation (typically sending
without previous receive), as well as to propose an interface.

Type definition

typedef struct {
  int               IFaceId;
  const U32       * pLAddrV4;
  const U32       * pFAddrV4;
  const IPV6_ADDR * pLAddrV6;
  const IPV6_ADDR * pFAddrV6;
  U8                Flags;
} IP_ON_IFACE_SELECT_INFO;

Structure members

Member Description

IFaceId
Interface as proposed by internal selection. -1 if no suitable
interface was found.

pLAddrV4
Pointer to local IPv4 address. NULL if not used. Value is in
network endianness (big endian).

pFAddrV4
Pointer to foreign IPv4 address. NULL if not used. Value is in
network endianness (big endian).

pLAddrV6 Pointer to local IPv6 address. NULL if not used.
pFAddrV6 Pointer to foreign IPv6 address. NULL if not used.

Flags

ORR-ed combination of IP_IFACE_SELECT_FLAG_* :
• None : Looking for a unicast interface.
• IP_ON_IFACE_SELECT_FLAG_BROADCAST: Looking for an

interface that is capable of broadcasting.
• IP_ON_IFACE_SELECT_FLAG_MULTICAST: Looking for an

interface that is capable of multicast.

Additional information

Most parameters are presented as pointers to the actual internal value. If a parameter/
pointer is NULL, this means that this parameter was not involved in selecting the proposed
interface.

If IFaceId is -1, this means no interface has been selected by the internal procedure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



301 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.7    IP_ON_IFACE_SELECT_FUNC

Description

Callback executed for an internal interface selection. The proposed interface selected
internally can be overridden.

Type definition

typedef int (IP_ON_IFACE_SELECT_FUNC)(int                       PFamily,
                                      IP_ON_IFACE_SELECT_INFO * pInfo);

Parameters

Parameter Description

PFamily Protocol family (at the moment only PF_INET or PF_INET6).

pInfo

Further information of type IP_ON_IFACE_SELECT_INFO
about the interface selection parameters as well as the
proposed interface, selected internally based upon these
parameters.

Return value

= -1 No suitable interface.
≥ 0 Interface index to use.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



302 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.8    IP_ON_ICMPV4_FUNC

Description

Callback executed when an ICMPv4 packet is received.

Type definition

typedef int (IP_ON_ICMPV4_FUNC)(unsigned    IFaceId,
                                IP_PACKET * pPacket,
                                void      * pUserContext,
                                void      * p);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pPacket
Packet that has been received. pPacket->pData points to
the IPv4 header.

pUserContext User context given when adding the hook.
p Reserved for future extensions of this API.

Return value

IP_OK Packet has been handled (freed or reused).
IP_OK_TRY_OTHER_HANDLER Packet is untouched and stack shall try another handler.

Additional information

The callback can remove its own hook using IP_ICMP_RemoveRxHook() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



303 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.9    IP_MEM_POOL_INFO

Description

Provides information about a memory pool managed by the stack.

Type definition

typedef struct {
  PTR_ADDR  BaseAddr;
  U32       Size;
  U32       Free;
  U32       MaxFreeChunk;
} IP_MEM_POOL_INFO;

Structure members

Member Description

BaseAddr Base address of the memory pool.
Size Total number of bytes managed for this pool.
Free Number of bytes available for allocation from this pool.
MaxFreeChunk Biggest chunk available for allocation.

Additional information

Numbers such as free space and maximum chunk size that can be allocated vary by a couple
of bytes with values returned being higher than what can be successfully allocated. This
is due to internal overhead and alignments that are calculated during allocation processes
that are not calculated when retrieving this information about a pool and its free resources.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 5
 
Socket interface

The emNet socket API is almost compatible to the Berkeley socket interface. The Berkeley
socket interface is the de facto standard for socket communication. emNet specific functions
allow an easier or even extended usage of some socket operations. All API functions are
described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



305 CHAPTER 5 UDP Socket Calls

5.1    UDP Socket Calls
The following figure shows a typical UDP client-server application and the BSP calls used.
The client does not establish a connection with the server. Instead, the client simply sends
datagrams to the server using sendto(), which contains the address of the server as
a parameter. The server calls recvfrom(), which waits until data arrives from a client
(assuming the socket has been opened in ’blocking’ mode). recvfrom() returns enough
information about the client to allow the server to send it a response.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



306 CHAPTER 5 TCP Socket Calls

5.2    TCP Socket Calls
The following figure shows a typical TCP client-server application and the BSD calls used.
You would typically start the server first and then, sometime later, start the client which
connects to the server. The client sends requests to the server, the server processes the
request and then sends back a reply to the client. This continues until the client closes its
end of the connection. Closing the client causes the client to send a special notification to
the server. The server then closes its end of the connection and, either terminates, or waits
for a new client connection.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



307 CHAPTER 5 API functions

5.3    API functions
The table below lists the available socket API functions.

Function Description

Generic socket interface functions

accept() Accepts an incoming attempt on a socket.

bind()
Assigns a name (port) to an unnamed
socket.

closesocket() Closes a socket.
connect() Establishes a connection to a socket.
gethostbyname() Resolve a host name into an IP address.

getpeername()
Fills the passed structure sockaddr with
the IP addressing information of the
connected host.

getsockname()
Returns the current address to which the
socket is bound in the buffer pointed to by
pAddr.

getsockopt()
Returns the options associated with a
socket.

listen() Prepares the socket to accept connections.
recv() Receives data from a connected socket.

recvfrom()
Receives a datagram and stores the source
address.

select() Provides a UNIX-like socket select() call.

send()
Hands data to the stack in order to send it
to a connected socket.

sendto()
Hands data to the stack in order to send it
to a specified address on a socket.

setsockopt() Configures some options for the socket.
shutdown() Stops specific activities on a socket.
socket() Creates a socket.

emNet specific socket interface functions

IP_RAW_AddPacketToSocket()
Adds a packet and its data to a RAW
socket (buffer).

IP_SOCKET_AbortRead()
Aborts a blocking recv(), recvfrom() and
its variations or select() call on a socket.

IP_SOCKET_AddGetSetOptHook()

This function adds a callback that gets
executed when the application uses
getsockopt()/setsockopt() with the
registered option.

IP_SOCKET_CloseAll() Closes all socket handles that are open.

IP_SOCKET_ConfigSelectMultiplicator()
Configures the multiplicator for the
timeout parameter of select().

IP_SOCKET_GetAddrFam()
Returns the IP version of a socket (IPv4 or
IPv6).

IP_SOCKET_GetErrorCode()
Returns the last error reported on a
socket.

IP_SOCKET_GetLocalPort() Returns the local port of a socket.
IP_SOCKET_GetNumRxBytes() Returns the number of received bytes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



308 CHAPTER 5 API functions

Function Description

IP_SOCKET_SetDefaultOptions() Sets the socket options enabled by default.

IP_SOCKET_SetLimit()
Sets the maximum number of allowed
sockets.

IP_SOCKET_SetLinger() Activates linger.
IP_SOCKET_SetRxTimeout() Sets the rx timeout.

IP_SOCK_recvfrom_info()
Receives a datagram and stores the source
address and additional information as
requested.

IP_SOCK_recvfrom_ts()
Receives a datagram and stores the source
address and timestamp.

IP_TCP_Accept()
Registers a callback that will be executed
upon a new client.

Set management functions

IP_FD_CLR() Removes a socket from a set.
IP_FD_SET() Adds a socket to a set.
IP_FD_ISSET() Checks if a socket is part of a set.

Helper macros

ntohl
Converts a unsigned long value from
network to host byte order.

htonl
Converts a unsigned long value from host
byte order to network byte order.

htons
Converts a unsigned short value from host
byte order to network byte order.

ntohs
Converts a unsigned short value from
network to host byte order.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



309 CHAPTER 5 API functions

5.3.1    accept()

Description

Accepts an incoming attempt on a socket.

Prototype

int accept(int      Socket,
           struct   sockaddr *pSockAddr,
           int    * pAddrLen);

Parameters

Parameter Description

Socket Socket handle.

pSockAddr

An optional pointer to a buffer where the address of the
connecting entity is stored. The format of the address
depends on the defined address family which was defined
when the socket was created.

pAddrLen

As input an optional pointer to a variable with the maximum
length of socket address that can be stored. Aa output
an optional pointer to an integer where the length of the
received address is stored. Just like the format of the
address, the length of the address depends on the defined
address family.

Return value

≥ 0 Socket handle of the socket on which the actual connection is made.
= -1 Error.

Additional information

This call is used with connection-based socket types, currently with SOCK_STREAM . Refer to
socket() for more information about the different socket types.

Before calling accept() , the used socket Socket has to be bound to an address with
bind() and should be listening for connections after calling listen() . accept() extracts
the first connection on the queue of pending connections, creates a new socket with the
same properties of Socket and allocates a new file descriptor for the socket. If no pending
connections are present on the queue, and the socket is not marked as non-blocking,
accept() blocks the caller until a connection is present. If the socket is marked non-blocking
and no pending connections are present on the queue, accept() returns and reports an
error. The accepted socket is used to read and write data to and from the socket which is
connected to this one; it is not used to accept more connections. The original socket Socket
remains open for accepting further connections.

The argument pSockAddr is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The exact format of the pSockAddr
parameter is determined by the domain in which the communication is occurring. The
pAddrLen is a value-result parameter. It should initially contain the amount of space pointed
to by pSockAddr .

Example

The following sample can be used to retrieve information about the accepted client:

struct sockaddr_in Client;
...
struct sockaddr_in Addr;
int AddrLen;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



310 CHAPTER 5 API functions

AddrLen = sizeof(Addr);
if  ((hSock  =  accept(hSockListen,  (struct  sockaddr*)&Addr,  &AddrLen))  ==
SOCKET_ERROR) {
 continue;    // Error
}
...

For example the peer IP address can then be retrieved in network endianness from
Addr.sin_addr.s_addr.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



311 CHAPTER 5 API functions

5.3.2    bind()

Description

Assigns a name (port) to an unnamed socket.

Prototype

int bind(int    Socket,
         struct sockaddr *pSockAddr,
         int    AddrLen);

Parameters

Parameter Description

Socket Socket handle.

pSockAddr

A pointer to a buffer where the address of the connecting
entity is stored. The format of the address depends on the
defined address family which was defined when the socket
was created.

AddrLen The length of the address.

Return value

0 Success.
-1 Error.

Additional information

When a socket is created with socket() it exists in a name space (address family) but has
no name assigned. bind() is used on an unconnected socket before subsequent calls to
the connect() or listen() functions. bind() assigns the name pointed to by pSockAddr
to the socket.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



312 CHAPTER 5 API functions

5.3.3    closesocket()

Description

Closes a socket.

Prototype

int closesocket(int Socket);

Parameters

Parameter Description

Socket Socket handle.

Return value

0 On success.
-1 On failure.

Additional information

closesocket() closes a connection on the socket associated with Socket and the socket
descriptor associated with Socket will be returned to the free socket descriptor pool. Once
a socket is closed, no further socket calls should be made with it.

If the socket promises reliable delivery of data and SO_LINGER is set, the system will
block the caller on the closesocket() attempt until it is able to transmit the data or until
it decides it is unable to deliver the information (a timeout period, termed the linger
interval, is specified in the setsockopt() call when SO_LINGER is requested). If SO_LINGER
is disabled and a closesocket() is issued, the system will process the close in a manner
that allows the caller to continue as quickly as possible. If SO_LINGER is enabled with a
timeout period of ’0’ and a closesocket() is issued, the system will perform a hard close.

Example

/*********************************************************************
*
*       _CloseSocketGracefully()
*
*  Function description
*    Wrapper for closesocket() with linger enabled to verify a gracefull
*    disconnect.
*/
static int _CloseSocketGracefully(long pConnectionInfo) {
  struct linger Linger;
  Linger.l_onoff  = 1;  // Enable linger for this socket.
  Linger.l_linger = 1;  // Linger timeout in seconds
  setsockopt(hSocket, SOL_SOCKET, SO_LINGER, &Linger, sizeof(Linger));
  return closesocket(hSocket);
}

/*********************************************************************
*
*       _CloseSocketHard()
*
*  Function description
*    Wrapper for closesocket() with linger option enabled to perform a hard
 close.
*/
static int _CloseSocketHard(long hSocket) {
  struct linger Linger;
  Linger.l_onoff  = 1;  // Enable linger for this socket.
  Linger.l_linger = 0;  // Linger timeout in seconds
  setsockopt(hSocket, SOL_SOCKET, SO_LINGER, &Linger, sizeof(Linger));

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



313 CHAPTER 5 API functions

  return closesocket(hSocket);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



314 CHAPTER 5 API functions

5.3.4    connect()

Description

Establishes a connection to a socket.

Prototype

int connect(int    Socket,
            struct sockaddr *pSockAddr,
            int    AddrLen);

Parameters

Parameter Description

Socket Socket handle.

pSockAddr

A pointer to a buffer where the address of the connecting
entity is stored. The format of the address depends on the
defined address family which was defined when the socket
was created.

AddrLen
A pointer to an integer where the length of the received
address is stored. Just like the format of the address, the
length of the address depends on the defined address family.

Return value

0 On success.
-1 On failure.

Additional information

If Socket is of type SOCK_DGRAM or SOCK_RAW, then this call specifies the peer with which
the socket is to be associated. pAddr defines the address to which datagrams are sent and
the only address from which datagrams are received. To enable RAW socket support in the
IP stack it is madatory to call IP_RAW_Add() during initialization of the stack.

If Socket is of type SOCK_STREAM , then this call attempts to make a connection to
another socket. The other socket is specified by pSockAddr which is an address in the
communications space of the socket. Each communications space interprets the pSockAddr
parameter in its own way.

Generally, stream sockets may successfully connect() only once; datagram sockets may
use connect() multiple times to change their association. Datagram sockets may dissolve
the association by connecting to an invalid address, such as a NULL address.

If a connect is in progress and the socket is blocking, the connect call waits until connected
or an error to happen. If the socket is non-blocking (refer to setsockopt() for more
information), 0 is returned.

You can use the getsockopt() function to determine the status of the connect attempt.

The timeout for a connect attempt can be configured via the Init parameter of
IP_TCP_SetConnKeepaliveOpt().

Example

#define SERVER_PORT             1234
#define SERVER_IP_ADDR          0xC0A80101      // 192.168.1.1

/*********************************************************************
*
*       _TCPClientTask
*
*  Function description

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



315 CHAPTER 5 API functions

*    Creates a connection to a given IP address, TCP port.
*/
static void _TCPClientTask(void) {
  int                TCPSockID;
  struct sockaddr_in ServerAddr;
  int                ConnectStatus;

  //
  // Wait until link is up. This can take 2-3 seconds if PHY has been reset.
  //
  while (IP_GetCurrentLinkSpeed() == 0) {
    OS_Delay(100);
  }

  while(1) {
    TCPSockID = socket(AF_INET, SOCK_STREAM, 0);  // Open socket
    if (TCPSockID < 0) {                          // Error, Could not get socket
      while (1) {
        OS_Delay(20);
      }
    } else {
      //
      // Connect to server
      //
      ServerAddr.sin_family      = AF_INET;
      ServerAddr.sin_port        = htons(SERVER_PORT);
      ServerAddr.sin_addr.s_addr = htonl(SERVER_IP_ADDR);
      ConnectStatus              = connect(TCPSockID,
                                           (struct sockaddr *)&ServerAddr,
                                            sizeof(struct sockaddr_in));
      if (ConnectStatus == 0) {
        //
        // Do something...
        //
      }
    }
    closesocket(TCPSockID);
    OS_Delay(50);
  }
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



316 CHAPTER 5 API functions

5.3.5    gethostbyname()

Description

Resolve a host name into an IP address.

Prototype

 gethostbyname(const char * sName);

Parameters

Parameter Description

sName Host name to resolve.

Return value

OK: Pointer to a hostent structure Error: NULL if not successful.

Additional information

The function is called with a string containing the host name to be resolved as a fully-
qualified domain name (for example, myhost.mydomain.com).

Example

static void _DNSClient() {
  struct hostent *pHostEnt;
  char **ps;
  char **ppAddr;
  //
  // Wait until link is up.
  //
  while (IP_IFaceIsReady() == 0) {
    OS_Delay(100);
  }
  while(1) {
    pHostEnt = gethostbyname("www.segger.com");
    if (pHostEnt == NULL) {
      printf("Could not resolve host addr.\n");
      break;
    }
    printf("h_name: %s\n", pHostEnt->h_name);
    //
    // Show aliases
    //
    ps = pHostEnt->h_aliases;
    for (;;) {
      char * s;
      s = *ps++;
      if (s == NULL) {
        break;
      }
      printf("h_aliases: %s\n", s);
    }
    //
    // Show IP addresses
    //
    ppAddr = pHostEnt->h_addr_list;
    for (;;) {
      U32 IPAddr;
      char * pAddr;
      char ac[16];
      pAddr = *ppAddr++;
      if (pAddr == NULL) {
        break;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



317 CHAPTER 5 API functions

      }
      IPAddr = *(U32*)pAddr;
      IP_PrintIPAddr(ac, IPAddr, sizeof(ac));
      printf("IP Addr: %s\n", ac);
    }
  }
}

Warning

gethostbyname() is not thread safe and should therefore only be used where
absolutely necessary. If possible use the thread safe function IP_ResolveHost()
instead.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



318 CHAPTER 5 API functions

5.3.6    getpeername()

Description

Fills the passed structure sockaddr with the IP addressing information of the connected
host.

Prototype

int getpeername(int      Socket,
                struct   sockaddr *pSockAddr,
                int    * pAddrLen);

Parameters

Parameter Description

Socket Socket handle.

pSockAddr
A pointer to a structure of type sockaddr in which the IP
address information of the connected host should be stored.

pAddrLen
Max. size of address to return without exceeding the output
buffer.

Return value

0 Success.
-1 Error.

Additional information

Refer to sockaddr on page 357 for detailed information about the structure sockaddr.

Example

The following sample can be used to retrieve information about the peer host from an
existing connection:

struct sockaddr_in Client;
int i;

...
if ((hSock = accept(hSockListen, &Addr, &AddrLen)) == SOCKET_ERROR) {
 continue;    // Error
}
i = sizeof(Client);
getpeername(hSock, (struct sockaddr*)&Client, &i);
...

For example the peer IP address can then be retrieved in network endianness from
Client.sin_addr.s_addr.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



319 CHAPTER 5 API functions

5.3.7    getsockname()

Description

Returns the current address to which the socket is bound in the buffer pointed to by pAddr.

Prototype

int getsockname(int      Socket,
                struct   sockaddr *pSockAddr,
                int    * pAddrLen);

Parameters

Parameter Description

Socket Socket handle.

pSockAddr
A pointer to a structure of type sockaddr in which the IP
address information of the connected host should be stored.

pAddrLen
Max. size of address to return without exceeding the output
buffer.

Return value

0 Success.
-1 Error.

Additional information

Refer to sockaddr on page 357 for detailed information about the structure sockaddr.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



320 CHAPTER 5 API functions

5.3.8    getsockopt()

Description

Returns the options associated with a socket.

Prototype

int getsockopt(int    Socket,
               int    Level,
               int    Option,
               void * pVal,
               int    ValLen);

Parameters

Parameter Description

Socket Socket handle.

Level
Compatibility parameter for setsockopt() and
getsockopt(). Use symbol SOL_SOCKET.

Option The socket option which should be retrieved.

pVal
A pointer to the buffer in which the value of the requested
option should be stored.

ValLen The size of the data buffer.

Return value

0 Success.
-1 Error.

Valid values for parameter Option

Value Description

SO_DONTROUTE
Indicates that outgoing messages must bypass the standard
routing facilities.

SO_KEEPALIVE

Indicates that the periodic transmission of messages on a
connected socket is enabled. If the connected party fails to
respond to these messages, the connection is considered
broken. For keepalive behavior configuration please refer to
IP_TCP_SetConnKeepaliveOpt().

SO_LINGER

Controls the action taken when unsent messages are queued
on a socket and a closesocket() is performed. Refer to
closesocket() for detailed information about the linger
option.

SO_NOSLOWSTART

Determines if suppressing slow start on this socket is
enabled. This option stores an integer value which will
contain a non-zero value to suppress slow start or a 0 value
to let the socket slow start.

SO_BROADCAST
Determines if sending broadcasts for UDP communication is
permitted.

SO_REUSEADDR

Determines if reusing local addresses is allowed when using
bind() on a socket. This option stores an integer which will
contain a non-zero value to allow reusing addresses or a 0
value to disallow reusing addresses.

SO_RCVTIMEO
Determines the timeout for recv() in ms. A return value of
0 indicates that no timeout is set. This changes the behavior
of recv(). recv() is by default a blocking function which

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



321 CHAPTER 5 API functions

Value Description
only returns if data has been received. If a timeout is set
recv() will return in case of data reception or timeout.

SO_SNDTIMEO

Determines the timeout for send() in ms. A return value of
0 indicates that no timeout is set. This changes the behavior
of send(). send() is by default a blocking function which
only returns if data has been received. If a timeout is set
send() will return in case of data reception or timeout.

SO_NONBLOCK
Determines sockets blocking status. This option stores an
integer which will contain a non-zero value to set non-
blocking IO or a 0 value to reset non-blocking IO.

SO_SNDBUF Determines the TX buffer size in bytes.
SO_RCVBUF Determines the RX buffer size in bytes.
SO_MAXMSG Determines the Maximum TCP segment size.

IP_HDRINCL
Determines if the IP header has to be included by the user
for a RAW socket or if the IP header is generated by the
stack.

IP_DONTFRAG

Determines if fragmentation of large packets is permitted.
This option stores an integer value which will contain a non-
zero value to suppress fragmentation or a 0 value to allow
fragmentation.

IP_TOS Determines the IPv4 type of service.
IP_TTL Determines the IPv4 time to live.
IP_MULTICAST_TTL Determines the IPv4 multicast time to live.
TCP_MAXSEG Determines the maximum segment size in bytes.
TCP_ACKDELAYTIME Determines the time for delayed acks in milliseconds.
TCP_NOACKDELAY Determines if delayed ACKs are suppressed.

TCP_NODELAY

Determines if Nagle’s Algorithm is disabled. This option
stores an integer value which will contain a non-zero value
to disable Nagle’s Algorithm or a 0 value to enable Nagle’s
Algorithm.

SO_BINDTODEVICE

Allows to force a socket to use a particular interface for
incoming and outgoing traffic. Works for UDP and TCP, IPv4
and IPv6. The Opt parameter should be set to the desired
interface’s Id as returned by IP_AddEtherInterface(). This
feature can be used for cases where the network stack can
not automatically determine through which interface data
should be sent.

Read-Only

SO_ERROR
Stores the latest socket error in pVal and clears the error in
the socket structure.

SO_MYADDR Stores the IP address of the used interface in pVal.
SO_TYPE Determines the socket type. For valid socket types refer to

SO_TXDATA
Stores the amount of data currently in the TX buffer in
bytes.

SO_RXDATA
Stores the amount of data currently in the RX buffer in
bytes.

Write-Only

SO_NBIO
Sets socket non-blocking status. The specified value will be
ignored.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



322 CHAPTER 5 API functions

Value Description

SO_BIO
Sets socket blocking status. The specified value will be
ignored.

SO_CALLBACK
Sets zero-copy callback routine. Refer to TCP zero-copy
interface on page 364 for detailed information.

IPV6_UNICAST_HOPS Set the unicast hop limit for the socket.
IPV6_JOIN_GROUP Used to join a multicast group on a specified interface.
IPV6_LEAVE_GROUP Used to leave a multicast group on a specified interface.

Additional information

getsockopt() retrieves the current value for a socket option associated with a socket of
any type, in any state, and stores the result in pVal. Options can exist at multiple protocol
levels, but they are always present at the uppermost “socket” level. Options affect socket
operations, such as the packet routing.

The value associated with the selected option is returned in the buffer pVal. The integer
pointed to by ValLen should originally contain the size of this buffer; on return, it will be set
to the size of the value returned. For SO_LINGER, this will be the size of a LINGER structure.
For most other options, it will be the size of an integer.

The application is responsible for allocating any memory space pointed to directly or
indirectly by any of the parameters it specified. If the option was never set with
setsockopt(), then getsockopt() returns the default value for the option.

The option SO_ERROR returns 0 or the number of the socket error and clears the socket
error. The following table lists the socket errors.

Symbolic name Value Description

IP_ERR_SEND_PENDING 1 Packet to send is not sent yet.

IP_ERR_MISC -1 Miscellaneous errors that do not have a
specific error code.

IP_ERR_TIMEDOUT -2 Operation timed out.
IP_ERR_ISCONN -3 Socket is already connected.

IP_ERR_OP_NOT_SUPP -4 Operation not supported for selected
socket.

IP_ERR_CONN_ABORTED -5 Connection was aborted.

IP_ERR_WOULD_BLOCK -6
Socket is in non-blocking state and the
current operation would block the socket if
not in non-blocking state.

IP_ERR_CONN_REFUSED -7 Connection refused by peer.
IP_ERR_CONN_RESET -8 Connection has been reset.
IP_ERR_NOT_CONN -9 Socket is not connected.
IP_ERR_ALREADY -10 Socket already is in the requested state.
IP_ERR_IN_VAL -11 Passed value for configuration is not valid.
IP_ERR_MSG_SIZE -12 Message is too big to send.

IP_ERR_PIPE -13 Socket is not in the correct state for this
operation.

IP_ERR_DEST_ADDR_REQ -14 Destination addr. has not been specified.

IP_ERR_SHUTDOWN -15
Connection has been closed as soon as
all data has been received upon a FIN
request.

IP_ERR_NO_PROTO_OPT -16 Unknown socket option for setsockopt()
or getsockopt().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



323 CHAPTER 5 API functions

Symbolic name Value Description

IP_ERR_ADDR_NOT_AVAIL -19 No known path to send to the specified
addr.

IP_ERR_ADDR_IN_USE -20
Socket already has a connection to this
addr. and port or is already bound to this
addr.

IP_ERR_IN_PROGRESS -22 Operation is still in progress.
IP_ERR_NO_BUF -23 No internal buffer was available.

IP_ERR_NOT_SOCK -24 Socket has not been opened or has
already been closed

IP_ERR_FAULT -25 Generic error for a failed operation.
IP_ERR_NET_UNREACH -26 No path to the desired network available.
IP_ERR_PARAM -27 Invalid parameter to function.

IP_ERR_LOGIC -28 Logical error that should not have
happened.

IP_ERR_NOMEM -29 System error: No memory for requested
operation.

IP_ERR_NOBUFFER -30 System error: No internal buffer available
for the requested operation.

IP_ERR_RESOURCE -31 System error: Not enough free resources
available for the requested operation.

IP_ERR_BAD_STATE -32 Socket is in an unexpected state.
IP_ERR_TIMEOUT -33 Requested operation timed out.
IP_ERR_NO_ROUTE -36 Net error: Destination is unreachable.

IP_ERR_QUEUE_FULL -37
No more packets can be queued for
sending. Typically caused by packets
waiting for an ARP response to be fulfilled.

IP_ERR_USER_ABORT -38
When IP_SOCKET_AbortRead() was
used on a socket that is currently waiting
blocked in recv() or other API.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



324 CHAPTER 5 API functions

5.3.9    listen()

Description

Prepares the socket to accept connections.

Prototype

int listen(int Socket,
           int Backlog);

Parameters

Parameter Description

Socket Socket handle.

Backlog
Backlog for incoming connections. Defines the maximum
length of the queue of pending connections.

Return value

-1 Error.
0 Success.

Additional information

The Backlog parameter uses a one by one mapping of its values, meaning the given number
means exactly the amount of connections that can be accepted before being processed by
calling accept() . As the Backlog parameter is not standardized, other stacks might use
different value mappings.

A Backlog parameter of 0 will be increased to 1 as not accepting any connections does
not make sense.

Example

/*********************************************************************
*
*       _ListenAtTcpAddr
*
*  Function description
*    Starts listening at the given TCP port.
*/
static int _ListenAtTcpAddr(U16 Port) {
  int                Sock;
  struct sockaddr_in Addr;

  Sock = socket(AF_INET, SOCK_STREAM, 0);
  memset(&Addr, 0, sizeof(Addr));
  Addr.sin_family      = AF_INET;
  Addr.sin_port        = htons(Port);
  Addr.sin_addr.s_addr = INADDR_ANY;
  bind(Sock, (struct sockaddr *)&Addr, sizeof(Addr));
  listen(Sock, 1);
  return Sock;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



325 CHAPTER 5 API functions

5.3.10    recv()

Description

Receives data from a connected socket.

Prototype

int recv(int    Socket,
         char * pData,
         int    NumBytes,
         int    Flag);

Parameters

Parameter Description

Socket Handle on the socket.
pData A pointer to a buffer for incoming data.
NumBytes Number of bytes of the buffer.
Flag OR-combination of flags (MSG_PEEK).

Return value

= -1 Error occurred.
= 0 Connection was gracefully closed.
> 0 Number of bytes received.

Additional information

If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from. Refer to socket() for more
information about the different types of sockets.

You can only use the recv() function on a connected socket. To receive data on a socket,
whether it is in a connected state or not refer to recvfrom(). If no messages are available
at the socket and the socket is blocking, the receive call waits for a message to arrive. If
the socket is non-blocking (refer to setsockopt() for more information), -1 is returned.

You can use the select() function to determine when more data arrives.

Valid values for parameter Flag

Value Description

MSG_PEEK

“Peek” at the data present on the
socket; the data are returned,
but not consumed, so that a
subsequent receive operation will
see the same data.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



326 CHAPTER 5 API functions

5.3.11    recvfrom()

Description

Receives a datagram and stores the source address.

Prototype

int recvfrom(int      Socket,
             char   * pData,
             int      NumBytes,
             int      Flag,
             struct   sockaddr *pFrom,
             int    * pFromLen);

Parameters

Parameter Description

Socket Handle on the socket.
pData A pointer to a buffer for incoming data.
NumBytes Number of bytes of the buffer pointed by pData.
Flag OR-combination of flags (MSG_PEEK).

pFrom

An optional pointer to a buffer where the address of the
connecting entity is stored. The format of the address
depends on the defined address family which was defined
when the socket was created. Can be NULL.

pFromLen

An optional pointer to an integer where the length of the
received address is stored. Just like the format of the
address, the length of the address depends on the defined
address family.

Return value

= -1 Error occurred.
≥ 0 Number of bytes received.

Additional information

If pFrom is not a NULL pointer, the source address of the message is filled in. pFromLen is
a value-result parameter, initialized to the size of the buffer associated with pFrom , and
modified on return to indicate the actual size of the address stored there.

If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from. Refer to socket() for more
information about the different types of sockets.

If no messages are available at the socket and the socket is blocking, the receive call waits
for a message to arrive. If the socket is non-blocking (refer to setsockopt() for more
information), -1 is returned.

You can use the select() function to determine when more data arrives.

Valid values for parameter Flag

Value Description

MSG_PEEK

“Peek” at the data present on the
socket; the data are returned,
but not consumed, so that a
subsequent receive operation will
see the same data.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



327 CHAPTER 5 API functions

5.3.12    select()

Description

Provides a UNIX-like socket select() call.

Prototype

int select(IP_fd_set * readfds,
           IP_fd_set * writefds,
           IP_fd_set * exceptfds,
           I32         timeout);

Parameters

Parameter Description

readfds Read file descriptor set. Can be NULL.
writefds Write file descriptor set. Can be NULL.
exceptfds Exception file descriptor set. Can be NULL.

timeout

Maximum timeout [ms] that select() should block, waiting
for any file descriptor in any given FD_SET to become ready.
timeout of 0 will result in the function retuning immediately.
timeout of -1 will cause the function to block indefinitely
(until one of the descriptors becomes ready or an error
occurs).

Return value

= < 0 (SOCKET_ERROR) Error occurred.
= < 0 (IP_ERR_USER_ABORT) Only when calling IP_SOCKET_AbortRead() on a

socket that is part of the readfds .
= 0 Timeout.
> 0 Number of ready file descriptors (sockets) returned

over all given descriptor sets.

Additional information

The select() call overwrites the given descriptor sets with subsets consisting of those file
descriptors (sockets) that are ready. The descriptor sets readfds, writefds and exceptfds
may be omitted using NULL if no file descriptors are of interest for the specific operation.

In the standard Berkeley UNIX Sockets API, the descriptor sets are stored as bit fields
in arrays of integers. This works in the UNIX environment because under UNIX socket
descriptors are file system descriptors which are guaranteed to be small integers that can
be used as indexes into the bit fields. In emNet, socket descriptors are pointers and thus a
bit field representation of the descriptor sets is not feasible. Because of this, the emNet API
differs from the Berkeley standard in that the descriptor sets are represented as instances
of the following structure:

typedef struct IP_FD_SET {       // The select socket array manager
  unsigned fd_count;             // how many are SET?
  long fd_array[FD_SETSIZE];     // an array of SOCKETs
} IP_fd_set;

Instead of a socket descriptor being represented in a descriptor set via an indexed bit, an
emNet socket descriptor is represented in a descriptor set by its presence in the fd_array
field of the associated IP_fd_set structure. Despite this non-standard representation
of the descriptor sets themselves, the following standard entry points are provided for
manipulating such descriptor sets: IP_FD_ZERO(&fdset) initializes a descriptor set fdset
to the null set. IP_FD_SET(fd, &fdset) includes a particular descriptor, fd , in fdset.
IP_FD_CLR(fd, &fdset) removes fd from fdset. IP_FD_ISSET(fd, &fdset) is nonzero

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



328 CHAPTER 5 API functions

if fd is a member of fdset, zero otherwise. These entry points behave according to the
standard Berkeley semantics.

You should be aware that the value of FD_SETSIZE defines the maximum number of
descriptors that can be represented in a single descriptor set. The default value of
FD_SETSIZE is 12. This value can be increased in the source code version of emNet to
accommodate a larger maximum number of descriptors at the cost of increased processor
stack usage.

Another difference between the Berkeley and emNet select() calls is the representation
of the timeout parameter. Under Berkeley Sockets, the timeout parameter is represented
by a pointer to a structure. Under emNet sockets, a timeout is specified by the timeout
parameter, which defines the maximum number of milliseconds that should elapse before
the call to select() returns. A timeout parameter equal to 0 implies that select() should
return immediately (effectively a poll of the sockets in the descriptor sets). A timeout
parameter equal to -1 implies that select() blocks forever unless one of its descriptors
becomes ready.

The final difference between the Berkeley and emNet versions of select() is the absence
in the emNet version of the Berkeley width parameter. The width parameter is of use only
when descriptor sets are represented as bit arrays and was thus deleted in the emNet
implementation.

Note:

Under rare circumstances, select() may indicate that a descriptor is ready for writing when
in fact an attempt to write would block. This can happen if system resources necessary
for a write are exhausted or otherwise unavailable. If an application deems it critical that
writes to a file descriptor not block, it should set the descriptor for non-blocking I/O. Refer
to setsockopt on page 332 for detailed information.

Example

static void _Client() {
  long               Socket;
  struct sockaddr_in Addr;
  IP_fd_set          readfds;
  char               RecvBuffer[1472]
  int                r;

  while (IP_IFaceIsReady() == 0) {
    OS_Delay(100);
  }

Restart:
  Socket = socket(AF_INET, SOCK_DGRAM, 0);   // Open socket
  Addr.sin_family      = AF_INET;
  Addr.sin_port        = htons(2222);
  Addr.sin_addr.s_addr = INADDR_ANY;
  r = bind(Socket, (struct sockaddr *)&Addr, sizeof(Addr));
  if (r == -1){
    socketclose(Socket);
    OS_Delay(1000);
    goto Restart;
  }
  while(1) {
    IP_FD_ZERO(&readfds);                   // Clear the set
    IP_FD_SET(Socket, &readfds);            // Add descriptor to the set
    r = select(&readfds, NULL, NULL, 5000); // Check for activity.
    if (r <= 0) {
      continue;                           
  // No socket activity or error detected
    }
    if (IP_FD_ISSET(Socket, &readfds)) {
      IP_FD_CLR(Socket, &readfds);          // Remove socket from set
      r = recvfrom(Socket, RecvBuffer, sizeof(RecvBuffer), 0, NULL, NULL);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



329 CHAPTER 5 API functions

      if (r == -1){
        socketclose(Socket)
        goto Restart;
      }
    }
    OS_Delay(100);
  }
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



330 CHAPTER 5 API functions

5.3.13    send()

Description

Hands data to the stack in order to send it to a connected socket. The stack will copy the
data into the socket buffer. In blocking mode, the function returns when all data have been
accepted by the stack. If non blocking mode, the function returns immediately.

Prototype

int send(      int    Socket,
         const char * pBuffer,
               int    NumBytes,
               int    Flags);

Parameters

Parameter Description

Socket Socket handle to a connected socket
pBuffer Pointer to a buffer that contains data to send
NumBytes Number of bytes to send from pBuffer

Flags
OR-combination of one or more of the valid values listed in
the table below.

Return value

< 0 Error (SOCKET_ERROR).
≥ 0 OK, Number of bytes accepted by the stack and ready to be sent. Note: In

blocking mode this can only be the full number of bytes, since the function
would otherwise block.

Additional information

send() may be used only when the socket is in a connected state. Refer to sendto() for
information about sending data to a non-connected socket.

If no messages space is available at the socket to hold the message to be transmitted, then
send() normally blocks, unless the socket has been placed in non-blocking I/O mode.

MSG_DONTROUTE is usually used only by diagnostic or routing programs.

Valid values for parameter Flags

Value Description

MSG_DONTROUTE
Specifies that the data should not
be subject to routing.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



331 CHAPTER 5 API functions

5.3.14    sendto()

Description

Hands data to the stack in order to send it to a specified address on a socket. The stack will
copy the data into the socket buffer. In blocking mode, the function returns when all data
have been accepted by the stack. If non blocking mode, the function returns immediately.

Prototype

int sendto(      int      Socket,
           const char   * pBuffer,
                 int      NumBytes,
                 int      Flags,
                 struct   sockaddr *pDestAddr,
                 int      NumBytesAddr);

Parameters

Parameter Description

Socket Socket handle
pBuffer Pointer to a buffer that contains data to send
NumBytes Number of bytes to send from pBuffer
Flags Ignored at the moment
pDestAddr Pointer to a buffer containing the destination address
NumBytesAddr Length of the address stored at pDestAddr in bytes

Return value

< 0 Error (SOCKET_ERROR).
≥ 0 OK, Number of bytes accepted by the stack and ready to be sent. Note: In

blocking mode this can only be the full number of bytes, since the function
would otherwise block.

Additional information

In contrast to send(), sendto() can be used at any time. The connection state is in which
case the address of the target is given by the pDestAddr parameter.

Valid values for parameter Flags

Value Description

MSG_DONTROUTE
Specifies that the data should not
be subject to routing.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



332 CHAPTER 5 API functions

5.3.15    setsockopt()

Description

Configures some options for the socket.

Prototype

int setsockopt(      int    Socket,
                     int    Level,
                     int    Name,
               const void * pVal,
                     int    ValLen);

Parameters

Parameter Description

Socket Socket handle.

Level
Level at which the option should be interpreted
(SOL_SOCKET for example).

Name Option enum.
pVal Pointer on the value for the given option.
ValLen Length of the data pointed by pVal.

Return value

0 Success.
-1 Error.

Valid values for parameter Option

For valid values and options please refer to getsockopt().

Example

void _EnableKeepAlive(long sock) {
    int v = 1;
    setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, &v, sizeof(v));
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



333 CHAPTER 5 API functions

5.3.16    shutdown()

Description

Stops specific activities on a socket.

Prototype

int shutdown(int hSock,
             int How);

Parameters

Parameter Description

hSock Socket handle.

How

One of the following modes:
• SHUT_RD : No more receive operations.
• SHUT_WR : No more send operations.
• SHUT_RDWR: No more receive & send operations.

Return value

0 Success.
-1 SOCKET_ERROR

Additional information

A shutdown() call causes all or a part of a full-duplex connection on the socket associated to
be shut down. If How is SHUT_RD, then further receives will be disallowed. If How is SHUT_WR,
then further sends will be disallowed. If How is 2, then further receives and sends will be
disallowed. The shutdown function does not block regardless of the SO_LINGER setting on
the socket.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



334 CHAPTER 5 API functions

5.3.17    socket()

Description

Creates a socket.

Prototype

int socket(int Domain,
           int Type,
           int Proto);

Parameters

Parameter Description

Domain Protocol family which should be used.
Type Specifies the type of the socket.

Proto
Specifies the protocol which should be used with the socket.
Must be set to zero except when Type is SOCK_RAW.

Return value

= -1 In case of error.
≥ 0 Socket handle.

Valid values for parameter Domain

Value Description

AF_INET IPv4 - Internet protocol version 4
AF_INET6 IPv6 - Internet protocol version 6

Valid values for parameter Type

Value Description

SOCK_STREAM Stream socket
SOCK_DGRAM Datagram socket
SOCK_RAW RAW socket

Additional information

The Domain parameter specifies a communication domain within which communication will
take place; the communication domain selects the protocol family which should be used.
The protocol family generally is the same as the address family for the addresses supplied
in later operations on the socket.

A SOCK_STREAM socket provides sequenced, reliable, two-way connection based byte
streams. A SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages
of a fixed - typically small - maximum length).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to UNIX pipes. A stream
socket must be in a connected state before it can send or receive data.

A connection to another socket is created with a connect() call. Once connected, data
can be transferred using send() and recv() calls. When a session has been completed, a
closesocket() should be performed.

The communications protocols used to implement a SOCK_STREAM ensure that data is not
lost or duplicated. If a piece of data (for which the peer protocol has buffer space) cannot
be successfully transmitted within a reasonable length of time, then the connection is
considered broken and calls will return -1 which indicates an error. The protocols optionally
keep sockets “warm” by forcing transmissions roughly every minute in the absence of

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



335 CHAPTER 5 API functions

other activity. An error is then indicated if no response can be elicited on an otherwise idle
connection for a extended period (such as five minutes).

When receiving data from a socket of type SOCK_STREAM only up to the requested amount
of data is consumed from the socket buffer upon calling a receive routine. Excess bytes of
a message remain in the socket buffer and are available upon further calls to the receive
routine.

When receiving data from a socket that is not of type SOCK_STREAM like a socket of type
SOCK_DGRAM or SOCK_RAW one complete message (in the chunk as it was received) will be
consumed and excess bytes of this message that are not read out of the buffer will be
discarded and are not available for further calls to the receive routine.

SOCK_DGRAM sockets allow sending of datagrams to correspondents named in sendto()
calls. Datagrams are generally received with recvfrom(), which returns the next datagram
with its return address.

SOCK_RAW sockets allow receiving data including network and IP header and allow sending
of data either with or without specifying the IP header yourself. RAW sockets are operated
the same way as SOCK_DGRAM sockets but allow the ability to receive data including the
IP and protocol header and to implement your own protocol. For using RAW sockets it
is mandatory to call IP_RAW_Add on page 133 during the initialization of the stack. More
information about RAW sockets can be found below.

The operation of sockets is controlled by socket-level options. The getsockopt() and
setsockopt() functions are used to get and set options. Refer to getsockopt on page 320
and setsockopt on page 332 for detailed information.

RAW sockets (receiving)

For RAW sockets the Proto parameter specifies the IP protocol that will be received using
this socket. Protocols registered to be used with IP_*_Add() will be handled the stack and
can not be used with RAW sockets at the same time. Using IPPROTO_RAW will receive data
for any protocol not handled by the IP stack.

RAW sockets (sending)

For RAW sockets the Proto parameter specifies the IP protocol that will be entered into
the IP header when sending data using this socket. Using IPPROTO_RAW for Proto for a
sending socket results in the same as setting the socket option IP_HDRINCL for this socket
by using setsockopt on page 332 and requires the user to include his own IP header in
the data to send.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



336 CHAPTER 5 API functions

5.3.18    IP_RAW_AddPacketToSocket()

Description

Adds a packet and its data to a RAW socket (buffer). The current pData pointer and
NumBytes of the packet will be used for the payload that will be added to the RAW socket
(buffer).

Prototype

int IP_RAW_AddPacketToSocket(int         hSock,
                             IP_PACKET * pPacket);

Parameters

Parameter Description

hSock Socket handle of a RAW socket.
pPacket Packet to add to socket (buffer).

Return value

≥ 0 O.K., packet is now handled by the stack.
< 0 Error. Packet has to be freed by application.

Additional information

This function can be used to imitate a packet socket using RAW socket API. As the new
data gets stored into the socket buffer without traversing all the way through other layers
like IPv4, it is more effective but lacks a proper IP header. Therefore things like getting the
source address using recvfrom() is not supported and will return invalid data.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



337 CHAPTER 5 API functions

5.3.19    IP_SOCKET_AbortRead()

Description

Aborts a blocking recv(), recvfrom() and its variations or select() call on a socket.

Prototype

int IP_SOCKET_AbortRead(int hSock);

Parameters

Parameter Description

hSock Socket handler.

Return value

0 O.K.
-1 (SOCKET_ERROR) Error, socket is invalid.

Additional information

Using this routine on a socket that is currently waited on using recv() or recvfrom() or one
of its variations aborts the blocking wait process. The waiting API sets IP_ERR_USER_ABORT
as socket error. For select() instead of SOCKET_ERROR , select() directly returns
IP_ERR_USER_ABORT instead of SOCKET_ERROR if the socket aborted was part of the “read”
FD_SET .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



338 CHAPTER 5 API functions

5.3.20    IP_SOCKET_AddGetSetOptHook()

Description

This function adds a callback that gets executed when the application uses getsockopt()/
setsockopt() with the registered option.

Prototype

void IP_SOCKET_AddGetSetOptHook(IP_SOCK_HOOK_ON_SETGETOPT      * pHook,
                                IP_SOCK_HOOK_ON_GETSETOPT_FUNC * pf,
                                int                              Name);

Parameters

Parameter Description

pHook Management block of type IP_SOCK_HOOK_ON_SETGETOPT .
pf Callback to execute on getsockopt()/setsockopt() .

Name

Option name for which the callback gets executed. To avoid
conflicts between newly added and existing option names,
the base of IP_SOCK_GETSETOPT_HOOK_NAME_BASE should be
used when implementing your own options.

Example

enum {
  APP_SOCK_OPT_VENDOR_NAME = IP_SOCK_GETSETOPT_HOOK_NAME_BASE
};

static char                       _acVendor[32];
static IP_SOCK_HOOK_ON_SETGETOPT  _SockoptHook_VendorName;
static IP_SOCK_HOOK_ON_SETGETOPT  _SockoptHook_SO_RXDATA;
static U8                         _ShowNoteOnce_SO_RXDATA;

/*********************************************************************
*
*       _cbGetSetVendorName()
*
*  Function description
*    Callback for application specific socket option extension of
*    set/get an application specific vendor name.
*
*  Parameters
*    Type  : Source/reason of execution:
*            * IP_SOCK_HOOK_GETOPT
*            * IP_SOCK_HOOK_SETOPT
*    hSock : Socket handle.
*    Level : Socket level such as SOL_SOCKET .
*    Name  : Option name - APP_SOCK_OPT_VENDOR_NAME .
*    pVal  : Pointer to the string to set or where to read to.
*    ValLen: Length of string to set or size of buffer (including
*            string termination) where to read to.
*
*  Return value
*    == IP_SOCK_HOOK_IGNORE_CB: Magic return value used to tell the
*                               stack that while it ended up in the
*                               callback it should still execute its
*                               regular (internal) behavior.
*    == 0                     : O.K.
*    == IP_ERR_LOGIC          : Not able to get the string as no buffer
*                               or a zero buffer has been given.
*    == IP_ERR_MSG_SIZE       : Unable to get/set a string due to string
*                               or buffer size.
*
*/
static int _cbGetSetVendorName(unsigned Type, int hSock, int Level, int Name, void* pVal, int ValLen) {
  unsigned Len;
  int      r;

  IP_USE_PARA(hSock);
  IP_USE_PARA(Level);
  IP_USE_PARA(Name);

  r = 0;  // Assume O.K.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



339 CHAPTER 5 API functions

  if (Type == IP_SOCK_HOOK_GETOPT) {
    //
    // Get vendor name.
    //
    if ((pVal == NULL) || (ValLen == 0)) {
      r = IP_ERR_LOGIC;
    } else {
      Len = strlen(_acVendor) + 1;  // Always count the termination char.
      if ((unsigned)ValLen < Len) {
        r = IP_ERR_MSG_SIZE;
      } else {
        memcpy(pVal, &_acVendor[0], Len);
      }
    }
  } else {
    //
    // Set vendor name.
    //
    if ((pVal == NULL) || (ValLen == 0)) {
      _acVendor[0] = '\0';  // Clear vendor name.
    } else {
      if ((unsigned)ValLen > sizeof(_acVendor)) {
        r = IP_ERR_MSG_SIZE;
      } else {
        memcpy(&_acVendor[0], pVal, ValLen);
      }
    }
  }
  return r;
}

/*********************************************************************
*
*       _cbOnSockopt_SO_RXDATA()
*
*  Function description
*    Callback for application specific socket option extension to
*    notify in case get SO_RXDATA is used.
*
*  Parameters
*    Type  : Source/reason of execution:
*            * IP_SOCK_HOOK_GETOPT
*            * IP_SOCK_HOOK_SETOPT
*    hSock : Socket handle.
*    Level : Socket level such as SOL_SOCKET .
*    Name  : Option name.
*    pVal  : Pointer to the option value.
*    ValLen: Length of the option at pVal .
*
*  Return value
*    == IP_SOCK_HOOK_IGNORE_CB: Magic return value used to tell the
*                               stack that while it ended up in the
*                               callback it should still execute its
*                               regular (internal) behavior.
*    == 0                     : O.K.
*    != 0                     : Error (typically negative) that will be
*                               stored as socket error. The API call
*                               itself will still return SOCKET_ERROR .
*                               Value is limited to the size of signed char.
*
*/
static int _cbOnSockopt_SO_RXDATA(unsigned Type, int hSock, int Level, int Name, void* pVal, int ValLen) {
  IP_USE_PARA(Type);
  IP_USE_PARA(hSock);
  IP_USE_PARA(Level);
  IP_USE_PARA(Name);
  IP_USE_PARA(pVal);
  IP_USE_PARA(ValLen);

  if (_ShowNoteOnce_SO_RXDATA == 0u) {
    _ShowNoteOnce_SO_RXDATA = 1u;
    printf("NOTE: You can use IP_SOCKET_GetNumRxBytes() for a more direct call.\n");
  }
  return IP_SOCK_HOOK_IGNORE_CB;
}

/*********************************************************************
*
*       _InstallAppSocketCallbacks()
*
*  Function description
*    Installs a couple of application specific sample callbacks for
*    getsockopt()/setsockopt() options.
*/
static void _InstallAppSocketCallbacks(void) {
  IP_SOCKET_AddGetSetOptHook(&_SockoptHook_VendorName, _cbGetSetVendorName   , APP_SOCK_OPT_VENDOR_NAME);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



340 CHAPTER 5 API functions

  IP_SOCKET_AddGetSetOptHook(&_SockoptHook_SO_RXDATA , _cbOnSockopt_SO_RXDATA, SO_RXDATA);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



341 CHAPTER 5 API functions

5.3.21    IP_SOCKET_CloseAll()

Description

Closes all socket handles that are open. Can be used to close all sockets in case of changing
the local IP address or similar actions that change connection parameters.

Prototype

void IP_SOCKET_CloseAll(U32 ConfMask);

Parameters

Parameter Description

ConfMask
Bitwise-OR bit mask of configurations:
• CLOSE_ALL_KEEP_LISTEN: Keep listening sockets.

Example: Closing all webserver child tasks

The following code closes all webserver child tasks for example if the target has changed
its IP address. The parent listening socket shall be kept open as it is independent from the
IP address and typically listens to any address of the system.

OS_EnterRegion();  // Avoid being disturbed by disabling task switches.
//
// End all child tasks that might access sockets.
//
for (i = 0; i < MAX_CONNECTIONS; i++) {
  r = OS_IsTask(&_aWebTasks[i]);
  if (r != 0) {
    OS_TerminateTask(&_aWebTasks[i]);
  }
}
//
// Close all sockets that might been abandoned but
// leave open listening parent sockets.
//
IP_SOCKET_CloseAll(CLOSE_ALL_KEEP_LISTEN);
OS_LeaveRegion();  // Allow task switches again.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



342 CHAPTER 5 API functions

5.3.22    IP_SOCKET_ConfigSelectMultiplicator()

Description

Configures the multiplicator for the timeout parameter of select(). Default multiplicator
is 1.

Prototype

void IP_SOCKET_ConfigSelectMultiplicator(U32 v);

Parameters

Parameter Description

v Multiplicator to be used.

Additional information

By default the select() timeout is given in ticks of 1 ms. The UNIX standard takes the
timeout in a structue including seconds. The multiplicator can be configured but as it is
more common for an embedded system we will stick to units of 1 tick (typically 1 ms) for
the default.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



343 CHAPTER 5 API functions

5.3.23    IP_SOCKET_GetAddrFam()

Description

Returns the IP version of a socket (IPv4 or IPv6).

Prototype

U16 IP_SOCKET_GetAddrFam(int hSock);

Parameters

Parameter Description

hSock Socket handle.

Return value

0 Invalid socket handle.
AF_INET IPv4 socket.
AF_INET6 IPv6 socket.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



344 CHAPTER 5 API functions

5.3.24    IP_SOCKET_GetErrorCode()

Description

Returns the last error reported on a socket. Returns 0 if the socket has not previously
reported an error.

Prototype

int IP_SOCKET_GetErrorCode(int hSock);

Parameters

Parameter Description

hSock Socket handle.

Return value

Last error of the socket. Please refer to the IP.h IP_ERR_* return codes for more details.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



345 CHAPTER 5 API functions

5.3.25    IP_SOCKET_GetLocalPort()

Description

Returns the local port of a socket.

Prototype

U16 IP_SOCKET_GetLocalPort(int hSock);

Parameters

Parameter Description

hSock Socket handle.

Return value

> 0 OK. Local port number of the socket in network byte order.
= 0 Error. Socket not available or no local port bound to socket.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



346 CHAPTER 5 API functions

5.3.26    IP_SOCKET_GetNumRxBytes()

Description

Returns the number of received bytes

Prototype

int IP_SOCKET_GetNumRxBytes(int hSock);

Parameters

Parameter Description

hSock Socket handler.

Return value

> 0 Number of bytes received.
= -1 (SOCKET_ERROR) Error, socket is invalid.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



347 CHAPTER 5 API functions

5.3.27    IP_SOCKET_SetDefaultOptions()

Description

Sets the socket options enabled by default.

Prototype

void IP_SOCKET_SetDefaultOptions(U16 v);

Parameters

Parameter Description

v Socket options which should be enabled.

Additional information

By default, keepalive (SO_KEEPALIVE ) socket option is enabled. Refer to setsockopt()
for a list of supported socket options. This only applies for socket options that are ’binary’,
i.e. something like SO_KEEPALIVE which is either set or not, and not for options like
SO_RCVTIMEO that also require a timeout parameter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



348 CHAPTER 5 API functions

5.3.28    IP_SOCKET_SetLimit()

Description

Sets the maximum number of allowed sockets.

Prototype

void IP_SOCKET_SetLimit(unsigned Limit);

Parameters

Parameter Description

Limit
Sets a limit on number of sockets which can be created. The
default is 0 which means that no limit is set.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



349 CHAPTER 5 API functions

5.3.29    IP_SOCKET_SetLinger()

Description

Activates linger.

Prototype

int IP_SOCKET_SetLinger(int hSock,
                        int Linger);

Parameters

Parameter Description

hSock Socket handler.
Linger Flag to activate or deactivate linger.

Return value

0 O.K.
-1 (SOCKET_ERROR) Error, socket is invalid.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



350 CHAPTER 5 API functions

5.3.30    IP_SOCKET_SetRxTimeout()

Description

Sets the rx timeout

Prototype

int IP_SOCKET_SetRxTimeout(int hSock,
                           int Timeout);

Parameters

Parameter Description

hSock Socket handler.
Timeout New timeout value.

Return value

0 O.K.
-1 (SOCKET_ERROR) Error, socket is invalid.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



351 CHAPTER 5 API functions

5.3.31    IP_SOCK_recvfrom_info()

Description

Receives a datagram and stores the source address and additional information as requested.

Prototype

int IP_SOCK_recvfrom_info(int                     hSock,
                          char                  * pData,
                          int                     NumBytes,
                          int                     Flags,
                          struct                  sockaddr *pFrom,
                          int                   * pAddrLen,
                          IP_SOCK_RECVFROM_INFO * pInfo);

Parameters

Parameter Description

hSock Handle on the socket.
pData A pointer to a buffer for incoming data.
NumBytes Number of bytes of the buffer.
Flags OR-combination of flags (MSG_PEEK).

pFrom

An optional pointer to a buffer where the address of the
connecting entity is stored. The format of the address
depends on the defined address family which was defined
when the socket was created. Can be NULL.

pAddrLen

An optional pointer to an integer where the length of the
received address is stored. Just like the format of the
address, the length of the address depends on the defined
address family.

pInfo

Pointer to a structure of type IP_SOCK_RECVFROM_INFO
where to store additional requested information about the
received data. MUST NOT be NULL. User must also make
sure IP_SOCK_RECVFROM_INFO->pTimestamp is initialized
correctly (NULL or valid pointer to a IP_PACKET_TIMESTAMP
structure).

Return value

= -1 Error occurred.
≥ 0 Number of bytes received.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



352 CHAPTER 5 API functions

5.3.32    IP_SOCK_recvfrom_ts()

Description

Receives a datagram and stores the source address and timestamp.

Prototype

int IP_SOCK_recvfrom_ts(int                   hSock,
                        char                * pData,
                        int                   NumBytes,
                        int                   Flags,
                        struct                sockaddr *pFrom,
                        int                 * pAddrLen,
                        IP_PACKET_TIMESTAMP * pTimestamp);

Parameters

Parameter Description

hSock Handle on the socket.
pData A pointer to a buffer for incoming data.
NumBytes Number of bytes of the buffer.
Flags OR-combination of flags (MSG_PEEK).

pFrom

An optional pointer to a buffer where the address of the
connecting entity is stored. The format of the address
depends on the defined address family which was defined
when the socket was created. Can be NULL.

pAddrLen

An optional pointer to an integer where the length of the
received address is stored. Just like the format of the
address, the length of the address depends on the defined
address family.

pTimestamp Pointer where to store the packet timestamp. Can be NULL.

Return value

= -1 Error occurred.
≥ 0 Number of bytes received.

Additional information

Requires IP_SUPPORT_PACKET_TIMESTAMP and/or IP_SUPPORT_PTP to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



353 CHAPTER 5 API functions

5.3.33    IP_TCP_Accept()

Description

Registers a callback that will be executed upon a new client.

Prototype

int IP_TCP_Accept
     (IP_TCP_ACCEPT_HOOK * pHook,
      void                 ( *pfAccept)
(int hSock , IP_TCP_ACCEPT_INFO * pInfo , void * pContext ),
      int                  hSock,
      void               * pContext);

Parameters

Parameter Description

pHook Management element of type IP_TCP_ACCEPT_HOOK.
pfAccept Callback to register.

hSock
Parent socket handle (needs to have bind() and listen()
done).

pContext Custom context that will be passed to the callback.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

The registered callback has to prevent any blocking situation. Calling send() for example
on a non-blocking socket is fine.

Only clients fitting the registered parent socket will be reported to the callback like a
regular accept() call. Therefore the usual steps like calling bind() and listen() are still
necessary.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



354 CHAPTER 5 API functions

5.3.34    IP_FD_CLR()

Description

Removes a socket from a set.

Prototype

void IP_FD_CLR(int         hSock,
               IP_fd_set * pSet);

Parameters

Parameter Description

hSock Socket handle.
pSet Pointer on a set of type IP_fd_set.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



355 CHAPTER 5 API functions

5.3.35    IP_FD_SET()

Description

Adds a socket to a set.

Prototype

void IP_FD_SET(int         hSock,
               IP_fd_set * pSet);

Parameters

Parameter Description

hSock Socket handle.
pSet Pointer on a set of type IP_fd_set.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



356 CHAPTER 5 API functions

5.3.36    IP_FD_ISSET()

Description

Checks if a socket is part of a set.

Prototype

int IP_FD_ISSET(int         hSock,
                IP_fd_set * pSet);

Parameters

Parameter Description

hSock Socket handle.
pSet Pointer on a set of type IP_fd_set.

Return value

1 Socket is part of the set.
0 Socket is not part of the set.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



357 CHAPTER 5 Data structures

5.4    Data structures

5.4.1    sockaddr

Description

This structure holds socket address information for many types of sockets.

Prototype

struct sockaddr {
  U16     sa_family;
  char    sa_data[14];
};

Member Description

sa_family Address family. Normally AF_INET.

sa_data
The character array sa_data contains the destination address and
port number for the socket.

Additional information

The structure sockaddr is mostly used as function parameter. To deal with struct sockaddr,
a parallel structure struct sockaddr_in is implemented. The structure sockaddr_in is the
same size as structure sockaddr, so that a pointer can freely be casted from one type to
the other. Refer to sockaddr_in on page 358 for more information and an example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



358 CHAPTER 5 Data structures

5.4.2    sockaddr_in

Description

Structure for handling Internet addresses.

Prototype

struct sockaddr_in {
  short          sin_family;
  unsigned short sin_port;
  struct in_addr sin_addr;
  char           sin_zero[8];
};

Member Description

sin_family Address family. Normally AF_INET.
sin_port Port number for the socket.

sin_addr
Structure of type in_addr. The structure represents a 4-byte number
that represents one digit in an IP address per byte.

sin_zero sin_zero member is unused.

Example

Refer to connect on page 314 for an example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



359 CHAPTER 5 Data structures

5.4.3    in_addr

Description

4-byte number that represents one digit in an IP address per byte.

Prototype

struct in_addr {
  unsigned long  s_addr;
};

Member Description

s_addr Number that represents one digit in an IP address per byte.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



360 CHAPTER 5 Data structures

5.4.4    hostent

Description

The hostent structure is used by functions to store information about a given host, such
as host name, IPv4 address, and so on.

Prototype

struct hostent {
   char *   h_name;
   char **  h_aliases;
   int      h_addrtype;
   int      h_length;
   char **  h_addr_list;
};

Member Description

h_name Official name of the host.
h_aliases Alias list.
s_addrtype Host address type.
h_length Length of the address.
s_addr_list List of addresses from the name server.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



361 CHAPTER 5 Data structures

5.4.5    IP_SOCK_HOOK_ON_GETSETOPT_FUNC

Description

Callback for custom implementations with setsockopt()/getsockopt() .

Type definition

typedef int (IP_SOCK_HOOK_ON_GETSETOPT_FUNC)(unsigned Type,
                                             int      hSock,
                                             int      Level,
                                             int      Name,
                                             void   * pVal,
                                             int      ValLen);

Parameters

Parameter Description

Type
Source/reason of execution:
• IP_SOCK_HOOK_GETOPT
• IP_SOCK_HOOK_SETOPT

hSock Socket handle.
Level Socket level such as SOL_SOCKET .
Name Option name.
pVal Pointer to the option value.
ValLen Length of the option at pVal .

Return value

= IP_SOCK_HOOK_IGNORE_CB Magic return value used to tell the stack that while
it ended up in the callback it should still execute its
regular (internal) behavior.

= 0 O.K.
≠ 0 Error (typically negative) that will be stored as socket

error. The API call itself will still return SOCKET_ERROR
. Value is limited to the size of signed char.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



362 CHAPTER 5 Data structures

5.4.6    IP_SOCK_RECVFROM_INFO

Description

Returns information about the received UDP packet typically not available with the original
BSD compatible call.

Type definition

typedef struct {
  IP_PACKET_TIMESTAMP * pTimestamp;
  void                * pLAddrV6;
  unsigned              AddrLenV6;
  U32                   LAddr;
  U8                    IFaceId;
} IP_SOCK_RECVFROM_INFO;

Structure members

Member Description

pTimestamp Pointer where to store the packet timestamp. Can be NULL.

pLAddrV6
Pointer to buffer where to store the local IPv6 address on
which the datagram was received. Can be NULL.

AddrLenV6 Length of the buffer at pLAddrV6 .
LAddr Local IPv4 address on which the datagram was received.
IFaceId Zero-based interface index the packet has been received on.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



363 CHAPTER 5 Error codes

5.5    Error codes
The following table contains a list of generic error codes, generally full success is 0. Definite
errors are negative numbers, and indeterminate conditions are positive numbers.

Symbolic name Value Description

Programming errors

IP_ERR_PARAM -10 Bad parameter.
IP_ERR_LOGIC -11 Sequence of events that shouldn’t happen.

System errors

IP_ERR_NOMEM -20 malloc() or calloc() failed.
IP_ERR_NOBUFFER -21 Run out of free packets.
IP_ERR_RESOURCE -22 Run out of other queue-able resource.
IP_ERR_BAD_STATE -23 TCP layer error.
IP_ERR_TIMEOUT -24 Timeout error on TCP layer.

Networking errors

IP_ERR_BAD_HEADER -32 Bad header at upper layer (for upcalls).
IP_ERR_NO_ROUTE -33 Can not find a reasonable next IP hop.

Networking errors

IP_ERR_SEND_PENDING 1 Packet queued pending an ARP reply.
IP_ERR_NOT_MINE 2 Packet was not of interest (upcall reply).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 6
 
TCP zero-copy interface

The TCP protocol can be used via socket functions or the TCP zero-copy interface which
is described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



365 CHAPTER 6 TCP zero-copy

6.1    TCP zero-copy
This section documents an optional extension to the Sockets layer, the TCP zero-copy
API. The TCP zero-copy API is intended to assist the development of higher-performance
embedded network applications by allowing the application direct access to the TCP/IP stack
packet buffers. This feature can be used to avoid the overhead of having the stack copy
data between application-owned buffers and stack-owned buffers in send() and recv() ,
but the application has to fit its data into, and accept its data from, the stack buffers.

The TCP zero-copy API is small because it is simply an extension to the existing Sockets
API that provides an alternate mechanism for sending and receiving data on a socket. The
Sockets API is used for all other operations on the socket.

6.1.1    Allocating, freeing and sending TCP packet buffers
The two functions for allocating and freeing packet buffers are straightforward requests:

IP_TCP_Alloc() allocates a packet buffer from the pool of packet buffers on the stack
and IP_TCP_Free() frees a packet buffer. Applications using the TCP zero-copy API are
responsible for allocating packet buffers for use in sending data, as well as for freeing
buffers that have been used to receive data and those that the application has allocated
but decided not to use for sending data. As these packet buffers are a limited resource, it
is important that applications free them promptly when they are no longer of use.

The functions for sending data, IP_TCP_Send() and IP_TCP_SendAndFree() , send a packet
buffer of data using a socket. The TCP zero-copy interface supports two different approaches
to send and free a packet. One approach is that the stack frees the packet independent from
the success of sending the packet. Therefore, IP_TCP_SendAndFree() is called to send and
free the packet. It frees the packet independent from the success of the send operation.
The other approach is that IP_TCP_Send() is called. In this case it is the responsibility of
the application to free the packet. Depending on the return value the application can decide
if IP_TCP_Free() should be called to free the packet.

6.1.2    Callback function for TCP zero-copy
Applications that use the TCP Zero-copy API for receiving data must include a callback
function for acceptance of received packets, and must register the callback function with
the socket using the setsockopt() sockets function with the SO_CALLBACK option name.
The callback function, once registered, receives not only received data packets, but also
connection events that result in socket errors.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



366 CHAPTER 6 Sending data with the TCP zero-copy API

6.2    Sending data with the TCP zero-copy API
To send data with the TCP zero-copy API, you should proceed as follow:
1. Allocating a packet buffer
2. Filling the allocated buffer
3. Sending the packet

The following section describes the procedure for allocating a packet buffer, sending data,
and freeing the packet buffer step by step.

6.2.1    Allocating a packet buffer for TCP zero-copy
The first step in using the TCP zero-copy API to send data is to allocate a packet buffer from
the stack using the IP_TCP_Alloc() function. This function takes the maximum length of
the data you intend to send in the buffer as argument and returns a pointer to an IP_PACKET
structure.

IP_PACKET * pPacket;
U32         DataLen;             // Amount of data to send

DataLen = 512;                   // Should indicate amount of data to send
pPacket = IP_TCP_Alloc(DataLen);
if (pPacket == NULL) {
  // Error, could not allocate packet buffer
}

This limits how much data you can send in one call using the TCP zero-copy API, as the
data sent in one call to IP_TCP_Send() must fit in a single packet buffer. The actual limit is
determined by the big packet buffer size, less 68 bytes for protocol headers. If you try to
request a larger buffer than this, IP_TCP_Alloc() returns NULL to indicate that it cannot
allocate a sufficiently large buffer.

6.2.2    Filling the allocated buffer with data for TCP zero-copy
Having allocated the packet buffer, you now fill it with the data to send. The function
IP_TCP_Alloc() has initialized the returned IP_PACKET pPacket and so pPacket->pData
points to where you can start depositing data.

6.2.3    Sending the TCP zero-copy packet
Finally, you send the packet by giving it back to the stack using the function IP_TCP_Send() .

e = IP_TCP_Send(socket, pPacket);
if (e < 0) {
  IP_TCP_Free(pPacket);
}

This function sends the packet over TCP, or returns an error. If its return value is less than
zero, it has not accepted the packet and the application has to decide either to free the
packet or to retain it for sending later. Use IP_TCP_SendAndFree() if the packet should be
freed automatically in any case.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



367 CHAPTER 6 Receiving data with the TCP zero-copy API

6.3    Receiving data with the TCP zero-copy API
To receive data with the TCP zero-copy API, you should proceed as follow:
1. Writing a callback function
2. Registering the callback function

6.3.1    Writing a callback function for TCP zero-copy
Using the TCP zero-copy API for receiving data requires the application developer to write
a callback function that the stack can use to inform the application of received data packets
and other socket events. This function is expected to conform to the following prototype:

int rx_callback(long Socket, IP_PACKET * pPacket, int code);

The stack calls this function when it has received a data packet or other event to report
for a socket. The parameter Socket identifies the socket. The parameter pPacket passes
a pointer to the packet buffer (if there is a packet buffer). If pPacket is not NULL, it is a
pointer to a packet buffer containing received data for the socket. pPacket->pData points
to the start of the received data, and pPacket->NumBytes indicates the number of bytes
of received data in this buffer.

The parameter code passes an error event (if there is an error to report). If code is not
0, it is a socket error indicating that an error or other event has occurred on the socket.
Typical nonzero values are IP_ERR_SHUTDOWN and IP_ERR_CONN_RESET. IP_ERR_SHUTDOWN
defines that the connected peer has closed its end of the connection and sends no more
data. IP_ERR_CONN_RESET defines that the connected peer has abruptly closed its end of
the connection and neither sends nor receives more data.

Returned values

The callback function may return one of the following values:

Symbolic Numerical Description

IP_OK 0 Data handled, packet can be freed.

IP_OK_KEEP_PACKET 1

Data will be handled by application later,
the stack should NOT free the packet. This
will be done by the application at a later
time when the data has been handled and
the packet is no longer needed.

Note: The callback function is called from the stack and is expected to return promptly. No
blocking API shall be called from within the callback.

6.3.2    Registering the TCP zero-copy callback function
The application must also inform the stack of the callback function. setsockopt() function
provides an additional socket option, SO_CALLBACK , which should be used for this purpose
once the socket has been created. The following code fragment illustrates the use of this
option to register a callback function named RxUpcall() on the socket Socket :

setsockopt(Socket, SOL_SOCKET, SO_CALLBACK, (void *)RxUpcall, 0);

See the function setsockopt on page 332 for more details.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



368 CHAPTER 6 API functions

6.4    API functions
Function Description

IP_TCP_Alloc()
Allocates a packet buffer large enough to hold
NumBytes bytes of TCP data, plus TCP, IP and MAC
headers.

IP_TCP_AllocEx()
Allocates a packet buffer large enough to hold
NumBytes bytes of TCP data, plus TCP, IP and MAC
headers.

IP_TCP_Free() Free a packet allocated by IP_TCP_Alloc().
IP_TCP_Send() Sends a packet buffer on a socket.
IP_TCP_SendAndFree() Sends a packet buffer on a socket.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



369 CHAPTER 6 API functions

6.4.1    IP_TCP_Alloc()

Description

Allocates a packet buffer large enough to hold NumBytes bytes of TCP data, plus TCP, IP
and MAC headers.

Prototype

IP_PACKET *IP_TCP_Alloc(unsigned NumBytes);

Parameters

Parameter Description

NumBytes Length of the data which should be sent.

Return value

≠ NULL Success, pointer to the allocated buffer.
= NULL Error.

Additional information

This function must be called to allocate a buffer for sending data via IP_TCP_Send().
It returns the allocated packet buffer with its pPacket->pData field set to where the
application must deposit the data to be sent.

This datasize limits how much data that you can send in one call using the TCP zero-copy
API, as the data sent in one call to IP_TCP_Send() must fit in a single packet buffer, with
the TCP, IP, and lower-layer headers that the stack needs to add in order to send the packet.

The actual limit is determined by the big packet buffer size (normally 1516 bytes). Refer
to IP_AddBuffers() for more information about defining buffer sizes. If you try to request
a larger buffer than this, IP_TCP_Alloc() returns NULL to indicate that it cannot allocate
a sufficiently-large buffer.

Example

IP_PACKET * pPacket;
U32 DataLen;                // Amount of data to send

DataLen = 1024;             // Should indicate amount of data to send
pPacket = IP_TCP_Alloc(DataLen);
if (pPacket == NULL) {
   // Error, could not allocate packet buffer
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



370 CHAPTER 6 API functions

6.4.2    IP_TCP_AllocEx()

Description

Allocates a packet buffer large enough to hold NumBytes bytes of TCP data, plus TCP, IP
and MAC headers.

Prototype

IP_PACKET *IP_TCP_AllocEx(unsigned NumBytes,
                          unsigned NumBytesHeader);

Parameters

Parameter Description

NumBytes Length of the data which should be sent.
NumBytesHeader Size of all headers (Ethernet + IPvX + TCPvX).

Return value

≠ NULL Success, pointer to the allocated buffer.
= NULL Error.

Additional information

For further information please refer to IP_TCP_Alloc().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



371 CHAPTER 6 API functions

6.4.3    IP_TCP_Free()

Description

Free a packet allocated by IP_TCP_Alloc().

Prototype

void IP_TCP_Free(IP_PACKET * p);

Parameters

Parameter Description

p Pointer to the IP_Packet structure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



372 CHAPTER 6 API functions

6.4.4    IP_TCP_Send()

Description

Sends a packet buffer on a socket.

Prototype

int IP_TCP_Send(int         hSock,
                IP_PACKET * pPacket);

Parameters

Parameter Description

hSock Socket handle.
pPacket Pointer to the IP_PACKET structure.

Return value

= 0 The packet was sent successfully.
< 0 The packet was not accepted by the stack. The packet has

already been freed.
= SOCKET_ERROR Error. The packet must be freed using IP_TCP_Free().
= IP_ERR_BAD_STATE Error. The packet must be freed using IP_TCP_Free().
= IP_ERR_RESOURCE Error. The packet must be freed using IP_TCP_Free().
> 0 The packet has been accepted and queued on the socket but

has not yet been transmitted.

Additional information

Applications using the TCP zero-copy API are responsible for allocating packet buffers for
use in sending data, as well as for freeing buffers that have been used to receive data and
those that the application has allocated but decided not to use for sending data. As these
packet buffers are a limited resource, it is important that applications free them promptly
when they are no longer of use.

Packets have to be freed after processing. The TCP zero-copy interface supports two
different approaches to free a packet. One approach is that the stack frees the packet
independent from the success of sending the packet. Therefore, IP_TCP_SendAndFree()
is called to send the packet and free the packet. It frees the packet independently from
the success of the send operation. The other approach is that IP_TCP_Send() is called. In
this case it is the responsibility application programmer to free the packet. Depending on
the return value the application programmer can decide if IP_TCP_Free() should be called
to free the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



373 CHAPTER 6 API functions

6.4.5    IP_TCP_SendAndFree()

Description

Sends a packet buffer on a socket.

Prototype

int IP_TCP_SendAndFree(int         hSock,
                       IP_PACKET * pPacket);

Parameters

Parameter Description

hSock Socket handle.
pPacket Pointer to the IP_PACKET structure.

Return value

= 0 The packet was sent successfully.
< 0 The packet was not accepted by the stack.
> 0 The packet has been accepted and queued on the socket but has not yet been

transmitted.

Additional information

Applications using the TCP zero-copy API are responsible for allocating packet buffers for
use in sending data, as well as for freeing buffers that have been used to receive data and
those that the application has allocated but decided not to use for sending data. As these
packet buffers are a limited resource, it is important that applications free them promptly
when they are no longer of use.

IP_TCP_SendAndFree() frees packet pPacket after processing. It frees the packet
independent from the success of the send operation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 7
 
UDP zero-copy interface

The UDP transfer protocol can be used via socket functions or the zero-copy interface which
is described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



375 CHAPTER 7 UDP zero-copy

7.1    UDP zero-copy
The UDP zero-copy API functions are provided for systems that do not need the overhead of
sockets. These routines impose a lower demand on CPU and system memory requirements
than sockets. However, they do not offer the portability of sockets.

UDP zero-copy API functions are intended to assist the development of higher-performance
embedded network applications by allowing the application direct access to the UDP/IP
stack packet buffers. This feature can be used to avoid the overhead of having the stack
copy data between application-owned buffers and stack-owned buffers in sendto() and
recvfrom(), but the application has to fit its data into, and accept its data from the stack
buffers. Refer to emNet UDP discover (IP_UDPDiscover.c / IP_UDPDiscover_ZeroCopy.c)
on page 69 for detailed information about the UDP zero-copy example application.

7.1.1    Allocating, freeing and sending UDP packet buffers
The two functions for allocating and freeing packet buffers are straightforward requests:

IP_UDP_Alloc() allocates a packet buffer from the pool of packet buffers on the stack
and IP_UDP_Free() frees a packet buffer. Applications using the UDP zero-copy API are
responsible for allocating packet buffers for use in sending data, as well as for freeing
buffers that have been used to receive data and those that the application has allocated
but decided not to use for sending data. As these packet buffers are a limited resource, it
is important that applications free them promptly when they are no longer of use.

The functions for sending data, IP_UDP_Send() and IP_UDP_SendAndFree() , send a packet
buffer of data using a port. The UDP zero-copy interface supports two different approaches
to send and free a packet. One approach is that the stack frees the packet independent from
the success of sending the packet. Therefore, IP_UDP_SendAndFree() is called to send and
free the packet. It frees the packet independent from the success of the send operation.
The other approach is that IP_UDP_Send() is called. In this case it is the responsibility of
the application to free the packet. Depending on the return value the application can decide
if IP_UDP_Free() should be called to free the packet.

7.1.2    Callback function for UDP zero-copy
Applications that use the UDP zero-copy API for receiving data must include a call- back
function for acceptance of received packets, and must register the callback function with
a port using the IP_UDP_Open() function. The callback function, once registered, receives
all matching data packets.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



376 CHAPTER 7 Sending data with the UDP zero-copy API

7.2    Sending data with the UDP zero-copy API
To send data with the UDP zero-copy API, you should proceed as follow:
1. Allocating a packet buffer
2. Filling the allocated buffer
3. Sending the packet

The following section describes the procedure for allocating a packet buffer, sending data,
and freeing the packet buffer step by step.

7.2.1    Allocating a packet buffer for UDP zero-copy
The first step in using the UDP zero-copy API to send data is to allocate a packet buffer from
the stack using the IP_UDP_Alloc() function. This function takes the maximum length of
the data you intend to send in the buffer as argument and returns a pointer to an IP_PACKET
structure.

IP_PACKET * pPacket;
U32         DataLen;             // Amount of data to send

DataLen = 512;                   // Should indicate amount of data to send
pPacket = IP_UDP_Alloc(DataLen);
if (pPacket == NULL) {
  // Error, could not allocate packet buffer
}

This limits how much data you can send in one call using the UDP zero-copy API, as the
data sent in one call to IP_UDP_Send() must fit in a single packet buffer. The actual limit is
determined by the big packet buffer size, less typically 42 bytes for protocol headers (14
bytes for Ethernet header, 20 bytes IP header, 8 bytes UDP header). If you try to request
a larger buffer than this, IP_UDP_Alloc() returns NULL to indicate that it cannot allocate
a sufficiently large buffer.

7.2.2    Filling the allocated buffer with data for UDP zero-copy
Having allocated the packet buffer, you now fill it with the data to send. The function
IP_UDP_Alloc() has initialized the returned IP_PACKET pPacket and so pPacket->pData
points to where you can start depositing data.

7.2.3    Sending the UDP zero-copy packet
Finally, you send the packet by giving it back to the stack using the function IP_UDP_Send() .

#define SRC_PORT  50020
#define DEST_PORT 50020
#define DEST_ADDR 0xC0A80101

e = IP_UDP_Send(0, htonl(DEST_ADDR), SRC_PORT, DEST_PORT, pPacket);
if (e < 0) {
  IP_UDP_Free(pPacket);
}

This function sends the packet over UDP, or returns an error. If its return value is less than
zero, it has not accepted the packet and the application has to decide either to free the
packet or to retain it for sending later. Use IP_UDP_SendAndFree() if the packet should be
freed automatically in any case.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



377 CHAPTER 7 Receiving data with the UDP zero-copy API

7.3    Receiving data with the UDP zero-copy API
To receive data with the UDP zero-copy API, you should proceed as follow:
1. Writing a callback function
2. Registering the callback function

7.3.1    Writing a callback function for UDP zero-copy
Using the UDP zero-copy API for receiving data requires the application developer to write a
callback function that the stack can use to inform the application of received data packets.
This function is expected to conform to the following prototype:

int rx_callback(IP_PACKET * pPacket, void * pContext)

The stack calls this function when it has received a data packet for a port. The parameter
pPacket points to the packet buffer. The packet buffer contains the received data for the
socket. pPacket->pData points to the start of the received data, and pPacket->NumBytes
indicates the number of bytes of received data in this buffer.

Returned values

The callback function may return one of the following values:

Symbolic Numerical Description

IP_OK 0 Data handled. emNet will free the packet.

IP_OK_KEEP_PACKET 1

Data will be handled by application later,
the stack should NOT free the packet. This
will be done by the application at a later
time when the data has been handled and
the packet is no longer needed.

Note: The callback function is called from the stack and is expected to return promptly. No
blocking API shall be called from within the callback.

7.3.2    Registering the UDP zero-copy callback function
The application must also inform the stack of the callback function. This is done by calling
the IP_UDP_Open() function. The following code fragment illustrates the use of this option
to register a callback function named RxUpcall() on the port 50020:

#define SRC_PORT  50020
#define DEST_PORT 50020

IP_UDP_Open(0L /* any foreign host */, SRC_PORT, DEST_PORT, RxUpCall, 0L /* any
 tag
*/);

For further information, refer to IP_UDP_Open on page 391.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



378 CHAPTER 7 API functions

7.4    API functions
Function Description

IP_UDP_Alloc()
Returns a pointer to a packet buffer big enough for
the specified sizes.

IP_UDP_AllocEx() Allocates a packet for UDP on the given interface.

IP_UDP_Close()
Closes a UDP connection handle and removes the
connection from demux table list of connections and
deallocates it.

IP_UDP_FindFreePort()
Obtains a random port number that is suitable
for use as the LPort parameter in a call to
IP_UDP_Open().

IP_UDP_Free() Frees the buffer which was used for a packet.

IP_UDP_GetDataSize()
Returns the size of the data contained in the
received UDP packet.

IP_UDP_GetDataPtr()
Returns a pointer to the data contained in the
received UDP packet.

IP_UDP_GetDestAddr()
Extracts destination IP address information from a
UDP packet.

IP_UDP_GetFPort()
Extracts foreign port information from a UDP
packet.

IP_UDP_GetIFIndex()
Extracts the zero-based interface index of the given
UDP Packet.

IP_UDP_GetLPort() Extracts local port information from a UDP packet.

IP_UDP_GetSrcAddr()
Extracts source IP address information from a UDP
packet.

IP_UDP_Open()
Creates a UDP connection to receive and pass
upwards UDP packets that match the parameters
passed.

IP_UDP_OpenEx()
Creates a UDP connection to receive, and pass
upwards UDP packets that match the parameters
passed.

IP_UDP_Send() Sends an UDP packet to a specified host.

IP_UDP_SendAndFree()
Sends an UDP packet to a specified host and frees
the packet.

IP_UDP_ReducePayloadLen() Reduces the payload length of an allocated packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



379 CHAPTER 7 API functions

7.4.1    IP_UDP_Alloc()

Description

Returns a pointer to a packet buffer big enough for the specified sizes.

Prototype

IP_PACKET *IP_UDP_Alloc(unsigned NumBytesData);

Parameters

Parameter Description

NumBytesData Length of the data which should be sent.

Return value

≠ NULL Success, pointer to the allocated buffer.
= NULL Error.

Additional information

Applications using the UDP zero-copy API are responsible for allocating packet buffers for
use in sending data, as well as for freeing buffers that have been used to receive data and
those that the application has allocated but decided not to use for sending data. As these
packet buffers are a limited resource, it is important that applications free them promptly
when they are no longer of use.

The UDP zero-copy interface supports two different approaches to free a packet. One
approach is that the stack frees the packet independent from the success of sending the
packet. Therefore, IP_UDP_SendAndFree() is called to send the packet and free the packet.
It frees the packet independent from the success of the send operation. The other approach
is that IP_UDP_Send() is called. In this case it is the responsibility of the application to
free the packet. Depending on the return value the application programmer can decide if
IP_UDP_Free() should be called to free the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



380 CHAPTER 7 API functions

7.4.2    IP_UDP_AllocEx()

Description

Allocates a packet for UDP on the given interface.

Prototype

IP_PACKET *IP_UDP_AllocEx(unsigned IFaceId,
                          unsigned NumBytesData);

Parameters

Parameter Description

IFaceId Zero-based interface index.
NumBytesData Length of the data which should be sent.

Return value

Success: Returns a pointer to the allocated buffer. Error : NULL.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



381 CHAPTER 7 API functions

7.4.3    IP_UDP_Close()

Description

Closes a UDP connection handle and removes the connection from demux table list of
connections and deallocates it.

Prototype

void IP_UDP_Close(IP_UDP_CONNECTION * pCon);

Parameters

Parameter Description

pCon Pointer to the UDP connection.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



382 CHAPTER 7 API functions

7.4.4    IP_UDP_FindFreePort()

Description

Obtains a random port number that is suitable for use as the LPort parameter in a call to
IP_UDP_Open().

Prototype

U16 IP_UDP_FindFreePort(void);

Return value

A usable port number in local endianness.

Additional information

The returned port number is suitable for use as the LPort parameter in a call to
IP_UDP_Open(). Refer to IP_UDP_Open() for more information. IP_UDP_FindFreePort()
avoids picking port numbers in the reserved range 0-1024, or in the range 1025-1199,
which may be used for server applications.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



383 CHAPTER 7 API functions

7.4.5    IP_UDP_Free()

Description

Frees the buffer which was used for a packet.

Prototype

void IP_UDP_Free(IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to a packet structure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



384 CHAPTER 7 API functions

7.4.6    IP_UDP_GetDataSize()

Description

Returns the size of the data contained in the received UDP packet.

Prototype

U16 IP_UDP_GetDataSize(const IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to a packet structure.

Return value

Size of the data contained in the received UDP packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



385 CHAPTER 7 API functions

7.4.7    IP_UDP_GetDataPtr()

Description

Returns a pointer to the data contained in the received UDP packet.

Prototype

void *IP_UDP_GetDataPtr(const IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to a packet structure.

Return value

Pointer to the data part of the UDP packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



386 CHAPTER 7 API functions

7.4.8    IP_UDP_GetDestAddr()

Description

Extracts destination IP address information from a UDP packet.

Prototype

void IP_UDP_GetDestAddr(const IP_PACKET * pPacket,
                              void      * pDestAddr,
                              int         AddrLen);

Parameters

Parameter Description

pPacket Pointer to a packet structure.
pDestAddr Pointer to a buffer to store the destination address.
AddrLen Size of the buffer used to store the destination address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



387 CHAPTER 7 API functions

7.4.9    IP_UDP_GetFPort()

Description

Extracts foreign port information from a UDP packet.

Prototype

U16 IP_UDP_GetFPort(const IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to a packet structure.

Return value

Foreign port of the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



388 CHAPTER 7 API functions

7.4.10    IP_UDP_GetIFIndex()

Description

Extracts the zero-based interface index of the given UDP Packet.

Prototype

unsigned IP_UDP_GetIFIndex(const IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to a packet structure.

Return value

Zero-based interface index on which the packet was received.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



389 CHAPTER 7 API functions

7.4.11    IP_UDP_GetLPort()

Description

Extracts local port information from a UDP packet.

Prototype

U16 IP_UDP_GetLPort(const IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to a packet structure.

Return value

Local port of the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



390 CHAPTER 7 API functions

7.4.12    IP_UDP_GetSrcAddr()

Description

Extracts source IP address information from a UDP packet.

Prototype

void IP_UDP_GetSrcAddr(const IP_PACKET * pPacket,
                             void      * pSrcAddr,
                             int         AddrLen);

Parameters

Parameter Description

pPacket Pointer to a packet structure.
pSrcAddr Pointer to a buffer to store the source address.
AddrLen Size of the buffer used to store the source address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



391 CHAPTER 7 API functions

7.4.13    IP_UDP_Open()

Description

Creates a UDP connection to receive and pass upwards UDP packets that match the
parameters passed.

Prototype

IP_UDP_CONNECTION *IP_UDP_Open(IP_ADDR   FAddr,
                               U16       FPort,
                               U16       LPort,
                               int       ( *handler)(IP_PACKET * , void * ),
                               void    * pContext);

Parameters

Parameter Description

FAddr Foreign IP address in network endianness.
FPort Foreign port in host endianness.
LPort Local port in host endianness.

handler
Callback function which is called when a UDP packet is
received.

pContext Application defined context pointer.

Return value

≠ NULL Success, pointer to the UDP connection.
= NULL Error.

Additional information

The parameters FAddr, FPort , LPort, can be set to 0 as a wild card, which enables the
reception of broadcast datagrams. The callback handler function is called with a pointer
to a received datagram and a copy of the data pointer which is passed to IP_UDP_Open().
This can be any data the programmer requires, such as a pointer to another function, or a
control structure to help in demultiplexing the received UDP packet.

The returned handle is used as parameter for IP_UDP_Close() only. If IP_UDP_Close() is
not called, there is no need to save the return value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



392 CHAPTER 7 API functions

7.4.14    IP_UDP_OpenEx()

Description

Creates a UDP connection to receive, and pass upwards UDP packets that match the
parameters passed.

Prototype

IP_UDP_CONNECTION *IP_UDP_OpenEx(IP_ADDR   FAddr,
                                 U16       FPort,
                                 IP_ADDR   LAddr,
                                 U16       LPort,
                                 int       ( *handler)(IP_PACKET * , void * ),
                                 void    * pContext);

Parameters

Parameter Description

FAddr Foreign IP address in network endianness.
FPort Foreign port in host endianness.
LAddr Local IP address in network endianness.
LPort Local port in host endianness.

handler
Callback function which is called when a UDP packet is
received.

pContext Application defined context pointer.

Return value

≠ NULL Success, pointer to the UDP connection.
= NULL Error.

Additional information

The parameters FAddr, FPort , LAddr and LPort, can be set to 0 as a wild card, which
enables the reception of broadcast datagrams. The callback handler function is called
with a pointer to a received datagram and a copy of the data pointer which is passed to
IP_UDP_OpenEx(). This can be any data the programmer requires, such as a pointer to
another function, or a control structure to help in demultiplexing the received UDP packet.

The returned handle is used as parameter for IP_UDP_Close() only. If IP_UDP_Close() is
not called, there is no need to save the return value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



393 CHAPTER 7 API functions

7.4.15    IP_UDP_Send()

Description

Sends an UDP packet to a specified host. Contrarily to IP_UDP_SendAndFree(), it does not
free the packet in case of error.

Prototype

int IP_UDP_Send(int         IFace,
                IP_ADDR     FHost,
                U16         fport,
                U16         lport,
                IP_PACKET * pPacket);

Parameters

Parameter Description

IFace Zero-based interface index.
FHost IP address of the target host in network endianness.
fport Foreign port in host endianness.
lport Local port in host endianness.
pPacket Data which should be sent to the target host.

Return value

= 0 O.K. Packet sent or in a send FIFO, to be on the wire shortly.
= 1 IP_ERR_SEND_PENDING. Packet is waiting for address resolution (incoming ARP

response).
< 0 Error code.

Additional information

The packet pPacket has to be allocated by calling IP_UDP_Alloc(). Refer to
IP_UDP_Alloc() for detailed information.

If you expect to get any response to this packet you should have opened a UDP connection
prior to calling IP_UDP_Send(). Refer to IP_UDP_Open() for more information about
creating a UDP connection.

IP_UDP_Send() does not free the packet in case of an error. In this case it is the
responsibility of the application to either free the packet using IP_UDP_Free() or to try
sending the packet again.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



394 CHAPTER 7 API functions

7.4.16    IP_UDP_SendAndFree()

Description

Sends an UDP packet to a specified host and frees the packet.

Prototype

int IP_UDP_SendAndFree(int         IFace,
                       IP_ADDR     FHost,
                       U16         fport,
                       U16         lport,
                       IP_PACKET * pPacket);

Parameters

Parameter Description

IFace Zero-based interface index.
FHost IP address of the target host in network endianness.
fport Foreign port in host endianness.
lport Local port in host endianness.
pPacket Data which should be sent to the target host.

Return value

= 0 O.K. Packet sent or in a send FIFO, to be on the wire shortly.
= 1 IP_ERR_SEND_PENDING. Packet is waiting for address resolution (incoming ARP

response).
< 0 Error code.

Additional information

The packet pPacket has to be allocated by calling IP_UDP_Alloc(). Refer to
IP_UDP_Alloc() for detailed information.

If you expect to get any response to this packet you should have opened a UDP connection
prior to calling this. Refer to IP_UDP_Open() for more information about creating a UDP
connection.

Packets are always freed by calling IP_UDP_SendAndFree(). Therefore no call of
IP_UDP_Free() is required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



395 CHAPTER 7 API functions

7.4.17    IP_UDP_ReducePayloadLen()

Description

Reduces the payload length of an allocated packet.

Prototype

int IP_UDP_ReducePayloadLen(IP_PACKET * pPacket,
                            int         NumBytes);

Parameters

Parameter Description

pPacket Pointer to previously allocated packet.
NumBytes Reduced payload len.

Return value

< 0 Error, NumBytes parameter is bigger than current len. Other: O.K., current
payload len.

Additional information

A previously allocated packet might have been allocated bigger than necessary to be on
the safe side. This function allows to reduce the number of bytes that will be sent to the
real amount necessary. The payload len can only be reduced. Trying to increase it (again)
is returned as error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 8
 
RAW zero-copy interface

Transferring RAW data can be used via socket functions or the zero-copy interface which
is described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



397 CHAPTER 8 RAW zero-copy

8.1    RAW zero-copy
The RAW zero-copy API functions are provided for systems that do not need the overhead of
sockets. These routines impose a lower demand on CPU and system memory requirements
than sockets. However, they do not offer the portability of sockets.

RAW zero-copy API functions are intended to assist the development of higher-performance
embedded network applications by allowing the application direct access to the IP stack
packet buffers. This feature can be used to avoid the overhead of having the stack copy data
between application-owned buffers and stack-owned buffers in sendto() and recvfrom()
, but the application has to fit its data into, and accept its data from the stack buffers.

To enable RAW socket support in the IP stack it is mandatory to call IP_RAW_Add() during
initialization of the stack.

8.1.1    Allocating, freeing and sending packet buffers for RAW
Zero-Copy

The two functions for allocating and freeing packet buffers are straightforward requests:

IP_RAW_Alloc() allocates a packet buffer from the pool of packet buffers on the stack
and IP_RAW_Free() frees a packet buffer. Applications using the RAW zero-copy API are
responsible for allocating packet buffers for use in sending data, as well as for freeing
buffers that have been used to receive data and those that the application has allocated
but decided not to use for sending data. As these packet buffers are a limited resource, it
is important that applications free them promptly when they are no longer of use.

The functions for sending data, IP_RAW_Send() and IP_RAW_SendAndFree(), send a packet
buffer of data using a specific protocol or sending pure data which requires the user to
include his own IP header. The RAW zero-copy interface supports two different approaches
to send and free a packet. One approach is that the stack frees the packet independent from
the success of sending the packet. Therefore, IP_RAW_SendAndFree() is called to send and
free the packet. It frees the packet independent from the success of the send operation.
The other approach is that IP_RAW_Send() is called. In this case it is the responsibility of
the application to free the packet. Depending on the return value the application can decide
if IP_RAW_Free() should be called to free the packet.

8.1.2    Callback function for RAW Zero-Copy
Applications that use the RAW zero-copy API for receiving data must include a call- back
function for acceptance of received packets, and must register the callback function with a
protocol using the IP_RAW_Open() function. The callback function, once registered, receives
all matching data packets.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



398 CHAPTER 8 Sending data with the RAW zero-copy API

8.2    Sending data with the RAW zero-copy API
To send data with the RAW zero-copy API, you should proceed as follow:
1. Allocating a packet buffer
2. Filling the allocated buffer
3. Sending the packet

The following section describes the procedure for allocating a packet buffer, sending data,
and freeing the packet buffer step by step.

8.2.1    Allocating a packet buffer for RAW Zero-Copy
The first step in using the RAW zero-copy API to send data is to allocate a packet buffer from
the stack using the IP_RAW_Alloc() function. This function takes the maximum length of
the data you intend to send in the buffer and if the IP header will be written by the stack
or by yourself as arguments and returns a pointer to an IP_PACKET structure.

IP_PACKET * pPacket;
U32         DataLen;                    // Amount of data to send

DataLen = 512;                          // Should indicate amount of data to send
pPacket = IP_RAW_Alloc(0, DataLen, 0);  // Stack will write IP header
if (pPacket == NULL) {
  // Error, could not allocate packet buffer
}

This limits how much data you can send in one call using the RAW zero-copy API, as the
data sent in one call to IP_RAW_Send() must fit in a single packet buffer. The actual limit is
determined by the big packet buffer size, less typically 34 bytes for protocol headers (14
bytes for Ethernet header, 20 bytes IP header). If you try to request a larger buffer than this,
IP_RAW_Alloc() returns NULL to indicate that it cannot allocate a sufficiently large buffer.

If you decide to provide the IP header yourself you can allocate a packet buffer the following
way:

pPacket = IP_RAW_Alloc(0, DataLen, 1);

In this case the packet size allocate limit is determined by the big packet buffer size, less
typically 14 bytes for the Ethernet header.

8.2.2    Filling the allocated buffer with data for RAW Zero-Copy
Having allocated the packet buffer, you now fill it with the data to send. The function
IP_RAW_Alloc() has initialized the returned IP_PACKET pPacket and so pPacket->pData
points to where you can start depositing data.

Depending on if you decided to provide your own IP header you will have to store this data
starting at pPacket->pData as well.

8.2.3    Sending the packet
Finally, you send the packet by giving it back to the stack using the function IP_RAW_Send().

#define PROTOCOL  1  // ICMP
#define DEST_ADDR 0xC0A80101

e = IP_RAW_Send(0, DEST_ADDR, PROTOCOL, pPacket);
if (e < 0) {
  IP_RAW_Free(pPacket);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



399 CHAPTER 8 Sending data with the RAW zero-copy API

This function sends the packet specifying the ICMP protocol in the IP header, or returns
an error. If its return value is less than zero, it has not accepted the packet and the
application has to decide either to free the packet or to retain it for sending later. Use
IP_RAW_SendAndFree() if the packet should be freed automatically in any case.

In case you intend to provide your own IP header the protocol passed has to be
IPPROTO_RAW. This prevents the stack to generate and include a header on its own.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



400 CHAPTER 8 Receiving data with the RAW zero-copy API

8.3    Receiving data with the RAW zero-copy API
To receive data with the RAW zero-copy API, you should proceed as follow:
1. Writing a callback function
2. Registering the callback function

8.3.1    Writing a callback function
Using the RAW zero-copy API for receiving data requires the application developer to write
a callback function that the stack can use to inform the application of received data packets.
This function is expected to conform to the following prototype:

int rx_callback(IP_PACKET * pPacket, void * pContext)

The stack calls this function when it has received a data packet for a protocol. The parameter
pPacket points to the packet buffer. The packet buffer contains the received data for the
socket. pPacket->pData points to the start of the received data (including network and IP
header), and pPacket->NumBytes indicates the number of bytes of received data in this
buffer.

Returned values

The callback function may return one of the following values:

Symbolic Numerical Description

IP_OK 0 Data handled. emNet will free the packet.

IP_OK_KEEP_PACKET 1

Data will be handled by application later,
the stack should NOT free the packet. This
will be done by the application at a later
time when the data has been handled and
the packet is no longer needed.

Note: The callback function is called from the stack and is expected to return promptly. No
blocking API shall be called from within the callback.

8.3.2    Registering the callback function for RAW Zero-Copy
The application must also inform the stack of the callback function. This is done by calling
the IP_RAW_Open() function. The following code fragment illustrates the use of this option
to register a callback function named RxUpcall() for the ICMP protocol:

#define PROTOCOL 1  // ICMP

IP_RAW_Open(0L /* any foreign host */, 0L /* any local host
 */, PROTOCOL, RxUpCall,
0L /* any tag */);

See function IP_RAW_Open on page 410 for reference.

To receive ICMP packets the ICMP protocol has not to be added to the stack by calling
IP_ICMP_Add() . Protocols known to the stack and added for handling through the stack
can not be used with the RAW zero-copy API.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



401 CHAPTER 8 API functions

8.4    API functions
Function Description

IP_RAW_Alloc()
Returns a pointer to a packet buffer big enough for
the specified sizes.

IP_RAW_Close()
Closes a RAW connection handle and removes the
connection from demux table list of connections and
deallocates it.

IP_RAW_Free() Frees the buffer which was used for a packet.

IP_RAW_GetDataPtr()
Returns pointer to data contained in the received
RAW packet.

IP_RAW_GetDataSize()
Returns size of the payload in the received RAW
packet.

IP_RAW_GetDestAddr()
Extracts destination IP address information from a
RAW packet.

IP_RAW_GetIFIndex()
Retrieves the zero-based interface index of the
given RAW Packet.

IP_RAW_GetSrcAddr()
Extracts source address information from a RAW
packet.

IP_RAW_Open()
Creates a RAW connection handle to receive,
and pass upwards RAW packets that match the
parameters passed.

IP_RAW_Send() Send a RAW packet to a specified host.

IP_RAW_SendAndFree()
Sends a RAW Packet to a specified host and frees
the packet.

IP_RAW_ReducePayloadLen() Reduces the payload length of an allocated packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



402 CHAPTER 8 API functions

8.4.1    IP_RAW_Alloc()

Description

Returns a pointer to a packet buffer big enough for the specified sizes.

Prototype

IP_PACKET *IP_RAW_Alloc(unsigned IFaceId,
                        unsigned NumBytesData,
                        int      IpHdrIncl);

Parameters

Parameter Description

IFaceId Zero-based index of available interfaces.
NumBytesData Length of the data which should be sent.

IpHdrIncl
Specifies if the IP header is generated or has to be provided
by the user. 0: Header generated by the stack; 1: Header to
be provided in the packet data by the user.

Return value

≠ NULL Success, pointer to the allocated buffer.
= NULL Error.

Additional information

Applications using the RAW zero-copy API are responsible for allocating packet buffers for
use in sending data, as well as for freeing buffers that have been used to receive data and
those that the application has allocated but decided not to use for sending data. As these
packet buffers are a limited resource, it is important that applications free them promptly
when they are no longer of use.

The RAW zero-copy interface supports two different approaches to free a packet. One
approach is that the stack frees the packet independent from the success of sending the
packet. Therefore, IP_RAW_SendAndFree() is called to send the packet and free the packet.
It frees the packet independent from the success of the send operation. The other approach
is that IP_RAW_Send() is called. In this case it is the responsibility of the application to
free the packet. Depending on the return value the application programmer can decide if
IP_RAW_Free() should be called to free the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



403 CHAPTER 8 API functions

8.4.2    IP_RAW_Close()

Description

Closes a RAW connection handle and removes the connection from demux table list of
connections and deallocates it.

Prototype

void IP_RAW_Close(IP_RAW_CONNECTION * pCon);

Parameters

Parameter Description

pCon RAW Connection handle.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



404 CHAPTER 8 API functions

8.4.3    IP_RAW_Free()

Description

Frees the buffer which was used for a packet.

Prototype

void IP_RAW_Free(IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to a packet structure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



405 CHAPTER 8 API functions

8.4.4    IP_RAW_GetDataPtr()

Description

Returns pointer to data contained in the received RAW packet

Prototype

void *IP_RAW_GetDataPtr(const IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to a packet structure.

Return value

Pointer to the data part of the packet.

Additional information

The data pointer returned points to the start of the network header. Therefore typically 34
bytes header (14 bytes Ethernet header, 20 bytes IP header) are included.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



406 CHAPTER 8 API functions

8.4.5    IP_RAW_GetDataSize()

Description

Returns size of the payload in the received RAW packet.

Prototype

U16 IP_RAW_GetDataSize(const IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to a packet structure.

Return value

Number of data bytes received in the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



407 CHAPTER 8 API functions

8.4.6    IP_RAW_GetDestAddr()

Description

Extracts destination IP address information from a RAW packet.

Prototype

void IP_RAW_GetDestAddr(const IP_PACKET * pPacket,
                              void      * pDestAddr,
                              int         AddrLen);

Parameters

Parameter Description

pPacket Pointer to a packet structure.
pDestAddr Pointer to a buffer to store the destination address.
AddrLen Size of the buffer used to store the destination address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



408 CHAPTER 8 API functions

8.4.7    IP_RAW_GetIFIndex()

Description

Retrieves the zero-based interface index of the given RAW Packet.

Prototype

unsigned IP_RAW_GetIFIndex(const IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to a packet structure.

Return value

Zero-based interface index on which the packet was received.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



409 CHAPTER 8 API functions

8.4.8    IP_RAW_GetSrcAddr()

Description

Extracts source address information from a RAW packet.

Prototype

void IP_RAW_GetSrcAddr(const IP_PACKET * pPacket,
                             void      * pSrcAddr,
                             int         AddrLen);

Parameters

Parameter Description

pPacket Pointer to a packet structure.
pSrcAddr Pointer to a buffer to store the source address.
AddrLen Size of the buffer used to store the source address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



410 CHAPTER 8 API functions

8.4.9    IP_RAW_Open()

Description

Creates a RAW connection handle to receive, and pass upwards RAW packets that match
the parameters passed.

Prototype

IP_RAW_CONNECTION *IP_RAW_Open
                    (IP_ADDR   FAddr,
                     IP_ADDR   LAddr,
                     U8        Protocol,
                     int       ( *handler)(IP_PACKET * pPacket , void * pContext ),
                     void    * pContext);

Parameters

Parameter Description

FAddr Foreign IP address.
LAddr Local IP address.
Protocol IP protocol.

handler
Callback function which is called when a packet. of protocol
“Protocol” is received.

pContext  in  out  Application defined context pointer.

Return value

≠ NULL Success, pointer to the RAW connection handle.
= NULL Error.

Additional information

The parameters FAddr and LAddr can be set to 0 as a wild card, which enables the reception
of broadcast packets. To enable the reception of any protocol use IPPROTO_RAW as Protocol.
The callback handler function is called with a pointer to a received protocol and a copy of
the data pointer which is passed to IP_RAW_Open(). This can be any data the application
requires, such as a pointer to another function, or a control structure to aid in demultiplexing
the received packet.

The returned handle is used as parameter for IP_RAW_Close() only. If IP_RAW_Close() is
not called, there is no need to save the return value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



411 CHAPTER 8 API functions

8.4.10    IP_RAW_Send()

Description

Send a RAW packet to a specified host. Contrarily to IP_RAW_SendAndFree(), it does not
free the packet in case of error.

Prototype

int IP_RAW_Send(int         IFace,
                IP_ADDR     FHost,
                U8          Protocol,
                IP_PACKET * pPacket);

Parameters

Parameter Description

IFace Zero-based index of available interfaces.
FHost IP address of the target host in network endianness.

Protocol
Protocol that will be used in the IP header generated by the
stack.

pPacket Packet that should be sent to the target host.

Return value

= 0 O.K. Packet sent or in a send FIFO, to be on the wire shortly.
= 1 IP_ERR_SEND_PENDING. Packet is waiting for address resolution (incoming ARP

response).
< 0 Error code.

Additional information

The packet pPacket has to be allocated by calling IP_RAW_Alloc(). Refer to
IP_RAW_Alloc() for detailed information.

If you expect to get any response to this packet you should have opened a RAW connection
prior to calling IP_RAW_Send(). Refer to IP_RAW_Open() for more information about
creating a RAW connection.

IP_RAW_Send() does not free the packet in case of an error. In this case it is the
responsibility of the application to either free the packet using IP_RAW_Free() or to try
sending the packet again.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



412 CHAPTER 8 API functions

8.4.11    IP_RAW_SendAndFree()

Description

Sends a RAW Packet to a specified host and frees the packet. Typically called from
applications using zero-copy RAW communication. A packet sent with this function is
normally allocated by calling IP_RAW_Alloc()

Prototype

int IP_RAW_SendAndFree(int         IFace,
                       IP_ADDR     FHost,
                       U8          Protocol,
                       IP_PACKET * pPacket);

Parameters

Parameter Description

IFace Zero-based index of available interfaces.
FHost IP address of the target host in network endianness.

Protocol
Protocol that will be used in the IP header generated by the
stack.

pPacket Packet that should be sent to the target host.

Return value

= 0 O.K. Packet sent or in a send FIFO, to be on the wire shortly.
= 1 IP_ERR_SEND_PENDING. Packet is waiting for address resolution (incoming ARP

response).
< 0 Error code.

Additional information

The packet pPacket has to be allocated by calling IP_RAW_Alloc(). Refer to
IP_RAW_Alloc() for detailed information.

If you expect to get any response to this packet you should have opened a RAW connection
prior to calling this. Refer to IP_RAW_Open() for more information about creating a UDP
connection.

Packets are always freed by calling IP_RAW_SendAndFree(). Therefore no call of
IP_RAW_Free() is required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



413 CHAPTER 8 API functions

8.4.12    IP_RAW_ReducePayloadLen()

Description

Reduces the payload length of an allocated packet.

Prototype

int IP_RAW_ReducePayloadLen(IP_PACKET * pPacket,
                            int         NumBytes);

Parameters

Parameter Description

pPacket Pointer to previously allocated packet.
NumBytes Reduced payload len.

Return value

< 0 Error, NumBytes parameter is bigger than current len. Other: O.K., current
payload len.

Additional information

A previously allocated packet might have been allocated bigger than necessary to be on
the safe side. This function allows to reduce the number of bytes that will be sent to the
real amount necessary. The payload len can only be reduced. Trying to increase it (again)
is returned as error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 9
 
DHCP client

This chapter explains the usage of the Dynamic Host Control Protocol (DHCP) with emNet.
All API functions are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



415 CHAPTER 9 DHCP backgrounds

9.1    DHCP backgrounds
DHCP stands for Dynamic Host Configuration Protocol. It is designed to ease configuration
management of large networks by allowing the network administrator to collect all the
IP hosts “soft” configuration information into a single computer. This includes IP address,
name, gateway, and default servers. Refer to [RFC 2131] - DHCP - Dynamic Host
Configuration Protocol for detailed information about all settings which can be assigned
with DHCP.

DHCP is a “client/server” protocol, meaning that machine with the DHCP database “serves”
requests from DHCP clients. The clients typically initiate the transaction by requesting an IP
address and perhaps other information from the server. The server looks up the client in its
database, usually by the client’s media address, and assigns the requested fields. Clients
do not always need to be in the server’s database. If an unknown client submits a request,
the server may optionally assign the client a free IP address from a “pool” of free addresses
kept for this purpose. The server may also assign the client default information of the local
network, such as the default gateway, the DNS server, and routing information.

When the IP addresses is assigned, it is “leased” to the client for a finite amount of time.
The DHCP client needs to keep track of this lease time, and obtain a lease extension from
the server before the lease time runs out. Once the lease has elapsed, the client should
not send any more IP packets (except DHCP requests) until he get another address. This
approach allows computers (such as laptops or factory floor monitors) which will not be
permanently attached to the network to share IP addresses and not hog them when they
are not using the net.

DHCP is just a superset of the Bootstrap Protocol (BOOTP). The main differences between the
two are the lease concept, which was created for DHCP, and the ability to assign addresses
from a pool. Refer to [RFC 951] - Bootstrap Protocol for detailed information about the
Bootstrap Protocol.

Most of the IP_DHCPC_* API also applies to the BOOTP protocol. Therefore no separate API
for BOOTP is available except for IP_BOOTPC_Activate().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



416 CHAPTER 9 API functions

9.2    API functions
Function Description

IP_BOOTPC_Activate()
Activates the BOOTP client for the specified
interface.

IP_DHCPC_Activate()
Activates the DHCP client for the specified
interface.

IP_DHCPC_AddStateChangeHook()
This function adds a hook function to the
IP_DHCPC_HOOK_ON_STATE_CHANGE list.

IP_DHCPC_AssignCurrentConfig()
Assigns the internally saved configuration
received so far to the interface.

IP_DHCPC_ConfigAlwaysStartInit()
Configures if the client always starts with INIT
phase, sending a DISCOVER packet, even if an
IP was configured for the interface before.

IP_DHCPC_ConfigAssignConfigManually()
Configures if the configuration received by a
DHCP server is assigned to the interface as
soon as received.

IP_DHCPC_ConfigDisableARPCheck()
Configures if the client checks an offered
address to be really free by sending ARP
probes before using the IP.

IP_DHCPC_ConfigDNSManually()
Configures if the client will request and use a
received DNS server configuration.

IP_DHCPC_ConfigRequestLeaseTime()
Configures the lease time to use in REQUEST
messages.

IP_DHCPC_ConfigOnActivate()
Configures behavior regarding currently set
parameters of an interface when the DHCP
client is activated on this interface.

IP_DHCPC_ConfigOnFail()

Configures behavior regarding currently set
parameters of an interface when the DHCP
client fails in communication to negotiate a
previously received configuration with a server
(REQUEST message).

IP_DHCPC_ConfigOnLinkDown()

Configures behavior regarding currently set
parameters of an interface when the DHCP
client is activated on this interface and the link
goes down.

IP_DHCPC_ConfigUniBcStartMode()
Configures if the client will start with unicast
or broadcast messages first and enables
automatic mode switching.

IP_DHCPC_GetOptionRequestList()
Retrieves the current list of DHCP options to
request from a server.

IP_DHCPC_GetState() Returns the state of the DHCP client.

IP_DHCPC_Halt()
Stops DHCP client activity for the given
network interface.

IP_DHCPC_Renew()
Sends a REQUEST with the currently in use
DHCP configuration to the DHCP server to
check if the configuration is still valid.

IP_DHCPC_SendDeclineAndHalt()
Sends a DECLINE to the DHCP server and halts
the DHCP client.

IP_DHCPC_SendDeclineAndResetIP()
Sends a DECLINE to the DHCP server without
halting the DHCP client.

IP_DHCPC_SetCallback()
This function allows the caller to set a callback
for an interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



417 CHAPTER 9 API functions

Function Description

IP_DHCPC_SetClientId()
Sets the DHCP client id for the specified
interface.

IP_DHCPC_SetOnOptionCallback()
Sets a callback that gets notified about
received DHCP options.

IP_DHCPC_SetOptionRequestList()
Sets the list of DHCP options to request from a
server.

IP_DHCPC_SetTimeout() Sets timeout parameters for DHCP requests.
IP_DHCPC_Release() Returns the used IP addr.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



418 CHAPTER 9 API functions

9.2.1    IP_BOOTPC_Activate()

Description

Activates the BOOTP client for the specified interface.

Prototype

int IP_BOOTPC_Activate(int IFaceId);

Parameters

Parameter Description

IFaceId Interface index.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



419 CHAPTER 9 API functions

9.2.2    IP_DHCPC_Activate()

Description

Activates the DHCP client for the specified interface.

Prototype

int IP_DHCPC_Activate(      int    IFaceId,
                      const char * sHost,
                      const char * sDomain,
                      const char * sVendor);

Parameters

Parameter Description

IFaceId Zero based interface index.
sHost Pointer to host name to use in negotiation. May be NULL.
sDomain Pointer to domain name to use in negotiation. May be NULL.
sVendor Pointer to vendor to use in negotiation. May be NULL.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

This function is typically called from within IP_X_Config(). This function initializes the
DHCP client. It attempts to open a UDP connection to listen for incoming replies and begins
the process of configuring a network interface using DHCP. The process may take several
seconds, and the DHCP client will keep retrying if the service does not respond.

The parameters sHost, sDomain, sVendor are optional (can be NULL). If not NULL, must
point to a memory area which remains valid after the call since the string is not copied.

Example

// Correct function call
IP_DHCPC_Activate(0, "Target", NULL, NULL);
// Illegal function call
char ac;
sprintf(ac, "Target%d, Index);
IP_DHCPC_Activate(0, ac, NULL, NULL);
// Correct function call
static char ac;
sprintf(ac, "Target%d, Index);
IP_DHCPC_Activate(0, ac, NULL, NULL);

If you start the DHCP client with activated logging the output on the terminal I/O should
be similar to the listing below:

DHCP: Sending discover!
DHCP: Received packet from 192.168.1.1
DHCP: Packet type is OFFER.
DHCP: Renewal time: 2160 min.
DHCP: Rebinding time: 3780 min.
DHCP: Lease time: 4320 min.
DHCP: Host name received.
DHCP: Sending Request.
DHCP: Received packet from 192.168.1.1
DHCP: Packet type is ACK.
DHCP: Renewal time: 2160 min.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



420 CHAPTER 9 API functions

DHCP: Rebinding time: 3780 min.
DHCP: Lease time: 4320 min.
DHCP: Host name received.
DHCP: IFace 0: IP: 192.168.199.20, Mask: 255.255.0.0, GW: 192.168.1.1.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



421 CHAPTER 9 API functions

9.2.3    IP_DHCPC_AddStateChangeHook()

Description

This function adds a hook function to the IP_DHCPC_HOOK_ON_STATE_CHANGE list. Registered
hooks will be called with every status change and reports some DHCP informations about
the current status.

Prototype

void IP_DHCPC_AddStateChangeHook
      (IP_DHCPC_HOOK_ON_STATE_CHANGE * pHook,
       void                            ( *pf)
(unsigned IFaceId , unsigned State , IP_DHCPC_STATE_INFO * pInfo ));

Parameters

Parameter Description

pHook
Element of type IP_DHCPC_HOOK_ON_STATE_CHANGE to
register.

pf

Callback that is notified on a state change.
• IFaceId: Zero-based interface index.
• State : Current DHCP client state.
• pInfo : Further information about the current state.

Additional information

This mechanism is provided so that the caller can do some processing when the interface
is up (like doing initializations or blinking LEDs, etc.).

The pointer on IP_DHCPC_STATE_INFO structure will not be valid after the callback is called.
If parameters are to be used, they need to be copied.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



422 CHAPTER 9 API functions

9.2.4    IP_DHCPC_AssignCurrentConfig()

Description

Assigns the internally saved configuration received so far to the interface.

Prototype

int IP_DHCPC_AssignCurrentConfig(int IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

1 No configuration available (no previous IP address received).
0 O.K., configuration previously received assigned.
-1 Error, no memory ?

Additional information

Please refer to IP_DHCPC_ConfigAssignConfigManually() for more information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



423 CHAPTER 9 API functions

9.2.5    IP_DHCPC_ConfigAlwaysStartInit()

Description

Configures if the client always starts with INIT phase, sending a DISCOVER packet, even
if an IP was configured for the interface before.

Prototype

int IP_DHCPC_ConfigAlwaysStartInit(int IFaceId,
                                   U8  OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0: Off.
• 1: On.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
IP_DHCPC_Activate() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



424 CHAPTER 9 API functions

9.2.6    IP_DHCPC_ConfigAssignConfigManually()

Description

Configures if the configuration received by a DHCP server is assigned to the interface as
soon as received.

Prototype

int IP_DHCPC_ConfigAssignConfigManually(int IFaceId,
                                        U8  OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff

• 0: Off (default), configuration is assigned as soon
as received.
• 1: On, configuration is only saved internally and the
user needs to manually assign it to an interface.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
IP_DHCPC_Activate() .

In case the received configuration shall not be used immediately upon receiving it,
it needs to be set manually later on. This can be done by either using information
from the state callback using IP_DHCPC_AddStateChangeHook() or by simply calling
IP_DHCPC_AssignCurrentConfig() to activate the configuration as it would have been
done automatically.

This configuration does not override assigning a fallback configuration if this has been
configured as well.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



425 CHAPTER 9 API functions

9.2.7    IP_DHCPC_ConfigDisableARPCheck()

Description

Configures if the client checks an offered address to be really free by sending ARP probes
before using the IP.

Prototype

int IP_DHCPC_ConfigDisableARPCheck(int IFaceId,
                                   U8  OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0: Off, ARP probes are sent (default).
• 1: On, ARP probes are disabled.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
IP_DHCPC_Activate() .

This routine is not available when configuring the define
IP_DHCPC_CHECK_IP_BEFORE_BOUND=0 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



426 CHAPTER 9 API functions

9.2.8    IP_DHCPC_ConfigDNSManually()

Description

Configures if the client will request and use a received DNS server configuration.

Prototype

int IP_DHCPC_ConfigDNSManually(int IFaceId,
                               U8  OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0: Off, DNS configuration from server is used.
• 1: On, DNS configuration needs to be set manually.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
IP_DHCPC_Activate() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



427 CHAPTER 9 API functions

9.2.9    IP_DHCPC_ConfigRequestLeaseTime()

Description

Configures the lease time to use in REQUEST messages.

Prototype

int IP_DHCPC_ConfigRequestLeaseTime(int IFaceId,
                                    U32 LeaseTime);

Parameters

Parameter Description

IFaceId Zero-based interface index.

LeaseTime
Lease time [s] to request from the server. The value
0xFFFFFFFF requests an infinte lease from the server. Which
lease time is actually granted is decided by the server.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
IP_DHCPC_Activate() .

By default the lease time initially granted by the server in its OFFER message is used when
sending REQUEST messages. To only initially send a custom lease time you should revert
back to a value of 0 (use the previously granted value) or 0xFFFFFFFF (infinity). It is possible
to call this routine while the DHCP client is active to change this behavior on the fly.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



428 CHAPTER 9 API functions

9.2.10    IP_DHCPC_ConfigOnActivate()

Description

Configures behavior regarding currently set parameters of an interface when the DHCP
client is activated on this interface.

Prototype

int IP_DHCPC_ConfigOnActivate(int IFaceId,
                              U8  Mode);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Mode Mode to configure.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
IP_DHCPC_Activate() .

Please be aware that activating the DHCP client with a static configured IP address
instructs the DHCP client to try to request this address from the server. In case
IP_DHCPC_ConfigOnFail() is configured to use DHCP_RESET_CONFIG (default) it might
happen that the static IP will be reset if no server is reachable for the REQUEST or the IP
addr. gets declined by a server.

Possible values for Mode

Mode Description

DHCPC_RESET_CONFIG
Reset interface when activating the DHCP client on
this interface to avoid using old settings longer than
necessary. Default.

DHCPC_USE_STATIC_CONFIG
Keep previous static configuration, if any,
as fallback configuration as long as no new
configuration has been received from a server.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



429 CHAPTER 9 API functions

9.2.11    IP_DHCPC_ConfigOnFail()

Description

Configures behavior regarding currently set parameters of an interface when the DHCP
client fails in communication to negotiate a previously received configuration with a server
(REQUEST message).

Prototype

int IP_DHCPC_ConfigOnFail(int IFaceId,
                          U8  Mode);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Mode Mode to configure.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
IP_DHCPC_Activate() .

To configure a fallback IP in case no DHCP server is available at all, starting the DHCP client
from INIT state, please refer to IP_DHCPC_ConfigOnActivate() .

When the on-fail configuration is applied this does not mean that the DHCP client activity
is stopped. It could be intended to keep the DHCP client running in case a server
becomes available. To stop the DHCP client you should monitor the state changes using
IP_DHCPC_AddStateChangeHook() and react to the messages DHCPC_STATE_INIT and
DHCPC_STATE_RESTARTING that signal fallbacks caused by server timeout or no server being
available at all. You should then halt the DHCP client service from the callback.

Possible values for Mode

Mode Description

DHCPC_RESET_CONFIG
Reset interface to avoid using old settings longer
than necessary as they might interfere with other
DHCP clients in this network. Default.

DHCPC_USE_STATIC_CONFIG
Setup previous static configuration, if any, as
fallback configuration to remain accessible.

DHCPC_USE_DHCP_CONFIG
Keep previously received DHCP configuration. Not
recommended as it might interfere with other DHCP
clients in this network.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



430 CHAPTER 9 API functions

9.2.12    IP_DHCPC_ConfigOnLinkDown()

Description

Configures behavior regarding currently set parameters of an interface when the DHCP
client is activated on this interface and the link goes down.

Prototype

int IP_DHCPC_ConfigOnLinkDown(int IFaceId,
                              U32 Timeout,
                              U8  Mode);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Timeout Timeout to wait before reacting on link down [ms].
Mode Mode to configure.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
IP_DHCPC_Activate().

Possible values for Mode

Mode Description

DHCPC_RESET_CONFIG

Reset interface when link goes down on this
interface to avoid using old settings longer than
necessary as the target might be connected to
another network. Default.

DHCPC_USE_STATIC_CONFIG
Setup previous static configuration, if any, as
fallback configuration on link down to allow a quick
start once the link goes up again.

DHCPC_USE_DHCP_CONFIG

Keep previously received DHCP configuration on link
down as long as the configuration is not declined
or a new configuration is received once link on this
interface is up again.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



431 CHAPTER 9 API functions

9.2.13    IP_DHCPC_ConfigUniBcStartMode()

Description

Configures if the client will start with unicast or broadcast messages first and enables
automatic mode switching.

Prototype

int IP_DHCPC_ConfigUniBcStartMode(int IFaceId,
                                  U8  Mode);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Mode
• 0: Start with unicasts first.
• 1: Start with broadcasts first.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
IP_DHCPC_Activate() .

The mode switch will be applied after a couple of retries have been sent for the same
message. The number of retries can be configured using IP_DHCPC_SetTimeout() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



432 CHAPTER 9 API functions

9.2.14    IP_DHCPC_GetState()

Description

Returns the state of the DHCP client.

Prototype

unsigned IP_DHCPC_GetState(int IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 DHCP client not in use.
> 0 DHCP client in use.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



433 CHAPTER 9 API functions

9.2.15    IP_DHCPC_GetOptionRequestList()

Description

Retrieves the current list of DHCP options to request from a server.

Prototype

int IP_DHCPC_GetOptionRequestList(int        IFaceId,
                                  U8       * pBuffer,
                                  unsigned   BufferSize);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pBuffer

Pointer to buffer where to store up to BufferSize DHCP
options that are requested from a server. Can be NULL to
determine the size of the buffer required to retrieve all
options in use.

BufferSize Maximum amount of options to retrieve.

Return value

< 0 Request list disabled via compile switch or error, no memory ?
≥ 0 Number of U8 DHCP options returned or would be returned if BufferSize would

be sufficient. A list with zero entries is valid if it has been set via config.

Additional information

For more information about the actual DHCP options please refer to RFC 1533 . For an
example please refer to IP_DHCPC_SetOnOptionCallback() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



434 CHAPTER 9 API functions

9.2.16    IP_DHCPC_Halt()

Description

Stops DHCP client activity for the given network interface.

Prototype

int IP_DHCPC_Halt(int IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



435 CHAPTER 9 API functions

9.2.17    IP_DHCPC_Renew()

Description

Sends a REQUEST with the currently in use DHCP configuration to the DHCP server to check
if the configuration is still valid.

Prototype

int IP_DHCPC_Renew(int IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



436 CHAPTER 9 API functions

9.2.18    IP_DHCPC_SendDeclineAndHalt()

Description

Sends a DECLINE to the DHCP server and halts the DHCP client.

Prototype

int IP_DHCPC_SendDeclineAndHalt(int IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

Please refer to IP_DHCPC_Decline() for more information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



437 CHAPTER 9 API functions

9.2.19    IP_DHCPC_SendDeclineAndResetIP()

Description

Sends a DECLINE to the DHCP server without halting the DHCP client. The IP address of
the interface is cleared.

Prototype

int IP_DHCPC_SendDeclineAndResetIP(int IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

Can be used to reject a previously accepted address from a DHCP server. A reason to do so
would be that despite this address seemed free before, now an address collision for example
via ACD has been detected. The DHCP client needs to be in BOUND state, otherwise no
decline is sent as we do not own the address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



438 CHAPTER 9 API functions

9.2.20    IP_DHCPC_SetCallback()

Description

This function allows the caller to set a callback for an interface.

Prototype

int IP_DHCPC_SetCallback(int IFaceId,
                         int ( *routine)(int IFaceId , int State ));

Parameters

Parameter Description

IFaceId Zero-based interface index.

routine
Callback functions which should be called with every status
changes.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

The callback is called with every status change. This mechanism is provided so that the
caller can do some processing when the interface is up (like doing initializations or blinking
LEDs, etc.).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



439 CHAPTER 9 API functions

9.2.21    IP_DHCPC_SetClientId()

Description

Sets the DHCP client id for the specified interface. Should be called prior to
IP_DHCPC_Activate()

Prototype

int IP_DHCPC_SetClientId(      int        IFaceId,
                         const U8       * pClientId,
                               unsigned   ClientIdLen);

Parameters

Parameter Description

IFaceId Zero based interface index.
pClientId Pointer to ClientId to use in negotiation. Will not be copied.
ClientIdLen Length of client ID.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

Additional information

Typically a DHCP server will recognize a client based on its MAC address. A client ID can
be included by the client when communicating with the server for identification if needed.
Please be aware that one byte is prepend that contains the type of the ID. The client ID
will not be copied into the stack, therefore you need to make sure that the memory will
be available even after the call.

Bad example

U8 ClientID[7];      // 1 byte type + 6 bytes MAC address.

ClientID[0] = 0x01;  // Type = Ethernet.
IP_GetHWAddr(0, &ClientID[1], sizeof(ClientID) - 1);
IP_DHCPC_SetClientId(0, ClientID, sizeof(ClientID));

Good example

static U8 ClientID[7];  // 1 byte type + 6 bytes MAC address.

ClientID[0] = 0x01;     // Type = Ethernet.
IP_GetHWAddr(0, &ClientID[1], sizeof(ClientID) - 1);
IP_DHCPC_SetClientId(0, ClientID, sizeof(ClientID));

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



440 CHAPTER 9 API functions

9.2.22    IP_DHCPC_SetOnOptionCallback()

Description

Sets a callback that gets notified about received DHCP options.

Prototype

void IP_DHCPC_SetOnOptionCallback(IP_DHCPC_ON_OPTION_FUNC * pf);

Parameters

Parameter Description

pf Callback to execute for each DHCP option received.

Example

#define DHCP_NTP_OPTION_TYPE  (42u)

static U8 _DhcpReqList[16];  // Default is ~4 U8 options.

/*********************************************************************
*
*       _OnDhcpOption()
*
*  Function description
*    Callback executed for every DHCP option received.
*
*  Parameters
*    IFaceId: Zero-based interface index.
*    pInfo  : Further information of type IP_DHCPC_ON_OPTION_INFO
*             about the DHCP option parsed.
*
*  Additional information
*    Once all options are parsed the end marker (option type 0xFF) is
*    reported as well for an easy to detect end of the list from
*    within the callback. No end is signaled if there was an abort
*    that can be detected by looking at pInfo->Status .
*/
static void _OnDhcpOption(unsigned IFaceId, IP_DHCPC_ON_OPTION_INFO* pInfo) {
  U32 Addr;

  IP_USE_PARA(IFaceId);

  if (pInfo->Status == 0u) {  // Not a parser error ?
    if (pInfo->Type == DHCP_NTP_OPTION_TYPE) {
      //
      // Multiple U32 IPv4 addresses of NTP servers might be returned.
      //
      IP_Logf_Application(  "NTP servers retrieved via DHCP:");
      do {
        //
        // Get the IPv4 address of an NTP server in network endianness (BE)
        // as our printf formatter %i for an IPv4 expects it that way.
        //
        memcpy(&Addr, pInfo->pVal, 4);
        IP_Logf_Application("  - %i", Addr);
        pInfo->Len -= 4u;
      } while (pInfo->Len != 0u);
    }
  }
}

/*********************************************************************
*
*       _AskDhcpForNtpServers()
*
*  Function description
*    When sending a request to a DHCP server, also ask it for NTP servers.
*    To be called from IP_X_Config() before activating the DHCP client.
*
*  Parameters:
*    IFaceId: Zero-based interface index.
*/
static void _AskDhcpForNtpServers(unsigned IFaceId) {
  int NumOptions;

  //
  // Get old (default list).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



441 CHAPTER 9 API functions

  //
  NumOptions = IP_DHCPC_GetOptionRequestList(IFaceId, &_DhcpReqList[0], sizeof(_DhcpReqList));
  if (NumOptions >= 0) {                           // Successfully retrieved current list ?
    if (NumOptions < (int)sizeof(_DhcpReqList)) {  // Do we have space for one more option ?
      //
      // Assume that the NTP option 42 is not in the list and add it.
      // If unsure, add code to look through the options present
      // and only add the option if it is not already in there.
      //
      _DhcpReqList[NumOptions++] = DHCP_NTP_OPTION_TYPE;
      //
      // Set new list.
      //
      IP_DHCPC_SetOptionRequestList(IFaceId, (const U8*)&_DhcpReqList[0], (unsigned)NumOptions);
      //
      // Set callback that gets notified about received options.
      //
      IP_DHCPC_SetOnOptionCallback(_OnDhcpOption);
    }
  }
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



442 CHAPTER 9 API functions

9.2.23    IP_DHCPC_SetOptionRequestList()

Description

Sets the list of DHCP options to request from a server.

Prototype

int IP_DHCPC_SetOptionRequestList(      int        IFaceId,
                                  const U8       * pOptions,
                                        unsigned   NumOptions);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pOptions

Pointer to array with U8 DHCP options that shall be
requested from a server when sending a REQUEST . The
memory has to remain valid after the call. Can be NULL for
empty list but might prevent the DHCP client from proper
functioning.

NumOptions Number of options at pOptions .

Return value

< 0 Request list disabled via compile switch or error, no memory ?
= 0 O.K.

Additional information

Best practice to add your own DHCP options is to read back the current list of options with
IP_DHCPC_GetOptionRequestList() and then add the desired options that are missing.

To set an empty list (whether this makes sense or not) set pOptions ≠ NULL and NumOptions
= 0 . For an example please refer to IP_DHCPC_SetOnOptionCallback() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



443 CHAPTER 9 API functions

9.2.24    IP_DHCPC_SetTimeout()

Description

Sets timeout parameters for DHCP requests. RFC2131 demands exponential retransmission
times (doubling retransmission time with each retry), but in practice it may make more
sense to work with a fixed, non-exponential timeout.

Prototype

void IP_DHCPC_SetTimeout(int      IFaceId,
                         U32      Timeout,
                         U32      MaxTries,
                         unsigned Exponential);

Parameters

Parameter Description

IFaceId Interface index.
Timeout Value of the timeout [ms].
MaxTries Maximum number or attempts.
Exponential Value used to delay new attempts.

Additional information

This function can be called before or after activating the DHCP client for an interface using
IP_DHCPC_Activate() in IP_X_Config().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



444 CHAPTER 9 API functions

9.2.25    IP_DHCPC_Release()

Description

Returns the used IP addr. before the end of the lease.

Prototype

int IP_DHCPC_Release(int IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 O.K.
≠ 0 Error, no memory ?

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



445 CHAPTER 9 Data structures

9.3    Data structures

9.3.1    IP_DHCPC_ON_OPTION_INFO

Description

Returns information about the next DHCP option to be processed.

Type definition

typedef struct {
  const U8 * pVal;
  int        Status;
  U8         Type;
  U8         Len;
} IP_DHCPC_ON_OPTION_INFO;

Structure members

Member Description

pVal Value of the DHCP option.

Status
• = 0: O.K.
• < 0: Parse error, abort of parser.

Type
DHCP option type. Please refer to RFC 1533 for further
information.

Len Length of the option value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



446 CHAPTER 9 Data structures

9.3.2    IP_DHCPC_ON_OPTION_FUNC

Description

Callback executed for every DHCP option received.

Type definition

typedef void (IP_DHCPC_ON_OPTION_FUNC)(unsigned                  IFaceId,
                                       IP_DHCPC_ON_OPTION_INFO * pInfo);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pInfo
Further information of type IP_DHCPC_ON_OPTION_INFO
about the DHCP option parsed.

Additional information

Once all options are parsed, the end marker (option type 0xFF) is reported as well for an
easy to detect end of the list from within the callback. No end is signaled if there was an
abort that can be detected by looking at pInfo->Status .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 10
 
DHCP server (Add-on)

The emNet implementation of the DHCP server is an optional extension to emNet. It allows
setting up a Dynamic Host Control Protocol (DHCP) server that seamlessly integrates with
emNet. All API functions are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



448 CHAPTER 10 DHCP Backgrounds

10.1    DHCP Backgrounds
DHCP stands for Dynamic Host Configuration Protocol. It is designed to ease configuration
management of large networks by allowing the network administrator to collect all the
IP hosts “soft” configuration information into a single computer. This includes IP address,
name, gateway, and default servers. Refer to [RFC 2131] - DHCP - Dynamic Host
Configuration Protocol for detailed information about all settings which can be assigned
with DHCP.

Further information can be found in the chapter DHCP backgrounds on page 415 in the
description of the DHCP client.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



449 CHAPTER 10 API functions

10.2    API functions
Function Description

IP_DHCPS_ConfigDNSAddr() Configures one or more DNS addr.

IP_DHCPS_ConfigGWAddr()
Configures the default gateway to be assign to
clients.

IP_DHCPS_ConfigMaxLeaseTime()
Configures the maximum lease time that a
client will be granted to use the achieved
configuration.

IP_DHCPS_ConfigPool()
Configures the IP address pool that can be
assigned to DHCP clients.

IP_DHCPS_Halt()
Stops DHCP server activity for the passed
interface.

IP_DHCPS_Init()
Initializes the DHCP server for the specified
interface.

IP_DHCPS_SetReservedAddresses()
Sets a configuration for IP addresses to reserve
for specific MAC addresses or HostNames (or
both).

IP_DHCPS_SetVendorOptionsCallback()

This function sets a callback that is executed
when sending response to a client and the
client has sent a vendor class identifier (DHCP
option 60).

IP_DHCPS_Start()
Starts the DHCP server for the specified
interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



450 CHAPTER 10 API functions

10.2.1    IP_DHCPS_ConfigDNSAddr()

Description

Configures one or more DNS addr. to assign to clients.

Prototype

int IP_DHCPS_ConfigDNSAddr(unsigned   IFIndex,
                           U32      * paDNSAddr,
                           U8         NumServers);

Parameters

Parameter Description

IFIndex Zero-based interface index of the server to configure.

paDNSAddr
Array of U32 IPv4 addresses of DNS servers to use (host
order).

NumServers Number of DNS servers in array.

Return value

0 O.K.
IP_ERR_MISC Error, server already started.
IP_ERR_PARAM Error, wrong interface.

Additional information

Configuring DNS server settings is optional. If no DNS servers are configured no DNS
servers will be assigned to clients.

Needs to be called before activating the DHCP server for this interface with
IP_DHCPS_Start().

Example

U32 aDNSAddr[2];

//
// Setup DNS addr. as needed.
//
aDNSAddr[0] = IP_BYTES2ADDR(192, 168, 12, 1);
aDNSAddr[1] = IP_BYTES2ADDR(192, 168, 12, 2);
IP_DHCPS_ConfigDNSAddr(0, &aDNSAddr[0], 2);
IP_DHCPS_ConfigPool(0, IP_BYTES2ADDR(192, 168, 12, 11), 0xFFFF0000, 20);
IP_DHCPS_Init(0);
IP_DHCPS_Start(0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



451 CHAPTER 10 API functions

10.2.2    IP_DHCPS_ConfigGWAddr()

Description

Configures the default gateway to be assign to clients.

Prototype

int IP_DHCPS_ConfigGWAddr(unsigned IFIndex,
                          U32      GWAddr);

Parameters

Parameter Description

IFIndex Zero-based interface index of the server to configure.
GWAddr Default gateway IP address in host order.

Return value

0 O.K.
IP_ERR_MISC Error, server already started.
IP_ERR_PARAM Error, wrong interface.

Additional information

Configuring a gateway setting is optional. If no gateway is configured no gateway will be
assigned to clients.

Needs to be called before activating the DHCP server for this interface with
IP_DHCPS_Start().

Example

IP_DHCPS_ConfigGWAddr(0, IP_BYTES2ADDR(192, 168, 12, 1));
IP_DHCPS_ConfigPool(0, IP_BYTES2ADDR(192, 168, 12, 11), 0xFFFF0000, 20);
IP_DHCPS_Init(0);
IP_DHCPS_Start(0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



452 CHAPTER 10 API functions

10.2.3    IP_DHCPS_ConfigMaxLeaseTime()

Description

Configures the maximum lease time that a client will be granted to use the achieved
configuration.

Prototype

int IP_DHCPS_ConfigMaxLeaseTime(unsigned IFIndex,
                                U32      Seconds);

Parameters

Parameter Description

IFIndex Zero-based interface index.

Seconds

Maximum lease time in seconds. Default 7200s => 2h. Up
to 4294967 seconds, converted into ms this is the maximum
we can store in an U32. 0xFFFFFFFF to grant infinite if asked
for.

Return value

0 O.K.
IP_ERR_MISC Error, server already started.
IP_ERR_PARAM Error, wrong interface or value for lease time invalid.

Additional information

Optional. Needs to be called before activating the DHCP server for this interface with
IP_DHCPS_Start().

Example

IP_DHCPS_ConfigMaxLeaseTime(0, 7200);
IP_DHCPS_ConfigPool(0, IP_BYTES2ADDR(192, 168, 12, 11), 0xFFFF0000, 20);
IP_DHCPS_Init(0);
IP_DHCPS_Start(0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



453 CHAPTER 10 API functions

10.2.4    IP_DHCPS_ConfigPool()

Description

Configures the IP address pool that can be assigned to DHCP clients.

Prototype

int IP_DHCPS_ConfigPool(unsigned IFIndex,
                        U32      StartIPAddr,
                        U32      SNMask,
                        U32      PoolSize);

Parameters

Parameter Description

IFIndex Zero-based interface index of the server to configure.
StartIPAddr First IP address of the pool in host order.
SNMask Subnet mask in host order.

PoolSize
Number of addresses in the pool starting from StartIPAddr.
The pool size has to be at least 1.

Return value

0 O.K.
IP_ERR_MISC Error, server already started.
IP_ERR_PARAM Error, wrong interface.

Additional information

Optional. Needs to be called before activating the DHCP server for this interface with
IP_DHCPS_Start().

Example

IP_DHCPS_ConfigPool(0, IP_BYTES2ADDR(192, 168, 12, 11), 0xFFFF0000, 20);
IP_DHCPS_Init(0);
IP_DHCPS_Start(0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



454 CHAPTER 10 API functions

10.2.5    IP_DHCPS_Halt()

Description

Stops DHCP server activity for the passed interface.

Prototype

void IP_DHCPS_Halt(unsigned IFIndex);

Parameters

Parameter Description

IFIndex Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



455 CHAPTER 10 API functions

10.2.6    IP_DHCPS_Init()

Description

Initializes the DHCP server for the specified interface.

Prototype

int IP_DHCPS_Init(unsigned IFIndex);

Parameters

Parameter Description

IFIndex Zero-based interface index.

Return value

0 O.K.
IP_ERR_MISC Error, server already initialized.
IP_ERR_NOMEM Error, not enough memory.
IP_ERR_PARAM Error, wrong interface.

Additional information

This function is obsolete. Its functionality has been implemented into
IP_DHCPS_ConfigPool() as this needs to be called anyhow. This function is a dummy for
the moment, so it does not hurt to call it like before.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



456 CHAPTER 10 API functions

10.2.7    IP_DHCPS_SetReservedAddresses()

Description

Sets a configuration for IP addresses to reserve for specific MAC addresses or HostNames
(or both).

Prototype

int IP_DHCPS_SetReservedAddresses(      unsigned                IFIndex,
                                  const IP_DHCPS_RESERVE_ADDR * paAddr,
                                        unsigned                NumAddr);

Parameters

Parameter Description

IFIndex Zero-based interface index.
paAddr Pointer to array of IP_DHCPS_RESERVE_ADDR addresses.
NumAddr Number of addresses at paAddr .

Return value

< 0 Error
= 0 O.K.

Additional information

For the moment the global configuration for subnet mask, gateway and DNS for the server
on this interface is used.

IP addresses to be reserved are not limited to addresses of the configured pool. Of course
addresses need to be within the configured subnet to work as expected.

Example

const IP_DHCPS_RESERVE_ADDR _aReserved[] = {
// HW addr.                             , IP addr.,                   , HostName
  {(const U8*)"\x00\x0C\x29\x76\xE7\x0B", IP_BYTES2ADDR(192,168,12,20), NULL},      // Reserve by HW addr. only.
  {(const U8*)"\x00\x22\xC7\xAF\xFC\x25", IP_BYTES2ADDR(192,168,12,16), "oliver"},  // Reserve by HW addr. AND Hostname
 (both have to match).
  {NULL                                 , IP_BYTES2ADDR(192,168,12,17), "sven"},    // Reserve by Hostname first
 (or only).
  {(const U8*)"\x00\x22\xC7\xAF\xFC\x30", IP_BYTES2ADDR(192,168,12,17), NULL},      // Reserve by HW addr. second.
  {(const U8*)"\xB8\x27\xEB\xC7\x96\x5F", IP_BYTES2ADDR(192,168,20,55), NULL},      // Reserve by HW addr. only.
};

static void _StartServer(void) {
  IP_DHCPS_ConfigPool(0, IP_BYTES2ADDR(192, 168, 12, 11), IP_BYTES2ADDR(255, 255, 0, 0), 20);
  IP_DHCPS_Init(0);
  IP_DHCPS_SetReservedAddresses(0, _aReserved, SEGGER_COUNTOF(_aReserved));
  IP_DHCPS_Start(0);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



457 CHAPTER 10 API functions

10.2.8    IP_DHCPS_SetVendorOptionsCallback()

Description

This function sets a callback that is executed when sending response to a client and the
client has sent a vendor class identifier (DHCP option 60). It can be used to add vendor
specific options to a DHCP response to a client.

Prototype

void IP_DHCPS_SetVendorOptionsCallback(IP_DHCPS_GET_VENDOR_OPTION_FUNC * pf);

Parameters

Parameter Description

pf
Callback of type IP_DHCPS_GET_VENDOR_OPTION_FUNC that is
asked for vendor specific options.

Example

/*********************************************************************
*
*       _cbDHCPs_AddVendorOptions()
*
*  Function description
*    Adds DHCP vendor specific options to our server replies.
*
*  Parameters
*    IFaceId : Zero-based interface index.
*    pInfo   : Further information about the vendor of the client.
*    ppOption: Pointer to the pointer where to add further options.
*              The dereferenced pointer needs to be incremented
*              by the number of bytes added. Type and length bytes
*              need to be added by the callback as well.
*    NumBytes: Number of free bytes that can be used to store
*              options from the callback.
*/
static void _cbDHCPs_AddVendorOptions(unsigned IFaceId, IP_DHCPS_VENDOR_OPTION_INFO* pInfo, U8** ppOption, unsigned NumBytes) {
  U8*      pVendorClassId;
  U8*      pOption;
  unsigned VendorClassIdLen;

  IP_USE_PARA(IFaceId);

  pOption = *ppOption;  // Get the location where to add our options aka borrow the pointer.
  //
  // Parse the vendor class id.
  //
  pVendorClassId   = pInfo->pVendorClassId;        // Points to the type which should always be DHCP option 60.
  pVendorClassId++;                                // proceed to the length field.
  VendorClassIdLen = (unsigned)*pVendorClassId++;  // Get the length byte and proceed to the actual non-terminated vendor string.
  //
  // Check if the vendor class identifier is known to us.
  //
  if ((IP_MEMCMP(pVendorClassId, "MSFT 5.0", VendorClassIdLen) == 0) &&
      (NumBytes >= 8u)) {  // Also check if we have enough space to add the option.
    //
    // Identified a Microsoft device that supports vendor-specific options.
    // More information about this can be found at the following location:
    //   * https://msdn.microsoft.com/en-us/library/cc227279.aspx
    //
    // Information about the vendor-specific options supported for Microsoft
    // devices can be found here:
    //   * [1] https://msdn.microsoft.com/en-us/library/cc227275.aspx
    //   * [2] https://msdn.microsoft.com/en-us/library/cc227276.aspx
    //
    // A common task is to disable NetBIOS (over TCP/IP) via DHCP
    // if your clients primarily use other techniques and you want
    // to speed up discovery of them by name. Typically one method
    // will be tested after each other which means that each method
    // used costs additional time before your desired discovery
    // method finally might be used.
    //
    *pOption++  =  43u;                    // Add an option field of type 43 "Vendor-Specific Information".
    *pOption++  =   6u;                    // Add length field with value 6 for the actual 6 bytes vendor-specific content.
    *pOption++  = 0x01;                    // [1] "Microsoft Disable NetBIOS Option (section 2.2.2.1)"
    *pOption++  = 0x04;                    // [2] "Vendor-specific Option Length"
    IP_StoreU32BE(pOption, 0x00000002uL);  // [2] "Vendor-specific Option Data" "Disables NetBIOS over TCP/IP for that network interface."
    pOption    += 4;
  }
  *ppOption = pOption;  // Write back the borrowed pointer so the DHCP server internal code knows where to continue.
}

void main(void) {
  ...
  IP_DHCPS_SetVendorOptionsCallback(_cbDHCPs_AddVendorOptions);
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



458 CHAPTER 10 API functions

10.2.9    IP_DHCPS_Start()

Description

Starts the DHCP server for the specified interface.

Prototype

int IP_DHCPS_Start(unsigned IFIndex);

Parameters

Parameter Description

IFIndex Zero-based interface index.

Return value

0 O.K.
IP_ERR_MISC Error, server already started or not initialized/configured.
IP_ERR_NOMEM Error, not enough memory.
IP_ERR_PARAM Error, wrong interface.

Additional information

IP_DHCPS_Init() and IP_DHCPS_ConfigPool() needs to be called before activating the
DHCP server for an interface in order to set at least the minimum configurations.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



459 CHAPTER 10 Data structures

10.3    Data structures

10.3.1    IP_DHCPS_RESERVE_ADDR

Description

Reserves a DHCP IPv4 address via HW address, hostname or both.

Type definition

typedef struct {
  const U8   * pHWAddr;
  U32          IPAddr;
  const char * sHostName;
} IP_DHCPS_RESERVE_ADDR;

Structure members

Member Description

pHWAddr Client HW/MAC address to reserve to. Can be NULL.

IPAddr
IPv4 address to reserve in host endianness. Does not need
to be from the DHCP pool itself.

sHostName Client hostname to reserve to. Can be NULL.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



460 CHAPTER 10 Data structures

10.3.2    IP_DHCPS_GET_VENDOR_OPTION_INFO

Description

Returns information about the vendor specific identifier received with DHCP option 60.

Type definition

typedef struct {
  U8 * pVendorClassId;
} IP_DHCPS_GET_VENDOR_OPTION_INFO;

Structure members

Member Description

pVendorClassId

Pointer to the DHCP option 60 field received from a client
including type and length bytes. A typical example would
be Type: 60, Len: 8 and Value: ’M’ ’S’ ’F’ ’T’ ’ ’ ’5’ ’.’ ’0’ for a
Microsoft client that supports vendor specific DHCP option 43
commands.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



461 CHAPTER 10 Data structures

10.3.3    IP_DHCPS_GET_VENDOR_OPTION_FUNC

Description

Inserts a vendor specific configuration for DHCP option 43.

Type definition

typedef void (IP_DHCPS_GET_VENDOR_OPTION_FUNC)
                                      (unsigned                          IFaceId,
                                       IP_DHCPS_GET_VENDOR_OPTION_INFO * pInfo,
                                       U8                             ** ppOption,
                                       unsigned                          NumBytes);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pInfo
Further information of type
IP_DHCPS_GET_VENDOR_OPTION_INFO about the vendor of the
client.

ppOption

Pointer to the pointer where to add further options. The
dereferenced pointer needs to be incremented by the
number of bytes added. Type and length bytes need to be
added by the callback as well.

NumBytes
Number of free bytes that can be used to store options from
the callback.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



462 CHAPTER 10 Resource usage

10.4    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the DHCP server modules presented in the tables below have
been measured on an ARM7 and a Cortex-M3 system. Details about the further configuration
can be found in the sections of the specific example.

10.4.1    ROM usage on an ARM7 system
The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon ROM

emNet DHCP server approximately 2.0 kByte

10.4.2    ROM usage on a Cortex-M3 system
The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon ROM

emNet DHCP server approximately 2.0 kByte

10.4.3    RAM usage

Addon RAM

emNet DHCP server approximately 200 bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 11
 
mDNS Server (Add-on)

The emNet implementation of mDNS server which stands for multicast DNS server is an
optional extension to emNet. It makes your target easily discoverable and advertising
services available throughout your network.

For the target IP address identification, this add-on also replies to Microsoft LLMNR requests.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



464 CHAPTER 11 emNet mDNS

11.1    emNet mDNS
The emNet mDNS implementation is an optional extension which can be seamlessly
integrated into your TCP/IP application. It allows your target to be easily identified with a
small memory footprint.

The mDNS server module implements the relevant parts of the following RFCs.

Document Download

Multicast DNS Direct download:
ftp://ftp.rfc-editor.org/in-notes/rfc6762.txt

Link-Local Multicast Name
Resolution (LLMNR)

Direct download:
ftp://ftp.rfc-editor.org/in-notes/rfc4795.txt

DNS-Based Service Discovery Direct download:
ftp://ftp.rfc-editor.org/in-notes/rfc6763.txt

A DNS RR for specifying the
location of services (DNS SRV)

Direct download:
ftp://ftp.rfc-editor.org/in-notes/rfc2782.txt

The following table shows the contents of the emNet root directory:

Directory Content

Application
Contains an example application that run’s a simple
mDNS server example.

IP Contains the mDNS server file, IP_DISCOVER.c.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



465 CHAPTER 11 Feature list

11.2    Feature list
• Low memory footprint.
• Makes your target easily discoverable.
• Easy to implement.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



466 CHAPTER 11 Requirements

11.3    Requirements
TCP/IP stack

The emNet mDNS server implementation requires the emNet TCP/IP stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



467 CHAPTER 11 Multicast DNS background

11.4    Multicast DNS background
Multicast DNS allows to find devices in an environment without the support of an actual
DNS server. A DNS request is sent to a specific multicast address on a specific port. Servers
are listening on this multicast address and handling the requests.

Multicast DNS handles only local systems and doen’t replace a real DNS for request outside
the local network.

11.4.1    Hostname resolution
In order to get the IP address of a target by its name, two records could be sent:
• A: To get the IPv4 address.
• AAAA: To get the IPv6 address.

Apple and Microsoft are both proposing a similar solution but using different multicast IP
addresses and ports. The Add-on is handling both specifications for A and AAAA requests.

The hostname is set in the configuration structure:

static const IP_DNS_SERVER_CONFIG     _Config = {
  .sHostname  = "mytarget.local",
  .TTL        = 120,
  .NumConfig  = 3,          // Could be 0 for name resolution only
  .apSDConfig = _SDConfig,  // DNS-SD config, could be NULL.
};

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



468 CHAPTER 11 Multicast DNS background

11.4.2    Service discovery (mDNS-SD)
The add-on also provides the definition of some services through additional records:
• PTR: Pointer record.
• SRV: Service record.
• TXT: Text record.

The service discovery is only available through the Apple multicast address (use of Bonjour),
or equivalent on linux machines (like avahi).

For example, if a target runs a web server, a possible configuration is:

static const IP_DNS_SERVER_SD_CONFIG   _SDConfig[] = {
  {

    .Type                       = IP_DNS_SERVER_TYPE_PTR,    
    .Flags                      = IP_DNS_SERVER_FLAG_FLUSH,
    .TTL                        = 0,
    .Config = {
      .PTR   = {
                .sName          = "_http._tcp.local",
                .sDomainName    = "myserver._http._tcp.local"
               }
              }
  },
  {

    .Type                       = IP_DNS_SERVER_TYPE_SRV,    
    .Flags                      = IP_DNS_SERVER_FLAG_FLUSH,
    .TTL                        = 0,
    .Config = {
      .SRV   = {
                 .sName         = "myserver._http._tcp.local",
                 .Priority      = 0,
                 .Weight        = 0,
                 .Port          = 80,
                 .sTarget       = "mytarget.local"
               }
              }
  },
  {

    .Type                       = IP_DNS_SERVER_TYPE_TXT,    
    .Flags                      = IP_DNS_SERVER_FLAG_FLUSH,
    .TTL                        = 0,
    .Config = {
      .TXT   = {
                 .sName         = "myserver._http._tcp.local",
                 .sTXT          = "PATH=/"
               }
              }
  }
};

 PTR record
: The PTR record indicates that an HTTP server runs at “myserver._http._tcp.local”

 SRV record
: The SRV record gives indication on the port number (80) and the actual local target name
(mytarget)

 TXT record
: The TXT record gives additional information, for example the path to the web server.

It is possible to add A and AAAA records, but they are not needed if the target name
corresponds to the target host name.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



469 CHAPTER 11 API functions

11.5    API functions
Function Description

IP_MDNS_SERVER_Start()
Starts the LLMNR/mDNS DNS-SD
discovery service.

IP_MDNS_SERVER_Stop()
Stops the LLMNR/mDNS DNS-SD discovery
service.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



470 CHAPTER 11 API functions

11.5.1    IP_MDNS_SERVER_Start()

Description

Starts the LLMNR/mDNS DNS-SD discovery service.

Prototype

int IP_MDNS_SERVER_Start(const IP_DNS_SERVER_CONFIG * pConfig);

Parameters

Parameter Description

pConfig Pointer to the configuration array.

Return value

= 0 O.K.
< 0 Error

Example

Configuration should define local names.

static const IP_DNS_SERVER_CONFIG _Config = {
  .sHostname  = "mytarget.local",
  .TTL        = 120,
  .NumConfig  = 0,     // No DNS-SD configuration.
  .apSDConfig = NULL
};
IP_MDNS_SERVER_Start(&_Config);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



471 CHAPTER 11 API functions

11.5.2    IP_MDNS_SERVER_Stop()

Description

Stops the LLMNR/mDNS DNS-SD discovery service.

Prototype

int IP_MDNS_SERVER_Stop(void);

Return value

0 OK.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



472 CHAPTER 11 Data structures

11.6    Data structures

11.6.1    Structure IP_DNS_SERVER_CONFIG

Description

This is the main configuration of the mDNS server.

Prototype

typedef struct {
  const char*                      sHostname;
        U32                        TTL;
        unsigned                   NumConfig;
  const IP_DNS_SERVER_SD_CONFIG*   apSDConfig;
} IP_DNS_SERVER_CONFIG;

Member Description

sHostname
Pointer on a null terminated string corresponding to the host
name (for example “mytarget.local”)

TTL
Time to live in seconds. If set to 0 a default value defined in
DNS_TTL_INIT is used.

NumConfig
Number of mDNS-SD configuration pointed by apSDConfig.
Could be 0.

apSDConfig
Array of mDNS-SD configuration. Could be NULL if NumConfig is
0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



473 CHAPTER 11 Data structures

11.6.2    Structure IP_DNS_SERVER_SD_CONFIG

Description

Configuration of a mDNS-SD entry.

Prototype

typedef struct {
  U32                        TTL;
  union {
    IP_DNS_SERVER_A          A;
#if IP_SUPPORT_IPV6
    IP_DNS_SERVER_AAAA       AAAA;
#endif
    IP_DNS_SERVER_PTR        PTR;
    IP_DNS_SERVER_SRV        SRV;
    IP_DNS_SERVER_TXT        TXT; 
  } Config;
  U8                         Type;
  U8                         Flags;
} IP_DNS_SERVER_SD_CONFIG;

Member Description

TTL
Time to live in seconds for this entry. If set to 0 the main TTL
value from the structure IP_DNS_SERVER_CONFIG is used.

A
A record description. Not needed for the hostname. See
IP_DNS_SERVER_A .

AAAA
AAA record description. Not needed for the hostname. See
IP_DNS_SERVER_AAAA .

PTR Pointer record description. See IP_DNS_SERVER_PTR .
SRV Service record description. See IP_DNS_SERVER_SRV .
TXT Text record description. See IP_DNS_SERVER_TXT .

Type

This is the type of the entry:
- IP_DNS_SERVER_TYPE_A
- IP_DNS_SERVER_TYPE_PTR
- IP_DNS_SERVER_TYPE_TXT
- IP_DNS_SERVER_TYPE_SRV
- IP_DNS_SERVER_TYPE_AAAA

Flags Optional configuration flags for this entry.

Flags Description

IP_DNS_SERVER_FLAG_FLUSH

Sets the FLUSH bit when sending a response that
contains this entry.
The FLUSH bit should be set on all unique resources
like the primary host name or in general A and AAAA
records. Unique entries in repsonses are meant to
FLUSH all previously returned configurations.
We do not set this flag automatically for ANY entry (not
even A and AAAA) to allow maximum freedom in your
configuration.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



474 CHAPTER 11 Data structures

11.6.3    Structure IP_DNS_SERVER_A

Description

Description of a A record entry (IPv4 IP address). This is not needed to have an entry for the
host name. An ’A’ request with the host name gets automatically a reply with the current
IP address of the interface on which the request is received.

If the field IPAddr is set to 0, the IP address of the host will be used automatically.

Prototype

typedef struct {
  char*                    sName;
  IP_ADDR                  IPAddr;
} IP_DNS_SERVER_A;

Member Description

sName Null terminated string of the server name.
IPAddr IPv4 address of the server name.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



475 CHAPTER 11 Data structures

11.6.4    Structure IP_DNS_SERVER_AAAA

Description

Description of a AAAA record entry (IPv6 IP address). This is not needed to have an entry
for the host name. An ’AAAA’ request with the host name gets automatically a reply with
the current IP address of the interface on which the request is received.

If the field aIPAddrV6 is completely set to 0 (the 16 bytes are all 0), the IP address of the
host will be used automatically.

Prototype

typedef struct {
  char*                    sName;
  U8                       aIPAddrV6[IPV6_ADDR_LEN];
} IP_DNS_SERVER_AAAA;

Member Description

sName Null terminated string of the server name.
aIPAddrV6 IPv6 address of the server name.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



476 CHAPTER 11 Data structures

11.6.5    Structure IP_DNS_SERVER_PTR

Description

Description of a PTR record entry. This could either convert an IP address into a server
name, for example 1.0.168.192.in-addr.arpa into myserver.local. Or this could be used to
indicate the server that provides a service (like _http._tcp.local).

Prototype

typedef struct {
  char*                    sName;
  char*                    sDomainName;
} IP_DNS_SERVER_PTR;

Member Description

sName
Null terminating string defining the entry that is requested. (what
appears in the request).

sDomainName
Null terminating string. This is the reply. If set to NULL, the
sHostname of the main config IP_DNS_SERVER_CONFIG is used.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



477 CHAPTER 11 Data structures

11.6.6    Structure IP_DNS_SERVER_SRV

Description

Description of a SRV record entry. This describes which server provides a service and
additional information like priority, port, …

Prototype

typedef struct {
  char*                    sName;
  U16                      Priority;
  U16                      Weight;
  U16                      Port;
  char*                    sTarget;      // If NULL, hostname will be used.
} IP_DNS_SERVER_SRV;

Member Description

sName
Null terminating string defining the entry that is requested,
Service, Protocol and Name are concatenated. (what appears in
the request).

Priority Priority value: 0 is the heigher priority.

Weight
Weight to balance between equivalent servers with the same
priority.

Port Port providing the service.

sTarget
Null terminating string. This is the server name. If set to NULL,
the sHostname of the main config IP_DNS_SERVER_CONFIG is
used.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



478 CHAPTER 11 Data structures

11.6.7    Structure IP_DNS_SERVER_TXT

Description

Description of a TXT record entry. This describes some textual parameters. There could be
many TXT records for the same name defining many parameters, but in this case, they
should be placed next to one another in the configuration structure.

Prototype

typedef struct {
  char*                    sName;
  char*                    sTXT;
} IP_DNS_SERVER_TXT;

Member Description

sName
Null terminating string defining the entry that is requested. (what
appears in the request).

sTXT
Null terminating string defining one text entry.
For example “Version=1”

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



479 CHAPTER 11 Resource usage

11.7    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the CoAP client/server presented in the tables below have
been measured on a Cortex-M4 system with the default configuration.

11.7.1    ROM usage on a Cortex-M4 system
The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio, size optimized.

Addon ROM

emNet mDNS server approximately 3.1 kBytes

11.7.2    RAM usage
The add-on uses a small internal table for the multicast UDP management.

Addon RAM

emNet mDNS server approximately 0.2 kBytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 12
 
DNS Server (Add-on)

This add-on provides a simple DNS server which allows for a server to handle the DNS
requests it receives. This could be used to gives the IP address of the target as a reply
to a server enquiry.

It is ideally coupled with the DHCP server (Add-on) on page 447.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



481 CHAPTER 12 emNet DNS server

12.1    emNet DNS server
The emNet DNS implementation is an optional extension which can be seamlessly integrated
into your TCP/IP application.

The DNS server module implements the relevant parts of the following RFCs.

Document Download

DOMAIN NAMES -
IMPLEMENTATION AND
SPECIFICATION

Direct download:
ftp://ftp.rfc-editor.org/in-notes/rfc1035.txt

DNS-Based Service Discovery Direct download:
ftp://ftp.rfc-editor.org/in-notes/rfc6763.txt

A DNS RR for specifying the
location of services (DNS SRV)

Direct download:
ftp://ftp.rfc-editor.org/in-notes/rfc2782.txt

The following table shows the contents of the emNet root directory:

Directory Content

IP Contains the mDNS server file, IP_DISCOVER.c.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



482 CHAPTER 12 Feature list

12.2    Feature list
• Low memory footprint.
• Makes your target easily discoverable.
• Easy to implement.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



483 CHAPTER 12 Requirements

12.3    Requirements
TCP/IP stack

The emNet DNS server implementation requires the emNet TCP/IP stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



484 CHAPTER 12 Implementation

12.4    Implementation
The emNet simple DNS server used the same mechanism and configuration as the mDNS
Server (Add-on) on page 463. Thus the structures and parameters won’t be described
further in this chapter.

The only difference is that target name definition are not local anymore since a DNS is
faked. Thus the “.local” extension is not needed anymore.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



485 CHAPTER 12 API functions

12.5    API functions
Function Description

IP_DNS_SERVER_Start() Starts the simple DNS service.
IP_DNS_SERVER_Stop() Stops the simple DNS service.

IP_DNS_SetDNSPort()
Sets the DNS Port to a user-configured
value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



486 CHAPTER 12 API functions

12.5.1    IP_DNS_SERVER_Start()

Description

Starts the simple DNS service.

Prototype

int IP_DNS_SERVER_Start(const IP_DNS_SERVER_CONFIG * pConfig);

Parameters

Parameter Description

pConfig Pointer to the fake DNS configuration.

Return value

0 OK.
-1 Error. Could not open connection(s) or DNS service not supported

(IP_SUPPORT_FAKE_DNS = 0).

Example

Configuration should define local names.

static const IP_DNS_SERVER_CONFIG _Config = {
  .sHostname  = "mytarget.eth",
  .TTL        = 120,
  .NumConfig  = 0,     // No DNS-SD configuration.
  .apSDConfig = NULL
};
IP_DNS_SERVER_Start(&_Config);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



487 CHAPTER 12 API functions

12.5.2    IP_DNS_SERVER_Stop()

Description

Stops the simple DNS service.

Prototype

int IP_DNS_SERVER_Stop(void);

Return value

= 0 O.K.
< 0 Error

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



488 CHAPTER 12 API functions

12.5.3    IP_DNS_SetDNSPort()

Description

Sets the DNS Port to a user-configured value.

Prototype

int IP_DNS_SetDNSPort(U16 Port);

Parameters

Parameter Description

Port Port to use for DNS.

Return value

-1 Error.
0 O.K.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



489 CHAPTER 12 Resource usage

12.6    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the CoAP client/server presented in the tables below have
been measured on a Cortex-M4 system with the default configuration.

In addition to the existing mDNS server add-on, the DNS server add-on adds approximately
0.2 kBytes of ROM.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 13
 
AutoIP

All functions which are required to add AutoIP to your application are described in this
chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



491 CHAPTER 13 emNet AutoIP backgrounds

13.1    emNet AutoIP backgrounds
The emNet AutoIP module adds the dynamic configuration of IPv4 Link-Local addresses to
emNet. This functionality is better known as AutoIP. Therefore, this term will be used in
this document. The AutoIP implementation covers the relevant parts of the following RFCs:

RFC# Description

[RFC 3972] Dynamic Configuration of IPv4 Link-Local Addresses.
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc3972.txt

In general AutoIP is a method to negotiate a IPv4 address in a network without the
utilization of a server such as a DHCP server. AutoIP will try to use IPv4 addresses out of
a reserved pool from the addresses 169.254.1.0 to 169.254.254.255 to find a free IP that
is not used by any other network participant at this time.

To achieve this goal AutoIP sends ARP probes into the network to ask if the addr. to be
used is already in use. This is determined by an ARP reply for the requested address. Upon
an address conflict AutoIP will generate a new address to use and will retry to use it by
sending ARP probes again.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



492 CHAPTER 13 API functions

13.2    API functions
Function Description

IP_AutoIP_Activate()
Activates AutoIP negotiation for the specified
interface.

IP_AutoIP_Halt() Stops AutoIP activity for the passed interface.

IP_AutoIP_SetUserCallback()
This function allows the caller to set a callback
for an interface.

IP_AutoIP_SetStartIP()
Sets the IP address which will be used for the
first configuration try.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



493 CHAPTER 13 API functions

13.2.1    IP_AutoIP_Activate()

Description

Activates AutoIP negotiation for the specified interface.

Prototype

void IP_AutoIP_Activate(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero based interface index.

Additional information

Activating the dynamic configuration of IPv4 Link-Local addresses means that an additional
timer will be added to the stack. This timer will be called every second to check the status
of the address configuration. With the AutoIP activation an IP address for the dynamic
configuration will be created. The IPv4 prefix 169.254/16 is registered with the IANA for this
purpose. This means that the stack will generate an IP address similar to 169.254.xxx.xxx.
The subnet mask of is always 255.255.0.0.

In emNet debug builds terminal I/O output can be enabled. AutoIP outputs status
information in the terminal I/O window if the stack is configured to so (IP_MTYPE_AUTOIP
added to the log filter mask). Please refer to IP_SetLogFilter on page 1262 and
IP_AddLogFilter on page 1258 for further information about the enabling terminal I/O. If
terminal I/O is enabled the output of a the program start should be similar to the following
lines:

0:000 MainTask - INIT: Init started. Version 2.00.06
0:000 MainTask - DRIVER: Found PHY with Id 0x2000 at addr 0x1
0:000 MainTask - INIT: Link is down
0:000 MainTask - INIT: Init completed
0:000 IP_Task - INIT: IP_Task started
0:000 IP_RxTask - INIT: IP_RxTask started
3:000 IP_Task - LINK: Link state changed: Full duplex, 100 MHz
9:000 IP_Task - AutoIP: 169.254.240.240 checked, no conflicts
9:000 IP_Task - AutoIP: IFaceId 0: Using IP: 169.254.240.240.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



494 CHAPTER 13 API functions

13.2.2    IP_AutoIP_Halt()

Description

Stops AutoIP activity for the passed interface.

Prototype

int IP_AutoIP_Halt(unsigned IFaceId,
                   char     KeepIP);

Parameters

Parameter Description

IFaceId Zero-based interface index.

KeepIP
Flag to indicate if the used IP address should be stored
for the next start of AutoIP. 0 means do not keep the IP, 1
means keep the IP address for the next AutoIP start.

Return value

0 Ok. AutoIP stopped. IP address cleared.
IP Ok. AutoIP stopped. The IP address (for example 0xA9FExxxx) has been kept.
-1 Error. Illegal interface number.

Additional information

The function stops the AutoIP module. The IP address which was used during AutoIP was
activated, can be kept to speed up the configuration process after reactivating AutoIP. If
the IP address will not be kept, AutoIP creates a new IP address after the reactivation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



495 CHAPTER 13 API functions

13.2.3    IP_AutoIP_SetUserCallback()

Description

This function allows the caller to set a callback for an interface. The callback is called with
every status change.

Prototype

void IP_AutoIP_SetUserCallback(unsigned                     IFaceId,
                               IP_AUTOIP_INFORM_USER_FUNC * pfInformUser);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pfInformUser
Pointer to a user function of type
IP_AUTOIP_INFORM_USER_FUNC which is called when a status
change occurs.

Additional information

This mechanism is provided so that the caller can do some processing when the interface
is up (like doing initializations or blinking LEDs, etc.).

IP_AUTOIP_INFORM_USER_FUNC is defined as follows:

typedef void (IP_AUTOIP_INFORM_USER_FUNC)(U32 IFaceId, U32 Status);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



496 CHAPTER 13 API functions

13.2.4    IP_AutoIP_SetStartIP()

Description

Sets the IP address which will be used for the first configuration try.

Prototype

void IP_AutoIP_SetStartIP(unsigned IFaceId,
                          U32      IPAddr);

Parameters

Parameter Description

IFaceId Zero based interface index.
IPAddr 4-byte IPv4 address.

Additional information

A call of this function is normally not required, but in some cases it can be useful to set the
IP address which should be used as starting point of the AutoIP functionality.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



497 CHAPTER 13 Resource usage

13.3    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the AutoIP module presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

13.3.1    ROM usage on an ARM7 system
The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon ROM

emNet AutoIP module approximately 1.1 kByte

13.3.2    ROM usage on a Cortex-M3 system
The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon ROM

emNet AutoIP module approximately 1.0 kByte

13.3.3    RAM usage

Addon RAM

emNet AutoIP module approximately 0.7 kByte

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 14
 
Address Collision Detection
(ACD)

All functions which are required to add Address Collision Detection (ACD) to your application
are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



499 CHAPTER 14 emNet ACD module

14.1    emNet ACD module
The emNet ACD module allows to detect and react to IPv4 address collisions on the network.
The typical case is that one or more hosts on the network use the same IPv4 address.
To detect other hosts using the same IP address, ACD can use passive listening for ARP
packets sent by hosts as well as active probing for the IP address.

The ACD module implements the relevant parts of the following Request For Comments
(RFC).

RFC# Description

[RFC 5227] IPv4 Address Conflict Detection
Direct download: https://datatracker.ietf.org/doc/html/rfc5227

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



500 CHAPTER 14 API functions

14.2    API functions
Function Description

IP_ACD_Activate()
Activates the address conflict detection (ACD)
for the specified interface.

IP_ACD_ActivateEx()
Activates the address conflict detection (ACD)
for the specified interface and allows extended
configuration.

IP_ACD_Config()
Configures the address conflict detection (ACD)
behavior for startup and in case of conflicts.

IP_ACD_EndAnnounce()
Ends sending further announce messages when
in IP_ACD_STATE_ANNOUNCE_SEND_GARP state.

IP_ACD_Halt()
De-Activates the address conflict detection
(ACD) for the specified interface.

IP_ACD_UpdateBackgroundPeriod()
Updates the “BackgroundPeriod” when in
IP_ACD_STATE_ACTIVE_* state.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



501 CHAPTER 14 API functions

14.2.1    IP_ACD_Activate()

Description

Activates the address conflict detection (ACD) for the specified interface.

Prototype

int IP_ACD_Activate(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 ACD activated and free IP found (does not mean the initial IP was good).
= 1 No IP address set when ACD was activated.
< 0 Error, no memory.

Additional information

Activating the address conflict detection module means that a hook into the ARP module
of the stack will be activated that allows the user to take action if an IPv4 address conflict
on the network has been discovered.

When the ACD module is started it will check if the currently used IP address is in conflict
with any other host on the network by sending ARP probes to find hosts with the same
IPv4 address.

It is the responsibility of the application to make sure that ACTIVATE is only called when
the interface is UP. As ACD only makes sense for an interface in state UP, the ACTIVATE call
might actively wait for the interface state to change.

To allow the user to take action on those conflicts it is necessary to use IP_ACD_Config()
before activating ACD.

In emNet debug builds terminal I/O output can be enabled. ACD outputs status information
in the terminal I/O window if the stack is configured to so (IP_MTYPE_ACD added to the
log filter mask). Please refer to IP_SetLogFilter on page 1262 and IP_AddLogFilter on
page 1258 for further information about the enabling terminal I/O.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



502 CHAPTER 14 API functions

14.2.2    IP_ACD_ActivateEx()

Description

Activates the address conflict detection (ACD) for the specified interface and allows
extended configuration.

Prototype

int IP_ACD_ActivateEx(      unsigned              IFaceId,
                            IP_ACD_ON_INFO_FUNC * pfOnInfo,
                      const IP_ACD_EX_CONFIG    * pConfig,
                            unsigned              NonBlocking);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pfOnInfo
Callback of type IP_ACD_ON_INFO_FUNC to be notified about
state changes and events.

pConfig Pointer to configuration of type IP_ACD_EX_CONFIG .

NonBlocking
• 0: Call is blocking and waits for the operations to finish.
• 1: Call is non-blocking and returns instantly.

Return value

= 0 ACD activated and free IP found (does not mean the initial IP was good).
= 1 No IP address set when ACD was activated.
< 0 Error, no memory.

Additional information

Activating the address conflict detection module means that a hook into the ARP module
of the stack will be activated that allows the user to take action if an IPv4 address conflict
on the network has been discovered.

When the ACD module is started it will check if the currently used IP address is in conflict
with any other host on the network by sending ARP probes to find hosts with the same
IPv4 address.

It is the responsibility of the application to make sure that ACTIVATE is only called when
the interface is UP. As ACD only makes sense for an interface in state UP, the ACTIVATE call
might actively wait for the interface state to change.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



503 CHAPTER 14 API functions

14.2.3    IP_ACD_Config()

Description

Configures the address conflict detection (ACD) behavior for startup and in case of conflicts.

Prototype

int IP_ACD_Config(      unsigned   IFaceId,
                        unsigned   NumProbes,
                        unsigned   DefendInterval,
                  const ACD_FUNC * pAPI);

Parameters

Parameter Description

IFaceId Zero-based interface index.

NumProbes
Number of ARP probes to send upon activating ACD before
declaring the actual used IP address to be free to be used.

DefendInterval
Interval [ms] in which the currently active IP address is
being known as defended after taking action.

pAPI Pointer to callback table of type ACD_FUNC .

Return value

= 0 O.K.
< 0 Error, no memory.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



504 CHAPTER 14 API functions

14.2.4    IP_ACD_EndAnnounce()

Description

Ends sending further announce messages when in IP_ACD_STATE_ANNOUNCE_SEND_GARP
state.

Prototype

void IP_ACD_EndAnnounce(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Additional information

This routine is designed to be called either from the ACD information callback
or from another place in the application to end an ongoing sending of announce
messages early when in the IP_ACD_STATE_ANNOUNCE_SEND_GARP state. Ending the
IP_ACD_STATE_ANNOUNCE_SEND_GARP state early might be necessary for example when
implementing EtherNet/IP “QuickConnect” and communication is established while still
sending announce messages.

At the moment using this routine is limited to the IP_ACD_STATE_ANNOUNCE_SEND_GARP
state and is internally checked. If important to your application you should ensure that this
is the case in your application as this internal check might be subject to change in the future.

Calling this routine sends the state machine into ACTIVE or PASSIVE mode. In ACTIVE mode
it is possible to influence the time before sending the first probe by overriding the proposed
delay in the info callback for the IP_ACD_STATE_ACTIVE_WAIT_BEFORE_BG_PROBES state.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



505 CHAPTER 14 API functions

14.2.5    IP_ACD_Halt()

Description

De-Activates the address conflict detection (ACD) for the specified interface.

Prototype

void IP_ACD_Halt(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



506 CHAPTER 14 API functions

14.2.6    IP_ACD_UpdateBackgroundPeriod()

Description

Updates the “BackgroundPeriod” when in IP_ACD_STATE_ACTIVE_* state.

Prototype

void IP_ACD_UpdateBackgroundPeriod(unsigned IFaceId,
                                   unsigned BackgroundPeriod);

Parameters

Parameter Description

IFaceId Zero-based interface index.
BackgroundPeriod Background period in milliseconds.

Additional information

This routine is designed to be called either from the ACD information callback or from
another place in the application to modify the period used when sending background probes
in ACTIVE mode in the IP_ACD_STATE_ACTIVE_* states.

At the moment using this routine is limited to the IP_ACD_STATE_ACTIVE_* states and is
internally checked. If important to your application you should ensure that this is the case
in your application as this internal check might be subject to change in the future.

Calling this routine sends the state machine into ACTIVE mode and ends states such as
IP_ACD_STATE_ACTIVE_WAIT_BEFORE_BG_PROBES if the state machine is currently in this
state.

Changing the background probing period can be used to enter or leave the EtherNet/IP
“SemiActiveProbe” mode.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



507 CHAPTER 14 Data structures

14.3    Data structures

14.3.1    Structure ACD_FUNC

Description

Used to store function pointers to the user defined callbacks to take several actions upon
detecting an IP address conflict.

Prototype

typedef struct {
  U32 (*pfRenewIPAddr)(unsigned IFace);
  int (*pfDefend)     (unsigned IFace);
  int (*pfRestart)    (unsigned IFace);
} ACD_FUNC;

Member Description

pfRenewIPAddr
Function pointer to a user defined routine that is used to generate
a new IPv4 address if there is a collision detected during ACD
activation.

pfDefend
Function pointer to a user defined routine that is used to let the user
implement his own defend strategy. Can be NULL.

pfRestart
Function pointer to a user defined routine that should reconfigure the
IP address used by the stack and optionally re-activates ACD.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



508 CHAPTER 14 Data structures

14.3.2    IP_ACD_EX_CONFIG

Description

Used to configure the extended ACD functionality.

Type definition

typedef struct {
  U32           IPAddr;
  unsigned      BackgroundPeriod;
  unsigned      NumProbes;
  unsigned      DefendInterval;
  unsigned      NumAnnouncements;
  unsigned      AnnounceInterval;
  U8            AssignAddressManually;
  IP_ACD_STATE  InitState;
} IP_ACD_EX_CONFIG;

Structure members

Member Description

IPAddr IPv4 start address to use in host endianness.

BackgroundPeriod
Period [ms] in which ACD will send probes running in the
background.

NumProbes
Number of ARP probes to send upon activating ACD before
declaring the actual used IP address to be free to be used. 0
to use default.

DefendInterval
Interval [ms] in which the currently active IP address is
being known as defended after taking action. 0 to use
default.

NumAnnouncements
Number of announcements to send when using a free
address. The address can already be used at this point. 0 to
use default.

AnnounceInterval
Time [ms] between announcements to send. 0 to use
default.

AssignAddressManually

Configures if probed address is assigned automatically to the
interface if free.
• 0: Off (default), address is automatically to the interface,

using the existing subnet mask.
• 1: On, address is only reported via

the IP_ACD_INFO.IPAddr member in the
IP_ACD_STATE_INIT_WAIT_BEFORE_ANNOUNCE state.

The user needs to manually assign it to the interface
along with the desired subnet mask. Assigning an address
manually might affect ACD effectiveness on virtual interfaces
such as being used for multiple addresses on one single
physical interface. ARP/ACD might not be able to correctly
select the virtual interface for some operations until the
address has finally been assigned to the interface.

InitState

Initial state for the ACD state machine upon activating ACD.
The following states are supported:
• IP_ACD_STATE_DISABLED
Default behavior starting ACD listening for potential conflicts
at the beginning.
• IP_ACD_STATE_ANNOUNCE_SEND_GARP
Skips the initial listening phase and starts by directly
sending the first the first announcement. This can be used to
implement EtherNet/IP “QuickConnect” behavior.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



509 CHAPTER 14 Data structures

14.3.3    IP_ACD_ANNOUNCE_INFO

Description

Returns information about the latest ACD announce about using a free and previously
probed address.

Type definition

typedef struct {
  unsigned  AnnouncementsLeft;
} IP_ACD_ANNOUNCE_INFO;

Structure members

Member Description

AnnouncementsLeft Number of announements left to send.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



510 CHAPTER 14 Data structures

14.3.4    IP_ACD_COLLISION_INFO

Description

Returns information about the latest ACD collision.

Type definition

typedef struct {
  IP_PACKET * pPacket;
  U32         DefendTimeout;
  unsigned    ProbesLeft;
} IP_ACD_COLLISION_INFO;

Structure members

Member Description

pPacket
Pointer to the packet that caused the collision (pPacket-
>pData points to the ARP header).

DefendTimeout System timestamp of when the defend window ends.
ProbesLeft Number of INIT probes left to send.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



511 CHAPTER 14 Data structures

14.3.5    IP_ACD_WAIT_INFO

Description

Returns information about a delay/wait before the next step. This can be a delay before
sending the very first probe for INIT or a delay between each probe sent during the INIT
phase.

Type definition

typedef struct {
  unsigned           WaitMin;
  unsigned volatile  WaitTime;
  unsigned           WaitMax;
} IP_ACD_WAIT_INFO;

Structure members

Member Description

WaitMin Suggested minimum wait time [ms].

WaitTime

Wait time before the next state that is used (does not
have to obey min./max. suggestion). This value can be
overwritten and is evaluated after returning from the
callback.

WaitMax Suggested maximum wait time [ms]

Additional information

The stack makes suggestions using the structure members as well as presenting the actual
value that will be used in the WaitTime member. You can overwrite the WaitTime member
as it is then evaluated after returning from the callback and its new value value is then used.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



512 CHAPTER 14 Data structures

14.3.6    IP_ACD_INFO

Description

Returns information about the current ACD status. The ACD info callback parameter State
has to be evaluated for further information if there is more info about the new state and
what part of the union is the information to look at.

Type definition

typedef struct {
  U32                         IPAddr;
  IP_ACD_STATE                State;
  IP_ACD_STATE                OldState;
  IP_ACD_LOSE_DEFEND_ADDRESS  Defend;
  IP_ACD_KEEP_DISCARD_PACKET  DiscardPacket;
} IP_ACD_INFO;

Structure members

Member Description

IPAddr

IPv4 address (in host endianness) that gets assigned
to the interface or would be assigned to the interface
if IP_ACD_EX_CONFIG.AssignAddressManually
is NOT used. Currently only valid with the
IP_ACD_STATE_INIT_WAIT_BEFORE_ANNOUNCE state.

State

Type of information and what part of the union to look at.
The State member is followed by a union that might not be
correctly displayed or completely missing in the manual. The
following information describes this union part:
• IP_ACD_STATE_EVENT_COLLISION: Information about the

latest ACD collision can be found in pInfo->Data.Collision
in form of IP_ACD_COLLISION_INFO .

OldState

Previous state. Might be the same as new state depending
on actions executed in callbacks. If filtering is needed, this
needs to be implemented in the application. When counting
events like how many announcements have been sent, the
OldState should be used for filtering as this reports the
event handled immediately before or after reporting the
state (change).

Defend

Suggestion from the stack whether to defend the IP address
on a collision after INIT or not. This value is evaluated after
returning from the callback.
• = IP_ACD_LOSE_ADDRESS : Lose the address (typically if

this is not the first conflict with a host and is within the
defend window.

• = IP_ACD_DEFEND_ADDRESS: Defend the address
(anyhow).

DiscardPacket

Suggestion from the stack whether to keep or discard a
packet contained in the state specific information structure
(e.g. IP_ACD_COLLISION_INFO). This value is evaluated after
returning from the callback.
• = IP_ACD_KEEP_PACKET : Packet is kept and forwarded to

the ARP module for further handling.
• = IP_ACD_DISCARD_PACKET: Packet is discarded (e.g. to

avoid ARP cache poisoning).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



513 CHAPTER 14 Data structures

14.3.7    IP_ACD_ON_INFO_FUNC

Description

Callback executed whenever updated ACD information is available.

Type definition

typedef void (IP_ACD_ON_INFO_FUNC)(unsigned      IFaceId,
                                   IP_ACD_INFO * pInfo);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pInfo
Further information of type IP_ACD_INFO about the actual
information available.

Additional information

Calling API like an ACTIVATE from the callback might produce another callback message. It
is the responsibility of the application to avoid infinite recursion. Typically this is no problem
as calling ACTIVATE again from the callback reporting the ACTIVATE state makes no sense.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



514 CHAPTER 14 EtherNet/IP usage

14.4    EtherNet/IP usage
The standard ACD behavior and timers are typically sufficient to raise notifications in a
regular network and detect configuration problems in non critical environments. Other
environments and protocols used might be subject to more strict parameters to detect
configuration problems faster and allow to react to them in a more prioritized way than just
notifying about the potential problem on the network.

EtherNet/IP is such an environment/protocol that in its basic principles makes use of ACD
as is but extends it by some specific behavior here and there. This section explains how to
configure the ACD module for some of these EtherNet/IP specific requirements.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



515 CHAPTER 14 EtherNet/IP usage

14.4.1    EtherNet/IP QuickConnect
QuickConnect capable devices power up in less than 300 ms and are able to establish a
network connection in less than 200 ms. A QuickConnect is for example used when replacing
tools in an EtherNet/IP network that need to be back to production basically instantaneous.

In QuickConnect mode ACD is not started in its slow probing initial state but shall be
doing quick negotions with the network to decide if there is a collision or not. A typical
configuration is to directly start announcing the IP that is to be used to the network in a
quick paced manner to make sure this is received as early as possible by other hosts that
might be subject to collision with the QuickConnect device entering the network.

The rapid announcing of its address is stopped early when detecting I/O communication
with the device, confirming that based on network topology and switch ARP tables,
communication ends up with this device after all.

EtherNet/IP QuickConnect example

QuickConnect configuration example sending 40 ARP announcements with a period of 25
ms before switching into active background probing with a period of 1 second.

static unsigned     _ACD_IFaceId = 0u;
static IP_ACD_STATE _ACD_State;

/*********************************************************************
*
*       ACD configuration
*/
static IP_ACD_EX_CONFIG _ACD_Config = {
  ...
  .BackgroundPeriod = 1000u,
  .NumAnnouncements = 40u,
  .AnnounceInterval = 25u,
  .InitState        = IP_ACD_STATE_ANNOUNCE_SEND_GARP,
  ...
};

/*********************************************************************
*
*       _cbOnInfo()
*
*  Function description
*    Callback executed whenever updated ACD information is available.
*
*  Parameters
*    IFaceId : Zero-based interface index.
*    pInfo   : Further information of type IP_ACD_INFO about the actual
*              information available.
*
*  Additional information
*    Calling API like an ACTIVATE from the callback might produce
*    another callback message. It is the responsibility of the application
*    to avoid infinite recursion. Typically this is no problem as calling
*    ACTIVATE again from the callback reporting the ACTIVATE state makes
*    no sense.
*/
static void _ACD_cbOnInfo(unsigned IFaceId, IP_ACD_INFO* pInfo) {
  IP_USE_PARA(IFaceId);

  _ACD_State = pInfo->State;
}

/*********************************************************************
*
*       _EIP_cbOnIO()
*
*  Function description

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



516 CHAPTER 14 EtherNet/IP usage

*    Callback executed upon EtherNet/IP I/O communication.
*
*  Additional information
*    This callback is executed when detecting I/O communication and
*    is used to end the QuickConnect rapid announcement phase early.
*/
static void _EIP_cbOnIO(void) {
  if (_ACD_State == IP_ACD_STATE_ANNOUNCE_SEND_GARP) {
    IP_ACD_EndAnnounce(_ACD_IFaceId);
  }
}

/*********************************************************************
*
*       MainTask
*/
void MainTask(void) {
  ...
  IP_Init();
  ...
  //
  // Wait for Link-UP.
  //
  ...
  IP_ACD_ActivateEx(_ACD_IFaceId, _ACD_cbOnInfo, &_ACD_Config, 0u);
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



517 CHAPTER 14 EtherNet/IP usage

14.4.2    EtherNet/IP SemiActiveProbe
If an interface is already successfully established and doing its background probing and
another interface of this device reaches link-UP state, the device shall enter the so called
SemiActiveProbe state. As the device has the same IP address for its multiple EtherNet/
IP interfaces, it shall probe if it sees itself due to a wrong network topology.

A typical probing algorithm is to send two ARP probes with a period of 200 ms in the form
of DELAY => PROBE => DELAY => PROBE . Once done, the device shall return to its regular
ACD background probing cycle.

EtherNet/IP SemiActiveProbe example

SemiActiveProbe example sending two short probes with a period of 200 ms before
returning back to its original background probing with a period of 1 second.

static unsigned               _ACD_IFaceId = 0u;
static unsigned               _ACD_SemiActiveProbesLeft;
static IP_HOOK_ON_LINK_CHANGE _ACD_LinkChangeHook;
static IP_ACD_STATE           _ACD_State;

/*********************************************************************
*
*       ACD configuration
*/
static IP_ACD_EX_CONFIG _ACD_Config = {
  ...
  .BackgroundPeriod = 1000u,
  ...
};

/*********************************************************************
*
*       _cbOnInfo()
*
*  Function description
*    Callback executed whenever updated ACD information is available.
*
*  Parameters
*    IFaceId : Zero-based interface index.
*    pInfo   : Further information of type IP_ACD_INFO about the actual
*              information available.
*
*  Additional information
*    Calling API like an ACTIVATE from the callback might produce
*    another callback message. It is the responsibility of the application
*    to avoid infinite recursion. Typically this is no problem as calling
*    ACTIVATE again from the callback reporting the ACTIVATE state makes
*    no sense.
*/
static void _ACD_cbOnInfo(unsigned IFaceId, IP_ACD_INFO* pInfo) {
  IP_USE_PARA(IFaceId);

  _ACD_State = pInfo->State;
  //
  // Handle SemiActiveProbe mode.
  // Use the OldState to avoid reacting to the transition into
  // the SemiActiveProbe mode. Reacting to the OldState means
  // to react to the end of the first 200 ms delay and sending
  // the first SemiActiveProbe .
  //
  if (pInfo->OldState == IP_ACD_STATE_ACTIVE_SEND_BG_PROBES) {
    //
    // Are we in SemiActiveProbe mode ?
    //
    if (_ACD_SemiActiveProbesLeft != 0u) {
      _ACD_SemiActiveProbesLeft--;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



518 CHAPTER 14 EtherNet/IP usage

      //
      // Is this the last probe to send with SemiActiveProbe long period ?
      //
      if (_ACD_SemiActiveProbesLeft == 0u) {
        //
        // Return back to the regular background probing period.
        //
        IP_ACD_UpdateBackgroundPeriod(_ACD_IFaceId, 1000u);
      }
    }
  }
}

/*********************************************************************
*
*       _ACD_cbOnLinkChange()
*
*  Function description
*    Callback executed whenever the link state of an interface changes.
*
*  Parameters
*    IFaceId : Zero-based interface index.
*    Duplex  : Link duplex:
*                * 0: Duplex unknown or Auto-Neg. incomplete.
*                * 1: Half-Duplex.
*                * 2: Full-Duplex
*    Speed   : Link speed:
*                * == 0: Unknown, typically link-DOWN.
*                * >  0: Speeds of up to one gigabit are returned in Hertz.
*/
static void _ACD_cbOnLinkChange(unsigned IFaceId, U32 Duplex, U32 Speed) {
  IP_USE_PARA(Duplex);

  //
  // This is NOT our primary ACD monitored interface ?
  //
  if (IFaceId != _ACD_IFaceId) {
    //
    // This is a link-UP event ?
    //
    if (Speed != 0u) {
      //
      // Our ACD monitored interface is in background probing mode ?
      //
      if (_ACD_State == IP_ACD_STATE_ACTIVE_SEND_BG_PROBES) {
        //
        // Prepare to execute SemiActiveProbe
        //   - 200ms
        //   - Probe
        //   - 200ms
        //   - Probe
        //   - Back to background probing.
        //
        _ACD_SemiActiveProbesLeft = 2u;
        IP_ACD_UpdateBackgroundPeriod(_ACD_IFaceId, 200u);
      }
    }
  }
}

/*********************************************************************
*
*       MainTask
*/
void MainTask(void) {
  ...
  IP_Init();
  IP_AddLinkChangeHook(&_ACD_LinkChangeHook, _ACD_cbOnLinkChange);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



519 CHAPTER 14 EtherNet/IP usage

  ...
  //
  // Wait for Link-UP.
  //
  ...
  IP_ACD_ActivateEx(_ACD_IFaceId, _ACD_cbOnInfo, &_ACD_Config, 0u);
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



520 CHAPTER 14 Resource usage

14.5    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the AutoIP module presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

14.5.1    ROM usage on an ARM7 system
The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon ROM

emNet ACD module approximately 0.4 kByte

14.5.2    ROM usage on a Cortex-M3 system
The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon ROM

emNet ACD module approximately 0.4 kByte

14.5.3    RAM usage

Addon RAM

emNet ACD module approximately 50 Bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 15
 
UPnP (Add-on)

The emNet implementation of UPnP which stand for Universal Plug and Play is an optional
extension to emNet. It allows making your target easily discoverable and advertising
services available on your target throughout your network.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



522 CHAPTER 15 emNet UPnP

15.1    emNet UPnP
The emNet UPnP implementation is an optional extension which can be seamlessly
integrated into your TCP/IP application. It combines the possibility to implemented UPnP
services in a most flexible way by allowing to specify content to be sent upon UPnP requests
completely generated by the application with a small memory footprint.

The UPnP module implements the relevant parts of the UPnP documentation released by
the UPnP Forum.

Document Download

UPnP Device Architecture 1.0
Direct download:
http://upnp.org/specs/arch/UPnP-arch-
DeviceArchitecture-v1.0.pdf

The following table shows the contents of the emNet root directory:

Directory Content

Application
Contains the example application to run the UPnP
implementation with emNet and emNet Web server
add-on.

IP Contains the UPnP source file, IP_UPnP.c.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



523 CHAPTER 15 Feature list

15.2    Feature list
• Low memory footprint.
• Advertising your services on the network
• Easy to implement

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



524 CHAPTER 15 Requirements

15.3    Requirements
TCP/IP stack

The emNet UPnP implementation requires the emNet TCP/IP stack and is designed to be
used with the emNet Web server add-on.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



525 CHAPTER 15 Backgrounds

15.4    Backgrounds
UPnP is designed to provide services throughout a network without interaction of the user.
It is designed to use standardized protocols such as IP, TCP, UDP, Multicast, HTTP and XML
for communication and to distribute services provided by a device.

UPnP can be used to advertise services provided by a device across the network such as
where to find the web interface for the device advertising. Newer operating systems support
UPnP from scratch and will show UPnP devices available across a network and may provide
easy access to a device by simply selecting the discovered UPnP device.

A typical usage would be to advertise media accessible on a media storage on the network
and opening a file browser window to the resource upon opening the UPnP entry discovered.

15.4.1    Using UPnP to advertise your service in the network
The default UPnP XML file advertised is upnp.xml. A solution providing UPnP content has to
serve a file called upnp.xml containing valid UPnP descriptors via a web server. The sample
OS_IP_Webserver_UPnP.c provides a sample configuration for advertising a web server
page that will open if the UPnP client clicks on the discovered UPnP device.

A discovered UPnP device will typically be shown in the network neighborhood of your
operating system. A discovered device found by a Windows OS is shown in the picture
below:

  

The example below shows the most important excerpts from the OS_IP_Webserver_UPnP.c
sample that are necessary to setup a UPnP device in your network.

/* Excerpt from OS_IP_Webserver_UPnP.c */
//
// UPnP
//
#define UPNP_FRIENDLY_NAME     "SEGGER UPnP Demo"
#define UPNP_MANUFACTURER      "SEGGER Microcontroller GmbH"
#define UPNP_MANUFACTURER_URL  "http://www.segger.com"
#define UPNP_MODEL_DESC        "SEGGER emWeb server with UPnP"
#define UPNP_MODEL_NAME        "SEGGER UPnP Demo"
#define UPNP_MODEL_URL         "http://www.segger.com/emweb"

The sample uses VFile hooks as described in IP_WEBS_AddVFileHook() to provide
dynamically serving the necessary XML files for UPnP without the need for a real file system
or further processing through the web server.

/* Excerpt from OS_IP_Webserver_UPnP.c */
/*********************************************************************
*
*       Types
*
**********************************************************************
*/
typedef struct {
  const char     * sFileName;
  const char     * pData;
        unsigned   NumBytes;
} VFILE_LIST;

/* Excerpt from OS_IP_Webserver_UPnP.c */
/*********************************************************************
*
*       Static const
*
**********************************************************************

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



526 CHAPTER 15 Backgrounds

*/

//
// UPnP, virtual files
//
static const char _acFile_dummy_xml[] =
  "<?xml version=\"1.0\" encoding=\"utf-8\"?>\r\n"
  "<scpd xmlns=\"urn:schemas-upnp-org:service-1-0\">\r\n"
    "<specVersion>\r\n"
      "<major>1</major>\r\n"
      "<minor>0</minor>\r\n"
    "</specVersion>\r\n"
    "<serviceStateTable>\r\n"
      "<stateVariable>\r\n"
        "<name>Dummy</name>\r\n"
        "<dataType>i1</dataType>\r\n"
      "</stateVariable>\r\n"
    "</serviceStateTable>\r\n"
  "</scpd>";

//
// UPnP, virtual files list
//
static const VFILE_LIST _VFileList[] = {
  "/dummy.xml", _acFile_dummy_xml, sizeof(_acFile_dummy_xml) - 1,
  // Do not count in the null terminator of the string
  NULL        , NULL             , NULL
};

/* Excerpt from OS_IP_Webserver_UPnP.c */
//
// UPnP webserver VFile hook
//
static WEBS_VFILE_HOOK _UPnP_VFileHook;

Several helper functions are provided in the sample to easily generate a valid XML file for
advertising a service using UPnP.

/* Excerpt from Webserver_DynContent.c */
//
// UPnP
//
#define UPNP_FRIENDLY_NAME     "SEGGER UPnP Demo"
#define UPNP_MANUFACTURER      "SEGGER Microcontroller GmbH"
#define UPNP_MANUFACTURER_URL  "http://www.segger.com"
#define UPNP_MODEL_DESC        "SEGGER emWeb server with UPnP"
#define UPNP_MODEL_NAME        "SEGGER UPnP Demo"
#define UPNP_MODEL_URL         "http://www.segger.com/emweb"

/* Excerpt from OS_IP_Webserver_UPnP.c */
/*********************************************************************
*
*       Static code
*
**********************************************************************
*/

/*********************************************************************
*
*       _UPnP_GetURLBase
*
* Function description
*   This function copies the information needed for the URLBase parameter
*   into the given buffer and returns a pointer to the start of the buffer
*   for easy readable code.
*
* Parameters
*   IFaceId        - Zero-based interface index.
*   pBuffer        - Pointer to the buffer that can be temporarily used to
*                    store the requested data.
*   NumBytes       - Size of the given buffer used for checks
*
* Return value
*   Pointer to the start of the buffer used for storage.
*/

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



527 CHAPTER 15 Backgrounds

static const char* _UPnP_GetURLBase(unsigned IFaceId, char* pBuffer, unsigned NumBytes) {
#define URL_BASE_PREFIX  "http://"
  char * p;

  p = pBuffer;

  *p = '\0';  // Just to be on the safe if the buffer is too small
  strncpy(pBuffer, URL_BASE_PREFIX, NumBytes);
  p        += (sizeof(URL_BASE_PREFIX) - 1);
  NumBytes -= (sizeof(URL_BASE_PREFIX) - 1);
  IP_PrintIPAddr(p, IP_GetIPAddr(IFaceId), NumBytes);
  return pBuffer;
}

/*********************************************************************
*
*       _UPnP_GetModelNumber
*
* Function description
*   This function copies the information needed for the ModelNumber parameter
*   into the given buffer and returns a pointer to the start of the buffer
*   for easy readable code.
*
* Parameters
*   IFaceId        - Zero-based interface index.
*   pBuffer        - Pointer to the buffer that can be temporarily used to
*                    store the requested data.
*   NumBytes       - Size of the given buffer used for checks
*
* Return value
*   Pointer to the start of the buffer used for storage.
*/
static const char* _UPnP_GetModelNumber(unsigned IFaceId, char* pBuffer,
                                        unsigned NumBytes) {
  U8 aHWAddr[6];

  if (NumBytes <= 12) {
    *pBuffer = '\0';  // Just to be on the safe if the buffer is too small
  } else {
    IP_GetHWAddr(IFaceId, aHWAddr, sizeof(aHWAddr));
    SEGGER_snprintf(pBuffer,
                    NumBytes,
                    "%02X%02X%02X%02X%02X%02X",
                    aHWAddr[0],
                    aHWAddr[1],
                    aHWAddr[2],
                    aHWAddr[3],
                    aHWAddr[4],
                    aHWAddr[5]);
  }
  return pBuffer;
}

/*********************************************************************
*
*       _UPnP_GetSN
*
* Function description
*   This function copies the information needed for the SerialNumber parameter
*   into the given buffer and returns a pointer to the start of the buffer
*   for easy readable code.
*
* Parameters
*   IFaceId        - Zero-based interface index.
*   pBuffer        - Pointer to the buffer that can be temporarily used to
*                    store the requested data.
*   NumBytes       - Size of the given buffer used for checks
*
* Return value
*   Pointer to the start of the buffer used for storage.
*/
static const char * _UPnP_GetSN(unsigned IFaceId, char * pBuffer, unsigned NumBytes) {
  U8 aHWAddr[6];

  if (NumBytes <= 12) {
    *pBuffer = '\0';  // Just to be on the safe if the buffer is too small

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



528 CHAPTER 15 Backgrounds

  } else {
    IP_GetHWAddr(IFaceId, aHWAddr, sizeof(aHWAddr));
    SEGGER_snprintf(pBuffer,
                    NumBytes,
                    "%02X%02X%02X%02X%02X%02X",
                    aHWAddr[0],
                    aHWAddr[1],
                    aHWAddr[2],
                    aHWAddr[3],
                    aHWAddr[4],
                    aHWAddr[5]);
  }
  return pBuffer;
}

/*********************************************************************
*
*       _UPnP_GetUDN
*
* Function description
*   This function copies the information needed for the UDN parameter
*   into the given buffer and returns a pointer to the start of the buffer
*   for easy readable code.
*
* Parameters
*   IFaceId        - Zero-based interface index.
*   pBuffer        - Pointer to the buffer that can be temporarily used to
*                    store the requested data.
*   NumBytes       - Size of the given buffer used for checks
*
* Return value
*   Pointer to the start of the buffer used for storage.
*/
static const char * _UPnP_GetUDN(unsigned IFaceId, char * pBuffer, unsigned NumBytes) {
#define UDN_PREFIX "uuid:95232DE0-3AF7-11E2-81C1-"
  char * p;
  U8     aHWAddr[6];

  p = pBuffer;

  *pBuffer = '\0';  // Just to be on the safe if the buffer is too small
  strncpy(pBuffer, UDN_PREFIX, NumBytes);
  p        += (sizeof(UDN_PREFIX) - 1);
  NumBytes -= (sizeof(UDN_PREFIX) - 1);
  if (NumBytes > 12) {
    IP_GetHWAddr(IFaceId, aHWAddr, sizeof(aHWAddr));
    SEGGER_snprintf(p,
                    NumBytes,
                    "%02X%02X%02X%02X%02X%02X",
                    aHWAddr[0],
                    aHWAddr[1],
                    aHWAddr[2],
                    aHWAddr[3],
                    aHWAddr[4],
                    aHWAddr[5]);
  }
  return pBuffer;
}

/*********************************************************************
*
*       _UPnP_GetPresentationURL
*
* Function description
*   This function copies the information needed for the presentation URL parameter
*   into the given buffer and returns a pointer to the start of the buffer
*   for easy readable code.
*
* Parameters
*   IFaceId        - Zero-based interface index.
*   pBuffer        - Pointer to the buffer that can be temporarily used to
*                    store the requested data.
*   NumBytes       - Size of the given buffer used for checks
*
* Return value
*   Pointer to the start of the buffer used for storage.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



529 CHAPTER 15 Backgrounds

*/
static const char* _UPnP_GetPresentationURL(unsigned IFaceId,
                                            char* pBuffer,
                                            unsigned NumBytes) {
#define PRESENTATION_URL_PREFIX   "http://"
#define PRESENTATION_URL_POSTFIX  "/index.htm"
  char * p;
  int    i;

  p = pBuffer;

  *p = '\0';  // Just to be on the safe if the buffer is too small
  strncpy(pBuffer, PRESENTATION_URL_PREFIX, NumBytes);
  p        += (sizeof(PRESENTATION_URL_PREFIX) - 1);
  NumBytes -= (sizeof(PRESENTATION_URL_PREFIX) - 1);
  i = IP_PrintIPAddr(p, IP_GetIPAddr(IFaceId), NumBytes);
  p        += i;
  NumBytes -= i;
  strncat(pBuffer, PRESENTATION_URL_POSTFIX, NumBytes);
  return pBuffer;
}

/*********************************************************************
*
*       _UPnP_GenerateSend_upnp_xml
*
* Function description
*   Send the content for the requested file using the callback provided.
*
* Parameters
*   IFaceId        - Zero-based interface index.
*   pContextIn     - Send context of the connection processed for
*                    forwarding it to the callback used for output.
*   pf             - Function pointer to the callback that has to be
*                    for sending the content of the VFile.
*     pContextOut    - Out context of the connection processed.
*     pData          - Pointer to the data that will be sent
*     NumBytes       - Number of bytes to send from pData. If NumBytes
*                      is passed as 0 the send function will run a strlen()
*                      on pData expecting a string.
*
* Notes
*   (1) The data does not need to be sent in one call of the callback
*       routine. The data can be sent in blocks of data and will be
*       flushed out automatically at least once returning from this
*       routine.
*/
static void _UPnP_GenerateSend_upnp_xml(unsigned IFaceId,
                                        void * pContextIn,
                                        void (*pf) (void * pContextOut,
                                                    const char * pData,
                                                    unsigned NumBytes)) {
  char ac[128];

  pf(pContextIn, "<?xml version=\"1.0\"?>\r\n"
                 "<root xmlns=\"urn:schemas-upnp-org:device-1-0\">\r\n"
                   "<specVersion>\r\n"
                     "<major>1</major>\r\n"
                     "<minor>0</minor>\r\n"
                   "</specVersion>\r\n", 0);

  pf(pContextIn,   "<URLBase>", 0);
  pf(pContextIn,     _UPnP_GetURLBase(IFaceId, ac, sizeof(ac)), 0);
  pf(pContextIn,   "</URLBase>\r\n", 0);

  pf(pContextIn,   "<device>\r\n"
                     "<deviceType>urn:schemas-upnp-org:device:Basic:1</deviceType>
                      \r\n", 0);
  pf(pContextIn,     "<friendlyName>", 0);
  pf(pContextIn,       _UPnP_GetFriendlyName(IFaceId, ac, sizeof(ac)), 0);
  pf(pContextIn,     "</friendlyName>\r\n", 0);
  pf(pContextIn,     "<manufacturer>" UPNP_MANUFACTURER "</manufacturer>\r\n", 0);
  pf(pContextIn,     "<manufacturerURL>" UPNP_MANUFACTURER_URL "</manufacturerURL>
                      \r\n", 0);
  pf(pContextIn,     "<modelDescription>" UPNP_MODEL_DESC "</modelDescription>
                      \r\n", 0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



530 CHAPTER 15 Backgrounds

  pf(pContextIn,     "<modelName>" UPNP_MODEL_NAME "</modelName>\r\n", 0);

  pf(pContextIn,     "<modelNumber>", 0);
  pf(pContextIn,       _UPnP_GetModelNumber(IFaceId, ac, sizeof(ac)), 0);
  pf(pContextIn,     "</modelNumber>\r\n", 0);

  pf(pContextIn,     "<modelURL>" UPNP_MODEL_URL "</modelURL>\r\n", 0);

  pf(pContextIn,     "<serialNumber>", 0);
  pf(pContextIn,       _UPnP_GetSN(IFaceId, ac, sizeof(ac)), 0);
  pf(pContextIn,     "</serialNumber>\r\n", 0);

  pf(pContextIn,     "<UDN>", 0);
  pf(pContextIn,       _UPnP_GetUDN(IFaceId, ac, sizeof(ac)), 0);
  pf(pContextIn,     "</UDN>\r\n", 0);

  pf(pContextIn,     "<serviceList>\r\n"
                       "<service>\r\n"
                         "<serviceType>urn:schemas-upnp-org:service:Dummy:1
                          </serviceType>\r\n"
                         "<serviceId>urn:upnp-org:serviceId:Dummy</serviceId>\r\n"
                         "<SCPDURL>/dummy.xml</SCPDURL>\r\n"
                         "<controlURL>/</controlURL>\r\n"
                         "<eventSubURL></eventSubURL>\r\n"
                       "</service>\r\n"
                     "</serviceList>\r\n", 0);

  pf(pContextIn,     "<presentationURL>", 0);
  pf(pContextIn,       _UPnP_GetPresentationURL(IFaceId, ac, sizeof(ac)), 0);
  pf(pContextIn,     "</presentationURL>\r\n", 0);

  pf(pContextIn,   "</device>\r\n"
                   "</root>", 0);
}

The callbacks for providing a virtual file using a VFile hook allow providing dynamically
created content for every file requested from the web server as soon as possible. A file
served from a VFile hook will not be processed further by the web server code.

/* Excerpt from Webserver_DynContent.c */
/*********************************************************************
*
*       Static code
*
**********************************************************************
*/

/*********************************************************************
*
*       _UPnP_CheckVFile
*
* Function description
*   Check if we have content that we can deliver for the requested
*   file using the VFile hook system.
*
* Parameters
*   sFileName      - Name of the file that is requested
*   pIndex         - Pointer to a variable that has to be filled with
*                    the index of the entry found in case of using a
*                    filename<=>content list.
*                    Alternative all comparisons can be done using the
*                    filename. In this case the index is meaningless
*                    and does not need to be returned by this routine.
*
* Return value
*   0              - We do not have content to send for this filename,
*                    fall back to the typical methods for retrieving
*                    a file from the web server.
*   1              - We have content that can be sent using the VFile
*                    hook system.
*/
static int _UPnP_CheckVFile(const char * sFileName, unsigned * pIndex) {
  unsigned i;

  //

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



531 CHAPTER 15 Backgrounds

  // Generated VFiles
  //
  if (strcmp(sFileName, "/upnp.xml") == 0) {
    return 1;
  }
  //
  // Static VFiles
  //
  for (i = 0; i < SEGGER_COUNTOF(_VFileList); i++) {
    if (strcmp(sFileName, _VFileList[i].sFileName) == 0) {
      *pIndex = i;
      return 1;
    }
  }
  return 0;
}

/*********************************************************************
*
*       _UPnP_SendVFile
*
* Function description
*   Send the content for the requested file using the callback provided.
*
* Parameters
*   pContextIn     - Send context of the connection processed for
*                    forwarding it to the callback used for output.
*   Index          - Index of the entry of a filename<=>content list
*                    if used. Alternative all comparisons can be done
*                    using the filename. In this case the index is
*                    meaningless. If using a filename<=>content list
*                    this is faster than searching again.
*   sFileName      - Name of the file that is requested. In case of
*                    working with the Index this is meaningless.
*   pf             - Function pointer to the callback that has to be
*                    for sending the content of the VFile.
*     pContextOut    - Out context of the connection processed.
*     pData          - Pointer to the data that will be sent
*     NumBytes       - Number of bytes to send from pData. If NumBytes
*                      is passed as 0 the send function will run a strlen()
*                      on pData expecting a string.
*/
static void _UPnP_SendVFile(void * pContextIn,
                            unsigned Index,
                            const char * sFileName,
                            void (*pf) (void * pContextOut,
                                        const char * pData,
                                        unsigned NumBytes)) {
  struct sockaddr_in LocalAddr;
         U32         IPAddr;
         long        hSock;
         int         IFaceId;
         int         Len;

  (void)sFileName;

  //
  // Generated VFiles
  //
  if (strcmp(sFileName, "/upnp.xml") == 0) {
    //
    // Retrieve socket that is used by connection.
    //
    hSock   = (long)IP_WEBS_GetConnectInfo((WEBS_OUTPUT*)pContextIn);
    Len     = sizeof(LocalAddr);
    getsockname(hSock, (struct sockaddr*)&LocalAddr, &Len);
    IPAddr  = ntohl(LocalAddr.sin_addr.s_addr);
    IFaceId = IP_FindIFaceByIP(&IPAddr, sizeof(IPAddr));
    if (IFaceId >= 0) {  // Only send back if we have found the interface.
      _UPnP_GenerateSend_upnp_xml(IFaceId, pContextIn, pf);
    }
    return;
  }
  //
  // Static VFiles
  //

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



532 CHAPTER 15 Backgrounds

  pf(pContextIn, _VFileList[Index].pData, _VFileList[Index].NumBytes);
}

All that is needed to be added to your application in order to provide the necessary XML
files through emNet Web server and starting UPnP advertising are the following lines:

/* Excerpt from OS_IP_Webserver_UPnP.c */
//
// Activate UPnP with VFile hook for needed XML files
//
IP_WEBS_AddVFileHook(&_UPnP_VFileHook, &_UPnP_VFileAPI);
IP_UPNP_Activate(INTERFACE, NULL);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



533 CHAPTER 15 API functions

15.5    API functions
Function Description

IP_UPNP_Activate()
Activates UPnP by joining an IGMP group and
advertising that we are now available with
services.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



534 CHAPTER 15 API functions

15.5.1    IP_UPNP_Activate()

Description

Activates UPnP by joining an IGMP group and advertising that we are now available with
services.

Prototype

int IP_UPNP_Activate(      unsigned   IFaceId,
                     const char     * sUDN);

Parameters

Parameter Description

IFaceId Zero-base interface index.

sUDN
String containing a unique descriptor name. (Optional, can
be NULL.)

Return value

= 0 O.K.
≠ 0 Error, UPnP not started.

Additional information

If sUDN is NULL, the unique descriptor name will be generated from the HW address of the
interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



535 CHAPTER 15 Resource usage

15.6    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the AutoIP module presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

The pure size of the UPnP add-on has been measured as the size of the services provided
may vary.

15.6.1    ROM usage on an ARM7 system
The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon ROM

emNet UPnP approximately 2.2 kByte

15.6.2    ROM usage on a Cortex-M3 system
The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon ROM

emNet UPnP approximately 2.0 kByte

15.6.3    RAM usage

Addon RAM

emNet UPnP approximately 170 Bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 16
 
VLAN

The emNet implementation of VLAN which stand for Virtual LAN allows separating your
network into multiple networks without the need to separate it physically. This chapter will
show you how easily VLAN access can be setup on your target.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



537 CHAPTER 16 emNet VLAN

16.1    emNet VLAN
The emNet VLAN implementation allows a fast and easy implement of VLAN on your target.
emNet VLAN support supports a basic VLAN tag specifying only a VLAN ID (802.1q) or QinQ
VLAN (802.1ad).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



538 CHAPTER 16 Feature list

16.2    Feature list
• Low memory footprint.
• Easy to implement.
• Software based solution without the need for a driver to support VLAN tags.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



539 CHAPTER 16 Backgrounds

16.3    Backgrounds
VLAN technology can be used to separate multiple devices operating on the same physical
network into completely separated networks without seeing each other.

A typical usage would be to have 2 departments separated from each other but using the
same infrastructure such as a shared switch or router. Only devices using the same VLAN
ID will be able to see each other.

For this to happen 4 bytes are added in front of the packet type field in the Ethernet frame
pushing the original packet type field back by 4 bytes. The Ethernet frame will still be of a
maximum length 1518 bytes including CRC what means that instead of a maximum of 1500
bytes that can be transferred the amount of bytes that can be transferred per Ethernet
frame will shrink to 1496 bytes per packet. VLAN tagged packets are typically forwarded
by any switch as they are as the type field has been simply replaced and in most cases
only the destination MAC, source MAC and packet type is checked. In this case the packet
is simply of an unknown protocol and will be forwarded by the switch.

The picture below shows the structure of an Ethernet frame once without using a VLAN tag
and once with using a VLAN tag being assigned to VLAN ID #2.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



540 CHAPTER 16 API functions

16.4    API functions
Function Description

IP_VLAN_AddInterface() Adds a VLAN interface to the stack.
IP_VLAN_Add8021adInterface() Adds a VLAN interface to the stack.

Data structures

IP_VLAN_INIT_DATA
Structure which stores information about the
VLAN.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



541 CHAPTER 16 API functions

16.4.1    IP_VLAN_AddInterface()

Description

Adds a VLAN interface to the stack.

Prototype

int IP_VLAN_AddInterface(unsigned HWIFace,
                         U16      VLANId);

Parameters

Parameter Description

HWIFace
Zero-based index of an available network interface to be
used as physical interface for the VLAN pseudo interface.

VLANId

12 bits VLAN ID that the new interface will recognize. The
priority bits can be set here as well. They will be included
when sending packets on this interface. The priority bits for
received packets are ignored.

Return value

≥ 0 Zero-based interface index of the newly created interface.
< 0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using IP_ConfigMaxIFaces() needs to be done before adding any interface and
must not be changed later.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



542 CHAPTER 16 API functions

16.4.2    IP_VLAN_Add8021adInterface()

Description

Adds a VLAN interface to the stack.

Prototype

int IP_VLAN_Add8021adInterface(      unsigned            HWIFace,
                                     U16                 VLAN_STAG,
                                     U16                 VLAN_CTAG,
                               const IP_VLAN_INIT_DATA * pInitData);

Parameters

Parameter Description

HWIFace
Zero-based index of an available network interface to be
used as physical interface for the VLAN pseudo interface.

VLAN_STAG

12 bits VLAN ID that the new interface will recognize. The
priority bits can be set here as well. They will be included
when sending packets on this interface. The priority bits for
received packets are ignored.

VLAN_CTAG

12 bits VLAN ID that the new interface will recognize. The
priority bits can be set here as well. They will be included
when sending packets on this interface. The priority bits for
received packets are ignored.

pInitData
Pointer to a IP_VLAN_INIT_DATA structure containing
settings for the VLAN interface. Can be NULL, in this case
defaults are used.

Return value

≥ 0 Zero-based interface index of the newly created interface.
< 0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using IP_ConfigMaxIFaces() needs to be done before adding any interface and
must not be changed later.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



543 CHAPTER 16 API functions

16.4.3    Data structures

16.4.3.1    IP_VLAN_INIT_DATA

Description

Structure which stores information about the VLAN.

Type definition

typedef struct {
  U8  Use8100EtherType;
} IP_VLAN_INIT_DATA;

Structure members

Member Description

Use8100EtherType
By default the interface will use EtherType of 0x88A8 (TPID)
for the STAG, when this is set to 1 0x8100 is used instead
(the CTAG always uses 0x8100).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



544 CHAPTER 16 Resource usage

16.5    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the AutoIP module presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

16.5.1    ROM usage on an ARM7 system
The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon ROM

emNet VLAN approximately 1.2 kByte

16.5.2    ROM usage on a Cortex-M3 system
The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon ROM

emNet VLAN approximately 1.0 kByte

16.5.3    RAM usage

Addon RAM

emNet VLAN approximately 16 Bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 17
 
Tail Tagging (Add-on)

The emNet support for the Micrel Tail Tagging feature that is available in many Micrel Switch
PHYs is an optional extension to emNet. It can be used to extend a typical single Ethernet
port CPU with more full featured ports without having to redesign a complete hardware or
even changing to a completely other CPU with more Ethernet ports. This chapter contains
information about Tail Tagging and how to add it to your hardware and software.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



546 CHAPTER 17 emNet Tail Tagging support

17.1    emNet Tail Tagging support
The emNet Tail Tagging implementation is an optional extension which can be easily added
to extend your hardware using a Micrel Switch PHY with Tail Tagging support instead of
a single port PHY. It allows you to extend your single Ethernet port (also single Ethernet
controller) CPU to as many ports that can be managed like a real network interface (Ethernet
controller) in emNet even with different hardware addresses.

The following table shows the contents of the emNet root directory:

Directory Content

BSP
Contains sample configurations for
hardware that already uses emNet Tail
Tagging support.

IP

Contains the Tail Tagging sources,
IP_MICREL_TAIL_TAGGING.c and the
PHY driver for various Micrel Switch PHYs
IP_PHY_MICREL_SWITCH.c.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



547 CHAPTER 17 Feature list

17.2    Feature list
• Extend virtually any single port CPU to n manageable interfaces at low cost.
• Use the fast MII/RMII interface of your CPU and internal Ethernet controller instead of

slower interfaces like SPI with external Ethernet controllers.
• Link status of each port can be monitored independent.
• Keep your existing design and known and preferred CPU.
• Each Tail Tagging interface can have its own hardware address.
• Low memory footprint.
• Seamless integration with the emNet stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



548 CHAPTER 17 Use cases

17.3    Use cases
The benefits of Tail Tagging are that it can be used to extend a single port Ethernet CPU to
multiple, manageable physical ports where each port can be managed independently and
can even have its own hardware address assign.

This can be used for various purposes when building hardware and software with special
requirements. Some use cases are:
• Building a multhoming hardware that shall be fail safe on the network by providing

multiple network paths that at the same time shall act as completely independent
interfaces with full control.

• Building a low cost Router, Gateway or Bridge device interfacing multiple networks.
• Building a device that requires network separation features and at the same time is

still able to use other techniques like VLAN/prioritizing via VLAN. VLAN can be used
in a similar way than Tail Tagging but can not provide both features (VLAN and port
separation) at the same time.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



549 CHAPTER 17 Requirements

17.4    Requirements
The following requirements regarding software and hardware need to be met.

17.4.1    Software requirements
The emNet Tail Tagging implementation requires the emNet TCP/IP stack and a PHY driver
for a Micrel Switch PHY that supports the Tail Tagging feature.

17.4.2    Hardware requirements
Of course a Micrel Switch PHY supporting Tail Tagging needs to be present on your hardware
as well. The big advantage of using Tail Tagging instead of other methods like adding
external Ethernet controllers is its simplicity that comes without any known downsides.

Single MAC unit CPU, single port design

The typical hardware design for an Ethernet capable hardware with the MAC unit inside the
CPU is shown below. It consists of a CPU with a single internal MAC unit connected to an
external single port PHY that can interface one port to the network.

The Ethernet data is transferred between MAC and PHY while the MDIO interface (typically
also accessed via registers of the MAC) is used to access the PHY to configure it and
periodically check the link status.

 

Single MAC unit CPU, switch PHY with Tail Tagging design

For Tail Tagging only a few simple changes to the hardware are necessary. The main
difference is that configuration is no longer done via the MDIO interface but instead is done
using an extra interface like SPI or SMI. This is due to a restricted set of registers that are
available via the MDIO standard.

Typically the same registers that can be accessed via MDIO can be accessed via SPI or SMI
as well, along many other registers not available via MDIO.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



550 CHAPTER 17 Requirements

 

Using a Switch PHY with Tail Tagging not only allows you to connect multiple hosts but
also allows you to fully control each external port/connector like it would be an additional
expensive and external Ethernet controller.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



551 CHAPTER 17 Backgrounds

17.5    Backgrounds
The Tail Tagging feature available in many Micrel Switch PHYs is a clever way to pass
information between the PHY and the TCP/IP stack on which port of the Switch a packet
has been received or to which port(s) it should be delivered when the TCP/IP stack sends
data to the network.

Contents of a Tail Tagging frame

The picture below shows the content of a frame that is received from the Switch in the host
or is sent from the host to the Switch.

 

When the Switch has the Tail Tagging feature enabled all ports of the Switch will be used
in this mode.

Receiving a frame with Tail Tagging

With Tail Tagging each Ethernet frame that is received will be added with a byte between
the Ethernet data received in the frame and the checksum of the Ethernet frame itself.
This step is unseen by the Ethernet controller as the frame checksum that is built by the
sender above all the Ethernet data in the frame is altered by the PHY as well to represent
the correct checksum of the original Ethernet data in the frame plus the byte that has been
added. Due to the correct checksum the Ethernet controller does not have to be aware of
Tail Tagging at all.

emNet can then extract the information from which port the data has been received from
the Tail Tagging byte and can assign the packet to the correct Tail Tagging interface in the
system. The Tail Tagging byte is stripped in this process leaving only the original data that
can then be transferred to upper layer protocols.

Sending a frame with Tail Tagging

Sending works similar than receiving a frame. Before the Ethernet frame is queued with
the Ethernet controller for transmitting it to the PHY, a Tail Tagging byte is appended at the
end of the data to send (and before the frame checksum if calculated and added by the
Ethernet driver itself). This byte contains the information to which external PHY ports the
packet shall be delivered and sent out to the network.

The whole process is again unseen by the Ethernet controller as it is only aware that the
data to be sent is one byte more in total like if one byte more would be sent by an upper
layer protocol.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



552 CHAPTER 17 Optimal MTU and buffer sizes

17.6    Optimal MTU and buffer sizes
A Tail Tagging interface in emNet is a virtual interface that uses a hardware interface for
data transfer. As Tail Tagging requires to store one additional byte that is unknown to upper
layer protocols the Tail Tagging byte is automatically subtracted from the MTU that has
been configured for the hardware interface.

While simply using the original MTU - 1 is a safe and easy way it has the downside that
the maximum MTU of an Ethernet packet is now 1499 bytes instead of 1500 bytes and
might lead to slight fragmentation and small delays with hardware and other hosts that are
optimized for MTUs of 1500 bytes.

To overcome this effect the MTU (and typically connected with it the size of the big packet
buffers) in IP_X_Config() should not be configured to 1500 bytes but instead configured
to 1501 bytes if it is known that Tail Tagging will be used.

If a mix of Tail Tagging and non Tail Tagging interfaces will be used (dual Ethernet controller
in CPU, one using only single port and the other connected to a Switch using Tail Tagging)
the MTU should be set accordingly for each of these interfaces using IP_SetMTU().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



553 CHAPTER 17 API functions

17.7    API functions
Function Description

IP_MICREL_TAIL_TAGGING_AddInterface()
Adds a virtual interface to the stack using
the Micrel Tail Tagging feature to separate
switch ports.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



554 CHAPTER 17 API functions

17.7.1    IP_MICREL_TAIL_TAGGING_AddInterface()

Description

Adds a virtual interface to the stack using the Micrel Tail Tagging feature to separate switch
ports.

Prototype

int IP_MICREL_TAIL_TAGGING_AddInterface(unsigned HWIFaceId,
                                        U8       InTag,
                                        U8       OutTag);

Parameters

Parameter Description

HWIFaceId
Zero-based interface index of the interface used as hardware
interface.

InTag
Tag byte according to Micrel documentation to compare with
an incoming (switch to target) Tail Tagging byte.

OutTag

Tag byte according to Micrel documentation to append for an
outgoing (target to switch) packet on this interface. Multiple
bits can be set to allow sending to multiple ports at the same
time.

Return value

≥ 0 Zero-based interface index of the newly created interface.
< 0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using IP_ConfigMaxIFaces() needs to be done before adding any interface and
must not be changed later.

Example

/*********************************************************************
*                   (c) SEGGER Microcontroller GmbH                  *
*                        The Embedded Experts                        *
*                           www.segger.com                           *
**********************************************************************

-------------------------- END-OF-HEADER -----------------------------

Purpose     : Configuration file for TCP/IP with Freescale Kinetis K66
*/

#include "IP.h"
#include "IP_NI_KINETIS.h"
#include "BSP_IP.h"
#include "IP_PHY_MICREL_SWITCH.h"

/*********************************************************************
*
*       Configuration
*
**********************************************************************
*/

#define DRIVER       &IP_Driver_K64              // Driver used for target.
#define TARGET_NAME  "emPowerV2_1"               // Target name used for DHCP client.
#define HW_ADDR      "\x00\x22\xC7\xDD\xFF\x22"  // MAC addr. used for target.
#define NUM_PORTS    3                         
  // Number of switch ports used for Tail-Tagging. 0: Plain switch mode.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



555 CHAPTER 17 API functions

#if (NUM_PORTS == 0)  // Keep memory for one port.
#define ALLOC_SIZE   (1         * 0x6000)      
  // Size of memory dedicated to the stack in bytes.
#else
#define ALLOC_SIZE   (NUM_PORTS * 0x6000)      
  // Size of memory dedicated to the stack in bytes. Very rough calculation.
#endif

/*********************************************************************
*
*       Defines, fixed
*
**********************************************************************
*/

#define SIM_SCGC5                     (*(volatile U32 *)(0x40048038))                       
   // System Clock Gating Control Register 5
#define SIM_SCGC6                     (*(volatile U32 *)(0x4004803C))                       
   // System Clock Gating Control Register 6
#define SIM_SCGC6_SPI0_MASK           (1uL << 12)
#define SIM_SCGC6_SPI1_MASK           (1uL << 13)
#define SIM_SCGC5_PORTB_MASK          (1uL << 10)
#define SIM_SCGC5_PORTC_MASK          (1uL << 11)

#define PORTB_BASE_ADDR               (0x4004A000)
#define PORTB_PCR10                   (*(volatile U32 *)(PORTB_BASE_ADDR + 0x0028))         
   //  Pin Control Register 10
#define PORTB_PCR11                   (*(volatile U32 *)(PORTB_BASE_ADDR + 0x002C))         
   //  Pin Control Register 11
#define PORTB_PCR16                   (*(volatile U32 *)(PORTB_BASE_ADDR + 0x0040))         
   //  Pin Control Register 16
#define PORTB_PCR17                   (*(volatile U32 *)(PORTB_BASE_ADDR + 0x0044))         
   //  Pin Control Register 17

#define PORTC_BASE_ADDR               (0x4004B000)
#define PORTC_PCR4                    (*(volatile U32 *)(PORTC_BASE_ADDR + 0x0010))         
   //  Pin Control Register 4
#define PORTC_PCR5                    (*(volatile U32 *)(PORTC_BASE_ADDR + 0x0014))         
   //  Pin Control Register 5
#define PORTC_PCR6                    (*(volatile U32 *)(PORTC_BASE_ADDR + 0x0018))         
   //  Pin Control Register 6
#define PORTC_PCR7                    (*(volatile U32 *)(PORTC_BASE_ADDR + 0x001C))         
   //  Pin Control Register 7

#define SPI0_BASE_ADDR                (0x4002C000)
#define SPI1_BASE_ADDR                (0x4002D000)
#define SPI_MCR                       (*(volatile U32 *)(SPI1_BASE_ADDR + 0x00))
#define SPI_CTAR0                     (*(volatile U32 *)(SPI1_BASE_ADDR + 0x0C))
#define SPI_SR                        (*(volatile U32 *)(SPI1_BASE_ADDR + 0x2C))
#define SPI_PUSHR                     (*(volatile U32 *)(SPI1_BASE_ADDR + 0x34))
#define SPI_POPR                      (*(volatile U32 *)(SPI1_BASE_ADDR + 0x38))

#define SPI_PUSHR_CONT_BIT            (1uL << 31)                                           
   // Continued CS
#define SPI_PUSHR_EOQ_BIT             (1uL << 27)                                           
   // End of queue
#define SPI_PUSHR_PCS_BIT             (1uL << 16)                                           
   // Activate CS#0
#define SPI_MCR_HALT_BIT              (1uL <<  0)                                           
   // Halt bit
#define SPI_SR_EOQF_BIT               (1uL << 28)                                           
   // End of queue full in SR
#define SPI_SR_TCF_BIT                (1uL << 31)                                           
   // Transfer complete
#define SPI_SR_RFDF_BIT               (1uL << 17)                                           
   // RX Fifo drain flag

/*********************************************************************
*
*       Static data
*
**********************************************************************
*/

#ifdef __ICCARM__
  static __no_init U32 _aPool[ALLOC_SIZE / 4];

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



556 CHAPTER 17 API functions

#else
//  #if (defined(__GNUC__) || defined(__SEGGER_CC__))
//    static U32 _aPool[ALLOC_SIZE / 4] __attribute__ ((section
 ("IP_RAM"))); // This is the memory area used by the stack.
//  #else
    static U32 _aPool[ALLOC_SIZE / 4];
//  #endif
#endif

/*********************************************************************
*
*       Local functions
*
**********************************************************************
*/

/*********************************************************************
*
*       _InitPhyIF()
*
*  Function description
*    Initializes the interface to the switch.
*/
static void _InitPhyIF(void) {
  U32 v;

  v          = SIM_SCGC5;
  v         |= SIM_SCGC5_PORTB_MASK; // Enable clock for Port B
  SIM_SCGC5  = v;
  v          = SIM_SCGC6;
  v         |= SIM_SCGC6_SPI1_MASK;  // Enable clock for SPI1
  SIM_SCGC6  = v;
  //
  // Set PTB10 (SPI1_PCS0) alternate function 2.
  //
  PORTB_PCR10 = 0x00000200;
  //
  // Set PTB11 (SPI1_SCK) alternate function 2.
  //
  PORTB_PCR11 = 0x00000200;
  //
  // Set PTB16 (SPI1_SOUT) alternate function 2.
  //
  PORTB_PCR16 = 0x00000200;
  //
  // Set PTB17 (SPI1_SIN) alternate function 2.
  //
  PORTB_PCR17 = 0x00000200;
  //
  // Setup SPI parameters.
  //
  SPI_MCR    = 0
             | (1uL << 31)  // Master mode
             | (1uL << 27)  // Freeze in debug mode
             | (1uL << 16)  // 1 = The inactive state of Peripheral chip select is high
             | (0uL << 13)  // 0 = TX FIFO is enabled
             | (0uL << 12)  // 0 = RX FIFO is enabled
             | (1uL <<  0)  // 0 = Start transfer
             ;
  SPI_CTAR0  = 0
             | (0uL << 31)  // Double baud rate
             | (7uL << 27)  // Frame size (7 + 1)
             | (0uL << 26)  // CPOL
             | (0uL << 25)  // CPHA
             | (0uL << 24)  // 0 = MSB first
             | (1uL << 22)  // PCSSCK
             | (1uL << 20)  // PASC
             | (3uL << 12)  // CSSCK
             | (3uL <<  0)  // Baud rate scaler
             ;
  //
  // Grant switch some time to completely power up.
  //
  IP_OS_Delay(100);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



557 CHAPTER 17 API functions

/*********************************************************************
*
*       _ReadWriteSPIByte()
*
*  Function description
*    Writes one byte via SPI and receives one byte in exchange.
*
*  Parameters
*    Data: Byte to write on line + settings.
*
*  Return value
*    Byte read from line.
*/
static U8 _ReadWriteSPI(U32 Data) {
  U8 v;

  SPI_PUSHR = SPI_PUSHR_PCS_BIT | Data;      // Push data + activation of CS0
  while ((SPI_SR & SPI_SR_TCF_BIT) == 0x0);  // Wait for transfer complete indication
  SPI_SR |= SPI_SR_TCF_BIT;                  // Reset transfer complete indication
  v = SPI_POPR;                              // Pop the read queue
  //
  return v;
}

/*********************************************************************
*
*       _ReadSPIReg()
*
*  Function description
*    Reads a byte from a register.
*
*  Parameters
*    pContext: Context of the PHY driver.
*    Reg     : Address of the register to read.
*
*  Return value
*    value read from register.
*/
static unsigned _ReadSPIReg(IP_PHY_CONTEXT_EX* pContext, unsigned Reg) {
  U8  v;

  IP_USE_PARA(pContext);

  SPI_MCR &= ~SPI_MCR_HALT_BIT;              // Activate SPI
  while ((SPI_SR & (1uL << 30)) == 0x0);     // Wait for ready indication
  //
  _ReadWriteSPI(      0
                    | SPI_PUSHR_CONT_BIT     // Continuous CS signal
                    | (0x03 << 5) );         // Read command
  _ReadWriteSPI(      0
                    | SPI_PUSHR_CONT_BIT     // Continuous CS signal
                    | (Reg << 1) );          // Register to read
  v = _ReadWriteSPI(  0
                    | SPI_PUSHR_EOQ_BIT      // End of Queue to transmit
                    | 0xff );                // Any value
  //
  SPI_MCR |= SPI_MCR_HALT_BIT;               // Halt SPI
  //
  return (v & 0xFF);
}

/*********************************************************************
*
*       _WriteSPIReg()
*
*  Function description
*    Writes a byte to a register.
*
*  Parameters
*    pContext: Context of the PHY driver.
*    Reg     : Address of the register to read.
*    v       : Data to write.
*/
static void _WriteSPIReg(IP_PHY_CONTEXT_EX* pContext, unsigned Reg, unsigned v) {
  IP_USE_PARA(pContext);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



558 CHAPTER 17 API functions

  SPI_MCR &= ~SPI_MCR_HALT_BIT;              // Activate SPI
  while ((SPI_SR & (1uL << 30)) == 0x0);     // Wait for ready indication
  //
  _ReadWriteSPI(  0
                | SPI_PUSHR_CONT_BIT         // Continuous CS signal
                | (0x02 << 5) );             // Write command
  _ReadWriteSPI(  0
                | SPI_PUSHR_CONT_BIT         // Continuous CS signal
                | (Reg  << 1) );             // Register to read
  _ReadWriteSPI(  0
                | SPI_PUSHR_EOQ_BIT          // End of Queue to transmit
                | (v & 0xFF) );              // Value to write
  //
  SPI_MCR |= SPI_MCR_HALT_BIT;               // Halt SPI
}

/*********************************************************************
*
*       _ConfigPHY()
*
*  Function description
*    Callback executed during the PHY init of the stack to configure
*    PHY settings once the hardware interface has been initialized.
*
*  Parameters
*    IFaceId: Zero-based interface index.
*/
static void _ConfigPHY(unsigned IFaceId) {
#if (NUM_PORTS == 0)
  IP_USE_PARA(IFaceId);
#else
  if (IFaceId == 0) {  // Host interface ?
    //
    // Activate Tail Tagging. Needs to be done for the interface of the
    // host port. Enabling it multiple times does not hurt.
    //
    IP_PHY_MICREL_SWITCH_ConfigTailTagging(IFaceId, 1);  // 0: Off, 1: On.
  } else {
    //
    // Configure the physical zero-based port number on the switch for this interface.
    // In this sample the port number is always one lower than the interface ID.
    // This should be the first configuration to set as other functions might depend
    // on the port number set here internally.
    //
    IP_PHY_MICREL_SWITCH_AssignPortNumber(IFaceId, IFaceId - 1);
    //
    // Tx switch functionality and switch address learning.
    // For our Tail Tagging implementation for port multiplication we
    // want to disable the switch functionality for Tx as this would
    // send back incoming packets form one port to another creating
    // an infinite loop if both ports are in the same network.
    //
    IP_PHY_MICREL_SWITCH_ConfigRxEnable(IFaceId, 1);
    IP_PHY_MICREL_SWITCH_ConfigTxEnable(IFaceId, 0);
    IP_PHY_MICREL_SWITCH_ConfigLearnDisable(IFaceId, 1);
  }
#endif
}

/*********************************************************************
*
*       Local API structures
*
**********************************************************************
*/

static const IP_PHY_MICREL_SWITCH_ACCESS PhyAccess = {
  _ReadSPIReg,  // pfReadReg
  _WriteSPIReg  // pfWriteReg
};

/*********************************************************************
*
*       Global functions
*
**********************************************************************

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



559 CHAPTER 17 API functions

*/

/*********************************************************************
*
*       IP_X_Config()
*
* Function description
*   This function is called by the IP stack during IP_Init().
*
* Typical memory/buffer configurations:
*   Microcontroller system, minimum size optimized
*     #define ALLOC_SIZE 0x1000                         // 4KBytes RAM.
*     mtu = 576;                                        // 576 is minimum acc. to RFC, 1500
 is max. for Ethernet.
*     IP_SetMTU(0, mtu);                                // Maximum Transmission Unit is 1500
 for Ethernet by default.
*     IP_AddBuffers(4, 256);                            // Small buffers.
*     IP_AddBuffers(2, mtu + 16);                       // Big buffers. Size should be mtu +
 16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).
*     IP_ConfTCPSpace(2 * (mtu - 40), 1 * (mtu - 40));  // Define the TCP Tx and Rx window
 size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.
*
*   Microcontroller system, size optimized
*     #define ALLOC_SIZE 0x3000                         // 12KBytes RAM.
*     mtu = 576;                                        // 576 is minimum acc. to RFC, 1500
 is max. for Ethernet.
*     IP_SetMTU(0, mtu);                                // Maximum Transmission Unit is 1500
 for Ethernet by default.
*     IP_AddBuffers(8, 256);                            // Small buffers.
*     IP_AddBuffers(4, mtu + 16);                       // Big buffers. Size should be mtu +
 16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).
*     IP_ConfTCPSpace(2 * (mtu - 40), 2 * (mtu - 40));  // Define the TCP Tx and Rx window
 size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.
*
*   Microcontroller system, speed optimized or multiple connections
*     #define ALLOC_SIZE 0x6000                         // 24 KBytes RAM.
*     mtu = 1500;                                       // 576 is minimum acc. to RFC, 1500
 is max. for Ethernet.
*     IP_SetMTU(0, mtu);                                // Maximum Transmission Unit is 1500
 for Ethernet by default.
*     IP_AddBuffers(12, 256);                           // Small buffers.
*     IP_AddBuffers(6, mtu + 16);                       // Big buffers. Size should be mtu +
 16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).
*     IP_ConfTCPSpace(3 * (mtu - 40), 3 * (mtu - 40));  // Define the TCP Tx and Rx window
 size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.
*
*   System with lots of RAM
*     #define ALLOC_SIZE 0x20000                        // 128 KBytes RAM.
*     mtu = 1500;                                       // 576 is minimum acc. to RFC, 1500
 is max. for Ethernet.
*     IP_SetMTU(0, mtu);                                // Maximum Transmission Unit is 1500
 for Ethernet by default.
*     IP_AddBuffers(50, 256);                           // Small buffers.
*     IP_AddBuffers(50, mtu + 16);                      // Big buffers. Size should be mtu +
 16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).
*     IP_ConfTCPSpace(8 * (mtu - 40), 8 * (mtu - 40));  // Define the TCP Tx and Rx window
 size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.
*/
void IP_X_Config(void) {
  int  mtu;
  int  IFaceId;
  int  HWIFaceId;
#if (NUM_PORTS != 0)
  int  i;
#endif
  U8   abHWAddr[6];
  char acTargetName[sizeof(TARGET_NAME)];

  _InitPhyIF();                                  
  // Initialize the interface for the switch configuration.
  IP_AssignMemory(_aPool, sizeof(_aPool));       
  // Assigning memory should be the first thing.
  IP_ConfigMaxIFaces(NUM_PORTS + 1);             
  // Configure max. number of ports to be available.
  HWIFaceId = IP_AddEtherInterface(DRIVER);        // Add driver for your hardware.
#if (NUM_PORTS == 0)

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



560 CHAPTER 17 API functions

  IFaceId   = HWIFaceId;
#endif
  IP_BSP_SetAPI(HWIFaceId, &BSP_IP_Api);         
  // Set BSP callbacks for hardware access. Only required for HW interface.
  IP_NI_ConfigPHYMode(HWIFaceId, 1);               // Configure PHY Mode: 0: MII,
 1: RMII; For required hardware changes for RMII, please refer to your board manual
  //
  // Add PHY driver for the host port of the switch.
  // The PHY driver for the host port manages global
  // configurations like filter settings and other
  // things that are not setup for each port separately.
  //
  IP_PHY_AddDriver(HWIFaceId, &IP_PHY_Driver_Micrel_Switch_KSZ8895_HostPort, &PhyAccess, &_ConfigPHY);
  //
  // Define log and warn filter.
  // Note: The terminal I/O emulation might affect the timing of your
  //       application, since most debuggers need to stop the target
  //       for every terminal I/O output unless you use another
  //       implementation such as DCC or SWO.
  //
  IP_SetWarnFilter(0xFFFFFFFF);              //
 0xFFFFFFFF: Do not filter: Output all warnings.
  IP_SetLogFilter(0
                  | IP_MTYPE_APPLICATION     // Output application messages.
                  | IP_MTYPE_INIT            // Output all messages from init.
                  | IP_MTYPE_LINK_CHANGE     // Output a message if link status changes.
                  | IP_MTYPE_PPP             // Output all PPP/PPPoE related messages.
                  | IP_MTYPE_DHCP            // Output general DHCP status messages.
#if IP_SUPPORT_IPV6
                  | IP_MTYPE_IPV6            // Output IPv6 address related messages
#endif
//                  | IP_MTYPE_DHCP_EXT        // Output additional DHCP messages.
//                  | IP_MTYPE_CORE            // Output log messages from core module.
//                  | IP_MTYPE_ALLOC           // Output log messages for memory allocation.
//                  | IP_MTYPE_DRIVER          // Output log messages from driver.
//                  | IP_MTYPE_ARP             // Output log messages from ARP layer.
//                  | IP_MTYPE_IP              // Output log messages from IP layer.
//                  | IP_MTYPE_TCP_CLOSE     
  // Output a log messages if a TCP connection has been closed.
//                  | IP_MTYPE_TCP_OPEN      
  // Output a log messages if a TCP connection has been opened.
//                  | IP_MTYPE_TCP_IN          // Output TCP input logs.
//                  | IP_MTYPE_TCP_OUT         // Output TCP output logs.
//                  | IP_MTYPE_TCP_RTT         // Output TCP round trip time (RTT) logs.
//                  | IP_MTYPE_TCP_RXWIN       // Output TCP RX window related log messages.
//                  | IP_MTYPE_TCP             // Output all TCP related log messages.
//                  | IP_MTYPE_UDP_IN          // Output UDP input logs.
//                  | IP_MTYPE_UDP_OUT         // Output UDP output logs.
//                  | IP_MTYPE_UDP             // Output all UDP related messages.
//                  | IP_MTYPE_ICMP            // Output ICMP related log messages.
//                  | IP_MTYPE_NET_IN          // Output network input related messages.
//                  | IP_MTYPE_NET_OUT         // Output network output related messages.
//                  | IP_MTYPE_DNS             // Output all DNS related messages.
//                  | IP_MTYPE_SOCKET_STATE    // Output socket status messages.
//                  | IP_MTYPE_SOCKET_READ     // Output socket read related messages.
//                  | IP_MTYPE_SOCKET_WRITE    // Output socket write related messages.
//                  | IP_MTYPE_SOCKET          // Output all socket related messages.
                 );
  //
  // Add protocols to the stack (that do not require an interface parameter).
  //
  IP_TCP_Add();
  IP_UDP_Add();
  IP_ICMP_Add();
  //
  // Run-time configuration that needs to be set as it will
  // be passed to virtual interfaces from the HW interface.
  //
  mtu = 1500;                 // 576 is minimum acc. to RFC, 1500 is max. for Ethernet.
  IP_SetMTU(HWIFaceId, mtu);  // Maximum Transmission Unit is 1500 for Ethernet by default.
  //
  // Configure each switch port (not connected to the host CPU).
  //
  IP_MEMCPY(&abHWAddr[0], (const U8*)HW_ADDR, 6);
  IP_MEMCPY(&acTargetName[0], TARGET_NAME, sizeof(TARGET_NAME));
#if (NUM_PORTS != 0)

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



561 CHAPTER 17 API functions

  for (i = 0; i < NUM_PORTS; i++) {
    IFaceId = IP_MICREL_TAIL_TAGGING_AddInterface(HWIFaceId, i, (1 << 6) | (1 << i));       
   // Add Tail Tagging interface for switch port, enable switch engine override.
#endif
    IP_SetHWAddrEx(IFaceId, (const U8*)&abHWAddr[0], 6);                                    
   // Set MAC addr. for switch port: Needs to be unique for production units.
#if (NUM_PORTS != 0)
    abHWAddr[5]++;                                                                          
   // Increase last byte of HW addr. for next switch port.
    acTargetName[sizeof(TARGET_NAME) - 1]++;                                                
   // Increase last character of the target name for next switch port.
  
  IP_PHY_AddDriver(IFaceId, &IP_PHY_Driver_Micrel_Switch_KSZ8895, &PhyAccess, &_ConfigPHY);
  // Add PHY driver for Micrel switch PHY to the interface.
#endif
    IP_DHCPC_Activate(IFaceId, TARGET_NAME, NULL, NULL);                                    
   // Activate DHCP client for this interface.
    //
    // Add IPv6 support to the stack and enable it for the interface.
    //
#if IP_SUPPORT_IPV6
    IP_IPV6_Add(IFaceId);
#endif
#if (NUM_PORTS != 0)
  }
#endif
  //
  // Run-time configure buffers.
  // The default setup will do for most cases.
  //
#if (NUM_PORTS == 0)
  IP_AddBuffers((1         * 12), 256);            // Small buffers.
  IP_AddBuffers((1         * 6), mtu + 16);        // Big buffers. Size should be mtu +
 16 byte for ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding)
#else
  IP_AddBuffers((NUM_PORTS * 12), 256);            // Small buffers.
  IP_AddBuffers((NUM_PORTS * 6), mtu + 16);        // Big buffers. Size should be mtu +
 16 byte for ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding)
#endif
  IP_ConfTCPSpace(3 * (mtu - 40), 3 * (mtu - 40)); // Define the TCP Tx and Rx window size
  IP_SOCKET_SetDefaultOptions(0
//                              | SO_TIMESTAMP     
  // Send TCP timestamp to optimize the round trip time measurement. Normally not used in LAN.
                              | SO_KEEPALIVE     
  // Enable keepalives by default for TCP sockets.
                             );
}

/****** End Of File *************************************************/

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



562 CHAPTER 17 Resource usage

17.8    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the Tail Tagging module presented in the tables below have
been measured on a Cortex-M4 system. Details about the further configuration can be
found in the sections of the specific example.

17.8.1    ROM usage on a Cortex-M4 system
The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio V2.12, size optimization.

Addon ROM

emNet Tail Tagging approximately 0.4 kByte

17.8.2    RAM usage
All required RAM is taken from the RAM that has been assigned to emNet using
IP_AddMemory(). Only a few bytes are required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 18
 
WiFi support

emNet WiFi support is an easy way to add the IEEE 802.11 standard also known as WiFi or
WLAN to your project. It allows not only an easy start using WiFi in a new product but also
allows adding WiFi support to existing projects already using emNet interfaces like LAN,
PPP, USBD RNDIS/ECM or any other in short time.

All functions that are required to add WiFi to your application and some background
information about WiFi hardware that can be used with emNet is described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



564 CHAPTER 18 emNet WiFi support

18.1    emNet WiFi support
The emNet WiFi support allows adding different WiFi hardware in the same way as any other
interface that can be added. The configuration and accessibility is bundled in an easy to
understand API regardless of the underlying API of the WiFi hardware. This not only allows
an easy start for adding WiFi to your project but comes in handy if you plan to exchange
WiFi hardware in the future.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



565 CHAPTER 18 Feature list

18.2    Feature list
• Unified API regardless of the WiFi module used.
• Easily add WiFi support as another interface to existing emNet LAN solutions.
• No need for re-certification by using already WiFi certified modules.
• Access Point support (depends on the module).
• Protocol support not limited to protocols that are TCP/UDP based.
• Support for various host interfaces like UART/SPI/SDIO/RMII (depends on the module).
• Low memory footprint (emNet WiFi software components).
• Seamless integration with the emNet stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



566 CHAPTER 18 Requirements

18.3    Requirements
Software requirements

The emNet WiFi support requires the emNet TCP/IP stack, the emNet module (family)
specific WiFi driver and typically a vendor SDK for the specific WiFi module (family).

The vendor SDK should feature a Hardware Abstraction Layer (HAL) that needs to be filled
in with your interface specific hardware routines.

For WiFi modules that do not need an SDK, a HAL is provided by the emNet WiFi module
specific driver, allowing to interface to various host interfaces supported by the WiFi module.

Hardware requirements

The emNet WiFi support can be used with virtually any module that is able to communicate
with the host MCU and providing full Ethernet packet access. For communication with the
host MCU typically an SPI interface is required. Other interfaces such as UART, SDIO, I2C
or RMII might be supported by the module as well.

Different WiFi add-on boards for easy evaluation on the emPower eval board are available.
The porting of the module specific hardware layer has already been done for these modules
for the emPower eval board and are shipped with the drivers as example, can be found in
the corresponding eval package.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



567 CHAPTER 18 Background information

18.4    Background information
This chapter does not cover the IEEE 802.11 standard as this would be too much information
and required information about the standard itself can be easily found on the Internet.
The background information referenced herein shall help to understand the level of
implementation the emNet WiFi support offers.

18.4.1    Definition of a WiFi module
A WiFi module typically describes a small form factor board that basically consists of two
components:
• An RF (Radio Frequency) module
• A companion MCU

WiFi modules are in fact external (Ethernet) controllers. The companion MCU is used to
interface the RF module to actually establish WiFi communication. This is controlled by
providing vendor specific commands to the companion MCU from the host MCU using one
of the supported host interfaces of the WiFi module.

As each vendor is using its own command set, there is no common API that can be used
across different modules, at least not between different vendors. Typically command sets
are kept compatible within a product family of a vendor. This makes various modules
compatible with the same SDK provided from the vendor.

Typically WiFi modules come with their own TCP/IP stack on board. This makes them
easy to use for smaller projects like a weather station that periodically sends its data to
a server. While these internal TCP/IP stacks might already come with some features like
a small web server, they are also limited to the features of the built-in commands and
protocols.Benefits of using WiFi modules

18.4.2    Benefits of using WiFi modules
While the WiFi circuitry could be directly integrated with your PCB there are various benefits
from using an available WiFi module instead of your own implementation:
• No re-certification: Typically the WiFi modules available are already certified by the Wi-

Fi Alliance. This saves a lot of time and costs otherwise spent for a certification process
of your own designed WiFi circuitry.

• Using a design that has proven to be working.
• Easy to evaluate/no need for prototyping in regards to the WiFi circuitry.
• Can easily extend existing solutions using a free standard peripheral interface like SPI

without redesigning the whole hardware.
• Offloading crypto operations necessary for encryption like WPA2 to the companion MCU.

Besides the hardware designing and evaluation aspects, the biggest benefit is without doubt
the elimination of a re-certification process which might be time and cost intensive. Typically
the modules are completely certified when using an integrated antenna or are certified
when being used with a selection of one or more antennas specified by the module vendor.

18.4.3    Module internal vs. external TCP/IP stack
While most WiFi modules come with their own internal TCP/IP stack on the companion
MCU, they are typically limited in usage to their built-in commands. This usually means only
having access to a limited amount of TCP and UDP sockets that can be used to implement
higher level protocols based on these two base protocols.

While only having a limited amount of TCP and UDP sockets might be enough for some small
projects, this concept lacks control and extensibility. To allow more control and extensibility
an external TCP/IP stack like emNet needs to be used. This allows having control over the
complete Ethernet frame of the packet to implement protocols on a lower level such as
ARP or VLAN.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



568 CHAPTER 18 Background information

It is often referred to as pass-through-mode or bypass-mode to give an external stack full
control over the whole Ethernet frame. It disables the processing by the module internal
TCP/IP stack and exchanges the complete Ethernet frame with the TCP/IP stack on the
host MCU.

18.4.4    Supported WiFi modules
The intention of WiFi support for emNet is to allow extending an already established product
with WiFi in a flexible and easy way. At the same time it shall be an easy to use solution for
new projects. Features shall not depend on module features in the first place and shall be
extensible at any time. emNet supports only modules that are able to exchange complete
Ethernet frames with the host MCU using a so called pass-through-mode or bypass-mode
to fulfill this goal.

Being able to access the whole Ethernet frame, emNet is not only able to use TCP and
UDP based high level protocols but allows low level protocols via WiFi as well. Using this
solution, existing and future add-ons can be used via WiFi the same way they would be
with a cable based solution.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



569 CHAPTER 18 API functions

18.5    API functions
Function Description

IP_WIFI_AddAssociateChangeHook()
Adds a function to the
IP_HOOK_ON_WIFI_ASSOCIATE_CHANGE list.

IP_WIFI_RemoveAssociateChangeHook()
Removes a function previously added via
IP_WIFI_AddAssociateChangeHook().

IP_WIFI_AddClientNotificationHook()
Adds a function to the
IP_HOOK_ON_WIFI_CLIENT_NOTIFICATION
list.

IP_WIFI_RemoveClientNotificationHook()
Removes a function previously added via
IP_WIFI_AddClientNotificationHook().

IP_WIFI_AddInterface() Adds a WiFi interface to the stack.

IP_DTASK_AddExecDoneHook()
Adds a callback that gets executed once
the Driver Task handler is done.

IP_WIFI_AddSignalChangeHook()
Adds a function to the
IP_HOOK_ON_WIFI_SIGNAL_CHANGE list.

IP_WIFI_RemoveSignalChangeHook()
Removes a function previously added via
IP_WIFI_AddSignalChangeHook().

IP_WIFI_ConfigAllowedChannels()
Configures the channels that are allowed
to be used for network scan and associate
requests.

IP_DTASK_ConfigAlwaysSignaled()
Keeps the interface in signaled state to be
polled each time regardless if there really
was a signal or not.

IP_DTASK_GetTimeout()

Retrieves the timeout [ms] after which
the Driver Task should polls the driver
interrupt routine even if it has not been
signaled.

IP_DTASK_SetTimeout()
Sets the timeout [ms] after which the
Driver Task polls the driver interrupt
routine even if it has not been signaled.

IP_WIFI_Connect()
Connects to a selected SSID or starts as
access point.

IP_WIFI_Disconnect()
Disconnects from any connected network
or stops the access point mode.

IP_DTASK_Task()
Task that polls the handler routine of some
drivers.

IP_DTASK_Init() Initializes the DriverTask context.

IP_DTASK_Exec()
Executes the handler routine of the driver
for a specific interface.

IP_DTASK_ExecAll()
Executes the handler routine of the driver
for all interfaces.

IP_DTASK_WaitForEvent()
Waits for an event for the DriverTask to be
signaled.

IP_WIFI_Scan() Scans for available wireless networks.

IP_WIFI_Security2String()
Converts the numeric security value to a
readable text.

IP_DTASK_Signal()
Signals the Driver Task to poll the handler
routine of the driver.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



570 CHAPTER 18 API functions

18.5.1    IP_WIFI_AddAssociateChangeHook()

Description

Adds a function to the IP_HOOK_ON_WIFI_ASSOCIATE_CHANGE list.

Prototype

void IP_WIFI_AddAssociateChangeHook(IP_HOOK_ON_WIFI_ASSOCIATE_CHANGE * pHook,
                                    IP_WIFI_pfOnAssociateChange        pf);

Parameters

Parameter Description

pHook Pointer to hook structure to link.
pf Pointer to function to call on change.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



571 CHAPTER 18 API functions

18.5.2    IP_WIFI_RemoveAssociateChangeHook()

Description

Removes a function previously added via IP_WIFI_AddAssociateChangeHook().

Prototype

void IP_WIFI_RemoveAssociateChangeHook(IP_HOOK_ON_WIFI_ASSOCIATE_CHANGE * pHook);

Parameters

Parameter Description

pHook Pointer to hook structure to link.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



572 CHAPTER 18 API functions

18.5.3    IP_WIFI_AddClientNotificationHook()

Description

Adds a function to the IP_HOOK_ON_WIFI_CLIENT_NOTIFICATION list. This list is notified
when a client connects or disconnect when in access point mode.

Prototype

void IP_WIFI_AddClientNotificationHook(IP_HOOK_ON_WIFI_CLIENT_NOTIFICATION * pHook,
                                       IP_WIFI_pfOnClientNotification        pf);

Parameters

Parameter Description

pHook Pointer to hook structure to link.
pf Pointer to function to call on notification.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



573 CHAPTER 18 API functions

18.5.4    IP_WIFI_RemoveClientNotificationHook()

Description

Removes a function previously added via IP_WIFI_AddClientNotificationHook().

Prototype

void IP_WIFI_RemoveClientNotificationHook
                                     (IP_HOOK_ON_WIFI_CLIENT_NOTIFICATION * pHook);

Parameters

Parameter Description

pHook Pointer to hook structure to link.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



574 CHAPTER 18 API functions

18.5.5    IP_WIFI_AddInterface()

Description

Adds a WiFi interface to the stack.

Prototype

int IP_WIFI_AddInterface(const IP_HW_DRIVER * pDriver);

Parameters

Parameter Description

pDriver Pointer to IP_HW_DRIVER API table.

Return value

≥ 0 Zero-based interface index of the newly created interface.
< 0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using IP_ConfigMaxIFaces() needs to be done before adding any interface and
must not be changed later.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



575 CHAPTER 18 API functions

18.5.6    IP_DTASK_AddExecDoneHook()

Description

Adds a callback that gets executed once the Driver Task handler is done.

Prototype

void IP_DTASK_AddExecDoneHook(unsigned                     IFaceId,
                              IP_HOOK_ON_DTASK_EXEC_DONE * pHook,
                              IP_ON_DTASK_EXEC_DONE_FUNC * pf);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pHook Pointer to hook structure to link.
pf Pointer to function to call on change.

Additional information

A callback that signals the end of the ISR handler routine is required when using level
sensitive interrupts that only signal a task like the WiFi/DTask ISR task to run. The following
example demonstrates why this is necessary:
1. Interrupt line gets high.
2. Level sensitive interrupt is fired.
3. Signaling the WiFi ISR task to run.
4. Clearing the interrupt pending flag (could have been done before 3. as well).
5. The interrupt is still pending as typically the interrupt line on WiFi modules only gets

low after all messages have been received. For this the WiFi/DTask ISR Task would need
to run but we are stuck at 2. as the level sensitive interrupt constantly fires.

Solution:

After 2. simply disable the interrupt. Once all messages we are aware of have been
processed the WiFi/DTask ISR task will run to wait until it is signaled again. Before actually
waiting the callback gets executed telling us that now is the right moment to clear the
pending interrupt flag and re-enabling the interrupt itself as most likely the interrupt line
is now low and we are not instantly back in the interrupt. Of course it might happen that
we are almost instantly back the interrupt as new messages are ready at the module to
be received.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



576 CHAPTER 18 API functions

18.5.7    IP_WIFI_AddSignalChangeHook()

Description

Adds a function to the IP_HOOK_ON_WIFI_SIGNAL_CHANGE list.

Prototype

void IP_WIFI_AddSignalChangeHook(IP_HOOK_ON_WIFI_SIGNAL_CHANGE * pHook,
                                 IP_WIFI_pfOnSignalChange        pf);

Parameters

Parameter Description

pHook Pointer to hook structure to link.
pf Pointer to function to call on change.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



577 CHAPTER 18 API functions

18.5.8    IP_WIFI_RemoveSignalChangeHook()

Description

Removes a function previously added via IP_WIFI_AddSignalChangeHook().

Prototype

void IP_WIFI_RemoveSignalChangeHook(IP_HOOK_ON_WIFI_SIGNAL_CHANGE * pHook);

Parameters

Parameter Description

pHook Pointer to hook structure to link.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



578 CHAPTER 18 API functions

18.5.9    IP_WIFI_ConfigAllowedChannels()

Description

Configures the channels that are allowed to be used for network scan and associate
requests.

Prototype

int IP_WIFI_ConfigAllowedChannels(      unsigned   IFaceId,
                                  const U8       * paChannel,
                                        U8         NumChannels);

Parameters

Parameter Description

IFaceId Zero-based interface index.
paChannel Pointer to a list of allowed channels.
NumChannels Number of channels in list.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

Allowed channels are a subset of the configured regulatory domain.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



579 CHAPTER 18 API functions

18.5.10    IP_DTASK_ConfigAlwaysSignaled()

Description

Keeps the interface in signaled state to be polled each time regardless if there really was
a signal or not.

Prototype

void IP_DTASK_ConfigAlwaysSignaled(unsigned IFaceId,
                                   char     OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0 : Off.
• Other: On.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



580 CHAPTER 18 API functions

18.5.11    IP_DTASK_GetTimeout()

Description

Retrieves the timeout [ms] after which the Driver Task should polls the driver interrupt
routine even if it has not been signaled.

Prototype

unsigned IP_DTASK_GetTimeout(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

Previously configured timeout [ms].

Additional information

At the moment the IFaceId parameter is ignored and the timeout value is used for all
interfaces.

This routine can be used to set the timeout in a central place such as from IP_X_Config()
and retrieve it wherever necessary.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



581 CHAPTER 18 API functions

18.5.12    IP_DTASK_SetTimeout()

Description

Sets the timeout [ms] after which the Driver Task polls the driver interrupt routine even
if it has not been signaled.

Prototype

void IP_DTASK_SetTimeout(unsigned IFaceId,
                         unsigned Timeout);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Timeout Timeout [ms].

Additional information

At the moment the IFaceId parameter is ignored and the timeout value is used for all
interfaces.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



582 CHAPTER 18 API functions

18.5.13    IP_WIFI_Connect()

Description

Connects to a selected SSID or starts as access point.

Prototype

int IP_WIFI_Connect(      unsigned                 IFaceId,
                    const IP_WIFI_CONNECT_PARAMS * pParams,
                          U32                      Timeout);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pParams Pointer to structure that contains connection parameters.
Timeout Timeout before considering connect attempt failed [ms].

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



583 CHAPTER 18 API functions

18.5.14    IP_WIFI_Disconnect()

Description

Disconnects from any connected network or stops the access point mode.

Prototype

int IP_WIFI_Disconnect(unsigned IFaceId,
                       U32      Timeout);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Timeout Timeout before considering disconnect attempt failed [ms].

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



584 CHAPTER 18 API functions

18.5.15    IP_DTASK_Task()

Description

Task that polls the handler routine of some drivers.

Prototype

void IP_DTASK_Task(void);

Additional information

This task is required to be implementing into your project for some drivers to work. This is
typically the case for external Ethernet controllers. An example for typical task stack usage
is defined by TASK_STACK_SIZE_IP_DRIVER_TASK .

For best performance this task should be given a task priority higher than any other IP stack
related application task and even the IP_Task() or its API alternatives IP_TASK_Init(),
IP_TASK_Exec() and IP_TASK_WaitForEvent() . It however must not have a higher
or the same priority than the IP_RxTask() or its API alternatives IP_RXTASK_Init(),
IP_RXTASK_Exec() and IP_RXTASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt usage
on page 48 .

After startup, this routine settles into a loop, handling driver events. This loop sleeps until
signaled by an event. Alternatively it can be configured to wake up and poll the drivers
periodically using IP_DTASK_ConfigTimeout() and IP_DTASK_ConfigAlwaysSignaled() .

In case of de-initializing the stack with IP_DeInit(), it is possible to leave the loop
gracefully by using IP_ShutDown() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



585 CHAPTER 18 API functions

18.5.16    IP_DTASK_Init()

Description

Initializes the DriverTask context.

Prototype

void IP_DTASK_Init(void);

Additional information

Note

This routine is not intended to be used when using IP_DTASK_Task() instead. It needs
to be called before IP_DTASK_Exec() or IP_DTASK_WaitForEvent() is used.

For best performance the IP_DTASK_* API should be called with a task priority higher than
any other IP stack related application task and even the IP_Task() or its API alternatives
IP_TASK_Init(), IP_TASK_Exec() and IP_TASK_WaitForEvent() .

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the IP_RxTask() or its API alternatives
IP_RXTASK_Init(), IP_RXTASK_Exec() and IP_RXTASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

Example

/*********************************************************************
*
*       _IP_DTASK_Task()
*
*  Function description
*    Application specific implementation of IP_DTASK_Task() .
*
*  Additional information
*    Allows to insert your own code like feeding a watchdog
*    in-between the separate steps that would be executed by the
*    original task API provided by the stack.
*/
static void _IP_DTASK_Task(void) {
  unsigned Timeout;

  //
  // Initialize.
  //
  IP_DTASK_Init();
  //
  // Get the timeout configured for example during IP_X_Config() .
  // If not configured, the default is returned which is 0 and
  // means to wait INFINITE .
  //
  Timeout = IP_DTASK_GetTimeout(0u);  // Get timeout for interface #0 .
  //
  // Task-loop.
  //
  for (;;) {
    //
    // Wait with timeout [ms] for the next event to be signaled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



586 CHAPTER 18 API functions

    // Typically the signal is triggered by an interrupt from an
    // external controller that notifies us that the previous
    // operation is now finished and the next can be started.
    //
    IP_DTASK_WaitForEvent(Timeout);
    //
    // Process the event.
    //
    IP_DTASK_ExecAll();
  }
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



587 CHAPTER 18 API functions

18.5.17    IP_DTASK_Exec()

Description

Executes the handler routine of the driver for a specific interface.

Prototype

void IP_DTASK_Exec(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface ID.

Additional information

This routine is an alternative to using the IP_DTASK_Task() . It allows finer control over
the internal steps done in IP_DTASK_Task() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using IP_DTASK_Task() instead.

For best performance the IP_DTASK_* API should be called with a task priority higher than
any other IP stack related application task and even the IP_Task() or its API alternatives
IP_TASK_Init(), IP_TASK_Exec() and IP_TASK_WaitForEvent() .

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the IP_RxTask() or its API alternatives
IP_RXTASK_Init(), IP_RXTASK_Exec() and IP_RXTASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



588 CHAPTER 18 API functions

18.5.18    IP_DTASK_ExecAll()

Description

Executes the handler routine of the driver for all interfaces.

Prototype

void IP_DTASK_ExecAll(void);

Additional information

This routine is an alternative to using the IP_DTASK_Task() . It allows finer control over
the internal steps done in IP_DTASK_Task() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using IP_DTASK_Task() instead.

For best performance the IP_DTASK_* API should be called with a task priority higher than
any other IP stack related application task and even the IP_Task() or its API alternatives
IP_TASK_Init(), IP_TASK_Exec() and IP_TASK_WaitForEvent() .

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the IP_RxTask() or its API alternatives
IP_RXTASK_Init(), IP_RXTASK_Exec() and IP_RXTASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



589 CHAPTER 18 API functions

18.5.19    IP_DTASK_WaitForEvent()

Description

Waits for an event for the DriverTask to be signaled.

Prototype

unsigned IP_DTASK_WaitForEvent(unsigned Timeout);

Parameters

Parameter Description

Timeout Timeout [ms] to wait for an event. 0 for INFINITE .

Return value

= 0 An event was signaled.
≠ 0 Timeout.

Additional information

This routine is an alternative to using the IP_DTASK_Task() . It allows finer control over
the internal steps done in IP_DTASK_Task() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using IP_DTASK_Task() instead.

For best performance the IP_DTASK_* API should be called with a task priority higher than
any other IP stack related application task and even the IP_Task() or its API alternatives
IP_TASK_Init(), IP_TASK_Exec() and IP_TASK_WaitForEvent() .

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the IP_RxTask() or its API alternatives
IP_RXTASK_Init(), IP_RXTASK_Exec() and IP_RXTASK_WaitForEvent() .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



590 CHAPTER 18 API functions

18.5.20    IP_WIFI_Scan()

Description

Scans for available wireless networks.

Prototype

int IP_WIFI_Scan(      unsigned               IFaceId,
                       U32                    Timeout,
                       IP_WIFI_pfScanResult   pf,
                 const char                 * sSSID,
                       U8                     Channel);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Timeout Timeout before aborting the scan [ms].
pf Callback to be used for each single result.
sSSID SSID to find. May be NULL to scan all available networks.
Channel Selected channel to scan. 0 means all channels.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

If an SSID to find has been set the result callback will report the connection parameters
only for the selected SSID. Without a given SSID a list of available networks and their
parameters will be returned.

A network scan means that the module needs to set one of its antennas into monitoring
mode, listening for beacon frames with SSIDs regularly sent by Access Points. If a module
has only one antenna, a scan might not be possible while being connected, typically also
returning an error for this API call.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



591 CHAPTER 18 API functions

18.5.21    IP_WIFI_Security2String()

Description

Converts the numeric security value to a readable text.

Prototype

char *IP_WIFI_Security2String(U8 Security);

Parameters

Parameter Description

Security Numeric security value.

Return value

Pointer to string of the security.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



592 CHAPTER 18 API functions

18.5.22    IP_DTASK_Signal()

Description

Signals the Driver Task to poll the handler routine of the driver.

Prototype

void IP_DTASK_Signal(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



593 CHAPTER 18 Data structures

18.6    Data structures
Structure / Callback Description

IP_WIFI_CONNECT_PARAMS
Used to configure parameters for
connecting to an Access Point or starting
your own Access Point.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



594 CHAPTER 18 Data structures

18.6.1    Structure IP_WIFI_CONNECT_PARAMS

Description

Used to configure parameters for connecting to an Access Point or starting your own Access
Point.

Prototype

typedef struct {
  const char*            sSSID;
  const char*            sWPAPass;
  const IP_WIFI_WEP_KEY* paWEPKey;
  U8                     abBSSID[6];
  U8                     NumWEPKeys;
  U8                     WEPActiveKeyIndex;
  U8                     Mode;
  U8                     Security;
  U8                     Channel;
} IP_WIFI_CONNECT_PARAMS;

Member Description

sSSID SSID to connect to or to open when in Access point mode.
sWPAPass WPA(2) passphrase to use.
paWEPKey Array of pointers to binary WEP keys.
abBSSID HW address of the access point to connect to.
NumWEPKeys Number of WEP keys configured in paWEPKey.
WEPActiveKeyIndex0..3: Index of WEP key to be used for sending, typically index 0 .

Mode
IP_WIFI_MODE_INFRASTRUCTURE or IP_WIFI_MODE_ACCESS_POINT (if
supported by the driver and moodule).

Security

Security used or security to use if we are starting an Access Point.
IP_WIFI_SECURITY_OPEN or IP_WIFI_SECURITY_WEP_OPEN or
IP_WIFI_SECURITY_WEP_SHARED or IP_WIFI_SECURITY_WPA_TKIP or
IP_WIFI_SECURITY_WPA_AES or IP_WIFI_SECURITY_WPA_WPA2_MIXED
or IP_WIFI_SECURITY_WPA2_AES.

Channel
Channel to use for connect or starting an Access Point. When
connecting 0 means any.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 19
 
Network interface drivers

emNet has been designed to cooperate with any kind of hardware. To use specific hardware
with emNet, a so-called network interface driver for that hardware is required. The network
interface driver consists of basic functions for accessing the hardware and a global table
that holds pointers to these functions.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



596 CHAPTER 19 Network interface drivers general information

19.1    Network interface drivers general information
To use emNet, a network interface driver matching the target hardware is required. The
code size of a network interface driver depends on the hardware and is typically between
1 and 3 kBytes. The driver handles both the MAC (media access control) unit as well as
the PHY (Physical interface). We recommend using drivers written and tested by SEGGER.
However, it is possible to write your own driver. This is explained in section Writing your
own driver on page 600.

The driver interface has been designed to allow support of internal and external Ethernet
controllers (EMACs). It also allows to take full advantage of hardware features such as MAC
address filtering and checksum computation in hardware.

19.1.1    MAC address filtering
The stack passes a list of MAC addresses to the driver. The driver is responsible for making
sure that all packets from all MAC addresses specified are passed to the stack. It can do
so with “precise filtering” if the hardware has sufficient filters for the given number of
MAC addresses. If more MAC addresses are passed to the driver than hardware filters are
available, the driver can use a hash filter if available in hardware or switch to promiscuous
mode.

This is a very flexible solution which allows making best use of the hardware filtering
capabilities on all known Ethernet controllers. It also allows simple implementations to
simply switch to promiscuous mode.

19.1.2    Checksum computation in hardware
When the interface is initialized, the stack queries the capabilities of the driver. If the
hardware can compute IP, TCP, UDP, ICMP checksums, it can indicates this to the stack. In
this case, the stack does not compute these checksums, improving throughput and reducing
CPU load.

19.1.3    Ethernet CRC computation
Every Ethernet packet includes a 32-bit trailing CRC. In most cases, the Ethernet controller
is capable of computing the CRC. The drivers take advantage of this. The CRC is computed
in the driver only if the hardware does not support CRC computation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



597 CHAPTER 19 Available network interface drivers

19.2    Available network interface drivers
Network interface drivers are optional components to emNet. Network interface drivers are
already available for popular hardware and a list could be found on our website https://
www.segger.com/emnet-drivers. CRC is computed in the driver only if the hardware does
not support CRC computation.

19.2.1    Configuring the driver
The interface with the corresponding driver should be added to the configuration function
IP_X_Config() with a call to IP_AddEtherInterface().

Depending on the hardware, it could be needed to configure the PHY mode for RMII
with IP_NI_ConfigPHYMode(). As the default configuration is MII, the call is optional and
requested only to use RMII.

Some drivers provides also configuration functions, for example to configure the number
of buffer used, specify registers base address, …

19.2.2    BSP configuration
Drivers are calling BSP function in order to configure hardware access:
• Old driver are using functions like BSP_ETH_Init() and BSP_ETH_InstallISR() which

are implemented in BSP.c.
• New and updated drivers are using the structure BSP_IP_API implemented in BSP_IP.c.

See Structure BSP_IP_API on page 296 for more details. This structure needs to be set
as BSP access API with the function IP_BSP_SetAPI().

19.2.3    Driver configuration example
The following code is an excerpt of IP_X_Config(). Reference to IP_X_Config on page 627
for a complete example.

IFaceId = IP_AddEtherInterface(DRIVER);  // Add driver for your hardware.
IP_BSP_SetAPI(IFaceId, &BSP_IP_Api);   
  // Set BSP callbacks for hardware access.
IP_SetHWAddrEx(IFaceId, (const U8*)HW_ADDR, 6);
  // MAC addr.: Needs to be unique.
IP_NI_ConfigPHYMode(IFaceId, 1);         // Configure PHY Mode: 0: MII, 1: RMII .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com/emnet-drivers
https://www.segger.com/emnet-drivers


598 CHAPTER 19 Device driver specifics and limitations

19.3    Device driver specifics and limitations
For emNet different Ethernet controller drivers are provided. Normally, the drivers are ready
and do not need to be configured at all. Some drivers may need to be configured in a special
manner, due to some limitation of the controller. This section lists the drivers which require
special configuration and describes how to con- figure those drivers. Restrictions caused by
the Ethernet controller hardware are also listed in this section.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



599 CHAPTER 19 Device driver specifics and limitations

19.3.1    ENETC
This driver is used for the MCUs:
• i.MXRT118x series

Limitations
• The driver uses the NXP FSL SDK.
• embOS functions OS_INT_EnterNestable()/OS_INT_LeaveNestable() are used

directly in the driver instead of inside the IRQ routine in BSP_IP.c. This is necessary
because the FSL SDK defines the IRQ vectors inside itself, which means we can not
register our own. These functions and the RTOS.h include can be replaced with your
RTOS’s alternatives or removed if embOS is not used.

• Only the directly connected Ethernet Controller ENETC 0 with Eth 4. The integrated
Ethernet switch (Eth 0~4) is not supported.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



600 CHAPTER 19 Writing your own driver

19.4    Writing your own driver
If you are going to use emNet with your own hardware, you may have to write your own
network interface driver. This section describes which functions are required and how to
integrate your own network interface driver into emNet.

Note: We strongly recommend contacting SEGGER if you need to have a driver for a
particular piece of hardware which is not yet supported. Writing a driver is a difficult task
which requires a thorough understanding of Ethernet, MAC, and PHY.

19.4.1    Network interface driver structure
emNet uses a simple structure with function pointers to call the appropriate driver function
for a device. Use the supplied template IP_NI_Template.c for the implementation.

Data structure

typedef struct {
  int   (*pfInit)             (unsigned Unit);
  int   (*pfSendPacket)       (unsigned Unit);
  int   (*pfGetPacketSize)    (unsigned Unit);
  int   (*pfReadPacket)       (unsigned Unit, U8 * pDest, unsigned NumBytes);
  void  (*pfTimer)            (unsigned Unit);
  int   (*pfControl)          (unsigned Unit, int Cmd, void * p);
  void  (*pfEnDisableRxInt)   (unsigned Unit, unsigned OnOff);
} IP_HW_DRIVER;

Elements of IP_HW_DRIVER

Element Meaning

pfInit Pointer to the initialization function.
pfSendPacket Pointer to the send packet function.
pfGetPacketSize Pointer to the get packet size function.
pfReadPacket Pointer to the read packet function.

pfTimer
Optional: Pointer to the timer function. The routine
is called from the stack periodically

pfControl Pointer to the control function.
pfEnDisableRxInt Optional: Pointer to enable/disable Rx interrupts.

Example

/* Sample implementation taken from the driver for FREESCALE Kinetis */

/*********************************************************************
*
*       Driver API Table
*
**********************************************************************
*/

const IP_HW_DRIVER IP_Driver_Kinetis = {
  _Init,
  _SendPacketIfTxIdle,
  _GetPacketSize,
  _ReadPacket,
  _Timer,
  _Control,
  _EnDisableRxInt
};

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



601 CHAPTER 19 Writing your own driver

19.4.2    Device driver functions
This section provides descriptions of the network interface driver functions required by
emNet. Note that the names used for these functions are not really relevant for emNet
because the stack accesses them through a structure of function pointers.

Function Description

_Init() General initialization function of the driver.

_SendPacketIfTxIdle()
Send the next packet in the send queue if
transmitter is idle.

_GetPacketSize()
Reads buffer descriptors to find out if a packet has
been received.

_ReadPacket() Reads the first packet in the buffer.

_Timer()
Timer function called by the networking task,
IP_Task(), once per second.

_Control()
This function is used to implement additional driver
specific control functions. It can be empty.

_EnDisableRxInt()
Utility function to enable or disable receive
interrupts. It can be empty.

19.4.3    Driver template
The driver template IP_NI_TEMPLATE.c is supplied in the folder Sample\IP\Driver
\Template\.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 20
 
PHY drivers

emNet has been designed to cooperate with any kind of hardware. Typically almost any PHY
is compatible with the emNet generic PHY driver as almost all standard PHYs are compliant
to the IEEE 802.3u standard which also defines the first 6 standard registers and their bits
that are used by the generic PHY driver. However there are some PHYs that might require
additional setup or do not comply with IEEE 802.3u as it is expected by the generic PHY
driver. To use them, a so-called PHY driver for that hardware is required that is aware of
how the specific PHY can be accessed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



603 CHAPTER 20 PHY drivers general information

20.1    PHY drivers general information
To use emNet with a PHY that can not be used with the generic PHY driver, a specific PHY
driver matching the target hardware is required. The code size of a PHY driver depends on
the hardware but is typically only requires a couple of hundred bytes.

The PHY driver interface has been designed to allow support of generic features like checking
the link state as well as being able to extend each specific driver with unique features only
available for a specific hardware.

20.1.1    When is a specific PHY driver required?
A specific PHY driver is typically not required for any standard PHY on the market. However
it might be required for the following reasons:
• The PHY registers do not (fully) comply with the IEEE 802.3u standard for the six first

registers.
• The PHY requires additional setup that can not be provided using the reset hook of the

generic PHY driver.
• A PHY or (managed) Switch PHY shall be used that includes multiple PHYs that shall be

treated like autonomous PHYs for link checking on each port.
• Any other special solution that simply can not be covered by a generic PHY driver.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



604 CHAPTER 20 Available PHY drivers

20.2    Available PHY drivers
emNet comes with a generic PHY driver that fits virtually any standard single port PHY
that is on the market. PHY drivers for devices that are not compatible to the IEEE 802.3u
standard, require additional setup or special solutions are optional components to emNet.

The following PHY drivers are available and described in detail with their API:

PHY driver Identifier

Generic driver IP_PHY_Driver_Generic

Micrel Switch PHY driver
IP_PHY_Driver_Micrel_Switch_<Product
Name>

Marvell 88E1111 Fiber PHY driver IP_PHY_Driver_MARVELL_88E1111_Fiber

To add a PHY driver to emNet, IP_PHY_AddDriver() should be called from within
IP_X_Config() with the proper identifier. Refer to IP_PHY_AddDriver on page 194 for
detailed information.

20.2.1    Generic driver
The emNet generic PHY driver fits virtually any standard single port PHY that complies with
the IEEE 802.3u standard and is the default driver that comes with emNet and is used when
no other PHY driver is added for an interface that requires PHY support.

Warning

Even if a PHY complies with the IEEE 802.3u standard it might require additional
handling that can not be provided by the generic PHY driver and therefore might
require a specific PHY driver in this case.

Resource usage

The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio V2.12, size optimization.

ROM RAM

approximately 0.8KBytes 0K Bytes

All required RAM is taken from the RAM that has been assigned to emNet using
IP_AddMemory(). Only a few bytes are required.

20.2.1.1    Generic PHY driver API functions
The table below lists the available API functions for this driver:

Function Description

IP_PHY_GENERIC_RemapAccess()
This function allows remapping the access
routines of a PHY interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



605 CHAPTER 20 Available PHY drivers

20.2.1.2    IP_PHY_GENERIC_RemapAccess()

Description

This function allows remapping the access routines of a PHY interface. An example would
be to use the access routines of interface #0 for interface #1 as well.

Prototype

void IP_PHY_GENERIC_RemapAccess(unsigned IFaceId,
                                unsigned AccessIFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index to assign an access API.

AccessIFaceId
Zero-based interface index from where to use the access
API.

Additional information

The purpose to use the same MDIO interface for multiple PHY interfaces is that there are
dual PHYs out there like the TI DP83849I that use only one MDIO interface and address
their internal dual PHY via the PHY addr.

It is only possible to remap from an already initialized interface to a new one which means
AccessIFaceId needs to be higher than IFaceId.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



606 CHAPTER 20 Available PHY drivers

20.2.2    Micrel Switch PHY driver
Due to the nature of a Switch PHY it contains multiple ports that can not be handled in
a generic way. Therefore a driver that is aware of the specific hardware is required. The
emNet PHY driver for Micrel Switch PHYs supports automatically starting the Switch engine
(autostart is disabled if used with a management interface like SMI or SPI) and allows
further specific configuration for various purposes.

Supported devices

The following is a list of supported devices and their labels:

PHY driver Identifier

KSZ8794 IP_PHY_Driver_Micrel_Switch_KSZ8794[_HostPort]

KSZ8863 IP_PHY_Driver_Micrel_Switch_KSZ8863[_HostPort]

KSZ8895 IP_PHY_Driver_Micrel_Switch_KSZ8895[_HostPort]

Resource usage

The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio V2.12, size optimization.

ROM RAM

approximately 0.2KBytes 0K Bytes

All required RAM is taken from the RAM that has been assigned to emNet using
IP_AddMemory(). Only a few bytes are required.

20.2.2.1    Micrel Switch PHY driver API functions
The table below lists the available API functions for this driver:

Function Description

IP_PHY_MICREL_SWITCH_AssignPortNumber()
This function assigns the physical
switch port number to an interface.

IP_PHY_MICREL_SWITCH_ConfigLearnDisable()
This function can set the learn disable
config for a specific port to enabled/
disabled.

IP_PHY_MICREL_SWITCH_ConfigRxEnable()
This function can set Rx (network to
switch) for a specific port to enabled/
disabled.

IP_PHY_MICREL_SWITCH_ConfigTailTagging()
This function switches Tail Tagging on/
off.

IP_PHY_MICREL_SWITCH_ConfigTxEnable()
This function can set Tx (switch
to network) for a specific port to
enabled/disabled.

IP_PHY_MICREL_SWITCH_ConfigUseInternalRmiiClock()
This function selects the clock source
for the RMII host port.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



607 CHAPTER 20 Available PHY drivers

20.2.2.2    IP_PHY_MICREL_SWITCH_AssignPortNumber()

Description

This function assigns the physical switch port number to an interface.

Prototype

void IP_PHY_MICREL_SWITCH_AssignPortNumber(unsigned IFaceId,
                                           unsigned Port);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Port Zero-based physical port number on the switch.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



608 CHAPTER 20 Available PHY drivers

20.2.2.3    IP_PHY_MICREL_SWITCH_ConfigLearnDisable()

Description

This function can set the learn disable config for a specific port to enabled/disabled.

Prototype

void IP_PHY_MICREL_SWITCH_ConfigLearnDisable(unsigned IFaceId,
                                             unsigned OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0: Switch addr. learning for the port enabled.
• 1: Switch addr. learning for the port disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



609 CHAPTER 20 Available PHY drivers

20.2.2.4    IP_PHY_MICREL_SWITCH_ConfigRxEnable()

Description

This function can set Rx (network to switch) for a specific port to enabled/disabled.

Prototype

void IP_PHY_MICREL_SWITCH_ConfigRxEnable(unsigned IFaceId,
                                         unsigned OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0: Rx for the port disabled.
• 1: Rx for the port enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



610 CHAPTER 20 Available PHY drivers

20.2.2.5    IP_PHY_MICREL_SWITCH_ConfigTailTagging()

Description

This function switches Tail Tagging on/off.

Prototype

void IP_PHY_MICREL_SWITCH_ConfigTailTagging(unsigned IFaceId,
                                            unsigned OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0: Tail Tagging off.
• 1: Tail Tagging on.

Additional information

Needs to be used with the interface of the host port of the switch.

It is enough to set it for one port of the switch as the bit to change is in a register that
is shared between all ports.

Tail Tagging needs to be supported by the stack as well and a Tail Tagging aware interface
has to be added to the stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



611 CHAPTER 20 Available PHY drivers

20.2.2.6    IP_PHY_MICREL_SWITCH_ConfigTxEnable()

Description

This function can set Tx (switch to network) for a specific port to enabled/disabled.

Prototype

void IP_PHY_MICREL_SWITCH_ConfigTxEnable(unsigned IFaceId,
                                         unsigned OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0: Tx for the port disabled.
• 1: Tx for the port enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



612 CHAPTER 20 Available PHY drivers

20.2.2.7    IP_PHY_MICREL_SWITCH_ConfigUseInternalRmiiClock()

Description

This function selects the clock source for the RMII host port. The default is to use the
externally provided clock.

Prototype

void IP_PHY_MICREL_SWITCH_ConfigUseInternalRmiiClock(unsigned IFaceId,
                                                     unsigned OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.

OnOff
• 0: Use external clock.
• 1: Use internal clock.

Additional information

This setting is only relevant for parts that allow a clock selection. The correct clock selection
depends on the hardware layout. Details can be found in the datasheet of the switch e.g.
in a chapter called “RMII INTERFACE OPERATION” for the KSZ8863 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



613 CHAPTER 20 Available PHY drivers

20.2.3    Marvell 88E1111 Fiber PHY driver
Although the the Marvell 88E1111 PHY in copper mode is supported out of the box by
the Generic driver on page 604, this PHY supports a Fiber mode as well. The Fiber mode
requires a different handling and therefore requires a separate driver to handle this mode.

Resource usage

The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio V2.12, size optimization.

ROM RAM

approximately 0.8 kBytes 0K Bytes

All required RAM is taken from the RAM that has been assigned to emNet using
IP_AddMemory(). Only a few bytes are required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 21
 
WiFi drivers

emNet allows to easily add WiFi (IEEE 802.11) support to your project. Using one of the
supported WiFi modules and available driver for it allows a WiFi interface to be added in
nearly the same easy way as adding any other emNet interface.

As almost each WiFi module uses a different API and a more or less complete documentation
of it, integration can become very time consuming. The emNet WiFi drivers provide an
unified API to different WiFi modules that allows an easy integration into your project in
short time.

This chapter lists drivers that require special configuration or come with their own extended
API that allows a configuration beyond the regular emNet API.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



615 CHAPTER 21 WiFi drivers general information

21.1    WiFi drivers general information
There are two different types of WiFi drivers used with emNet:
• Network Interface WiFi drivers
• WiFi PHY bridges

Both types make use of the same API for your application but a re different in their how
they provide WiFi support in terms of their hardware.

21.1.1    Network Interface WiFi drivers
The typical form of an emNet WiFi driver is used in the same way as a regular Network
Interface (NI) driver. It basically works like an external Ethernet controller, typically using
communication via a peripheral interface like SPI. Other common interfaces used are I2C,
UART or SDIO.

To the stack itself this is just another interface that is added like it would be for an integrated
or external Ethernet controller.

Using a free peripheral interface this solution can not only be used to build a new hardware
but can be used to upgrade existing solutions with WiFi as well.

While providing WiFi support by the simple usage of a peripheral interface like SPI, often an
SDK of the WiFi module vendor is required for communication with the module using vendor
specific commands. In some cases using the WiFi modules of a vendor is even prohibited
without the vendor SDK.

This type of driver is added to the stack like a regular driver by calling
IP_WIFI_AddInterface().

Note

When adding a WiFi driver to emNet, please be aware that the drivers for integrated
controllers are expected to be added first. So IP_WIFI_AddInterface() must only be
called after IP_AddEtherInterface().

21.1.2    WiFi PHY bridges
Some WiFi solutions offer to convert a regular Ethernet device into a WiFi solution by
providing a bridge device. For a regular cable based setup a copper cable PHY would be
connected to the Ethernet MAC of the MCU (or an external MAC). Instead of the copper
cable PHY a WiFi bridge can be connected, replacing the PHY. These devices are providing a
so-called MAC(of the MCU)-to-MAC(of the WiFi module) mode and are interfaced via (R)MII
the same way as a regular PHY would be.

Ethernet communication takes place using (R)MII and therefore requires an Ethernet MAC
to be present. A second configuration interface like SPI or UART is required as well as (R)MII
is used for Ethernet data only.

Using this solution an existing design can be converted to a WiFi solution by basically
exchanging the PHY. The separation of the Ethernet data and configuration has the chance
to reach higher transfer speeds than a single unidirectional interface handling Ethernet and
configuration at the same time.

Like any other PHY driver an Ethernet controller and its driver is still required. This means
that first an Ethernet driver has to be added calling IP_AddEtherInterface() and then
the driver of the WiFi PHY bridge has to be added and assigned to this interface by calling
IP_PHY_AddDriver().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



616 CHAPTER 21 List of special WiFi drivers

21.2    List of special WiFi drivers
Several WiFi drivers are available for emNet to provide an unified emNet WiFi API to the
vendor specific API. The vendor specific API is different between vendors and might even
be different for modules from the same vendor. In general all drivers are added to the stack
in the same way:

To add a WiFi driver to emNet, IP_WIFI_AddInterface() should be called from within
IP_X_Config() with the proper identifier.

To add a WiFi PHY bridge driver to emNet, IP_PHY_AddDriver() on page 132 should be
called from within IP_X_Config() with the proper identifier.

Depending on the module and driver they might require additional configuration or provide
additional features. These additional configuration functions are listed here. The following
WiFi drivers are described in detail with their API:

WiFi drivers with special functions

ConnectOne IW

Redpine Signals RS9113

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



617 CHAPTER 21 List of special WiFi drivers

21.2.1    ConnectOne IW
The emNet ConnectOne IW driver supports all WiFi<->LAN bridges sharing the same AT
+i command set which basically are all WiFi modules named “iW-*” using the CO2144 or
the older CO2128 core CPU.

21.2.1.1    Hardware access abstraction
The ConnectOne IW driver requires a hardware access API to be passed to
IP_PHY_AddDriver() to send/receive configuration data via SPI or UART.

A sample for a SPI connection is shipped with the driver as reference implementation.

typedef struct {
  void (*pfHWReset)      (unsigned IFaceId);
  int  (*pfSendATCommand)(unsigned IFaceId, U32 Timeout, const char* sCmd);
  int  (*pfClrBuf)       (unsigned IFaceId, U32 Timeout, char IgnoreSpiInt);
  int  (*pfLoadLine)     (unsigned IFaceId, U32 Timeout);
  int  (*pfReadLine)     (unsigned IFaceId, U32 Timeout, char* pBuffer,
unsigned BufferSize);
} IP_PHY_WIFI_CONNECTONE_IW_ACCESS;

Member Description

pfHWReset

Reset the WiFi module. Shall only return after the module reset
has been successfully asserted and deasserted. Only used in case
of an error. The module shall be manually hardware reset once
during startup.

pfSendATCommand
Sends the given AT+i command to the module. CR&LF are
included in the string to send.

pfClrBuf

Reads data from the module until SPI_INT gets deasserted. If
IgnoreSpiInt is set the module could be in an unknown state
after an error and the SPI_INT line might no longer be reliable.
In this case just try to read data for some time to clear all data
left in the module for a fresh start.

pfLoadLine

Reads in data in chunks as sent by the WiFi module until the
buffer is full or a complete line is in the buffer. A static buffer is
expected to be used to first assemble the chunks into a complete
message.

pfReadLine
Checks if a complete line is in static buffer and copies it to the
provided buffer.

21.2.1.2    ConnectOne IW driver API functions
The table below lists the available API functions for this driver:

Function Description

IP_PHY_WIFI_CONNECTONE_IW_ConfigSPI()
Sets the SPI_INT port the module
uses to signal an event.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



618 CHAPTER 21 List of special WiFi drivers

21.2.1.3    IP_PHY_WIFI_CONNECTONE_IW_ConfigSPI()

Description

Sets the SPI_INT port the module uses to signal an event.

Prototype

void IP_PHY_WIFI_CONNECTONE_IW_ConfigSPI(unsigned IFaceId,
                                         char     SPIConfig);

Parameters

Parameter Description

IFaceId Zero-based interface index.

SPIConfig
SPI_INT port configuration as mentioned in the AT+i
command documentation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



619 CHAPTER 21 List of special WiFi drivers

21.2.2    Redpine Signals RS9113
The emNet Redpine Signals RS9113 driver supports the RS9113 Connect-io-n and
WiseConnect family and modules compatible.

21.2.2.1    Redpine Signals RS9113 driver API functions
The table below lists the available API functions for this driver:

Function Description

IP_NI_WIFI_REDPINE_RS9113_ConfigAntenna()

Selects the internal or
external antenna and
configures the gain
for 2.4GHz and 5GHz
modes.

IP_NI_WIFI_REDPINE_RS9113_ConfigRegion()
Selects a world region
and allowed channel
configuration.

IP_NI_WIFI_REDPINE_RS9113_SetAccessPointParameters()
Configures access point
parameters.

IP_NI_WIFI_REDPINE_RS9113_SetSpiSpeedChangeCallback()

Sets a callback to be
executed when the SPI
interface can be used in
high speed mode (above
25MHz) or when it is
reset due to a module
reset to recover from an
error.

IP_NI_WIFI_REDPINE_RS9113_SetUpdateCallback()

Sets a callback to be
executed during boot
that updates the module
firmware.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



620 CHAPTER 21 List of special WiFi drivers

21.2.2.2    IP_NI_WIFI_REDPINE_RS9113_ConfigAntenna()

Description

Selects the internal or external antenna and configures the gain for 2.4GHz and 5GHz
modes.

Prototype

int IP_NI_WIFI_REDPINE_RS9113_ConfigAntenna(unsigned IFaceId,
                                            U8       Antenna,
                                            U8       Gain_24GHz,
                                            U8       Gain_5GHz);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Antenna
• 0: Internal antenna
• 1: External antenna

Gain_24GHz 0..10 (according to RS9113 API documentation)
Gain_5GHz 0..10 (according to RS9113 API documentation)

Return value

= 0 O.K.
≠ 0 Error.

Additional information

The value that can be configured for the antenna gain is not explained in detail in the
RS9113 API documentation. The values are passed to the module without modification.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



621 CHAPTER 21 List of special WiFi drivers

21.2.2.3    IP_NI_WIFI_REDPINE_RS9113_ConfigRegion()

Description

Selects a world region and allowed channel configuration.

Prototype

int IP_NI_WIFI_REDPINE_RS9113_ConfigRegion(unsigned IFaceId,
                                           U8       Region);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Region

• IP_NI_WIFI_REDPINE_RS9113_REGION_AUTO_DETECT
• IP_NI_WIFI_REDPINE_RS9113_REGION_US
• IP_NI_WIFI_REDPINE_RS9113_REGION_EUROPE
• IP_NI_WIFI_REDPINE_RS9113_REGION_JAPAN
• IP_NI_WIFI_REDPINE_RS9113_REGION_WORLD

Return value

= 0 O.K.
≠ 0 Error.

Additional information

Has to be called during init.

For a list of channels that are enabled for each region, please refer to the RS9113 API
documentation and search for “Region_code”.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



622 CHAPTER 21 List of special WiFi drivers

21.2.2.4    IP_NI_WIFI_REDPINE_RS9113_SetAccessPointParameters()

Description

Configures access point parameters. If not called, default values are used.

Prototype

void IP_NI_WIFI_REDPINE_RS9113_SetAccessPointParameters
                                     (      unsigned                      IFaceId,
                                      const IP_NI_WIFI_RS9113_AP_CONFIG * pParams);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pParams Pointer to the parameters structure.

Additional information

For details on the parameters value refer to the RS9113 API documentation of the function
rsi_set_ap_config().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



623 CHAPTER 21 List of special WiFi drivers

21.2.2.5    IP_NI_WIFI_REDPINE_RS9113_SetSpiSpeedChangeCallback()

Description

Sets a callback to be executed when the SPI interface can be used in high speed mode
(above 25MHz) or when it is reset due to a module reset to recover from an error.

Prototype

void IP_NI_WIFI_REDPINE_RS9113_SetSpiSpeedChangeCallback
                             (unsigned                                     IFaceId,
                              IP_NI_WIFI_REDPINE_RS9113_pfOnSpiSpeedChange pf);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pf Callback to execute on a change.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



624 CHAPTER 21 List of special WiFi drivers

21.2.2.6    IP_NI_WIFI_REDPINE_RS9113_SetUpdateCallback()

Description

Sets a callback to be executed during boot that updates the module firmware.

Prototype

void IP_NI_WIFI_REDPINE_RS9113_SetUpdateCallback
                                 (unsigned                                 IFaceId,
                                  IP_NI_WIFI_REDPINE_RS9113_pfUpdateModule pf);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pf Callback to execute the update.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 22
 
Configuring emNet

emNet can be used without changing any of the compile-time flags. All compile-time
configuration flags are preconfigured with valid values, which match the requirements of
most applications. Network interface drivers can be added at runtime.

The default configuration of emNet can be changed via compile-time flags which can be
added to IP_Conf.h. IP_Conf.h is the main configuration file for the TCP/IP stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



626 CHAPTER 22 Runtime configuration

22.1    Runtime configuration
Every driver folder includes a configuration file with implementations of runtime
configuration functions explained in this chapter. These functions can be customized.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



627 CHAPTER 22 Runtime configuration

22.1.1    IP_X_Config()

Description

Helper function to prepare and configure the TCP/IP stack.

Prototype

void IP_X_Config(void);

Additional information

This function is called by the startup code of the TCP/IP stack from IP_Init(). Refer to
IP_Init on page 170 for more information.

Example

/*********************************************************************
*                SEGGER MICROCONTROLLER SYSTEME GmbH                 *
*        Solutions for real time microcontroller applications        *
**********************************************************************
*                                                                    *
*        (c) 2007         SEGGER Microcontroller Systeme GmbH        *
*                                                                    *
*        Internet: www.segger.com    Support:  support@segger.com    *
*                                                                    *
**********************************************************************
----------------------------------------------------------------------
Purpose     : Configuration file template
---------------------------END-OF-HEADER------------------------------
*/

#include "IP.h"
#include "IP_NI_TEMPLATE.h"
/*********************************************************************
*
*       Configuration
*
**********************************************************************
*/

#define ALLOC_SIZE   0x6000                    
  // Size of memory dedicated to the stack in bytes.
#define DRIVER       &IP_Driver_Template         // Driver used for target.
#define TARGET_NAME  "TARGET"                    // Target name used for DHCP client.
#define HW_ADDR      "\x00\x22\xC7\xFF\xFF\xFF"  // MAC addr. used for target.
#define USE_DHCP     1                         
  // Use DHCP client or static IP configuration.

//
// The following parameters are only used when the DHCP client is not active.
//
#define IP_ADDR      IP_BYTES2ADDR(192, 168,   2, 252)
#define SUBNET_MASK  IP_BYTES2ADDR(255, 255, 255,   0)
#define GW_ADDR      IP_BYTES2ADDR(192, 168,   2,   1)
#define DNS_ADDR     IP_BYTES2ADDR(192, 168,   2,   1)

/*********************************************************************
*
*       Static data
*
**********************************************************************
*/

static U32 _aPool[ALLOC_SIZE / 4];             
  // This is the memory area used by the stack.

/*********************************************************************
*
*       Global functions
*
**********************************************************************

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



628 CHAPTER 22 Runtime configuration

*/

/*********************************************************************
*
*       IP_X_Config()
*
*  Function description
*    This function is called by the IP stack during IP_Init().
*
*  Notes
*    Typical memory/buffer configurations:
*      Microcontroller system, minimum size optimized
*        #define ALLOC_SIZE 0x1000                         // 4KBytes RAM.
*        mtu = 576;                                        // 576 is minimum acc. to RFC,
 1500 is max. for Ethernet.
*        IP_SetMTU(0, mtu);                                // Maximum Transmission Unit is
 1500 for Ethernet by default.
*        IP_AddBuffers(4, 256);                            // Small buffers.
*        IP_AddBuffers(2, mtu + 16);                       // Big buffers. Size should be
 mtu + 16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).
*        IP_ConfTCPSpace(2 * (mtu - 40), 1 * (mtu - 40));  // Define the TCP Tx and Rx
 window size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.
*
*      Microcontroller system, size optimized
*        #define ALLOC_SIZE 0x3000                         // 12KBytes RAM.
*        mtu = 576;                                        // 576 is minimum acc. to RFC,
 1500 is max. for Ethernet.
*        IP_SetMTU(0, mtu);                                // Maximum Transmission Unit is
 1500 for Ethernet by default.
*        IP_AddBuffers(8, 256);                            // Small buffers.
*        IP_AddBuffers(4, mtu + 16);                       // Big buffers. Size should be
 mtu + 16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).
*        IP_ConfTCPSpace(2 * (mtu - 40), 2 * (mtu - 40));  // Define the TCP Tx and Rx
 window size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.
*
*      Microcontroller system, speed optimized or multiple connections
*        #define ALLOC_SIZE 0x6000                         // 24 KBytes RAM.
*        mtu = 1500;                                       // 576 is minimum acc. to RFC,
 1500 is max. for Ethernet.
*        IP_SetMTU(0, mtu);                                // Maximum Transmission Unit is
 1500 for Ethernet by default.
*        IP_AddBuffers(12, 256);                           // Small buffers.
*        IP_AddBuffers(6, mtu + 16);                       // Big buffers. Size should be
 mtu + 16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).
*        IP_ConfTCPSpace(3 * (mtu - 40), 3 * (mtu - 40));  // Define the TCP Tx and Rx
 window size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.
*
*      System with lots of RAM
*        #define ALLOC_SIZE 0x20000                        // 128 KBytes RAM.
*        mtu = 1500;                                       // 576 is minimum acc. to RFC,
 1500 is max. for Ethernet.
*        IP_SetMTU(0, mtu);                                // Maximum Transmission Unit is
 1500 for Ethernet by default.
*        IP_AddBuffers(50, 256);                           // Small buffers.
*        IP_AddBuffers(50, mtu + 16);                      // Big buffers. Size should be
 mtu + 16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).
*        IP_ConfTCPSpace(8 * (mtu - 40), 8 * (mtu - 40));  // Define the TCP Tx and Rx
 window size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.
*/
void IP_X_Config(void) {
  int mtu;
  int IFaceId;

  IP_AssignMemory(_aPool, sizeof(_aPool));       
  // Assigning memory should be the first thing.
  IFaceId = IP_AddEtherInterface(DRIVER);          // Add driver for your hardware.
  IP_SetHWAddrEx(IFaceId, (const U8*)HW_ADDR, 6);
  // MAC addr.: Needs to be unique for production units.
  //
  // Configure the PHY interface mode (optional):
  //   - IP_PHY_MODE_MII : MII, typically default if not explicitly configured.
  //   - IP_PHY_MODE_RMII: RMII
  // Can be set/overwritten from BSP_IP pfGetMiiMode() callback.
  //
//  IP_NI_ConfigPHYMode(IFaceId, IP_PHY_MODE_RMII);
  //

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



629 CHAPTER 22 Runtime configuration

  // Use DHCP client or define IP address, subnet mask,
  // gateway address and DNS server according to the
  // requirements of your application.
  //
#if USE_DHCP
  IP_DHCPC_Activate(IFaceId, TARGET_NAME, NULL, NULL);  // Activate DHCP client.
#else
  IP_SetAddrMaskEx(IFaceId, IP_ADDR, SUBNET_MASK);      // Assign IP addr. and subnet mask.
  IP_SetGWAddr(IFaceId, GW_ADDR);                       // Set gateway addr.
  IP_DNS_SetServer(DNS_ADDR);                           // Set DNS server addr.
#endif
  //
  // Run-time configure buffers.
  // The default setup will do for most cases.
  //
  mtu = 1500 ;                                 // 576 is minimum acc. to RFC,
 1500 is max. for Ethernet
  IP_SetMTU(IFaceId, mtu);                     // Maximum Transmission Unit is
 1500 for ethernet by default
  IP_AddBuffers(12, 256);                      // Small buffers.
  IP_AddBuffers(6, mtu + 16);                  // Big buffers. Size should be mtu +
 16 byte for ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding)
  IP_ConfTCPSpace(3 * (mtu-40), 3 * (mtu-40)); // Define the TCP Tx and Rx window size
  IP_SOCKET_SetDefaultOptions(0
//                              | SO_TIMESTAMP 
  // Send TCP timestamp to optimize the round trip time measurement. Normally not used in LAN.
                              | SO_KEEPALIVE 
  // Enable keepalives by default for TCP sockets.
                             );
  //
  // Define log and warn filter.
  // Note: The terminal I/O emulation might affect the timing of your
  //       application, since most debuggers need to stop the target
  //       for every terminal I/O output unless you use another
  //       implementation such as DCC or SWO.
  //
  IP_SetWarnFilter(0xFFFFFFFF);              //
 0xFFFFFFFF: Do not filter: Output all warnings.
  IP_SetLogFilter(0
                  | IP_MTYPE_APPLICATION     // Output application messages.
                  | IP_MTYPE_INIT            // Output all messages from init.
                  | IP_MTYPE_LINK_CHANGE     // Output a message if link status changes.
                  | IP_MTYPE_PPP             // Output all PPP/PPPoE related messages.
                  | IP_MTYPE_DHCP            // Output general DHCP status messages.
#if IP_SUPPORT_IPV6
                  | IP_MTYPE_IPV6            // Output IPv6 address related messages
#endif
//                  | IP_MTYPE_DHCP_EXT        // Output additional DHCP messages.
//                  | IP_MTYPE_CORE            // Output log messages from core module.
//                  | IP_MTYPE_ALLOC           // Output log messages for memory allocation.
//                  | IP_MTYPE_DRIVER          // Output log messages from driver.
//                  | IP_MTYPE_ARP             // Output log messages from ARP layer.
//                  | IP_MTYPE_IP              // Output log messages from IP layer.
//                  | IP_MTYPE_TCP_CLOSE     
  // Output a log messages if a TCP connection has been closed.
//                  | IP_MTYPE_TCP_OPEN      
  // Output a log messages if a TCP connection has been opened.
//                  | IP_MTYPE_TCP_IN          // Output TCP input logs.
//                  | IP_MTYPE_TCP_OUT         // Output TCP output logs.
//                  | IP_MTYPE_TCP_RTT         // Output TCP round trip time (RTT) logs.
//                  | IP_MTYPE_TCP_RXWIN       // Output TCP RX window related log messages.
//                  | IP_MTYPE_TCP             // Output all TCP related log messages.
//                  | IP_MTYPE_UDP_IN          // Output UDP input logs.
//                  | IP_MTYPE_UDP_OUT         // Output UDP output logs.
//                  | IP_MTYPE_UDP             // Output all UDP related messages.
//                  | IP_MTYPE_ICMP            // Output ICMP related log messages.
//                  | IP_MTYPE_NET_IN          // Output network input related messages.
//                  | IP_MTYPE_NET_OUT         // Output network output related messages.
//                  | IP_MTYPE_DNS             // Output all DNS related messages.
//                  | IP_MTYPE_SOCKET_STATE    // Output socket status messages.
//                  | IP_MTYPE_SOCKET_READ     // Output socket read related messages.
//                  | IP_MTYPE_SOCKET_WRITE    // Output socket write related messages.
//                  | IP_MTYPE_SOCKET          // Output all socket related messages.
                 );
  //
  // Add protocols to the stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



630 CHAPTER 22 Runtime configuration

  //
  IP_TCP_Add();
  IP_UDP_Add();
  IP_ICMP_Add();
#if IP_SUPPORT_IPV6
  IP_IPV6_Add(IFaceId);
#endif
}

/*************************** End of file ****************************/

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



631 CHAPTER 22 Runtime configuration

22.1.2    Driver handling
IP_X_Config() is called at initialization of the TCP/IP stack. It is called by the IP stack
during IP_Init(). IP_X_Config() should help to bundle the process of adding and
configuring the driver.

22.1.3    Memory and buffer assignment
The total memory requirements of the TCP/IP stack can basically be computed as the sum
of the following components:

Description ROM

IP-Stack core app. 200 bytes
Sockets n * app. 200 bytes
UDP connection n * app. 100 bytes
TCP/ connection n * app. 200 bytes + RAM for TCP Window

22.1.3.1    RAM for TCP window
The data for the TCP window is stored in packet buffers. The number of packet buffers
required for best performance per socket is typically:

(WindowSize / PacketBufferSize)

This amount of buffers (and RAM for these buffers) is needed for every simultaneously
active TCP connection, where “active” means sending & receiving data.

If a connection is used bidirectional for sending & receiving data at the same time, enough
buffers should be added to be able to support the full TxWindowsSize and RxWindowSize
at the same time.

Note

The configuration mentioned above is not necessary if not all of your connections are
using their maximum WindowSize all the time to reach the best speed possible.

The TCP protocol can freely assign free packet buffers in the system to all socket
buffers. Therefore it is not necessary to reserve the maximum number of packet
buffers for all sockets that could be used at the same time if you can afford retransmits
and their delays of typically ~200ms.

On a shortage, especially when failing to get a buffer for adding received data to a
socket buffer (data gets discarded in the TCP layer), the TCP protocol is able to cope
with this situation by not ACKing the data and having the peer retransmit it again,
giving the application a chance to free some buffers in the meantime.

22.1.3.2    Required buffers
Most of the RAM used by the stack is used for packet buffers. Packet buffers are used
to hold incoming and outgoing packets and data in receive and transmit windows of TCP
connections.

Example configuration - Extremely small (4 kBytes)

This configuration is the smallest available or at least very close. It is intended to be used
on MCUs with very little RAM and can be used for applications which are designed for a
very low amount of traffic.

#define ALLOC_SIZE 0x1000                     // 4 kBytes RAM
mtu = 576;                                    // 576 is minimum acc.
                                              // to RFC, 1500 is max. for Ethernet
IP_SetMTU(0, mtu);                            // Maximum Transmission Unit is 1500

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



632 CHAPTER 22 Runtime configuration

                                              // for Ethernet by default
IP_AddBuffers(4, 256);                        // Small buffers.
IP_AddBuffers(2, mtu + 16);                   // Big buffers. Size should be mtu
                                              // + 16 byte for Ethernet header
                                              // (2 bytes type, 2*6 bytes MAC,
                                              // 2 bytes padding)
IP_ConfTCPSpace(2 * (mtu-40), 1 * (mtu-40));  // Define TCP Tx and Rx window size

Example configuration - Small (12 kBytes)

This configuration is a small configuration intended to be used on MCUs with little RAM and
can be used for applications which are designed for a medium amount of traffic.

#define ALLOC_SIZE 0x3000                     // 12 kBytes RAM
mtu = 576;                                    // 576 is minimum acc.
                                              // to RFC, 1500 is max. for Ethernet
IP_SetMTU(0, mtu);                            // Maximum Transmission Unit is 1500
                                              // for Ethernet by default
IP_AddBuffers(8, 256);                        // Small buffers.
IP_AddBuffers(4, mtu + 16);                   // Big buffers. Size should be mtu
                                              // + 16 byte for Ethernet header
                                              // (2 bytes type, 2*6 bytes MAC,
                                              // 2 bytes padding)
IP_ConfTCPSpace(2 * (mtu-40), 2 * (mtu-40));  // Define TCP Tx and Rx window size

Example configuration - Normal (24 kBytes)

This configuration is a typical configuration for many MCUs that have a fair amount of
internal RAM. It can be used for applications which are designed for a higher amount of
traffic and/or multiple client connections.

#define ALLOC_SIZE 0x6000                     // 24 kBytes RAM
mtu = 1500;                                   // 576 is minimum acc. to RFC,
                                              // 500 is max. for Ethernet
IP_SetMTU(0, mtu);                            // Maximum Transmission Unit is 1500
                                              // for Ethernet by default
IP_AddBuffers(12, 256);                       // Small buffers.
IP_AddBuffers(6, mtu + 16);                   // Big buffers. Size should be mtu
                                              // + 16 byte for Ethernet header
                                              // (2 bytes type, 2*6 bytes MAC,
                                              // 2 bytes padding)
IP_ConfTCPSpace(3 * (mtu-40), 3 * (mtu-40));  // Define TCP Tx and Rx window size

Example configuration - Large (128 kBytes)

This configuration is a large configuration intended to be used on MCUs with many external
RAM. It can be used for applications which are designed for a high amount of traffic and
multiple client/server connections at the same time.

#define ALLOC_SIZE 0x20000                    // 128 kBytes RAM
mtu = 1500;                                   // 576 is minimum acc. to RFC,
                                              // 1500 is max. for Ethernet
IP_SetMTU(0, mtu);                            // Maximum Transmission Unit is 1500
                                              // for Ethernet by default
IP_AddBuffers(50, 256);                       // Small buffers.
IP_AddBuffers(50, mtu + 16);                  // Big buffers. Size should be mtu
                                              // + 16 byte for Ethernet header
                                              // (2 bytes type, 2*6 bytes MAC,
                                              // 2 bytes padding)
IP_ConfTCPSpace(8 * (mtu-40), 8 * (mtu-40));  // Define TCP Tx and Rx window size

Warning

Do not configure “1 * (mtu-40)” (only one one packet) for the TxWindowSize if TCP
delayed ACKs are enabled (default). This might lead to a delay of ~200ms before the
peer ACKs the sent data as it will wait for its retransmit delay time (default ~200ms)
for at least a second packet to arrive.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



633 CHAPTER 22 Runtime configuration

If you intend to run a super small configuration with only one packet for the
TxWindowSize, please disable delayed ACK support in the stack by configuring the
define IP_SUPPORT_TCP_DELAYED_ACK to 0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



634 CHAPTER 22 Compile-time configuration

22.2    Compile-time configuration
The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the code in place of a numerical constant. A typical
example is the configuration of the sector size of a storage medium.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations apply, as
a macro is still put into the code as simple text replacement. Function replacements are
mainly used to add specific functionality to a module which is highly hardware-dependent.
This type of macro is always declared using brackets (and optional parameters).

22.2.1    Compile-time configuration switches

T
y
p
e

Symbolic name Default Description

System configuration macros

B IP_IS_BIGENDIAN -- Macro to define if a big endian
target is used.

Statistics configuration macros

B IP_SUPPORT_STATS 0

Macro used as default value for all
IP_SUPPORT_STATS_* defines. Leave
this to 0 if you want to enable only
specific stats defines.

B IP_SUPPORT_STATS_IFACE
IP_SUPPORT
_STATS

Macro to define if the emNet
interface statistics should be
available.

Debug macros

N IP_DEBUG 0

Macro to define the debug level of
the emNet build. Refer to Debug
level on page 637 for a description
of the different debug level.

B IP_SUPPORT_PROFILE 0

Macro to define if the emNet API
profiling support for SystemView
is used. For more information
regarding SystemView please refer
to https://www.segger.com/system-
view.html.

B IP_SUPPORT_PROFILE_END_CALL 0

Macro to define if the emNet
API profiling support for
SystemView recognizes the
exact end of functions as well.
For more information regarding
SystemView please refer to https://
www.segger.com/system-view.html.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com/system-view.html
https://www.segger.com/system-view.html
https://www.segger.com/system-view.html
https://www.segger.com/system-view.html


635 CHAPTER 22 Compile-time configuration

T
y
p
e

Symbolic name Default Description

B IP_SUPPORT_PROFILE_FIFO 0

Macro to define if the emNet
profiling support for SystemView
recognizes stack internal
FIFO operations as well. For
more information regarding
SystemView please refer to https://
www.segger.com/system-view.html.

B IP_SUPPORT_PROFILE_PACKET 0

Macro to define if the emNet
profiling support for SystemView
recognizes stack internal packet
buffer alloc/free operations as well.
For more information regarding
SystemView please refer to https://
www.segger.com/system-view.html.

PHY configuration macros

N IP_PHY_AFTER_RESET_DELAY 3
Delay [ms] between (soft) resetting
the PHY and further communication
with it.

IP protocol configuration macros

B IP_SUPPORT_IPV4 1

Enables support for IPv4. Disabling
IPv4 support removes many IPv4
exclusive code passages. This can
be used for example if you have
enabled IPv6 and do not need/want
IPv4 at all.

B IP_SUPPORT_IPV6 0 Enables support for IPv6. Requires
the IPv6 add-on.

TCP protocol configuration macros

B IP_SUPPORT_TCP_DELAYED_ACK 1 Enables support for TCP delayed
ACKs.

N IP_TCP_RETRANS_MIN 210

Minimum time [ms] between
retransmits for segments that have
not been ACKed. The real retransmit
time is calculated from the round-
trip-time but will stay between the
min./max. values.

N IP_TCP_RETRANS_MAX 3000

Maximum time [ms] between
retransmits for segments that have
not been ACKed. The real retransmit
time is calculated from the round-
trip-time but will stay between the
min./max. values.

N IP_TCP_RETRANS_NUM 6

Number of retransmits for segments
that have not been ACKed. The
retransmit time is calculated from
the round-trip-time but limited to
the min./max. values.

N IP_TCP_KEEPALIVE_MAX_REPS 8

Maximum repeats of keepalive
probes before dropping the
connection. Keepalives need to
be enabled on the socket with
SO_KEEPALIVE (default).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com/system-view.html
https://www.segger.com/system-view.html
https://www.segger.com/system-view.html
https://www.segger.com/system-view.html


636 CHAPTER 22 Compile-time configuration

T
y
p
e

Symbolic name Default Description

N IP_TCP_KEEPALIVE_INIT 10000

Timeout [ms] during the three-
way-handshake connect after which
keepalive probing will be started.
This is not a total connect timeout.
Keepalives need to be enabled
on the socket with SO_KEEPALIVE
(default).

N IP_TCP_KEEPALIVE_IDLE 10000

Timeout [ms] with no segment
exchange after which keepalive
probing will be started. Keepalives
need to be enabled on the socket
with SO_KEEPALIVE (default).

N IP_TCP_KEEPALIVE_PERIOD 10000

Time [ms] between keepalive probes
sent. Keepalives need to be enabled
on the socket with SO_KEEPALIVE
(default).

Other configuration macros

B DHCPC_USE_UNICAST 1

Since version V3.56.0 the default
is to use Ethernet unicast for DHCP
instead of Ethernet Broadcast. This
define allows to switch back to the
old behaviour.

B IP_SUPPORT_SO_BINDTODEVICE 0

This switch exists since version
V3.58.0. It enables the usage of
the SO_BINDTODEVICE option with
getsockopt()/setsockopt().
Because this feature is seldom used
it is off by default to save memory.

Optimization macros

F IP_CKSUM
IP_cksum
(C-routine
in IP stack)

Macro to define an optimized
checksum routine to speed up the
stack. An optimized checksum
routine is typically implemented
in assembly language. Optimized
versions for the GNU, IAR and ADS
compilers are supplied.

F IP_MEMCPY

memcpy
(C-routine
in standard
C-library)

Macro to define an optimized
memcpy routine to speed up the
stack. An optimized memcpy routine
is typically implemented in assembly
language. Optimized version for the
IAR compiler is supplied.

F IP_MEMSET

memset
(C-routine
in standard
C-library)

Macro to define an optimized
memset routine to speed up the
stack. An optimized memset routine
is typically implemented in assembly
language.

F IP_MEMMOVE

memmove
(C-routine
in standard
C-library)

Macro to define an optimized
memmove routine to speed up the
stack. An optimized memmove
routine is typically implemented in
assembly language.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



637 CHAPTER 22 Compile-time configuration

T
y
p
e

Symbolic name Default Description

F IP_MEMCMP

memcmp
(C-routine
in standard
C-library)

Macro to define an optimized
memcmp routine to speed up the
stack. An optimized memcmp
routine is typically implemented in
assembly language.

22.2.2    Debug level
emNet can be configured to display debug information at higher debug levels to locate
a problem (Error) or potential problem. To display information, emNet uses the logging
routines (see chapter Debugging on page 845). These routines can be blank, they are not
required for the functionality of emNet. In a target system, they are typically not required
in a release (production) build, since a production build typically uses a lower debug level.

If (IP_DEBUG = 0): used for release builds. Includes no debug options.

If (IP_DEBUG = 1): IP_PANIC() is mapped to IP_Panic().

If (IP_DEBUG ≥ 2): IP_PANIC() is mapped to IP_Panic() and logging support is activated.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 23
 
Internet Protocol version 6
(IPv6) (Add-on)

The emNet implementation of the Internet Protocol version 6 (IPv6) allows you a fast and
easy transition from IPv4 only applications to dual IPv4 and IPv6 applications.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



639 CHAPTER 23 emNet IPv6

23.1    emNet IPv6
The emNet IPv6 add-on is an optional extension which can be seamlessly integrated into
your TCP/IP application. It combines a maximum of performance with a small memory
footprint.

The following table shows the contents of the emNet IPv6 add-on root directory:

Directory Content

Application\
Contains the example application to test
the IPv6 implementation.

Config\
Contains the emNet IPv6 related
configuration files.

Inc\ Contains the required include files.

IP\

Contains the IPv6 sources:
IPV6_DNSC.c
IPV6_ICMPv6.c
IPV6_ICMPv6_MLD.c
IPV6_ICMPv6_NDP.c
IPV6_Int.h
IPV6_IPv6.c
IPV6_IPv6.h
IPV6_TCP.c
IPV6_TCP_Rx.c
IPV6_TCP_Sock.c
IPV6_TCP_Tx.c
IPV6_UDP.c
IPV6_UDP_Sock.c

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



640 CHAPTER 23 Feature list

23.2    Feature list
• Low memory footprint
• Easy to implement
• Internet Protocol version 6 (IPv6)
• Internet Control Message Protocol (ICMPv6)
• Neighbor Discovery Protocol (NDP)
• Multicast Listener Discovery (MLD)
• Stateless Address autoconfiguration (SLAAC)
• Standard socket interface
• No configuration required

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



641 CHAPTER 23 IPv6 backgrounds

23.3    IPv6 backgrounds
IPv6 is a network layer protocol. It is the most recent version of the Internet Protocol and
is intended to replace IPv4 in the near future. The name IPv6 is commonly used generic
term for an Internet protocol suite and summarizes the following protocols:
• Internet Protocol version 6 (IPv6)
• Internet Control Message Protocol (ICMPv6)
• Neighbor Discovery Protocol (NDP)
• Multicast Listener Discovery (MLD)

The IPv6 has a larger address space, supports stateless address autoconfiguration and
makes extensive use of multicasting. The IPv6 protocol header is designed to simplify
processing by routers and is extensible for new requirements.

  

The IPv6 header has a fixed length of 40 bytes and does not include any option. Contrary
to IPv4, options are stored in extension headers. The benefit of this separation is that a
router never needs to parse the header so that the processing is more efficient although
the header size is at least twice the size of an IPv4 header.

The most conspicuous difference between IPv4 and IPv6 is the length of the address. The
length of an IPv6 address is 128 bits, compared to 32 bits in IPv4. The address space
therefore has 2^128 addresses. Today public IPv4 addresses have become relatively scarce.
This problem can be solved by using IPv6.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



642 CHAPTER 23 IPv6 backgrounds

23.3.1    Internet Protocol header comparison
The IPv6 header contains the Internet Protocol version, traffic classification options the
length of the payload, the optional extension or payload which follows the header, a hop
limit and the source and destination addresses.

IPv4 Header

  

IPv6 Header

  

Compared to the IPv4 header, the number of header elements is simplified. Unnecessary or
ambiguous elements such as header checksum or IHL removed. Other elements like Time
to live, which is in practice used as hop limit, are renamed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



643 CHAPTER 23 IPv6 backgrounds

23.3.2    IPv6 address types
There are three types of IPv6 addresses:
• Unicast
• Multicast
• Anycast

IPv6 addresses are represented as eight groups of four hexadecimal digits separated by
colons.

For example: fe80:0000:0000:0000:0222:c7ff:feff:ff23 is a link local unicast address.

IPv6 addresses may be abbreviated to shorter notations. The following rules for
abbreviation are defined by RFC 5952 “A Recommendation for IPv6 Address Text
Representation”.
• One or more leading zeros from any groups of hexadecimal digits are removed; this is

usually done to either all or none of the leading zeros. For example, the group 0222
is converted to 222.

• Consecutive sections of zeros are replaced with a double colon (::). The double colon
can only be used once in an address, as multiple use would render the address
indeterminate.

Using the recommended rules for abbreviation the textual representation of the example
IPv6 address can be simplified to fe80::222:c7ff:feff:ff23.

23.3.2.1    Link-local unicast addresses
An IPv6 link-local unicast address is always automatically configured for each interface. It is
required for Neighbor Discovery and DHCPv6 processes. A link-local address is also useful
in single-link networks with no router. It can be used to communicate between hosts on a
single-link. IPv6 link-local addresses will never be forwarded by an IPv6 router.

  

The first 64 bits are link-local address prefix. Prefixes for IPv6 subnets are expressed in
the same way as Classless Inter-Domain Routing (CIDR) notation for IPv4. An IPv6 prefix
is written in address/prefix-length notation. The prefix for link-local addresses is always
fe80::/64.

The second 64 bits are the interface identifier. The interface identifier is a modified EUI-64
identifier. Please refer to the appendix of RFC 4291 “IP Version 6 Addressing Architecture”
for further information.

23.3.2.2    Global unicast addresses
IPv6 global unicast addresses are the counterpart to IPv4 public addresses. They are
globally routable and reachable on the IPv6 Internet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



644 CHAPTER 23 IPv6 backgrounds

  

RFC 3587 defines global addresses that are currently being used on the IPv6 Inter- net.
According to RFC 3587 an IPv6 global unicast address consists of of four parts:
• Fixed high-order bits - 3 bits: 001
• Global routing prefix - 45 bits: Together with the three high-order bits builds the

global routing prefix the site prefix. A site is an autonomously operating net- work
that is connected to the IPv6 Internet. A site prefix identifies an individual site of an
organization, so that routers can forward IPv6 traffic matching the 48- bit prefix to the
routers of the organization’s site.

• Subnet ID - 16 bits: Used to identify subnets within an organization’s site.
• Interface ID - 64 bits: Normally, the interface identifier is a modified EUI-64 identifier.

23.3.3    Further reading for IPv6
This chapter explains the usage of the emNet IPv6 add-on. It describes all functions which
are required to build a network application using IPv6. For a deeper understanding about
how the protocols of the Internet protocol suite works use the following references.

The following Request for Comments (RFC) define the relevant protocols of the Internet
protocol suite and have been used to build the emNet IPv6 add-on. They contain all required
technical specifications. The listed books are simpler to read as the RFCs and give a general
survey about the interconnection of the different protocols.

23.3.3.1    IPv6 Request for Comments (RFC)

RFC# Description

[RFC 2460] Internet Protocol, Version 6 (IPv6) Specification
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc2460.txt

[RFC 2464] Transmission of IPv6 Packets over Ethernet Networks
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc2464.txt

[RFC 2710] Multicast Listener Discovery (MLD) for IPv6
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc2710.txt

[RFC 3306] Unicast-Prefix-based IPv6 Multicast Addresses
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc3306.txt

[RFC 3587] IPv6 Global Unicast Address Format
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc3587.txt

[RFC 3590]
Source Address Selection for the Multicast Listener Discovery (MLD)
Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc3590.txt

[RFC 3810] Multicast Listener Discovery Version 2 (MLDv2) for IPv6
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc3810.txt

[RFC 4291] IP Version 6 Addressing Architecture
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc4291.txt

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



645 CHAPTER 23 IPv6 backgrounds

RFC# Description

[RFC 4443]
Internet Control Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc4443.txt

[RFC 4861] Neighbor Discovery for IP version 6 (IPv6)
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc4861.txt

[RFC 4862] IPv6 Stateless Address Autoconfiguration
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc4862.txt

[RFC 5952] A Recommendation for IPv6 Address Text Representation
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc5952.txt

23.3.3.2    Related books for IPv6
• [Hagen] - IPv6 Essentials, Silvia Hagen

ISBN: 978-1449319212
• [Davies] - Understanding IPv6, Joseph Davies

ISBN: 978-0735659148

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



646 CHAPTER 23 Include IPv6 to your emNet start project

23.4    Include IPv6 to your emNet start project
Integration of emNet is a relatively simple process, which consists of the follow- ing steps:
• Step 1: Open an emNet project and compile it.
• Step 2: Add emNet IPv6 add-on to the start project.
• Step 3: Build the project and test it.

The following steps presume that you use a project with the recommended project
structure. If your project structure differs, keep in mind that you potentially have to add
additional directories to your include path.

23.4.1    Open an emNet project and compile it
To add the emNet IPv6 add-on to your project, you need a running emNet project. For a
step by step tutorial to setup an emNet project refer to Running emNet on target hardware
on page 59.

23.4.2    Add the emNet IPv6 add-on to the start project
Add all source files in the following directory to your project:
• IP

The emNet IPv6 add-on default configuration is preconfigured with valid values, which
matches the requirements of the most applications.

23.4.2.1    Enable IPv6 support
To enable the IPv6 support, you have to add the following define to your IP_Conf.h:

#define IP_SUPPORT_IPV6     1

Build the project. It should compile without error and warnings.

To include IPv6 in your application you need to add the IPv6 related protocols by calling
IP_IPV6_Add() in the function IP_X_Config() as shown below:

void IP_X_Config(void) {
  int mtu;
  int IFaceId;

...
  IFaceId = IP_AddEtherInterface(DRIVER);   // Add driver for your hardware.
...
  //
  // Add protocols to the stack.
  //
  IP_TCP_Add();
  IP_UDP_Add();
  IP_ICMP_Add();
#if IP_SUPPORT_IPV6
  IP_IPV6_Add(IFaceId);
#endif

Refer to Configuring emNet on page 625 for more information on IP_X_Config().

The link-local IPv6 address will be generated automatically during initialization. Please
ensure that the MAC address of your target is unique in your network segment, since it is
used to build the interface identifier part of the IPv6 address.

23.4.2.2    Configure the MTU and the Tx/Rx window sizes
The Maximum Transmission Unit (MTU) is the largest number of payload bytes that can
be sent in a packet. A typical value for Ethernet is 1500, since the maximum size of an

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



647 CHAPTER 23 Include IPv6 to your emNet start project

Ethernet packet is 1518 bytes. Since Ethernet uses 12 bytes for MAC addresses, 2 bytes
for type and 4 bytes for CRC, 1500 bytes “payload” remain.

As opposed to IPv4, which requires at least 576 bytes as MTU, RFC2460 defines that IPv6
has to use at least 1280 bytes. If you do not use the Ethernet maximum of 1500 bytes,
check in your IP_X_Config() that the MTU size is not smaller as 1280 bytes.

The TCP transmit and receive window sizes, configured with IP_ConfTCPSpace(), should
also be checked. An IPv4 header without options is 20 bytes. Together with the TCP header
the payload of a normal TCP/Ipv4 packet can be up to 1460 bytes.

It is a good approach to calculate the sizes of the transmit window and receive window with
the following formula: x * (MTU - (IP header size + TCP header size))

x is the number of big packets, which are available for each TCP connection.

emNet sample configurations up to emNet version 2.20 always include a call of
IP_ConfTCPSpace() and computes a matching window sizes for IPv4 targets with this
formula.

Example

IP_ConfTCPSpace(3 * (Mtu - 40), 3 * (Mtu - 40)); // Define TCP Tx and Rx window size

Since the IPv6 header is 40 bytes, the payload of a normal TCP/IPv6 packet is limited to a
maximum of 1440 bytes (Max. Ethernet MTU - (IPv6 header size + TCP header size), 1500
- (40 + 20)). You need to change the transmit window and receive window sizes to ensure
the best possible TCP performance.

Example

IP_ConfTCPSpace(3 * (Mtu - 60), 3 * (Mtu - 60)); // Define TCP Tx and Rx window size

23.4.2.3    Enable terminal output for IPv6 messages
In debug builds of emNet, logging messages can be used. IP_SetLogFilter() sets a mask
that defines which logging messages should be logged. To output IPv6 related logging
messages the message type IP_MTYPE_IPV6 needs to be added.

Example

IP_SetLogFilter(IP_MTYPE_INIT          // Output all messages from init
                | IP_MTYPE_LINK_CHANGE // Output a msg if link status changes
                | IP_MTYPE_DHCP        // Output general DHCP status messages
                | IP_MTYPE_IPV6        // Output IPv6 status messages
                );

23.4.2.4    Select the start application
For testing of your emNet IPv6 add-on integration, start with the code found in
the folder Application. Add one of the applications to your project (for example
OS_IP_SimpleServer_IPv6.c)

23.4.3    Build the project and test it
Build the project. It should compile without errors and warnings. If you encounter any
problem during the build process, check your include path and your project configuration
settings. To test the project, download the output into your target and start the application.

A target which uses IPv4 and IPv6 should output similar logging messages as shown below:

0:000 MainTask - INIT: Init started.
0:000 MainTask - DRIVER: Found PHY with Id 0x2000 at addr 0x1

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



648 CHAPTER 23 Include IPv6 to your emNet start project

0:000 MainTask - INIT: Link is down
0:000 MainTask - INIT: Init completed
0:000 IP_Task - INIT: IP_Task started
3:000 IP_Task - LINK: Link state changed: Full duplex, 100MHz
3:400 IP_Task - NDP: Link-local IPv6 addr.:
 FE80:0000:0000:0000:0222:C7FF:FEFF:FF22 added to IFace: 0
4:000 IP_Task - DHCPc: Sending discover!
5:002 IP_Task - DHCPc: IFace 0: Offer: IP: 192.168.1.12, Mask: 255.255.255.0, GW:
 192.168.1.1.
6:000 IP_Task - DHCPc: IP addr. checked, no conflicts
6:000 IP_Task - DHCPc: Sending Request.
6:001 IP_Task - DHCPc: IFace 0: Using IP: 192.168.1.12, Mask: 255.255.255.0, GW:
 192.168.1.1.

ICMPv6 is always activated. This means that you can ping your target. Open the command
line interface of your operating system and enter ping <TargetAddress>, to check if the
stack runs on your target. The target should answer all pings without any error.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



649 CHAPTER 23 Configuration

23.5    Configuration
The emNet IPv6 add-on can be used without changing any of the compile time flags.
All compile time configuration flags are preconfigured with valid values, which match the
requirements of most applications.

23.5.1    IPv6 Compile time configuration
The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the source code in place of a numerical constant.
A typical example is the configuration of the sector size of a storage medium.

Alias "A"

A macro which operates like a simple text substitute. An example would be the define U8 ,
which the preprocessor would replace with unsigned char.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations apply, as a
macro is still put into the source code as simple text replacement. Function replacements are
mainly used to add specific functionality to a module which is highly hardware-dependent.
This type of macro is always declared using brackets (and optional parameters).

23.5.2    IPv6 Compile time configuration switches

Type Symbolic name Default Description

B IP_SUPPORT_IPV6 0

Enables support for IPv6. Refer
to IP_IPV6_Add on page 651 for
further information about enabling
IPv6.

N IP_NDP_MAX_ENTRIES 5 Maximum number of stored NDP
entries.

N IP_IPV6_DNS_MAX_IPV6_SERVER 1 Maximum number of available IPv6
DNS servers.

23.5.3    IPv6 Runtime configuration
Please refer to IP_IPV6_Add on page 651 for detailed information about runtime
configuration.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



650 CHAPTER 23 IPv6 API functions

23.6    IPv6 API functions
Function Description

Configuration functions

IP_IPV6_Add()
Adds IPv6 to the stack and initializes the
specified interface.

IP_IPV6_AddUnicastAddr()
Adds an additional IPv6 unicast (or
anycast) address to the interface.

IP_IPV6_ChangeDefaultConfig()
Changes the default IPv6 configuration of
the stack.

IP_IPV6_GetIPv6Addr()
Returns an IPv6 address and optionally the
number of configured IPv6 address of the
selected interface.

IP_IPV6_GetIPPacketInfo()
Returns the start address of the data part
of an IPv6 packet.

IP_IPV6_ParseIPv6Addr()
Transforms an IPv6 address separated by
colons into a byte stream (big endian byte
order).

IP_IPV6_SetDefHopLimit() Adds a default hop limit to the interface.

IP_IPV6_SetGateway()
Sets the gateway server address of the
selected interface.

IP_IPV6_SetLinkLocalUnicastAddr()
Adds a link local unicast address to the
interface.

IP_IPV6_INFO_GetConnectionInfo()
Retrieves the connection information for a
connection handle.

IP_ICMPV6_AddRxHook()
This function adds a callback that is
executed upon receiving an ICMPv6
packet.

IP_ICMPV6_MLD_AddMulticastAddr()
Adds an additional multicast address to the
given interface.

IP_ICMPV6_MLD_RemoveMulticastAddr()
Removes a multicast address from the
given interface.

IP_ICMPV6_NDP_SetDNSSLCallback()
Sets a callback to allow processing of DNS
Search List Option.

IP_IPV6_ResolveHost() Resolves an IP addr.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



651 CHAPTER 23 IPv6 API functions

23.6.1    IP_IPV6_Add()

Description

Adds IPv6 to the stack and initializes the specified interface.

Prototype

void IP_IPV6_Add(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Additional information

The call of IP_IPV6_Add() adds and initializes all required IPv6 protocols to the stack.
This means that Internet Control Message Protocol version 6 (ICMPv6), Multicast Listener
Discovery (MLD) and Neighbor Discovery Protocol (NDP) are added and initialized.

Part of the initialization is the generation of a link-local address, since all IPv6 hosts require
such an address. The link-local address is derived from the MAC address of an interface
and the link-local prefix FE80::/64. The uniqueness of the address on the subnet is tested
using the Duplicate Address Detection (DAD) method.

Note: You need to set the compile time switch IP_SUPPORT_IPV6 to 1 to enable the stack
to work in dual stack mode supporting IPv4 and IPv6.

Example

void IP_X_Config(void) {
  int Mtu;

  IP_AssignMemory(_aDrvPool, sizeof(_aDrvPool));   // Assigning memory should
                                                   // be the first thing
  IP_AddEtherInterface(&IP_Driver_STM32F207);      // Add Ethernet driver for your
                                                   // hardware
  IP_SetHWAddr("\x00\x22\xC7\xFF\xFF\x22");        // MAC addr: Needs to be
                                                   // unique for production units
  IP_DHCPC_Activate(0, "TARGET", NULL, NULL);      // Request an IPv4 address
  //
  // Run-time configure buffers.
  // The default setup will do for most cases.
  //
  Mtu = 1500;                                      // 576 is minimum for IPv4,
                                                   // 1280 is minimum for IPv6,
                                                   // 1500 is max. for Ethernet
  IP_SetMTU(0, Mtu);
  IP_AddBuffers(12, 256);                          // Small buffers.
  IP_AddBuffers(6, Mtu + 16);                      // Big buffers.
  IP_ConfTCPSpace(3 * (Mtu - 60), 3 * (Mtu - 60)); // Define TCP Tx and Rx window size
  //
  // Define log and warn filter
  //
  IP_SetWarnFilter(0xFFFFFFFF);               // 0xFFFFFFFF: Do not filter:
                                              // Output all warnings.
  IP_SetLogFilter(IP_MTYPE_INIT               // Output all messages from init
                | IP_MTYPE_LINK_CHANGE        // Output a msg if link status changes
                | IP_MTYPE_DHCP               // Output general DHCP status messages
                | IP_MTYPE_IPV6               // Output all IPv6 status messages
                );
  //
  // Add protocols to the stack
  //
  IP_UDP_Add();    // Add transport protocol: UDP.
  IP_TCP_Add();    // Add transport protocol: TCP.
  IP_ICMP_Add();   // Add ICMPv4.
  IP_IPV6_Add(0);  // Add IPv6, includes ICMPv6, MLD and NDP on interface 0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



652 CHAPTER 23 IPv6 API functions

}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



653 CHAPTER 23 IPv6 API functions

23.6.2    IP_IPV6_AddUnicastAddr()

Description

Adds an additional IPv6 unicast (or anycast) address to the interface.

Prototype

int IP_IPV6_AddUnicastAddr(      unsigned   IFaceId,
                           const U8       * pAddr);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pAddr
Pointer to the 16 byte IPv6 address which should be added
to the network interface.

Return value

0 OK. IPv6 address added to the network interface.
1 Error. IPv6 address could not be added to the network interface.

Additional information

Normally, a link-local address (prefix FE80::/64) derived from the MAC address of the
interface has been set during initialization of the stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



654 CHAPTER 23 IPv6 API functions

23.6.3    IP_IPV6_ChangeDefaultConfig()

Description

Changes the default IPv6 configuration of the stack.

Prototype

void IP_IPV6_ChangeDefaultConfig(unsigned IFaceId,
                                 unsigned Option,
                                 unsigned OnOff);

Parameters

Parameter Description

IFaceId Zero-based interface index.
Option Option to enable/disable.

OnOff
• 1: Enable option
• 0: Disable option

Additional information

In most situations, the default configuration of the stack needs no changes. To adapt the
behavior of the stack for the needs of some special use cases, the default behavior can
be changed.

Options

Option Description

IPV6_GENERATE_LINK_LOCAL_ADDR Generate a link-local address fe80::/64

IPV6_ICMPV6_MLD_ADD_DEF_ADDR
Add multicast addresses ALL-Nodes and All-
Router to the interface.

IPV6_USE_SLAAC
Use Stateless Address Autoconfiguration
(SLAAC).

IPV6_USE_ROUTER_ADVERTISMENTS
Use configuration options supplied through
Router Advertisements.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



655 CHAPTER 23 IPv6 API functions

23.6.4    IP_IPV6_GetIPv6Addr()

Description

Returns an IPv6 address and optionally the number of configured IPv6 address of the
selected interface.

Prototype

void IP_IPV6_GetIPv6Addr(unsigned    IFaceId,
                         U8          AddrId,
                         IPV6_ADDR * pIPv6Addr,
                         U8        * pNumAddr);

Parameters

Parameter Description

IFaceId Zero-based interface identifier.
AddrId Address index.
pIPv6Addr IPv6 address for the result (Could be NULL).
pNumAddr Number of configured IPv6 addresses (Could be NULL).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



656 CHAPTER 23 IPv6 API functions

23.6.5    IP_IPV6_GetIPPacketInfo()

Description

Returns the start address of the data part of an IPv6 packet.

Prototype

U8 *IP_IPV6_GetIPPacketInfo(const IP_PACKET * pPacket);

Parameters

Parameter Description

pPacket Pointer to an IP_PACKET .

Return value

≠ NULL Start address of the data part of the IPv6 packet.
= NULL Error.

Example

/*********************************************************************
*
*       _pfOnRxICMP
*/
static int _pfOnRxICMP(IP_PACKET* pPacket) {
  const U8* pData;

  pData = IP_IPV6_GetIPPacketInfo(pPacket);
  if(*pData == 128u) {
    printf("ICMPv6 echo request received!\n");
  }
  if(*pData == 129u) {
    printf("ICMPv6 echo reply received!\n");
  }
  return 0;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



657 CHAPTER 23 IPv6 API functions

23.6.6    IP_IPV6_ParseIPv6Addr()

Description

Transforms an IPv6 address separated by colons into a byte stream (big endian byte order).

Prototype

int IP_IPV6_ParseIPv6Addr(const char      * sHost,
                                IPV6_ADDR * pIPv6Addr);

Parameters

Parameter Description

sHost Pointer to the IPv6 address string to parse.

pIPv6Addr
Pointer to an IPv6 address structure to store the converted
byte stream.

Return value

0 OK.
-1 Error. Not every character in address are hexa values (0-f) or colons (:).
-2 Error. Too many characters for 16bit block.
-3 Error. Illegal number of colons in a row (“:::”)
-4 Error. “::” is used twice.
-5 Error. Address string to long.
-6 Error. Too many colons.
-7 Error. Parameter invalid

Additional information

IPv6 addresses are represented in eight 16-bit blocks. Each 16-bit block is
converted to a 4-digit hexadecimal number and separated by colons. For example:
2001:0db8:0000:0000:0001:0000:0234:0001.

The representation can be simplified by suppressing the leading zeros within each 16-bit
block. For example: 2001:db8:0:0:1:0:234:1.

IPv6 addresses that contain long sequences of zeros can be further simplified. A single
contiguous sequence of 16-bit blocks set to 0 in the colon hexadecimal format can be
compressed to “::”. For example: 2001:db8::1:0:234:1.

Example

static void _ParseAndPrintIPv6Addr (void) {
  IPV6_ADDR IPv6Addr;
  IP_IPV6_ParseIPv6Addr(&IPv6Addr, "2001:db8::1:0:234:1");
  IP_Logf_Application("IPv6 addr.: %n", IPv6Addr.Union.aU8);
}

Output:

IPv6 addr.: 2001:0DB8:0000:0000:0001:0000:0234:0001

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



658 CHAPTER 23 IPv6 API functions

23.6.7    IP_IPV6_SetDefHopLimit()

Description

Adds a default hop limit to the interface.

Prototype

int IP_IPV6_SetDefHopLimit(unsigned IFaceId,
                           U8       HopLimit);

Parameters

Parameter Description

IFaceId Zero-based interface index.
HopLimit Hop limit that should be used as default.

Return value

0 Ok. Hop limit set.
1 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



659 CHAPTER 23 IPv6 API functions

23.6.8    IP_IPV6_SetGateway()

Description

Sets the gateway server address of the selected interface.

Prototype

int IP_IPV6_SetGateway(      unsigned   IFaceId,
                       const char     * sIFaceAddr,
                       const char     * sRouterAddr);

Parameters

Parameter Description

IFaceId Interface identifier.

sIFaceAddr
IPv6 address string (interface IP). For example
“2001:4860:4860::4444”.

sRouterAddr
IPv6 address string (router IP). For example
“2001:4860:4860::8888”.

Return value

< 0 Error. Gateway address format invalid.
= 0 Could not add gateway. - IPv6 not enabled on the selected interface or gateway

is already in list or required memory could not allocated.
= 1 Gateway added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



660 CHAPTER 23 IPv6 API functions

23.6.9    IP_IPV6_SetLinkLocalUnicastAddr()

Description

Adds a link local unicast address to the interface.

Prototype

void IP_IPV6_SetLinkLocalUnicastAddr(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface identifier.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



661 CHAPTER 23 IPv6 API functions

23.6.10    IP_IPV6_INFO_GetConnectionInfo()

Description

Retrieves the connection information for a connection handle. The connetion handle is
typically obtained via a call to IP_INFO_GetConnectionList().

Prototype

int IP_IPV6_INFO_GetConnectionInfo(IP_CONNECTION_HANDLE   hConn,
                                   IP_IPV6_CONNECTION   * pConInfo);

Parameters

Parameter Description

hConn Connection handle.
pConInfo Pointer on an IP_CONNECTION structure that will be filled.

Return value

0 OK, Information retrieved
1 Error, typically because the connection pointer is no longer in list

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



662 CHAPTER 23 IPv6 API functions

23.6.11    IP_ICMPV6_AddRxHook()

Description

This function adds a callback that is executed upon receiving an ICMPv6 packet.

Prototype

void IP_ICMPV6_AddRxHook(IP_HOOK_ON_ICMPV6 * pHook,
                         IP_ON_ICMPV6_FUNC * pf,
                         void              * pUserContext);

Parameters

Parameter Description

pHook
Pointer to static element of IP_HOOK_ON_ICMPV4 that can be
internally used by the stack.

pf Function pointer to the callback to execute.
pUserContext User defined context top pass to the callback.

Example

static IP_HOOK_ON_ICMPV6 _Hook;

/*********************************************************************
*
*       _cbOnRx()
*
*  Function description
*    Callback executed when an ICMPv6 packet is received.
*
*  Parameters
*    IFaceId     : Zero-based interface index.
*    pPacket     : Packet that has been received.
*    pUserContext: User context given when adding the hook.
*    p           : Reserved for future extensions of this API.
*
*  Return value
*    == IP_OK                  : Packet has been handled (freed or reused).
*    == IP_OK_TRY_OTHER_HANDLER: Packet is untouched and stack shall try another
 handler.
*
*  Additional information
*    The callback can remove its own hook using IP_ICMPV6_RemoveRxHook() .
*/
static int _cbOnRx(unsigned   IFaceId,
                   IP_PACKET* pPacket,
                   void*      pUserContext,
                   void*      p) {
  const U8* pData;

  IP_USE_PARA(IFaceId);
  IP_USE_PARA(pUserContext);
  IP_USE_PARA(p);

  pData = IP_IPV6_GetIPPacketInfo(pPacket);
  if(*pData == IP_ICMPV6_TYPE_ECHO_REQUEST) {
    IP_Logf_Application("ICMPv6 echo request received!");
  }
  if(*pData == IP_ICMPV6_TYPE_ECHO_REPLY) {
    IP_Logf_Application("ICMPv6 echo reply received!");
  }
  //
  // Optional: Remove the hook once no longer needed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



663 CHAPTER 23 IPv6 API functions

  //
  IP_ICMPV6_RemoveRxHook(SEGGER_PTR2PTR(IP_HOOK_ON_ICMPV6, pUserContext));
  return IP_OK_TRY_OTHER_HANDLER;  // Let the stack handle the message.
}

/*********************************************************************
*
*  MainTask()
*
*  Function description
*    Main task executed by the RTOS to create further resources and
*    running the main application.
*/
void MainTask(void) {
 IP_Init();
 //
 // Add a hook that gets notified about received ICMP messages.
 // In this example the pointer to the hook item itself is passed as
 // user context to demonstrate the hook removing itself.
 //
 IP_ICMPV6_AddRxHook(&_Hook, _cbOnRx, &_Hook);
 ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



664 CHAPTER 23 IPv6 API functions

23.6.12    IP_ICMPV6_RemoveRxHook()

Description

This function removes a hook function from the IP_HOOK_ON_ICMPV6 list.

Prototype

void IP_ICMPV6_RemoveRxHook(IP_HOOK_ON_ICMPV6 * pHook);

Parameters

Parameter Description

pHook Element of type IP_HOOK_ON_ICMPV6 to remove from list.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



665 CHAPTER 23 IPv6 API functions

23.6.13    IP_ICMPV6_MLD_AddMulticastAddr()

Description

Adds an additional multicast address to the given interface.

Prototype

int IP_ICMPV6_MLD_AddMulticastAddr(      unsigned    IFaceId,
                                   const IPV6_ADDR * pMultiCAddr);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pMultiCAddr
Pointer to the 16 byte IPv6 multicast address which should
be added to the network interface.

Return value

1 OK. IPv6 multicast address added to the network interface.
0 Error. IPv6 multicast address could not be added to the network interface.

Additional information

The IPv6 multicast addresses All-Routers (FF01:0:0:0:0:0:0:2) and All-Nodes
(FF01:0:0:0:0:0:0:1) are always automatically added to the network interface, since they
are required for correct functioning of the IPv6 implementation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



666 CHAPTER 23 IPv6 API functions

23.6.14    IP_ICMPV6_MLD_RemoveMulticastAddr()

Description

Removes a multicast address from the given interface.

Prototype

int IP_ICMPV6_MLD_RemoveMulticastAddr(      unsigned    IFaceId,
                                      const IPV6_ADDR * pIPv6Addr);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pIPv6Addr
Pointer to the 16 byte IPv6 multicast address which should
be removed.

Return value

1 OK. IPv6 multicast address removed from the network interface.
0 Error. IPv6 multicast address could not be removed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



667 CHAPTER 23 IPv6 API functions

23.6.15    IP_ICMPV6_NDP_SetDNSSLCallback()

Description

Sets a callback to allow processing of DNS Search List Option. (For further information to
the DNS Search List Option refert to [6], section 5.2.

Prototype

void IP_ICMPV6_NDP_SetDNSSLCallback
      (unsigned IFaceId,
       void     ( *pfHandleDNSSLOpt)
(unsigned IFaceId , U8 * pData , unsigned NumBytes , U32 Lifetime ));

Parameters

Parameter Description

IFaceId Zero-based interface index.
pfHandleDNSSLOpt Callback with more information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



668 CHAPTER 23 IPv6 API functions

23.6.16    IP_IPV6_ResolveHost()

Description

Resolves an IP addr. given as text string into an actual IP addr.

Prototype

int IP_IPV6_ResolveHost(      unsigned    IFaceId,
                        const char      * sHost,
                              IPV6_ADDR * pIPv6Addr,
                              U32         ms);

Parameters

Parameter Description

IFaceId Zero-based interface index.
sHost Host name string to resolve.

pIPv6Addr
Pointer where to store the resolved IP addr. in network byte
order.

ms
Timeout for DNS request [ms] if the request can not be sent
immediately.

Return value

O.K. : = 0 Error: < 0

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



669 CHAPTER 23 IPv6 internal functions, variables and data-
structures

23.7    IPv6 internal functions, variables and data-
structures

emNet internal functions, variables and data-structures are not explained here as they are
in no way required to use emNet. Your application should not rely on any of the internal
elements, as only the documented API functions are guaranteed to remain unchanged in
future versions of emNet. The following data-structures are meant for public usage together
with the documented API.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



670 CHAPTER 23 IPv6 internal functions, variables and data-
structures

23.7.1    IP_ON_ICMPV6_FUNC

Description

Callback executed when an ICMPv6 packet is received.

Type definition

typedef int (IP_ON_ICMPV6_FUNC)(unsigned    IFaceId,
                                IP_PACKET * pPacket,
                                void      * pUserContext,
                                void      * p);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pPacket Packet that has been received.
pUserContext User context given when adding the hook.
p Reserved for future extensions of this API.

Return value

IP_OK Packet has been handled (freed or reused).
IP_OK_TRY_OTHER_HANDLER Packet is untouched and stack shall try another handler.

Additional information

The callback can remove its own hook using IP_ICMPV6_RemoveRxHook() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



671 CHAPTER 23 IPv6 Socket API extensions

23.8    IPv6 Socket API extensions
The socket interface was developed for Unix in the early 1980s and has also been
implemented on a wide variety of non-Unix systems. Today it is the de facto standard
Application Program Interface (API) for TCP/IP applications.

With the new version of the Internet protocol some changes were required to support
IPv6. RFC 3493 “Basic Socket Interface Extensions for IPv6” describes the recommended
extensions to the socket API.

In the current version of the emNet IPv6 add-on are the following extensions included.

Structures

Structures Description

sockaddr_in6 Structure to handle IPv6 addresses.

Socket options

Socket options Description

IPV6_JOIN_GROUP
Join an IPv6 multicast group on a specified
local interface.

IPV6_LEAVE_GROUP
Leave an IPv6 multicast group on a
specified local interface.

23.8.1    Structure sockaddr_in6

Description

Structure to handle IPv6 addresses.

Prototype

typedef struct sockaddr_in6 {
  U16       sin6_family;
  U16       sin6_port;
  U32       sin6_flowinfo;
  IPV6_ADDR sin6_addr;
  U32       sin6_scope_id;
} SOCKADDR_IN6;

Member Description

sin6_family Protocol family ( AF_INET6 ).
sin6_port Transport layer port stored in network byte order.
sin6_flowinfo Flow information.
sin6_addr 16-bytes IPv6 address.
sin6_scope_id Set of interfaces for a scope.

This structure is required to pass IPv6 addresses to socket interface functions like accept(),
bind(), connect(), recvfrom() and sendto(). For further information about usage, please
refer to Porting an IPv4 application to IPv6 on page 672 and IPv6 API functions on page 650
for details about the usage of the socket API functions.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



672 CHAPTER 23 Porting an IPv4 application to IPv6

23.9    Porting an IPv4 application to IPv6
TCP/IP applications written using the socket API have in the past enjoyed a high degree of
portability. This portability was kept in mind while the socket API was extended to support
IPv6. Complete compatibility for existing IPv4 applications is always ensured.

Besides smaller enhancements like some new socket options, a new socket address
structure has been added to carry IPv6 addresses.

The following sections demonstrate, using the supplied IPv4 example applications, which
parts have to be changed to communicate via IPv6. All examples are also part of the emNet
IPv6 add-on shipment.

23.9.1    Porting an IPv4 server application to IPv6
The main difference between an IPv4 and an IPv6 socket application lay in the functions
which pass a socket address structure as a parameter. The relevant functions are accept(),
bind(), connect(), recvfrom() and sendto().

The prototype of the sockaddr_in6 structure is shown below.

typedef struct sockaddr_in6 {
  U16       sin6_family;    // AF_INET6
  U16       sin6_port;      // Transport layer port stored in network byte order.
  U32       sin6_flowinfo;  // IPv6 flow information
  IPV6_ADDR sin6_addr;      // IPv6 address
  U32       sin6_scope_id;  // Set of interfaces for a scope
} SOCKADDR_IN6;

The sockaddr_in6 structure is 28 bytes. For further information, please refer to
Structure sockaddr_in6 on page 671. emNet IPv6 add-on comes with three version of
OS_IP_SimpleServer.

File Description

OS_IP_SimpleServer.c
IPv4 version of the simple TCP server
example. Server listens on port 23 for IPv4
clients.

OS_IP_SimpleServer_IPv6.c
IPv6 version of the simple TCP server
example. Server listens on port 23 for IPv6
clients.

OS_IP_SimpleServer_IPv4_IPv6.c
Dual stack version of the simple TCP
server example. Server listens on port 23
for IPv4 and IPv6 clients.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



673 CHAPTER 23 Porting an IPv4 application to IPv6

23.9.1.1    TCP/IPv4 server sample code

Listen to a port

The supplied example OS_IP_SimpleServer.c is a simple Telnet server listening on port
23 that outputs the current system time for each character received. It uses bind() to
assign a socket address to a socket and accept() to create a new connected socket. To
assign a socket address to a socket a sockaddr structure needs to be initialized and used
as parameter for bind().

The following excerpt of IP_OS_SimpleServer.c shows a code snippet, which creates an
IPv4 socket, binds it to TCP port 23 and sets it into listening state.

/*********************************************************************
*
*       _ListenAtTcpAddr()
*
* Function description
*   Creates a socket for port 23 and sets it into listening state.
*   The only step left is to call accept() to actually wait for a
*   a client to connect.
*
* Return value
*   O.K. : Socket handle.
*   Error: SOCKET_ERROR.
*/
static int _ListenAtTcpAddr(void) {
  struct sockaddr_in Addr;
  int                hSock;
  int                r;

  hSock = socket(AF_INET, SOCK_STREAM, 0);
  if (hSock != SOCKET_ERROR) {
    IP_MEMSET(&Addr, 0, sizeof(Addr));
    Addr.sin_family      = AF_INET;
    Addr.sin_port        = htons(23);
    Addr.sin_addr.s_addr = INADDR_ANY;
    r = bind(hSock, (struct sockaddr*)&Addr, sizeof(Addr));
    if (r != 0) {
      hSock = SOCKET_ERROR;
    } else {
      r = listen(hSock, 1);
      if (r != 0) {
        hSock = SOCKET_ERROR;
      }
    }
  }
  return hSock;
}

The socket creation is done with the following line of code:

hSock = socket(AF_INET, SOCK_STREAM, 0);

AF_INET is the address family for IPv4. The rest of the code snippet fills the sockaddr_in
structure and pass it, together with the size of the sockaddr_in structure, to bind().

The IPv4 socket address structures sockaddr_in and sockaddr have a size of 16 bytes.
For further information about the sockaddr_in structure, please refer to sockaddr_in on
page 358.

Accept connection

The following excerpt of IP_OS_SimpleServer.c shows a code snippet, which accepts
connections using the socket returned by the call of _ListenAtTcpAddr().

/*********************************************************************
*
*       _TelnetTask()
*

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



674 CHAPTER 23 Porting an IPv4 application to IPv6

* Function description
*   Creates a parent socket and handles clients that connect to the
*   server. This sample can handle one client at the same time. Each
*   client that connects creates a child socket that is then passed
*   to the process routine to detach client handling from the server
*   functionality.
*/
static void _TelnetTask(void) {
  struct sockaddr Addr;
  int             AddrLen;
  int             hSockParent;
  int             hSockChild;

  AddrLen = sizeof(Addr);
  while (1) {
    //
    // Try until we get a valid parent socket.
    //
    hSockParent = _ListenAtTcpAddr();
    if (hSockParent == SOCKET_ERROR) {
      OS_Delay(5000);
      continue;  // Error, try again.
    }
    while (1) {
      //
      // Try until we get a valid child socket.
      // Typically accept() will only return when
      // a valid client has connected.
      //
      hSockChild = accept(hSockParent, &Addr, &AddrLen);
      if (hSockChild == SOCKET_ERROR) {
        continue;               // Error, try again.
      }
      IP_Logf_Application("New client (%i) accepted.", Addr.sin_addr.s_addr);
      _Process(hSockChild);     // Process the client.
      closesocket(hSockChild);  // Close connection to client from our side (too).
    }
  }
}

accept() returns a new connected socket which is used to transfer data between the emNet
host and the client. The optional output parameters pAddr and pAddrlen of accept() are
still only used for debugging purposes. We output the IPv4 address of the client after
connecting to our host. The output should be similar to the following:

Telnet - New client (192.168.11.29) accepted.

The new connected socket is passed to the function _Process() which handles the data
transmission. When the process returns, the socket will be closed and the host can process
further client requests.

For further information about accept(), please refer to accept on page 309.

23.9.1.2    Required changes to port the TCP/IPv4 server sample code to
TCP/IPv6

To port these simple telnet style server to IPv6, _ListenAtTCPAddr() and _TelnetTask()
has to be modified. The rest of the example IP_OS_SimpleServer.c keeps untouched.

Listen to a port

_ListenAtTcpAddr() needs to create an IPv6 socket instead of an IPv4 socket and the
sockaddr_in structure has to replaced by a sockaddr_in6 structure.

The socket creation changes from:

hSock = socket(AF_INET, SOCK_STREAM, 0);

to:

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



675 CHAPTER 23 Porting an IPv4 application to IPv6

hSock = socket(AF_INET6, SOCK_STREAM, 0);

AF_INET6 is the address family for IPv6.

The modified function _ListenAtTcpAddr() looks like the code snippet below.

/*********************************************************************
*
*       _ListenAtTcpAddr()
*
* Function description
*   Creates a socket for port SERVER_PORT and sets it into listening
*   state. The only step left is to call accept() to actually wait for
*   a client to connect.
*
* Return value
*   O.K. : Socket handle.
*   Error: SOCKET_ERROR .
*/
static int _ListenAtTcpAddr(void) {
  struct sockaddr_in6 Addr;
  int                 hSock;
  int                 r;

  hSock = socket(AF_INET6, SOCK_STREAM, 0);
  if (hSock != SOCKET_ERROR) {
    Addr.sin6_family     = AF_INET6;
    Addr.sin6_port       = htons(23);
    Addr.sin6_flowinfo   = 0;
    IP_MEMSET(&Addr.sin6_addr.Union.aU8[0], 0, IPV6_ADDR_LEN);
    Addr.sin6_scope_id   = 0;
    r = bind(hSock, (struct sockaddr*)&Addr, sizeof(Addr));
    if (r != 0) {
      hSock = SOCKET_ERROR;
    } else {
      r = listen(hSock, 1);
      if (r != 0) {
        hSock = SOCKET_ERROR;
      }
    }
  }
  return hSock;
}

Compared to the IPv4 version of these function, AF_INET6 is used to specify the address
family to create an IPv6 socket. The port number is still 23 and the address element
sin6_addr is set to zero, which means that the socket will be bound to all available
interfaces. The new elements, sin6_flowinfo and sin6_scope, are set to zero.

Accept connection

The function _TelnetTask() is nearly untouched. The only change is the sockaddr_in6
structure instead of the sockaddr structure used in the IPv4 code.

/*********************************************************************
*
*       _TelnetTask()
*
* Function description
*   Creates a parent socket and handles clients that connect to the
*   server. This sample can handle one client at the same time. Each
*   client that connects creates a child socket that is then passed
*   to the process routine to detach client handling from the server
*   functionality.
*/
static void _TelnetTask(void) {
  struct sockaddr_in6 Addr;
  int AddrLen;
  int hSockParent;
  int hSockChild;

  AddrLen = sizeof(Addr);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



676 CHAPTER 23 Porting an IPv4 application to IPv6

  while (1) {
    //
    // Try until we get a valid parent socket.
    //
    hSockParent = _ListenAtTcpAddr();
    if (hSockParent == SOCKET_ERROR) {
      OS_Delay(5000);
      continue;  // Error, try again.
    }
    while (1) {
      //
      // Try until we get a valid child socket.
      // Typically accept() will only return when
      // a valid client has connected.
      //
      hSockChild = accept(hSockParent, (struct sockaddr*)&Addr, &AddrLen);
      if (hSockChild == SOCKET_ERROR) {
        continue;               // Error, try again.
      }
      IP_Logf_Application("New client (%n) accepted.", Addr.sin6_addr.Union.aU8);
      _Process(hSockChild);     // Process the client.
      closesocket(hSockChild);  // Close connection to client from our side (too).
    }
  }
}

The optional output parameters pAddr and pAddrlen of accept() are still only used for
debugging purposes. We output the IPv6 address of the client after connecting to our host.
The output should be similar to the following:

Telnet - New client (FE80:0000:0000:0000:76D4:35FF:FE8B:5BE5) accepted.

The supplied example OS_IP_SimpleServer_IPv6.c includes all the mentioned changes.
You should start with this example to comprehend the code changes.

23.9.1.3    Dual stack TCP server sample code
The emNet IPv6 add-on provides IPv4 and IPv6 protocol stacks in the same net- work
node. This means that emNet together with the IPv6 add-on is the ideal starting point to
implement applications which can facilitate native communications between nodes using
either IPv4 or IPv6 or both.

In the transition phase from IPv4 to IPv6 most server applications need to accept
connections from IPv4 clients and from IPv6 clients. The supplied example application
OS_IP_SimpleServer_IPv4_IPv6.c demonstrates a possible way to implement such a TCP
server application.

The supplied example OS_IP_SimpleServer_IPv4_IPv6.c is a simple Telnet server
listening on port 23 that outputs the current system time for each character received.

The following excerpt of IP_OS_SimpleServer_IPv4_IPv6.c shows a code snippet, which
creates an IPv4 socket and an IPv6 socket, binds both to TCP port 23 and sets both into
listening state. To enhance readability of the example code socket creation and binding are
implemented as functions.

/*********************************************************************
*
*       _ListenAtTcpPort()
*
* Function description
*   Creates a socket, binds it to a port and sets the socket into
*   listening state.
*
* Parameter
*   IPProtVer - Protocol family which should be used (PF_INET or PF_INET6).
*   Port      - Port which should be to wait for connections.
*
* Return value
*   O.K. : Socket handle.
*   Error: SOCKET_ERROR.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



677 CHAPTER 23 Porting an IPv4 application to IPv6

*/
static int _ListenAtTcpPort(unsigned IPProtVer, U16 Port) {
  int hSock;
  int r;

  //
  // Create socket
  //
  hSock = _CreateSocket(IPProtVer);
  if (hSock != SOCKET_ERROR) {
    //
    // Bind it to the port
    //
    r = _BindAtTcpPort(IPProtVer, hSock, Port);
    //
    // Start listening on the socket.
    //
    if (r != 0) {
      hSock = SOCKET_ERROR;
    } else {
      r = listen(hSock, 1);
      if (r != 0) {
        hSock = SOCKET_ERROR;
      }
    }
  }
  return hSock;
}

The function used to create either an IPv4 or an IPv6 socket is listed below:

/*********************************************************************
*
*       _CreateSocket()
*
* Function description
*   Creates a socket for the requested protocol family.
*
* Parameter
*   IPProtVer - Protocol family which should be used (PF_INET or PF_INET6).
*
* Return value
*   O.K. : Socket handle.
*   Error: SOCKET_ERROR .
*/
static int _CreateSocket(unsigned IPProtVer) {
  int hSock;

  hSock = SOCKET_ERROR;
  //
  // Create IPv6 socket
  //
  if (IPProtVer == PF_INET6) {
    hSock = socket(AF_INET6, SOCK_STREAM, 0);
  }
  //
  // Create IPv4 socket
  //
  if (IPProtVer == PF_INET) {
    hSock = socket(AF_INET, SOCK_STREAM, 0);
  }
  return hSock;
}

The function used to bind either an IPv4 or an IPv6 socket is listed below:

/*********************************************************************
*
*       _BindAtTcpPort()
*
* Function description
*   Binds a socket to a port.
*
* Parameter

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



678 CHAPTER 23 Porting an IPv4 application to IPv6

*   IPProtVer - Protocol family which should be used (PF_INET or PF_INET6).
*   hSock     - Socket handle
*   Port      - Port which should be to wait for connections.
*
* Return value
*   O.K. : Socket handle.
*   Error: SOCKET_ERROR .
*/
static int _BindAtTcpPort(unsigned IPProtVer, int hSock, U16 LPort) {
  int r;

  //
  // Bind it to the port
  //
  if (IPProtVer == PF_INET6) {
    struct sockaddr_in6 Addr;

    IP_MEMSET(&Addr, 0, sizeof(Addr));
    Addr.sin6_family     = AF_INET6;
    Addr.sin6_port       = htons(LPort);
    Addr.sin6_flowinfo   = 0;
    IP_MEMSET(&Addr.sin6_addr, 0, 16);
    Addr.sin6_scope_id   = 0;
    r = bind(hSock, (struct sockaddr*)&Addr, sizeof(Addr));
  }
  if (IPProtVer == PF_INET) {
    struct sockaddr_in Addr;
    IP_MEMSET(&Addr, 0, sizeof(Addr));
    Addr.sin_family      = AF_INET;
    Addr.sin_port        = htons(LPort);
    Addr.sin_addr.s_addr = INADDR_ANY;
    r = bind(hSock, (struct sockaddr*)&Addr, sizeof(Addr));
  }
  return r;
}

To handle client requests on both sockets within one task select() is used. For further
information to select(), please refer to select on page 327.

To accept connections on both sockets the listening IPv4 socket and the listening IPv6
socket are added to the read set. select() returns if data is available on one of these
sockets and accept() is called to handle the new connection.

/*********************************************************************
*
*       _TelnetTask()
*
* Function description
*   Creates a parent socket and handles clients that connect to the
*   server. This sample can handle one client at the same time. Each
*   client that connects creates a child socket that is then passed
*   to the process routine to detach client handling from the server
*   functionality.
*/
static void _TelnetTask(void) {
  IP_fd_set ReadFds;
  int       hSockParent4;
  int       hSockParent6;
  int       hSockChild;
  int       r;

  //
  // Try until we get a valid IPv4 parent socket and a valid IPv6 parent socket.
  //
  while (1) {
    hSockParent4 = _ListenAtTcpPort(PF_INET, SERVER_PORT);
    if (hSockParent4 == SOCKET_ERROR) {
      OS_Delay(2000);
      continue;  // Error, try again.
    }
    break;
  }
  while (1) {
    hSockParent6 = _ListenAtTcpPort(PF_INET6, SERVER_PORT);
    if (hSockParent6 == SOCKET_ERROR) {

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



679 CHAPTER 23 Porting an IPv4 application to IPv6

      closesocket(hSockParent4);
      OS_Delay(2000);
      continue;  // Error, try again.
    }
    break;
  }
  //
  // Wait for a connection on one of the both sockets and process the data
  // requests after accepting the connection.
  //
  while (1) {
    IP_FD_ZERO(&ReadFds);                   // Clear the set
    IP_FD_SET(hSockParent4, &ReadFds);      // Add IPv4 socket to the set
    IP_FD_SET(hSockParent6, &ReadFds);      // Add IPv6 socket to the set
    r = select(&ReadFds, NULL, NULL, 5000); // Check for activity. Wait 5 seconds
    if (r <= 0) {
      continue;
    }
    //
    // Check if the IPv4 socket is ready
    //
    if (IP_FD_ISSET(hSockParent4, &ReadFds)) {
      hSockChild = accept(hSockParent4, NULL, NULL);
      if (hSockChild == SOCKET_ERROR) {
        continue;               // Error, try again.
      }
      IP_Logf_Application("New IPv4 client accepted.");
    }
    //
    // Check if the IPv6 socket is ready
    //
    else if (IP_FD_ISSET(hSockParent6, &ReadFds)) {
      hSockChild = accept(hSockParent6, NULL, NULL);
      if (hSockChild == SOCKET_ERROR) {
        continue;               // Error, try again.
      }
      IP_Logf_Application("New IPv6 client accepted.");
    }
    _Process(hSockChild);     // Process the client.
    closesocket(hSockChild);  // Close connection to client from our side (too).
  }
}

The supplied example OS_IP_SimpleServer_IPv4_IPv6.c is a good starting point to test
the reachability of your embedded host via IPv4 and IPv6.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



680 CHAPTER 23 Resource usage

23.10    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the IPv6 modules presented in the tables below have been
measured on a Cortex-M3 system. Details about the further configuration can be found in
the sections of the specific example.

23.10.1    IPv6 ROM usage
The resource usage of the IPv6 add-on has been measured on a Cortex-M3 system size
optimization.

Addon ROM

emNet IPv6 approximately 8.0 kBytes

The stated ROM usage is only the additional space that is required to add IPv6 to the emNet
IPv4 stack. The total ROM usage for emNet running IPv4 and IPv6 is approximately 28
kBytes.

23.10.2    RAM usage
The total memory requirements of the IPv6 add-on can basically be computed as the sum
of the following components:

Description RAM

IPv6 add-on approximately 200 bytes
Unicast address n * approximately 48 bytes
Multicast address n * approximately 28 bytes
NDP entry n * 52 bytes

An IPv6 target with two unicast addresses, four Multicast address and five NDP entries needs
approximately 660 bytes additional RAM. For detailed information about the configuration
and the memory requirements for each TCP/UDP connection, refer to Configuring emNet
on page 625.

The required memory is taken from the memory pool of the stack. For further information
about how to increase the memory pool, refer to IP_AssignMemory on page 87.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 24
 
SMTP client (Add-on)

The emNet SMTP client is an optional extension to emNet. The SMTP client can be used
with emNet or with a different TCP/IP stack. All functions that are required to add the SMTP
client task to your application are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



682 CHAPTER 24 emNet SMTP client

24.1    emNet SMTP client
The emNet SMTP client is an optional extension which can be seamlessly integrated into
your TCP/IP application. It combines a maximum of performance with a small memory
footprint. The SMTP client allows an embedded system to send emails with dynamically
generated content. The RAM usage of the SMTP client module has been kept to a minimum
by smart buffer handling.

The SMTP client implements the relevant parts of the following Request For Comments
(RFC).

RFC# Description

[RFC 821] Simple Mail Transfer Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc821.txt

[RFC 974] Mail routing and the domain system
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc974.txt

[RFC 2554] SMTP Service Extension for Authentication
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc2554.txt

[RFC 5321] Simple Mail Transfer Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc5321.txt

The following table shows the contents of the emNet SMTP client root directory:

Directory Content

.\Application\
Contains the example application to run the SMTP
client with emNet.

.\Config\
Contains the SMTP client configuration file. Refer to
SMTP client configuration on page 689 for detailed
information.

.\Inc\ Contains the required include files.

.\IP\
Contains the SMTP client sources, IP_SMTPC.c and
IP_SMTPC.h.

.\Windows\SMTPC\
Contains the source, the project files and an
executable to run emNet SMTP client on a Microsoft
Windows host.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



683 CHAPTER 24 Feature list

24.2    Feature list
• Low memory footprint.
• Independent of the TCP/IP stack: any stack with sockets can be used.
• Support for attachments (multipart items).
• Supports AUTH TLS (with additional SSL/TLS stack) for secure connections.
• Independent of the SSL/TLS stack: any sockets based stack can be used.
• Example applications included.
• Project for executable on PC for Microsoft Visual Studio included.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



684 CHAPTER 24 Requirements

24.3    Requirements
TCP/IP stack

The emNet SMTP client requires a TCP/IP stack. It is optimized for emNet, but any RFC-
compliant TCP/IP stack can be used. The shipment includes a Win32 simulation, which uses
the standard Winsock API and an implementation which uses the socket API of emNet.

In addition to insecure connections the emNet SMTP client API allows to secure the
connection by using an additional SSL/TLS stack if the server is capable of the STARTTLS
command.

Multi tasking

The SMTP client needs to run as a separate thread. Therefore, a multi tasking system is
required to use the emNet SMTP client.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



685 CHAPTER 24 SMTP backgrounds

24.4    SMTP backgrounds
The Simple Mail Transfer Protocol is a text based communication protocol for electronic mail
transmission across IP networks.

Using SMTP, an emNet application can transfer mail to an SMTP servers on the same network
or to SMTP servers in other networks via a relay or gateway server accessible to both
networks. When the emNet SMTP client has a message to transmit, it establishes a TCP
connection to an SMTP server and transmits after the handshaking the message content.

The handshaking mechanism includes normally an authentication process. The RFC’s define
the following four different authentication schemes:
• PLAIN
• LOGIN
• CRAM-MD5
• NTLM

In the current version, the emNet SMTP client supports only PLAIN and LOGIN
authentication. The following listing shows a typical SMTP session:

S:  220 srv.sample.com ESMTP
C:   HELO
S:  250 srv.sample.com
C:   AUTH LOGIN
S:  334 VXNlcm5hbWU6
C:   c3BzZXk29IulbkY29tZcZXIbtZ
S:  334 UGFzc3dvcmQ6
C:   UlblhFz7ZlblsZlZQ==
S:  235 go ahead
C:   Mail from:<user0@sample.com>
S:  250 ok
C:   Rcpt to:<user1@sample.com>
S:  250 ok
C:   Rcpt to:<user2@sample.com>
S:  250 ok
C:   Rcpt to:<user3@sample.com>
S:  250 ok
C:   DATA
S:  354 go ahead
C:   Message-ID: <1000.2234@sample.com>
C:   From: "User0" <User0@sample.com>

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



686 CHAPTER 24 SMTP backgrounds

C:   TO: "User1" <User1@sample.com>
C:   CC: "User2" <User2@sample.com>, "User3" <User3@sample.com>
C:   Subject: Testmail
C:   Date: 1 Jan 2008 00:00 +0100
C:
C:   This is a test!
C:
C:   .
S:  250 ok 1231221612 qp 3364
C:   quit
S:  221 srv.sample.com

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



687 CHAPTER 24 Secure connections

24.5    Secure connections
Most modern mail servers support secure connections or might even refuse insecure
connections at all. There are two ways of establishing secure connections with a mail server
by utilizing an additional SSL/TLS stack:
• Establishing an SMTPS SSL/TLS connection on port 465 where the whole connection

from the first data byte sent to the last byte is secured. This method is deprecated but
still widely in use.

• Establish a regular insecure connection on port 25 and try to upgrade it to a secure
connection using the STARTTLS command.

While the second method (starting insecure and trying to upgrade) might look less secure
it is not. The security of this method is defined by the configured fallback mechanism used
via the SecPolicy that can be found in Structure IP_SMTPC_MTA on page 701.

If the client is not allowed to use an insecure connection as fallback this method is as safe
as encrypting the whole connection from start to end. An advantage of this method is that
most firewalls will allow traffic on port 25 and existing firewall rules do not have to changed
for secure/insecure connections.

For an example on how to use secure connections please refer to the
IP_SendMail_Secure.c sample.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



688 CHAPTER 24 Attachments

24.6    Attachments
Mail attachments are multipart items that are added to a mail. Multipart items in a mail are
not limited to attachments only but this is the most common form they are used.

The emNet SMTPC client allows to easily add attachments to a mail by providing an
array of IP_SMTPC_MULTIPART_ITEM items that configure the attachments to add. For more
information about the item structure please refer to Structure IP_SMTPC_MULTIPART_API
on page 698.

Creating a list of attachments

Each item is sent via a callback that needs to be implemented by the application. Multiple
items can share the same callback. To differentiate between two items that use the same
callback a user context element can be set in the IP_SMTPC_MULTIPART_ITEM. This context
can be a simple index or a pointer to more information about the item to send like a string
with a path of a file to send from a file system.

The content type set for the item defines how the receiver will treat this attachment. The
following is only a short excerpt of possible content types (MIME types) that can be used
but. However all depend on being known by the receiver to be fully under- stood:

File extension Content type (MIME type)

.jpg “image/jpeg”

.txt “text/plain”

.zip “application/x-compressed”

One extension might be known under multiple MIME types. The sender usually chooses the
MIME type that is known to the system for this extension. Therefore an attachment might
not be correctly recognized by the receiver as this type of file under all circumstances.

Adding the attachments to the mail

To actually add the items to the mail the list has to be assigned to the message to send. This
is done by filling in the sBoundary, paMultipartItem and NumMultipartItems parameters
of the IP_SMTPC_MESSAGE structure that defines the message to send. For more information
about the structure defining a message please refer to Structure IP_SMTPC_MESSAGE on
page 700.

A sample of adding two text files as attachment can be found in the IP_SendMail.c sample.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



689 CHAPTER 24 SMTP client configuration

24.7    SMTP client configuration
The emNet SMTP client can be used without changing any of the compile time flags. All
compile time configuration flags are preconfigured with valid values, which match the
requirements of most applications.

The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the source code in place of a numerical constant.
A typical example is the configuration of the sector size of a storage medium.

Alias "A"

A macro which operates like a simple text substitute. An example would be the define U8,
which the preprocessor would replace with unsigned char.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations apply, as a
macro is still put into the source code as simple text replacement. Function replacements are
mainly used to add specific functionality to a module which is highly hardware-dependent.
This type of macro is always declared using brackets (and optional parameters).

24.7.1    SMTP client compile time configuration switches

Type Symbolic name Default Description

F SMTPC_WARN --

Defines a function to output
warnings. In debug configurations
(DEBUG = 1) SMTPC_WARN maps to
IP_Warnf_Application().

F SMTPC_LOG --

Defines a function to output logging
messages. In debug configurations
(DEBUG = 1) SMTPC_LOG maps to
IP_Logf_Application().

N SMTPC_SERVER_PORT 25 Defines the port where the SMTP
server is listening.

N SMTPC_IN_BUFFER_SIZE 256
Defines the size of the input buffer.
The input buffer is used to store the
SMTP replies of the SMTP server.

N SMTPC_AUTH_USER_BUFFER_SIZE 48 Defines the size of the buffer used for
the Base-64 encoded user name.

N SMTPC_AUTH_PASS_BUFFER_SIZE 48 Defines the size of the buffer used for
the Base-64 encoded password.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



690 CHAPTER 24 API functions

24.8    API functions
Function Description

IP_SMTPC_Send()
Sends an email to one or multiple
recipients.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



691 CHAPTER 24 API functions

24.8.1    IP_SMTPC_Send()

Description

Sends an email to one or multiple recipients.

Prototype

int IP_SMTPC_Send(const IP_SMTPC_API         * pIP_API,
                  const IP_SMTPC_MAIL_ADDR   * paMailAddr,
                        int                    NumMailAddr,
                  const IP_SMTPC_MESSAGE     * pMessage,
                  const IP_SMTPC_MTA         * pMTA,
                  const IP_SMTPC_APPLICATION * pApplication);

Parameters

Parameter Description

pIP_API Pointer to an IP_STMPC_API structure.

paMailAddr

Pointer to an array of IP_SMTPC_MAIL_ADDR structures. The
first element of the array has to be filled with the data of
the sender (FROM). The order of the following data sets for
recipients (TO), carbon copies (CC) and blind carbon copies
(BCC) is not relevant.

NumMailAddr Number of email addresses.
pMessage Pointer to an array of IP_SMTPC_MESSAGE structures.
pMTA Pointer to an array of IP_SMTPC_MTA structures.
pApplication Pointer to an array of IP_SMTPC_APPLICATION structures.

Return value

0 OK.
1 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



692 CHAPTER 24 Data structures

24.9    Data structures
Structure Description

IP_SMTPC_API
Structure with pointers to the required
socket interface functions.

IP_SMTPC_APPLICATION
Structure with application related
elements.

IP_SMTPC_MULTIPART_API
Structure with API for sending
attachments.

IP_SMTPC_MULTIPART_ITEM Structure defining one item to attach.
IP_SMTPC_MAIL_ADDR Structure to store the mail addresses.
IP_SMTPC_MESSAGE Structure defining the message format.

IP_SMTPC_MTA
Structure to store the login information for
the mail transfer agent.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



693 CHAPTER 24 Data structures

24.9.1    Structure IP_SMTPC_API

Description

Structure with pointers to the required socket interface functions.

Prototype

typedef struct {
  SMTPC_SOCKET (*pfConnect)   (char * SrvAddr);
  void         (*pfDisconnect)(SMTPC_SOCKET Socket);
  int          (*pfSend)      (const char *       pData,
                                     int          Len,
                                     SMTPC_SOCKET Socket);
  int          (*pfReceive)   (char *       pData,
                               int          Len,
                               SMTPC_SOCKET Socket);
  int          (*pfUpgrade)   (SMTPC_SOCKET hSock,
                               const char * sServer);
  void         (*pfDowngrade) (SMTPC_SOCKET hSock);
} IP_SMTPC_API;

Member Description

pfConnect Pointer to the connect function (for example, connect()).
pfDisconnect Pointer to the disconnect function (for example, closesocket()).
pfSend Pointer to a send function (for example, send()).
pfReceive Pointer to a receive function (for example, recv()).

pfUpgrade
Pointer to a callback function to upgrade an insecure connection to a
secure connection using an SSL/TLS stack.

pfDowngrade
Pointer to a callback function to downgrade a secure connection to an
insecure connection (after work is done) using an SSL/TLS stack.

Example

/*********************************************************************
*
*       _Connect
*
*  Function description
*    Creates a socket and opens a TCP connection to the mail host.
*/
static SMTPC_SOCKET _Connect(char * SrvAddr) {
  long IP;
  long Sock;
  struct hostent * pHostEntry;
  struct sockaddr_in sin;
  int r;

  //
  // Convert host into mail host
  //
  pHostEntry = gethostbyname(SrvAddr);
  if (pHostEntry == NULL) {
    SMTPC_LOG(("gethostbyname failed: %s\r\n", SrvAddr));
    return NULL;
  }
  IP = *(unsigned*)(*pHostEntry->h_addr_list);
  //
  // Create socket and connect to mail server
  //
  Sock = socket(AF_INET, SOCK_STREAM, 0);
  if(Sock  == -1) {
    SMTPC_LOG(("Could not create socket!"));
    return NULL;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



694 CHAPTER 24 Data structures

  }
  IP_MEMSET(&sin, 0, sizeof(sin));
  sin.sin_family = AF_INET;
  sin.sin_port = htons(SERVER_PORT);
  sin.sin_addr.s_addr = IP;
  r = connect(Sock, (struct sockaddr*)&sin, sizeof(sin));
  if(r == SOCKET_ERROR) {
    SMTPC_LOG(("\nSocket error :"));
    return NULL;
  }
  SMTPC_LOG(("APP: Connected.\r\n"));
  return (SMTPC_SOCKET)Sock;
}

/*********************************************************************
*
*       _Disconnect
*
*  Function description
*    Closes a socket.
*/
static void _Disconnect(SMTPC_SOCKET Socket) {
  closesocket((long)Socket);
}

/*********************************************************************
*
*       _Send
*
*  Function description
*    Sends data via socket interface.
*/
static int _Send(const char * buf, int len, void * pConnectionInfo) {
  return send((long)pConnectionInfo, buf, len, 0);
}

/*********************************************************************
*
*       _Recv
*
*  Function description
*    Receives data via socket interface.
*/
static int _Recv(char * buf, int len, void * pConnectionInfo) {
  return recv((long)pConnectionInfo, buf, len, 0);
}

static const IP_SMTPC_API _IP_Api = {
  _Connect,
  _Disconnect,
  _Send,
  _Recv
};

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



695 CHAPTER 24 Data structures

24.9.2    Structure IP_SMTPC_APPLICATION

Description

Structure with pointers to application related functions.

Prototype

typedef struct {
  U32 (*pfGetTimeDate) (void);
  int (*pfCallback)(int Stat, void *p);
  const char * sDomain;   // email domain
  const char * sTimezone; // Time zone.
} IP_SMTPC_APPLICATION;

Member Description

pfGetTimeDate
Pointer to the function which returns the current system time. Used
to set the correct date and time of the email.

pfCallback Pointer to status callback function. Can be NULL.

sDomain
Domain name. For example, sample.com. According to RFC 821 the
maximum total length of a domain name or number is 64 characters.

sTimezone
Time zone. The zone specifies the offset from Coordinated Universal
Time (UTC). Offset from UTC is passed as string: “+0100”. Can be
NULL.

Example

*********************************************************************
*
*       _GetTimeDate
*/
static U32 _GetTimeDate(void) {
  U32 r;
  U16 Sec, Min, Hour;
  U16 Day, Month, Year;
  
  Sec   = 0;        // 0 based.  Valid range: 0..59
  Min   = 0;        // 0 based.  Valid range: 0..59
  Hour  = 0;        // 0 based.  Valid range: 0..23
  Day   = 1;        // 1 based.  Means that 1 is 1. 
                    //           Valid range is 1..31 (depending on month)
  Month = 1;        // 1 based.  Means that January is 1. Valid range is 1..12.
  Year  = 28;       // 1980 based. Means that 2008 would be 28.
  r   = Sec / 2 + (Min << 5) + (Hour  << 11);
  r  |= (U32)(Day + (Month << 5) + (Year  << 9)) << 16;
  return r;
}

*********************************************************************
*
*       _Application
*/
static const SMTPC_APPLICATION _Application = {
  _GetTimeDate,
  NULL,
  "sample.com",   // Your domain.
  NULL
};

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



696 CHAPTER 24 Data structures

24.9.3    Structure IP_SMTPC_MAIL_ADDR

Description

Structure to store an email address.

Prototype

typedef struct {
  const char * sName;
  const char * sAddr;
  int Type;
} IP_SMTPC_MAIL_ADDR;

Member Description

sName Name of the recipient (for example, “Foo Bar”). Can be NULL.
sAddr email address of the recipient (for example, “foo@bar.com”).
Type Type of the email address.

Valid values for parameter Type

Value Description

SMTPC_REC_TYPE_FROM
email address of the sender
(FROM).

SMTPC_REC_TYPE_TO
email address of the recipient
(TO).

SMTPC_REC_TYPE_CC
email address of a recipient which
should get a carbon copy (CC) of
the email.

SMTPC_REC_TYPE_BC
email address of a recipient which
should get a blind carbon copy
(BCC) of the email.

Additional information

The structure is used to store the data sets of the sender and all recipients.
IP_SMTPC_Send() gets a pointer to an array of IP_SMTPC_MAIL_ADDR structures as
parameter. The first element of these array has to be filled with the data of the sender
(FROM). The order of the following data sets for Recipients (TO), Carbon Copies (CC) and
Blind Carbon Copies (BCC) is not relevant. For detailed information about IP_SMTPC_Send()
refer to IP_SMTPC_Send on page 691.

The sName could also be a UTF-8 encoded string. For example, to send “Лев Толстой” define
sName as

"\xD0\x9B\xD0\xB5\xD0\xB2\x20\xD0\xA2\xD0\xBE\xD0\xBB\xD1\x81\xD1\x82\xD0\xBE
\xD0\xB9"

For more details on UTF-8 encoding refer for example to https://en.wikipedia.org/wiki/Utf8.

Example

/*********************************************************************
*
*       Mailer
*/
static void _Mailer(void) {
  SMTPC_MAIL_ADDR MailAddr[4];
  SMTPC_MTA Mta;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://en.wikipedia.org/wiki/Utf8


697 CHAPTER 24 Data structures

  SMTPC_MESSAGE Message;
  IP_MEMSET(&MailAddr, 0, sizeof(MailAddr));

  //
  // Sender
  //
  MailAddr[0].sName = 0; // for example, "Your name";
  MailAddr[0].sAddr = 0; // for example, "user@foobar.com";
  MailAddr[0].Type  = SMTPC_REC_TYPE_FROM;
  //
  // Recipient(s)
  //
  MailAddr[1].sName = 0; // "Recipient";
  MailAddr[1].sAddr = 0; // "recipient@foobar.com";
  MailAddr[1].Type  = SMTPC_REC_TYPE_TO;
  MailAddr[2].sName = 0; // "CC Recp 1";
  MailAddr[2].sAddr = 0; // "cc1@foobar.com";
  MailAddr[2].Type  = SMTPC_REC_TYPE_CC;
  MailAddr[3].sName = 0; // "BCC Recp 1"
  MailAddr[3].sAddr = 0; // "bcc1@foobar.com";;
  MailAddr[3].Type  = SMTPC_REC_TYPE_BCC;
  //
  // Message
  //
  Message.sSubject = "SMTP message sent via emNet SMTP client";
  Message.sBody    = "emNet SMTP client - www.segger.com";
  //
  // Fill mail transfer agent structure
  //
  Mta.sServer = 0; // for example, "mail.foobar.com";
  Mta.sUser   = 0; // for example, "user@foobar.com";
  Mta.sPass   = 0; // for example, "password";
  //
  // Check if sample is configured!
  //
  if(Mta.sServer == 0) {
    SMTPC_WARN(("You have to enter valid SMTP server, sender and recipient(s).\r\n"));
    while(1);
  }
  //
  // Wait until link is up. This can take 2-3 seconds if PHY has been reset.
  //
  while (IP_IFaceIsReady() == 0) {
    OS_Delay(100);
  }
  SMTPC_Send(&_IP_Api, &MailAddr[0], 4, &Message, &Mta, &_Application);
  while(1);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



698 CHAPTER 24 Data structures

24.9.4    Structure IP_SMTPC_MULTIPART_API

Description

Structure containing functions for sending multipart content (attachments).

Prototype

typedef struct {
  void (*pfSend)(       IP_SMTPC_CONTEXT* pContext,
                  const char*             pData,
                        unsigned          NumBytes);
} IP_SMTPC_MULTIPART_API;

Member Description

pfSend Callback for sending multipart content in chunks.
- pContext SMTPc context.
- pData Data to send.
- NumBytes Amount of data to send.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



699 CHAPTER 24 Data structures

24.9.5    Structure IP_SMTPC_MULTIPART_ITEM

Description

Structure to store multipart items to be added to the mail.

Prototype

typedef struct IP_SMTPC_MULTIPART_ITEM_STRUCT IP_SMTPC_MULTIPART_ITEM;
struct IP_SMTPC_MULTIPART_ITEM_STRUCT {
  const char* sFilename;
  const void* pUserContext;
  const char* sContentType;
  void (*pfSendItem)(       IP_SMTPC_CONTEXT*        pContext,
                      const IP_SMTPC_MULTIPART_ITEM* pItem,
                      const IP_SMTPC_MULTIPART_API*  pAPI ));
};

Member Description

sFilename
Filename suggested to client in case the multipart item is an
attachment.

pUserContext
User context passed to pfSendItem callback. Can be used to pass a
file path or other application information to the callback.

sContentType
Value for the “Content-Type: ” field of the multipart item.
Examples for a text file attachment are: “text/plain” or “text/plain;
name=Test.txt” .

pfSendItem
Callback for sending the content of a multipart item without having to
know its length upfront.

- pContext SMTPc context.
- pItem Item to send.
pAPI API for sending data in chunks.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



700 CHAPTER 24 Data structures

24.9.6    Structure IP_SMTPC_MESSAGE

Description

Structure to store the subject and the text and attachments of the email.

Prototype

typedef struct {
  const char*                    sSubject;
  const char*                    sBody;
  const char*                    sBoundary;
  const IP_SMTPC_MULTIPART_ITEM* paMultipartItem;
        unsigned                 NumMultipartItems;
} IP_SMTPC_MESSAGE;

Member Description

sSubject Subject of the message to send. Could be UTF-8 encoded string.
sBody Content of the message to send. Could be UTF-8 encoded string.

sBoundary
Boundary to use for multipart encoding (e.g. when using
attachments). Can be NULL if (NumMultipartItems = 0).

paMultipartItem
Pointer to list of items (attachments) to multipart encode with
the message. Can be NULL if (NumMultipartItems = 0).

NumMultipartItems
Number of multipart items that can be found at
paMultipartItem.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



701 CHAPTER 24 Data structures

24.9.7    Structure IP_SMTPC_MTA

Description

Structure to store the server address and the login information.

Prototype

typedef struct {
  const char * sServer;
  const char * sUser;
  const char * sPass;
        U8     SecPolicy;
} IP_SMTPC_MTA;

Member Description

sServer Server address (for example, “mail.foobar.com”).
sUser Account user name (for example, “foo@bar.com”). Can be NULL.
sPass Account password (for example, “password”). Can be NULL.

SecPolicy
Security policy to use:
- SMTPC_SEC_POLICY_ALLOW_INSECURE (default)
- SMTPC_SEC_POLICY_SECURE_ONLY

Additional information

The parameters sUser and sPass have to be NULL if no authentication is used by the server.
If sUser is set in the application code, the client tries to use authentication. This means that
the client sends the AUTH LOGIN or AUTH PLAIN command to the server. If the server does
not support authentication, he will return an error code and the client closes the session.

The parameter SecPolicy defines the fallback behavior in case secure connections are
supported by using an additional SSL/TLS stack and providing callbacks for the function
pointers for pfUpgrade and pfDowngrade in the Structure IP_SMTPC_API on page 693.

SMTPC_SEC_POLICY_ALLOW_INSECURE (default) will allow a fallback to an insecure
connection to be used in case no SSL/TLS stack is available or the server does not offer
the AUTH TLS extension.

If a secure connection is possible as the server offers the AUTH TLS connection a secure
connection will be established.

SMTPC_SEC_POLICY_SECURE_ONLY forces the SMTP client to insist on a secure connection
and will refuse to proceed using an insecure connection.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



702 CHAPTER 24 Resource usage

24.10    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the SMTP client presented in the tables below have been
measured on a Cortex-M4 system. Details about the further configuration can be found in
the sections of the specific example.

Configuration used

#define SMTPC_OUT_BUFFER_SIZE        256
#define SMTPC_IN_BUFFER_SIZE         256
#define SMTPC_AUTH_USER_BUFFER_SIZE   48
#define SMTPC_AUTH_PASS_BUFFER_SIZE   48

24.10.1    ROM usage on a Cortex-M4 system
The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio V3.10e, size optimization.

Addon ROM

emNet SMTP client approximately 2.7 kBytes

24.10.2    RAM usage

Addon RAM

emNet SMTP client buffers w/o task stack approximately 600 Bytes

The RAM requirement for the work buffers on the task stack is approximately 600 bytes for
the mentioned configuration. Only the bigger buffer size of SMTPC_AUTH_USER_BUFFER_SIZE
or SMTPC_AUTH_PASS_BUFFER_SIZE is used for a single buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 25
 
emFTP server (Add-on)

The emFTP server is an optional extension to the emNet TCP/IP stack. The emFTP server
can be used with emNet or with a different TCP/IP stack. All functions which are required
to add a FTP server task to your application are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



704 CHAPTER 25 emFTP server

25.1    emFTP server
The emFTP server is an optional extension which adds the FTP protocol to the stack.
FTP stands for File Transfer Protocol. It is the basic mechanism for moving files between
machines over TCP/IP based networks such as the Internet. FTP is a client/server protocol,
meaning that one machine, the client, initiates a file transfer by contacting another machine,
the server and making requests. The server must be operating before the client initiates his
requests. Generally a client communicates with one server at a time, while most servers
are designed to work with multiple simultaneous clients.

The emFTP server implements the relevant parts of the following RFCs.

RFC# Description

[RFC 959] FTP - File Transfer Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc959.txt

The following table shows the contents of the emFTP server root directory:

Directory Content

.\Application\
Contains the example application to run the FTP
server with emNet.

.\Config\ Contains the FTP server configuration file.

.\Inc\ Contains the required include files.

.\IP\ Contains the FTP server sources.

.\IP\FS\

Contains the sources for the file system abstraction
layer and the read-only file system. Refer to File
system abstraction layer on page 1296 for detailed
information.

.\Windows\FTPserver\
Contains the source, the project files and an
executable to run emFTP server on a Microsoft
Windows host.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



705 CHAPTER 25 Feature list

25.2    Feature list
• Low memory footprint.
• Multiple connections supported.
• Independent of the file system: Any file system can be used.
• Independent of the TCP/IP stack: Any stack with sockets can be used.
• Demo application included.
• Project for executable on PC for Microsoft Visual Studio included.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



706 CHAPTER 25 Requirements

25.3    Requirements
TCP/IP stack

The emFTP server requires a TCP/IP stack. It is optimized for emNet, but any RFC-compliant
TCP/IP stack can be used. The shipment includes a Win32 simulation, which uses the
standard Winsock API and two implementations which use the socket API of emNet (with
or without TLS secured connection).

Multi tasking

The FTP server needs to run as a separate thread. Therefore, a multi tasking system is
required to use the emFTP server.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



707 CHAPTER 25 FTP basics

25.4    FTP basics
The File Transfer Protocol (FTP) is an application layer protocol. FTP is an unusual service
in that it utilizes two ports, a ’Data’ port and a ’CMD’ (command) port. Traditionally these
are port 21 for the command port and port 20 for the data port. FTP can be used in two
modes, active and passive. Depending on the mode, the data port is not always on port 20.

  

When an FTP client contacts a server, a TCP connection is established between the two
machines. The server does a passive open (a socket is listen) when it begins operation;
thereafter clients can connect with the server via active opens. This TCP connection persists
for as long as the client maintains a session with the server, (usually determined by a human
user) and is used to convey commands from the client to the server, and the server replies
back to the client. This connection is referred to as the FTP command connection.

The FTP commands from the client to the server consist of short sets of ASCII characters,
followed by optional command parameters. For example, the FTP command to display the
current working directory is PWD (Print Working Directory). All commands are terminated
by a carriage return-linefeed sequence (CRLF) (ASCII 10,13; or Ctrl-J, Ctrl-M). The servers
replies consist of a 3 digit code (in ASCII) followed by some explanatory text. Generally
codes in the 200s are success and 500s are failures. See the RFC for a complete guide to
reply codes. Most FTP clients support a verbose mode which will allow the user to see these
codes as commands progress.

If the FTP command requires the server to move a large piece of data (like a file), a second
TCP connection is required to do this. This is referred to as the FTP data connection (as
opposed to the aforementioned command connection). In active mode the data connection
is opened by the server back to a listening client. In passive mode the client opens also
the data connection. The data connection persists only for transporting the required data.
It is closed as soon as all the data has been sent.

FTP security could be guarantied by a secured connection (TLS). Server could behave as
implicit server: the connection is secured from the start (generally port 990 is used). Or it
could behave as an implicit server: the connection is started normally (generally port 21 is
used) and updated through the AUTH command.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



708 CHAPTER 25 FTP basics

25.4.1    Active mode FTP
In active mode FTP the client connects from a random unprivileged port P (P > 1023) to
the FTP server’s command port, port 21. Then, the client starts listening to port P+1 and
sends the FTP command PORT P+1 to the FTP server. The server will then connect back to
the client’s specified data port from its local data port, which is port 20.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



709 CHAPTER 25 FTP basics

25.4.2    Passive mode FTP
In passive mode FTP the client connects from a random unprivileged port P (P > 1023)
to the FTP server’s command port, port 21. In opposite to an active mode FTP connection
where the client opens a passive port for data transmission and waits for the connection
from server-side, the client sends in passive mode the “PASV” command to the server and
expects an answer with the information on which port the server is listening for the data
connection.

After receiving this information, the client connects to the specified data port of the server
from its local data port.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



710 CHAPTER 25 FTP basics

25.4.3    FTP reply codes
Every FTP command is answered by one or more reply codes defined in [RFC 959]. A
reply is an acknowledgment (positive or negative) sent from server to user via the control
connection in response to FTP commands. The general form of a reply is a 3-digit completion
code (including error codes) followed by Space <SP>, followed by one line of text and
terminated by carriage return line feed <CRLF>. The codes are for use by programs and
the text is usually intended for human users.

The first digit of the reply code defines the class of response. There are 5 values for the
first digit:
• 1yz: Positive preliminary reply
• 2yz: Positive completion reply
• 3yz: Positive intermediate reply
• 4yz: Transient negative Completion reply
• 5yz: Permanent negative Completion reply

The second digit of the reply code defines the group of the response.
• x0z: Syntax - Syntax errors, syntactically correct commands that don’t fit any functional

category, unimplemented or superfluous commands.
• x1z: Information - These are replies to requests for information, such as status or help.
• x2z: Connections - Replies referring to the control and data connections.
• x3z: Authentication and accounting - Replies for the login process and accounting

procedures.
• x4z: Unspecified as yet.
• x5z: File system - These replies indicate the status of the Server file system vis- a-vis

the requested transfer or other file system action.

The third digit gives a finer gradation of meaning in each of the function categories, specified
by the second digit.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



711 CHAPTER 25 FTP basics

25.4.4    Supported FTP commands
emFTP server supports a subset of the defined FTP commands. Refer to [RFC 959] for
a complete detailed description of the FTP commands. The following FTP commands are
implemented:

FTP commands Description

CDUP Change to parent directory
CWD Change working directory
DELE Delete
LIST List
MKD Make directory
NLST Name list
NOOP No operation
PASS Password
PASV Passive
PORT Data port
PWD Print the current working directory
QUIT Logout
RETR Retrieve
RMD Remove directory
RNFR Rename from
RNTO Rename to
SIZE Size of file
STOR Store
SYST System
TYPE Transfer type
USER User name
XCUP Change to parent directory
XMKD Make directory
XPWD Print the current working directory
XRMD Remove directory
AUTH Authentication mechanism (TLS)
PBSZ Protection buffer size
PROT Data channel protection level.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



712 CHAPTER 25 Using the emFTP server sample

25.5    Using the emFTP server sample
Ready to use examples for Microsoft Windows and emNet are supplied. If you use another
TCP/IP stack the sample OS_IP_FTPServer.c has to be adapted. The sample application
opens a port which listens on port 21 until an incoming connection is detected. If a
connection has been established IP_FTPS_Process() handles the client request in an extra
task, so that the server is further listening on port 21. The example application requires a
file system to make data files available. Refer to File system abstraction layer on page 1296
for detailed information.

25.5.1    Using the emFTP server Windows sample
If you have MS Visual C++ 6.00 or any later version available, you will be able to work with
a Windows sample project using emFTP server. If you do not have the Microsoft compiler,
an precompiled executable of the FTP server is also supplied. The base directory of the
Windows sample application is C:\FTP\.

Building the emFTP server sample program

Open the workspace Start_FTPServer.dsw with MS Visual Studio (for example, double-
clicking it). There is no further configuration necessary. You should be able to build the
application without any error or warning message.

The server uses the IP address of the host PC on which it runs. Open a FTP client and
connect by entering the IP address of the host (127.0.0.1) to connect to the FTP server.
The server accepts anonymous logins. You can also login with the user name “Admin” and
the password “Secret”.

25.5.2    Running the emFTP server example on target
hardware

The emFTP server sample application should always be the first step to check the proper
function of the emFTP server with your target hardware.

Add all source files located in the following directories (and their subdirectories) to your
project and update the include path:
• Application
• Config
• Inc
• IP
• IP\IP_FS\[NameOfUsedFileSystem]

It is recommended that you keep the provided folder structure.

The sample application can be used on the most targets without the need for changing
any of the configuration flags. The server processes two connections using the default
configuration.

Note: Two connections mean that the target can handle up one target. A target requires
always two connection, one for the command transfer and one for the data transfers. Every
connection is handled in an separate task. Therefore, the FTP server uses up to three tasks
in the default configuration. One task which listens on port 21 and accepts connections and
two tasks to process the accepted connection. To modify the number of connections only
the macro MAX_CONNECTIONS has to be modified.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



713 CHAPTER 25 Access control

25.6    Access control
The emFTP server supports a fine-grained access permission scheme. Access permissions
can be defined on user-basis for every directory and every file. The access permission of a
directory or a file is a combination of the following attributes: visible, readable and writable.
To control the access permission four callback functions have be implemented in the user
application. The callback functions are defined in the structure FTPS_ACCESS_CONTROL. For
detailed information about these structure, refer to Structure FTPS_ACCESS_CONTROL on
page .

25.6.1    pfFindUser()

Description

Callback function which checks if the user is valid.

Prototype

int (*pfFindUser)   ( const char * sUser );

Parameters

Parameter Description

sUser User name.

Return value

= 0 - UserID invalid or unknown
> 0 - UserID, no password required
< 0 - UserID, password required

Example

enum {
  USER_ID_ANONYMOUS = 1,
  USER_ID_ADMIN
};

/*********************************************************************
*
*       _FindUser
*
*  Function description
*    Callback function for user management.
*    Checks if user name is valid.
*
*  Return value
*    0    UserID invalid or unknown
*  > 0    UserID, no password required
*  < 0    - UserID, password required
*/
static int _FindUser (const char * sUser) {
  if (strcmp(sUser, "Admin") == 0) {
    return - USER_ID_ADMIN;
  }
  if (strcmp(sUser, "anonymous") == 0) {
    return USER_ID_ANONYMOUS;
  }
  return 0;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



714 CHAPTER 25 Access control

25.6.2    pfCheckPass()

Description

Callback function which checks if the password is valid.

Prototype

int (*pfCheckPass)  (       int    UserId,
                      const char * sPass );

Parameters

Parameter Description

UserId Id number
Pass Password string.

Return value

= 0 - UserID known, password valid.
= 1 - UserID unknown or password invalid

Example

enum {
  USER_ID_ANONYMOUS = 1,
  USER_ID_ADMIN
};

/*********************************************************************
*
*       _CheckPass
*
*  Function description
*    Callback function for user management.
*    Checks user password.
*
*  Return value
*    0    UserID know, password valid
*    1    UserID unknown or password invalid
*/
static int _CheckPass (int UserId, const char * sPass) {
  if ((UserId == USER_ID_ADMIN) && (strcmp(sPass, "Secret") == 0)) {
    return 0;
  } else {
    return 1;
  }
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



715 CHAPTER 25 Access control

25.6.3    pfGetDirInfo()

Description

Callback function which checks the permissions of the connected user for every directory.

Prototype

int (*pfGetDirInfo) (       int    UserId,
                      const char * sDirIn,
                            char * pDirOut,
                            int    SizeOfDirOut );

Parameters

Parameter Description

UserId Id number
sDirIn Directory to check permission for
pDirOut Directory that can be accessed
SizeOfDirOut Size of buffer addressed by pDirOut

Return value

Returns a combination of the following:
IP_FTPS_PERM_VISIBLE Directory is visible as a directory entry.
IP_FTPS_PERM_READ Directory can be read/entered.
IP_FTPS_PERM_WRITE Directory can be written to.

Example

/* Excerpt from IP_FTPServer.h */
#define IP_FTPS_PERM_VISIBLE  (1 << 0)
#define IP_FTPS_PERM_READ     (1 << 1)
#define IP_FTPS_PERM_WRITE    (1 << 2)

/* Excerpt from OS_IP_FTPServer.c */
/*********************************************************************
*
*       _GetDirInfo
*
*  Function description
*    Callback function for permission management.
*    Checks directory permissions.
*
*  Return value
*    Returns a combination of the following:
*    IP_FTPS_PERM_VISIBLE    - Directory is visible as a directory entry
*    IP_FTPS_PERM_READ       - Directory can be read/entered
*    IP_FTPS_PERM_WRITE      - Directory can be written to
*
*  Parameters
*    UserId        - User ID returned by _FindUser()
*    sDirIn        - Full directory path and with trailing slash
*    sDirOut       - Reserved for future use
*    DirOutSize    - Reserved for future use
*
*  Notes
*    In this sample configuration anonymous user is allowed to do anything.
*    Samples for folder permissions show how to set permissions for different
*    folders and users. The sample configures permissions for the following
*    directories:
*      - /READONLY/: This directory is read only and can not be written to.
*      - /VISIBLE/ : This directory is visible from the folder it is located
*                    in but can not be accessed.
*      - /ADMIN/   : This directory can only be accessed by the user "Admin".
*/
static int _GetDirInfo(int UserId, const char* sDirIn, char* sDirOut, int DirOutSize) {

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



716 CHAPTER 25 Access control

  int Perm;

  (void)sDirOut;
  (void)DirOutSize;

  Perm = IP_FTPS_PERM_VISIBLE | IP_FTPS_PERM_READ | IP_FTPS_PERM_WRITE;

  if (strcmp(sDirIn, "/READONLY/") == 0) {
    Perm = IP_FTPS_PERM_VISIBLE | IP_FTPS_PERM_READ;
  }
  if (strcmp(sDirIn, "/VISIBLE/") == 0) {
    Perm = IP_FTPS_PERM_VISIBLE;
  }
  if (strcmp(sDirIn, "/ADMIN/") == 0) {
    if (UserId != USER_ID_ADMIN) {
      return 0;  // Only Admin is allowed for this directory
    }
  }
  return Perm;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



717 CHAPTER 25 Access control

25.6.4    pfGetFileInfo()

Description

Callback function which checks the permissions of the connected user for every file.

Prototype

int (*pfGetFileInfo) (       int    UserId,
                       const char * sFileIn,
                             char * pFileOut,
                             int    SizeOfFileOut );

Parameters

Parameter Description

UserId Id number
sFileIn File to check permission for
pFileOut File that can be accessed
SizeOfFileOut Size of buffer addressed by pFileOut

Return value

Returns a combination of the following:
IP_FTPS_PERM_VISIBLE File is visible as a file entry.
IP_FTPS_PERM_READ File can be read.
IP_FTPS_PERM_WRITE File can be written to.

Additional information

Providing a function for file permissions is optional. If using permissions on directory
level is sufficient for your needs pfGetFileInfo may be declared NULL in the
FTPS_ACCESS_CONTROL function table.

Example

/* Excerpt from IP_FTPServer.h */
#define IP_FTPS_PERM_VISIBLE  (1 << 0)
#define IP_FTPS_PERM_READ     (1 << 1)
#define IP_FTPS_PERM_WRITE    (1 << 2)

/* Excerpt from OS_IP_FTPServer.c */
/*********************************************************************
*
*       _GetFileInfo
*
*  Function description
*    Callback function for permission management.
*    Checks file permissions.
*
*  Return value
*    Returns a combination of the following:
*    IP_FTPS_PERM_VISIBLE    - File is visible as a file entry
*    IP_FTPS_PERM_READ       - File can be read
*    IP_FTPS_PERM_WRITE      - File can be written to
*
*  Parameters
*    UserId        - User ID returned by _FindUser()
*    sFileIn       - Full path to the file
*    sFileOut      - Reserved for future use
*    FileOutSize   - Reserved for future use
*
*  Notes
*    In this sample configuration all file accesses are allowed. File
*    permissions are checked against directory permissions. Therefore it
*    is not necessary to limit permissions on files that reside in a

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



718 CHAPTER 25 Access control

*    directory that already limits access.
*    Setting permissions works the same as for _GetDirInfo() .
*/
static int _GetFileInfo(int UserId, const char* sFileIn, char* sFileOut, int FileOutSize) {
  int Perm;

  (void)UserId;
  (void)sFileIn;
  (void)sFileOut;
  (void)FileOutSize;

  Perm = IP_FTPS_PERM_VISIBLE | IP_FTPS_PERM_READ | IP_FTPS_PERM_WRITE;
  return Perm;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



719 CHAPTER 25 Configuration

25.7    Configuration
The emNet FTP server can be used without changing any of the compile time flags. All
compile time configuration flags are preconfigured with valid values, which match the
requirements of most applications.

The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the source code in place of a numerical constant.
A typical example is the configuration of the sector size of a storage medium.

Alias "A"

A macro which operates like a simple text substitute. An example would be the define U8,
which the preprocessor would replace with unsigned char.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations apply, as a
macro is still put into the source code as simple text replacement. Function replacements are
mainly used to add specific functionality to a module which is highly hardware-dependent.
This type of macro is always declared using brackets (and optional parameters).

25.7.1    emFTP server compile time configuration switches

Type Symbolic name Default Description

F FTPS_WARN --

Defines a function to output
warnings. In debug configurations
(DEBUG = 1) FTPS_WARN maps to
IP_Warnf_Application().

F FTPS_LOG --

Defines a function to output logging
messages. In debug configurations
(DEBUG = 1) FTPS_LOG maps to
IP_Logf_Application().

N FTPS_BUFFER_SIZE 512 Defines the size of the send and
receive buffer of the FTP server.

N FTPS_MAX_PATH 128 Defines the maximum length of the
buffer used for the path string.

N FTPS_MAX_PATH_DIR 128 Defines the maximum length of the
buffer used for the directory string.

N FTPS_MAX_FILE_NAME 13 Defines the maximum length of the
buffer used for a filename string.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



720 CHAPTER 25 Configuration

25.7.2    emFTP server runtime configuration
The input buffer, the output buffer, the path buffer, the directory buffer and the filename
buffer are runtime configurable.

Up to version 3.14 the compile time switches FTPS_AUTH_BUFFER_SIZE, FTPS_MAX_PATH,
FTPS_MAX_PATH_DIR, FTPS_MAX_FILE_NAME and FTPS_ERR_BUFFER_SIZE were used to
configure the sizes of the buffers. These compile time switches are still available to
guarantee compatibility to previous versions and are used as default values for the buffer
sizes in applications where the runtime configuration function IP_FTPS_ConfigBufSizes()
is not called.

The compile time switches FTPS_AUTH_BUFFER_SIZE and FTPS_ERR_BUFFER_SIZE are no
longer required. For further information, please refer to IP_FTPS_ConfigBufSizes on
page 724.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



721 CHAPTER 25 Configuration

25.7.3    emFTP server system time
The FTP server requires a system time for the transmission of a complete file timestamp. FTP
servers send only a piece of the timestamp of a file, either month, day and year or month,
day and time. For the decision which pieces of the timestamp has to be transmitted, it
compares the year of the current system time with the year which is stored in the timestamp
of the file. Depending on the result of this comparison either the year or the time will be
send. The following two examples show the output for both cases.

Example
1. If the value for year in the timestamp of the file is smaller then the value for year in

the current system time, year will be sent:
-rw-r--r-- 1 root 2000 Jan 1 2007 PAKET00.TXT
In this case, the FTP client leaves this column empty or fills the missing time with 00:00.
The following screenshot shows the output of the Microsoft Windows command line FTP
client:

  
2. If the value for year in the timestamp of the file is identical to the value for year in the

current system time, the time (HH:MM) will be sent:
-rw-r--r-- 1 root 1000 Jul 29 11:04 PAKET01.TXT
In this case, the FTP client leaves this column empty or fills the missing year with
the current year. The following screenshot shows the output of the Microsoft Windows
command line FTP client:

  

In the example, the value for the current time and date is defined to 1980-01-01 00:00.
Therefore, the output will be similar to example 1., since no real time clock (RTC) has been
implemented. Refer to pfGetTimeDate() on page 722 for detailed information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



722 CHAPTER 25 Configuration

25.7.3.1    pfGetTimeDate()

Description

Returns the current system time.

Prototype

int (*pfGetTimeDate) ( void );

Return value

Current system time. If no real time clock is implemented, it should return 0x00210000
(1980-01-01 00:00)

Additional information

The format of the time is arranged as follows:
Bit 0-4: 2-second count (0-29)
Bit 5-10: Minutes (0-59)
Bit 11-15: Hours (0-23)
Bit 16-20: Day of month (1-31)
Bit 21-24: Month of year (1-12)
Bit 25-31: Number of years since1980 (0-127)

This function pointer is used in the FTPS_APPLICATION structure. Refer to Structure
FTPS_APPLICATION on page  for further information.

Example

static U32 _GetTimeDate(void) {
  U32 r;
  U16 Sec, Min, Hour;
  U16 Day, Month, Year;

  Sec   = 0;        // 0 based.  Valid range: 0..59
  Min   = 0;        // 0 based.  Valid range: 0..59
  Hour  = 0;        // 0 based.  Valid range: 0..23
  Day   = 1;        // 1 based.  Means that 1 is 1.
                    //           Valid range is 1..31 (depending on month)
  Month = 1;        // 1 based.  Means that January is 1. Valid range is 1..12.
  Year  = 28;       // 1980 based. Means that 2008 would be 28.
  r   = Sec / 2 + (Min << 5) + (Hour  << 11);
  r  |= (U32)(Day + (Month << 5) + (Year  << 9)) << 16;
  return r;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



723 CHAPTER 25 API functions

25.8    API functions
Function Description

IP_FTPS_ConfigBufSizes()
Sets the buffer size used by the FTP server
tasks.

IP_FTPS_CountRequiredMem()
Counts the memory required for one
thread.

IP_FTPS_Init()
Initializes the application specific FTP
server context.

IP_FTPS_Process() Thread functionality of the FTP server.
IP_FTPS_ProcessEx() Thread functionality of the FTP server.

IP_FTPS_OnConnectionLimit()
Sends the indication that the connection
limit is reached.

IP_FTPS_SetSignOnMsg()
Sets the sign on message for the FTP
server.

IP_FTPS_IsDataSecured()
Indicates if the data connection is also
secured.

IP_FTPS_AllowOnlySecured()
Makes the server allowing only secured
connections in explicit mode (FTPES).

IP_FTPS_SetImplicitMode()
Indicates to the server that implicit mode
(FTPS) is active.

IP_FTPS_UseRenameToFullPath()
Makes the server use the full path with the
IP_FS layer for a rename operation.

IP_FTPS_SendFormattedString()
Sends a string with placeholders that will
be filled using SEGGER_vsnprintfEx() for
one line of a sign on message.

IP_FTPS_SendMem() Sends data via the control connection.

IP_FTPS_SendString()
Sends a zero-terminated string via the
control connection.

IP_FTPS_SendUnsigned()
Sends an unsigned value via the control
connection.

IP_FTPS_SetSignOnMsgCallback()
Sets a callback that gets executed to send
a sign on message to a new client.

IP_FTPS_SetOnServerOperationCallback()
Sets a new callback that gets executed
when an operation is done that would
modify the FS layer.

IP_FTPS_SetOperationResultCallback()
Sets a new callback that gets executed to
let the user know about the result of a file
operation that modified a file.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



724 CHAPTER 25 API functions

25.8.1    IP_FTPS_ConfigBufSizes()

Description

Sets the buffer size used by the FTP server tasks.

Prototype

void IP_FTPS_ConfigBufSizes(FTPS_BUFFER_SIZES * pBufferSizes);

Parameters

Parameter Description

pBufferSizes Configuration of buffer sizes.

For detailed information about the structure type FTPS_BUFFER_SIZES refer to Structure
FTPS_BUFFER_SIZES on page .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



725 CHAPTER 25 API functions

25.8.2    IP_FTPS_CountRequiredMem()

Description

Counts the memory required for one thread. This can be used to determine the total
required memory pool size for a configuration.

Prototype

U32 IP_FTPS_CountRequiredMem(FTPS_CONTEXT * pContext);

Parameters

Parameter Description

pContext Context keeping track of configured settings. Can be NULL.

Return value

Amount of memory required for internals to handle one thread.

Additional information

In addition to the memory requirement calculated for the FTP server internals, some
additional memory might be required for managing a memory pool.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



726 CHAPTER 25 API functions

25.8.3    IP_FTPS_Init()

Description

Initializes the application specific FTP server context. This context is specific to one
connection. Has to be called if IP_FTPS_ProcessEx() is used for the task processing.

Prototype

void IP_FTPS_Init(      FTPS_CONTEXT     * pContext,
                  const IP_FTPS_API      * pIP_API,
                  const IP_FS_API        * pFS_API,
                  const FTPS_APPLICATION * pApplication,
                  const FTPS_SYS_API     * pSYS_API);

Parameters

Parameter Description

pContext
Pointer to the FTP server application context. This keeps
track of configured settings.

pIP_API
Function table with API functions necessary for IP
operations.

pFS_API Function table with API functions for file system operations.
pApplication FTP server application settings.

pSYS_API
Function table with API functions necessary for system
operations.

Additional information

The structure type IP_FTPS_API contains mappings of the required socket functions to
the actual IP stack. This is required because the socket functions are slightly different on
different systems.

For detailed information about the used structure types, please refer to:

Structure Description

IP_FTPS_API Structure IP_FTPS_API on page 
IP_FS_API File system abstraction layer on page 1296

FTPS_APPLICATION
Structure FTPS_APPLICATION on
page 

FTPS_SYS_API Structure FTPS_SYS_API on page 

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



727 CHAPTER 25 API functions

25.8.4    IP_FTPS_Process()

Description

Thread functionality of the FTP server. Initializes and starts the FTP server. Returns when
the connection is closed or a fatal error occurs.

Prototype

int IP_FTPS_Process(const IP_FTPS_API      * pIP_API,
                          FTPS_SOCKET        hCtrlSock,
                    const IP_FS_API        * pFS_API,
                    const FTPS_APPLICATION * pApplication);

Parameters

Parameter Description

pIP_API
Function table with API functions necessary for IP
operations.

hCtrlSock Handle of the control socket.
pFS_API Function table with API functions for file system operations.
pApplication FTP server application settings.

Return value

0 O.K.

Additional information

New implementations should use IP_FTPS_ConfigBufSizes(), IP_FTPS_Init() and
IP_FTPS_ProcessEx() instead of IP_FTPS_Process() .

The structure type IP_FTPS_API contains mappings of the required socket functions to
the actual IP stack. This is required because the socket functions are slightly different on
different systems.

The hCtrlSock is the socket which was created when the client has been connected to the
command port (usually port 21).

For detailed information about the structure type IP_FS_API refer to File system abstraction
layer on page 1296. For detailed information about the structure type FTPS_APPLICATION
refer to Structure FTPS_APPLICATION on page .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



728 CHAPTER 25 API functions

25.8.5    IP_FTPS_ProcessEx()

Description

Thread functionality of the FTP server. Returns when the connection is closed or a fatal
error occurs.

Prototype

int IP_FTPS_ProcessEx(FTPS_CONTEXT * pContext,
                      FTPS_SOCKET    hCtrlSock);

Parameters

Parameter Description

pContext
Pointer to the FTP server application context. This keeps
track of configured settings.

hCtrlSock Handle of the control socket.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

The hCtrlSock is the socket which was created when the client has been connected to the
command port (usually port 21).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



729 CHAPTER 25 API functions

25.8.6    IP_FTPS_OnConnectionLimit()

Description

Sends the indication that the connection limit is reached.

Prototype

void IP_FTPS_OnConnectionLimit(const IP_FTPS_API * pIP_API,
                                     FTPS_SOCKET   hCtrlSock);

Parameters

Parameter Description

pIP_API
Function table with API functions necessary for IP
operations.

hCtrlSock Handle of the control socket.

Additional information

The structure type IP_FTPS_API contains mappings of the required socket functions to
the actual IP stack. This is required because the socket functions are slightly different on
different systems.

The hCtrlSock is the socket which was created when the client has been connected to the
command port (usually port 21).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



730 CHAPTER 25 API functions

25.8.7    IP_FTPS_SetSignOnMsg()

Description

Sets the sign on message for the FTP server.

Prototype

void IP_FTPS_SetSignOnMsg(const char * sSignOnMsg);

Parameters

Parameter Description

sSignOnMsg The “sign on” message.

Additional information

If not set with this function, the default sign on message from the FTPS_SIGN_ON_MSG define
will be used.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



731 CHAPTER 25 API functions

25.8.8    IP_FTPS_IsDataSecured()

Description

Indicates if the data connection is also secured.

Prototype

int IP_FTPS_IsDataSecured(const FTPS_CONTEXT * pContext);

Parameters

Parameter Description

pContext Pointer to the FTP context.

Return value

0 Data connection is not secured.
1 Data connection is secured.

Additional information

If pContext is NULL, it is assumed that data are secured too.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



732 CHAPTER 25 API functions

25.8.9    IP_FTPS_AllowOnlySecured()

Description

Makes the server allowing only secured connections in explicit mode (FTPES). When this
API is called, the command connection shall be secured. If the flag DataOnOff is set, data
connection shall also be secured.

Prototype

void IP_FTPS_AllowOnlySecured(FTPS_CONTEXT * pContext,
                              unsigned       DataOnOff);

Parameters

Parameter Description

pContext Pointer to the FTP context.
DataOnOff Flag to indicate if the data connection shall be also secured.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



733 CHAPTER 25 API functions

25.8.10    IP_FTPS_SetImplicitMode()

Description

Indicates to the server that implicit mode (FTPS) is active.

Prototype

void IP_FTPS_SetImplicitMode(FTPS_CONTEXT * pContext);

Parameters

Parameter Description

pContext Pointer to the FTP context.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



734 CHAPTER 25 API functions

25.8.11    IP_FTPS_UseRenameToFullPath()

Description

Makes the server use the full path with the IP_FS layer for a rename operation.

Prototype

void IP_FTPS_UseRenameToFullPath(FTPS_CONTEXT * pContext);

Parameters

Parameter Description

pContext Pointer to the FTP context.

Additional information

By default many filesystems expect only the new name to be given in a rename operation
and might even fail if given a full path. This routine allows the full path of the new name
to be given to the IP_FS layer if this is required with your filesystem.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



735 CHAPTER 25 API functions

25.8.12    IP_FTPS_SendFormattedString()

Description

Sends a string with placeholders that will be filled using SEGGER_vsnprintfEx() for one
line of a sign on message.

Prototype

int IP_FTPS_SendFormattedString(      FTPS_OUTPUT * pOutput,
                                const char        * sFormat,
                                                    ...);

Parameters

Parameter Description

pOutput Connection context.
sFormat Formatted string that might contain placeholders.

Return value

Number of characters (without termination) that would have been stored if the buffer had
been large enough.

Additional information

Allows sending a string containing placeholders without the need to have the final string
created into a temporary buffer in the application. The output buffer is used directly which
saves a buffer and avoids unnecessary copy operations from the application to the output
buffer.

This routine is only meant to be used from within a callback that has been set using
IP_FTPS_SetSignOnMsgCallback() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



736 CHAPTER 25 API functions

25.8.13    IP_FTPS_SendMem()

Description

Sends data via the control connection.

Prototype

int IP_FTPS_SendMem(      FTPS_OUTPUT * pOutput,
                    const U8          * pData,
                          unsigned      NumBytes);

Parameters

Parameter Description

pOutput Connection context.
pData Pointer to a memory location to send.
NumBytes Number of bytes to send.

Return value

= 0 O.K.
≠ 0 Error

Additional information

This routine is only meant to be used from within a callback that has been set using
IP_FTPS_SetSignOnMsgCallback() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



737 CHAPTER 25 API functions

25.8.14    IP_FTPS_SendString()

Description

Sends a zero-terminated string via the control connection.

Prototype

int IP_FTPS_SendString(      FTPS_OUTPUT * pOutput,
                       const char        * s);

Parameters

Parameter Description

pOutput Connection context.
s String to send.

Return value

= 0 O.K.
≠ 0 Error

Additional information

This routine is only meant to be used from within a callback that has been set using
IP_FTPS_SetSignOnMsgCallback() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



738 CHAPTER 25 API functions

25.8.15    IP_FTPS_SendUnsigned()

Description

Sends an unsigned value via the control connection.

Prototype

int IP_FTPS_SendUnsigned(FTPS_OUTPUT * pOutput,
                         unsigned      v,
                         unsigned      Base,
                         int           NumDigits);

Parameters

Parameter Description

pOutput Connection context.
v Value to send.
Base Numerical base of the value v.
NumDigits Number of digits to send. 0 can be used as a wildcard.

Return value

= 0 O.K.
≠ 0 Error

Additional information

This routine is only meant to be used from within a callback that has been set using
IP_FTPS_SetSignOnMsgCallback() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



739 CHAPTER 25 API functions

25.8.16    IP_FTPS_SetSignOnMsgCallback()

Description

Sets a callback that gets executed to send a sign on message to a new client.

Prototype

void IP_FTPS_SetSignOnMsgCallback(FTPS_CONTEXT               * pContext,
                                  FTPS_SEND_SIGN_ON_MSG_FUNC * pf);

Parameters

Parameter Description

pContext Pointer to the FTP context.
pf Callback to set.

Additional information

This API has to be called after IP_FTPS_Init() .

Example

/*********************************************************************
*
*       _cbSendSignOnMessage()
*
*  Function description
*    Sends a custom sign on message to a client.
*
*  Parameters
*    pOutput: Connection context.
*    Code   : The three digit status code of the message.
*    p      : Reserved for future extensions of this API.
*
*  Additional information
*    A sign on message can consist of multiple lines and has to be
*    in the following format (the value 220 is assumed as Code):
*
*      220-A multi line response starts with the code and a hyphen.\r\n
*      Further lines do not need to use the code in front.\r\n
*      All lines provided by the callback need to end with CRLF.\r\n
*        Lines can start with one or multiple whitespaces.\r\n
*      220 The last line is indicated by the code followed by a whitespace.\r\n
*/
static void _cbSendSignOnMessage(FTPS_OUTPUT* pOutput, unsigned Code, void* p) {
  FTPS_USE_PARA(p);

  //
  // A sign on message can be dynamically generated using a formatted
  // output. The message can also be generated using multiple calls to
  // IP_FTPS_Send* API calls.
  // Please do not forget to add the CRLF at each end of line.
  //
  IP_FTPS_SendFormattedString(pOutput, "%u-Welcome to emFTP server\r\n"
                                       "  This is an example of a multi line sign on message generated via callback.\r\n"
                                       "%u It simply works!\r\n", Code, Code);
}

void main(void) {
  ...
  IP_FTPS_Init(&FTPSContext, &_IP_API, _pFS_API, &_Application, &_Sys_API);
  IP_FTPS_SetSignOnMsgCallback(&FTPSContext, _cbSendSignOnMessage);
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



740 CHAPTER 25 API functions

25.8.17    IP_FTPS_SetOnServerOperationCallback()

Description

Sets a new callback that gets executed when an operation is done that would modify the
FS layer. The callback will be informed about the user, the file and the operation that is
attempted and can decide if the operation should proceed or be canceled.

Prototype

void IP_FTPS_SetOnServerOperationCallback(FTPS_CONTEXT                  * pContext,
                                          FTPS_ON_SERVER_OPERATION_FUNC * pf);

Parameters

Parameter Description

pContext Pointer to the FTP context.
pf Pointer to a callback function.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



741 CHAPTER 25 API functions

25.8.18    IP_FTPS_SetOperationResultCallback()

Description

Sets a new callback that gets executed to let the user know about the result of a file
operation that modified a file. The callback contains a struct FTPS_CB_INFO which includes
all relevant information.

Prototype

void IP_FTPS_SetOperationResultCallback(FTPS_CONTEXT               * pContext,
                                        FTPS_OPERATION_RESULT_FUNC * pf);

Parameters

Parameter Description

pContext Pointer to the FTP context.
pf Pointer to a callback function.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



742 CHAPTER 25 Data structures

25.9    Data structures

25.9.1    IP_FTPS_API

Description

This structure contains the pointer to the socket functions which are required to use the
FTP server.

Prototype

typedef struct {
  int         (*pfSend)      (const unsigned char* pData, int Len,
                              FTPS_SOCKET hSock);
  int         (*pfReceive)   (      unsigned char* pData, int Len,
                              FTPS_SOCKET hSock);
  FTPS_SOCKET (*pfConnect)   (FTPS_SOCKET hCtrlSock, U16 Port);
  void        (*pfDisconnect)(FTPS_SOCKET hDataSock);
  FTPS_SOCKET (*pfListen)    (FTPS_SOCKET hCtrlSock, U16* pPort, U8* pIPAddr);
  int         (*pfAccept)    (FTPS_SOCKET hCtrlSock, FTPS_SOCKET* phDataSocket);
  int         (*pfSetSecure) (FTPS_SOCKET Socket, FTPS_SOCKET Clone);
} IP_FTPS_API;

Member Description

pfSend Callback function that sends data to the client on socket level.
pfReceive Callback function that receives data from the client on socket level.

pfConnect
Callback function that handles the connect back to a FTP client on
socket level if not using passive mode.

pfDisconnect
Callback function that disconnects a connection to the FTP client on
socket level if not using passive mode.

pfListen Callback function that binds the server to a port and addr.
pfAccept Callback function that accepts incoming connections.

pfSetSecure
Callback function that sets a FTPS_SOCKET (input command
connection) as secured and eventually clone it for the output
command connection. Could be NULL if TLS security is not supported.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



743 CHAPTER 25 Data structures

25.9.2    FTPS_ACCESS_CONTROL

Description

This structure contains the pointer to the access control callback functions.

Prototype

typedef struct {
  int (*pfFindUser)   (const char* sUser);
  int (*pfCheckPass)  (int UserId, const char* sPass);
  int (*pfGetDirInfo) (int UserId, const char* sDirIn , char* sDirOut ,
                       int SizeOfDirOut);
  int (*pfGetFileInfo)(int UserId, const char* sFileIn, char* sFileOut,
                       int SizeOfFileOut);
} FTPS_ACCESS_CONTROL;

Member Description

pfFindUser Callback function that checks if the user is valid.
pfCheckPass Callback function that checks if the password is valid.

pfGetDirInfo
Callback function that checks the permissions of the connected user
for every directory.

pfGetFileInfo
Callback function that checks the permissions of the connected user
for every file. May be NULL if directory permissions are sufficient for
your needs.

Example

Refer to Access control on page 713 for an example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



744 CHAPTER 25 Data structures

25.9.3    FTPS_BUFFER_SIZES

Description

Contains the configuration for the buffer to allocate when using IP_FTPS_ProcessEx() .

Type definition

typedef struct {
  U32  NumBytesInBuf;
  U32  NumBytesInBufBeforeFlush;
  U32  NumBytesOutBuf;
  U32  NumBytesCwdNameBuf;
  U32  NumBytesPathNameBuf;
  U32  NumBytesDirNameBuf;
  U32  NumBytesFileNameBuf;
  U32  NumBytesAbsNameBuf;
} FTPS_BUFFER_SIZES;

Structure members

Member Description

NumBytesInBuf Size of Rx buffer. By default FTPS_BUFFER_SIZE .

NumBytesInBufBeforeFlush

Number of bytes to collect in Rx buffer before they are
written to the filesystem.
• 0 : Disabled (default). Chunks regardless of their size read

will be written
directly to the filesystem.
• NumBytes: Typically the same as NumBytesInBuf and

should be a multiple of the
block size used by your filesystem e.g. 2k sectors for NAND
or SD-card. The data receive function will be called multiple
times until the InBuffer gets saturated for the flush or the
last chunk of data (connection close) has been read.

NumBytesOutBuf Size of Tx buffer. By default FTPS_BUFFER_SIZE .

NumBytesCwdNameBuf
Size of buffer used for the Current Working Directory. By
default FTPS_MAX_PATH_DIR .

NumBytesPathNameBuf
Size of buffer used for paths (directory + filename). By
default FTPS_MAX_PATH .

NumBytesDirNameBuf
Size of buffer used for dir(ectory) names (directory without
filename). By default FTPS_MAX_PATH .

NumBytesFileNameBuf
Size of buffer used for filenames. By default
FTPS_MAX_FILE_NAME .

NumBytesAbsNameBuf
Size of buffer used for absolute path names. By default
FTPS_MAX_PATH .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



745 CHAPTER 25 Data structures

25.9.4    FTPS_SYS_API

Description

This structure contains the pointers to system functions which are required to use the
emFTP server with IP_FTPS_Init() and IP_FTPS_ProcessEx().

Prototype

typedef struct {
  void* (*pfAlloc)(U32 NumBytesReq);
  void  (*pfFree) (void* p);
} IP_FTPS_API;

Member Description

pfAlloc
Callback function that allocates memory for buffers as configured
using IP_FTPS_ConfigBufSizes().

pfFree Callback function that frees previously allocated resources.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



746 CHAPTER 25 Data structures

25.9.5    FTPS_APPLICATION

Description

Used to store application specific parameters.

Prototype

typedef struct {
  FTPS_ACCESS_CONTROL* pAccess;
  U32 (*pfGetTimeDate) (void);
} FTPS_APPLICATION;

Member Description

pAccess Pointer to the FTPS_ACCESS_APPLCIATION structure.
pfGetTimeDate Pointer to the function which returns the current system time.

Additional information

For additional information to structure FTPS_ACCESS_APPLICATION refer to Structure
FTPS_ACCESS_CONTROL on page . For additional information to function pointer
pfGetTimeDate() refer to emFTP server system time on page 721.

Example

/* Excerpt from OS_IP_FTPServer.c */

/*********************************************************************
*
*       FTPS_ACCESS_CONTROL
*
*  Description
*   User/pass data table
*/
static FTPS_ACCESS_CONTROL _Access_Control = {
  _FindUser,
  _CheckPass,
  _GetDirInfo
};

*********************************************************************
*
*       _GetTimeDate
*/
static U32 _GetTimeDate(void) {
  U32 r;
  U16 Sec, Min, Hour;
  U16 Day, Month, Year;

  Sec   = 0;        // 0 based.  Valid range: 0..59
  Min   = 0;        // 0 based.  Valid range: 0..59
  Hour  = 0;        // 0 based.  Valid range: 0..23
  Day   = 1;        // 1 based.  Means that 1 is 1.
                    //           Valid range is 1..31 (depending on month)
  Month = 1;        // 1 based.  Means that January is 1. Valid range is 1..12.
  Year  = 28;       // 1980 based. Means that 2008 would be 28.
  r   = Sec / 2 + (Min << 5) + (Hour  << 11);
  r  |= (U32)(Day + (Month << 5) + (Year  << 9)) << 16;
  return r;
}

*********************************************************************
*
*       FTPS_APPLICATION
*
*  Description
*    Application data table, defines all application specifics

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



747 CHAPTER 25 Data structures

*    used by the FTP server
*/
static const FTPS_APPLICATION _Application = {
  &_Access_Control,
  _GetTimeDate
};

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



748 CHAPTER 25 Data structures

25.9.6    FTPS_CB_INFO

Description

Contains relevant information for the operation result callback pfOperationResult.

Prototype

typedef struct {
  const char*         pPathname;
  const char*         sComment;
  FTPS_OPERATION_TYPE Operation;
  unsigned            Code;
  int                 UserId;
} FTPS_CB_INFO;

Member Description

pPathname Pathname of the file.
sComment Comment to send with the numerical FTP command.
Operation Operation that is done for the file.
Code Code/number of the FTP command.
UserId Id of the User attempting the operation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



749 CHAPTER 25 Data structures

25.9.7    FTPS_OPERATION_TYPE

Description

Can be used to identify each FTP Operation Type.

Prototype

typedef enum {
  FTPS_CMD_OPERATION_NONE,      // No FTP Operation.
  FTPS_CMD_OPERATION_NOOP,      // NOOP
 (No operation): The client requests no action, often used to keep the connection alive.
  FTPS_CMD_OPERATION_PASS,      // PASS
 (Password): The client provides the password for authentication.
  FTPS_CMD_OPERATION_QUIT,      // QUIT
 (Quit): The client requests to terminate the connection.
  FTPS_CMD_OPERATION_FEAT,      // FEAT
 (Features): The client requests a list of server-supported features.
  FTPS_CMD_OPERATION_SYST,      // SYST
 (System): The client requests information about the system type
 (e.g., UNIX, Windows).
  FTPS_CMD_OPERATION_TYPE,      // TYPE
 (Type): The client specifies the transfer type (ASCII or binary).
  FTPS_CMD_OPERATION_AUTH,      // AUTH
 (Authentication): The client requests a specific authentication method.
  FTPS_CMD_OPERATION_PROT,      // PROT
 (Protection Level): The client sets the protection level for the data connection.
  FTPS_CMD_OPERATION_PBSZ,      // PBSZ
 (Protection Buffer Size): The client requests the buffer size for secure data transfer.
  FTPS_CMD_OPERATION_USER,      // USER
 (Username): The client provides the username for authentication.
  FTPS_CMD_OPERATION_CDUP,      // CDUP
 (Change to Parent Directory): The client requests to move to the parent directory.
  FTPS_CMD_OPERATION_CWD,       // CWD
 (Change Working Directory): The client requests to change the current directory.
  FTPS_CMD_OPERATION_EPRT,      // EPRT
 (Extended Port): The client provides the extended port number for the data connection.
  FTPS_CMD_OPERATION_EPSV,      // EPSV
 (Extended Passive Mode): The client requests passive mode with extended features.
  FTPS_CMD_OPERATION_DELE,      // DELE
 (Delete): The client requests to delete a file or directory.
  FTPS_CMD_OPERATION_LIST,      // LIST
 (List): The client requests a listing of files and directories.
  FTPS_CMD_OPERATION_MLST,      // MLST
 (Machine-Readable List): The client requests a detailed listing of files, including metadata.
  FTPS_CMD_OPERATION_MLSD,      // MLSD
 (Machine-Readable Directory): The client requests a machine-readable listing of directory contents.
  FTPS_CMD_OPERATION_MKD,       // MKD
 (Make Directory): The client requests to create a new directory.
  FTPS_CMD_OPERATION_NLST,      // NLST
 (Name List): The client requests a simple list of file names.
  FTPS_CMD_OPERATION_PASV,      // PASV
 (Passive Mode): The client requests the server to open a passive data connection.
  FTPS_CMD_OPERATION_PORT,      // PORT
 (Active Mode): The client requests the server to open a data connection on a specific port.
  FTPS_CMD_OPERATION_PWD,       // PWD
 (Print Working Directory): The client requests the current working directory path.
  FTPS_CMD_OPERATION_RETR,      // RETR
 (Retrieve): The client requests to retrieve a file from the server.
  FTPS_CMD_OPERATION_RMD,       // RMD
 (Remove Directory): The client requests to remove a directory.
  FTPS_CMD_OPERATION_RNFR,      // RNFR
 (Rename From): The client specifies the file to rename (source file).
  FTPS_CMD_OPERATION_RNTO,      // RNTO
 (Rename To): The client specifies the new name for the file (destination).
  FTPS_CMD_OPERATION_SIZE,      // SIZE
 (File Size): The client requests the size of a file.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



750 CHAPTER 25 Data structures

  FTPS_CMD_OPERATION_STOR,      // STOR
 (Store): The client uploads a file to the server.
  FTPS_CMD_OPERATION_XPWD,      // XPWD
 (Extended Print Working Directory): The client requests the current directory in an extended format.
  FTPS_CMD_OPERATION_XMKD,      // XMKD
 (Extended Make Directory): The client requests to create a directory with extended options.
  FTPS_CMD_OPERATION_XRMD,      // XRMD
 (Extended Remove Directory): The client requests to remove a directory with extended options.
  FTPS_CMD_OPERATION_XCUP,      // XCUP
 (Extended Change to Parent Directory): The client requests to move to the parent directory in an extended mode.
  FTPS_CMD_OPERATION_UNKNOWN  
  // UNKNOWN: Represents an unknown or undefined operation (fallback value).
} FTPS_OPERATION_TYPE;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



751 CHAPTER 25 Data structures

25.9.8    FTPS_SEND_SIGN_ON_MSG_FUNC

Description

Callback executed for sending a sign on message for a new client.

Type definition

typedef void (FTPS_SEND_SIGN_ON_MSG_FUNC)(FTPS_OUTPUT * pOutput,
                                          unsigned      Code,
                                          void        * p);

Parameters

Parameter Description

pOutput Connection context.
Code The three digit status code of the message.
p Reserved for future extensions of this API.

Additional information

A sign on message can consist of multiple lines and has to be in the following format (the
value 220 is assumed as Code):

220-A multi line response starts with the code and a hyphen.\r\n
Further lines do not need to use the code in front.\r\n
All lines provided by the callback need to end with CRLF.\r\n
     Lines can start with one or multiple whitespaces.\r\n
220 The last line is indicated by the code followed by a whitespace.\r\n

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



752 CHAPTER 25 Data structures

25.9.9    FTPS_ON_SERVER_OPERATION_FUNC

Description

Callback executed for modifying file operations, i.e. calls to the FS Layer which modify
something. The application can then decide, depending on the return value of the callback,
whether to go ahead with the file operation or to cancel it.

Type definition

typedef int (FTPS_ON_SERVER_OPERATION_FUNC)(int                 UserId,
                                            char              * pPathname,
                                            FTPS_OPERATION_TYPE operation);

Parameters

Parameter Description

UserId User that is attempting the file operation.

pPathname
Filename including path of the file that the operation is
done for.

operation File operation (e.g. STOR, DELE, RNTO, …)

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



753 CHAPTER 25 Data structures

25.9.10    FTPS_OPERATION_RESULT_FUNC

Description

Callback executed for each operation result. Allows the application to be informed about
the success or failure of an FTP operation.

Type definition

typedef void (FTPS_OPERATION_RESULT_FUNC)(FTPS_CB_INFO * pOperationResult);

Parameters

Parameter Description

pOperationResult Struct with information about the Operation and its result.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



754 CHAPTER 25 Resource usage

25.10    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the FTP server presented in the tables below have been
measured on a Cortex-M4 system. Details about the further configuration can be found in
the sections of the specific example.

Configuration used

#define FTPS_BUFFER_SIZE    512
#define FTPS_MAX_PATH       128
#define FTPS_MAX_PATH_DIR   128
#define FTPS_MAX_FILE_NAME   13

25.10.1    ROM usage on a Cortex-M4 system
The following resource usage has been measured on a Cortex-M4 system using SEGGER’s
Embedded Studio V3.12 using GCC version 6.2.1 20161205 (release) [ARM/embedded-6-
branch revision 243739] (arm-none-eabi) with size optimization.

Addon ROM

emFTP server approximately 7.3 kBytes

25.10.2    RAM usage
Using the legacy API IP_FTPS_Process(), almost all of the RAM used by the FTP server is
taken from task stacks. For new implementations IP_FTPS_ProcessEx() should be used,
which allocates memory using a callback, keeping the task stack requirement low.

The amount of RAM required for every child task depends on the configuration of your
server. The table below shows typical RAM requirements for your task stacks.

Task Description RAM

ParentTask Listens for incoming connections. approximately 500 bytes
including TCP/IP task stack.

ChildTask Handles a request.
approximately 1800 bytes for the
FTP server including TCP/IP stack
(excluding filesystem).

Note: The emFTP server requires at least 1 child task.

The approximately RAM usage for the FTP server buffers can be calculated by
adding up all buffer sizes configured using IP_FTPS_ConfigBufSizes(). The function
IP_FTPS_CountRequiredMem() can be used to retrieve the required memory for the buffers
for one child task for the current configuration.

The FTP server sample is designed to help you to find the correct configuration by using
IP_FTPS_CountRequiredMem(). In addition the sample warns you about an insufficient
memory configuration.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 26
 
emFTP client (Add-on)

The emFTP client is an optional extension to the emNet TCP/IP stack. The emFTP client can
be used with emNet or with a different TCP/IP stack. All functions which are required to
add a emFTP client to your application are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



756 CHAPTER 26 emFTP client

26.1    emFTP client
The emFTP client is an optional extension which adds the client part of FTP protocol to
the stack. FTP stands for File Transfer Protocol. It is the basic mechanism for moving files
between machines over TCP/IP based networks such as the Internet. FTP is a client/server
protocol, meaning that one machine, the client, initiates a file transfer by contacting another
machine, the server and making requests.

The FTP client implements the relevant parts of the following RFCs.

RFC# Description

[RFC 959] FTP - File Transfer Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc959.txt

The following table shows the contents of the emFTP client root directory:

Directory Content

.\Application\
Contains the example application to run the FTP
client with emNet.

.\Config\ Contains the FTP client configuration file.

.\Inc\ Contains the required include files.

.\IP\ Contains the FTP client sources.

.\IP\FS\

Contains the sources for the file system abstraction
layer and the read-only file system. Refer to File
system abstraction layer on page 1296 for detailed
information.

.\Windows\FTPclient\
Contains the source, the project files and an
executable to run emFTP client on a Microsoft
Windows host.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



757 CHAPTER 26 Feature list

26.2    Feature list
• Low memory footprint.
• Multiple connections supported.
• Independent of the file system: Any file system can be used.
• Independent of the TCP/IP stack: Any stack with sockets can be used.
• Demo application included.
• Project for executable on PC for Microsoft Visual Studio included.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



758 CHAPTER 26 Requirements

26.3    Requirements
TCP/IP stack

The emFTP client requires a TCP/IP stack. It is optimized for emNet, but any RFC-compliant
TCP/IP stack can be used. The shipment includes a Win32 simulation, which uses the
standard Winsock API and an implementation which uses the socket API of emNet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



759 CHAPTER 26 FTP basics

26.4    FTP basics
The File Transfer Protocol (FTP) is an application layer protocol. FTP is an unusual service
in that it utilizes two ports, a ’Data’ port and a ’CMD’ (command) port. Traditionally these
are port 21 for the command port and port 20 for the data port. FTP can be used in two
modes, active and passive. Depending on the mode, the data port is not always on port 20.

  

When an FTP client contacts a server, a TCP connection is established between the two
machines. The server does a passive open (a socket is listen) when it begins operation;
thereafter clients can connect with the server via active opens. This TCP connection persists
for as long as the client maintains a session with the server, (usually determined by a human
user) and is used to convey commands from the client to the server, and the server replies
back to the client. This connection is referred to as the FTP command connection.

The FTP commands from the client to the server consist of short sets of ASCII characters,
followed by optional command parameters. For example, the FTP command to display the
current working directory is PWD (Print Working Directory). All commands are terminated
by a carriage return-linefeed sequence (CRLF) (ASCII 10,13; or Ctrl-J, Ctrl-M). The servers
replies consist of a 3 digit code (in ASCII) followed by some explanatory text. Generally
codes in the 200s are success and 500s are failures. See the RFC for a complete guide to
reply codes. Most FTP clients support a verbose mode which will allow the user to see these
codes as commands progress.

If the FTP command requires the server to move a large piece of data (like a file), a second
TCP connection is required to do this. This is referred to as the FTP data connection (as
opposed to the aforementioned command connection). In active mode the data connection
is opened by the server back to a listening client. In passive mode the client opens also
the data connection. The data connection persists only for transporting the required data.
It is closed as soon as all the data has been sent.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



760 CHAPTER 26 FTP basics

26.4.1    Active mode FTP
In active mode FTP the client connects from a random unprivileged port P (P > 1023) to
the FTP server’s command port, port 21. Then, the client starts listening to port P+1 and
sends the FTP command PORT P+1 to the FTP server. The server will then connect back to
the client’s specified data port from its local data port, which is port 20.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



761 CHAPTER 26 FTP basics

26.4.2    Passive mode FTP for the client
In passive mode FTP the client connects from a random unprivileged port P (P > 1023)
to the FTP server’s command port, port 21. In opposite to an active mode FTP connection
where the client opens a passive port for data transmission and waits for the connection
from server-side, the client sends in passive mode the “PASV” command to the server and
expects an answer with the information on which port the server is listening for the data
connection.

After receiving this information, the client connects to the specified data port of the server
from its local data port.

  

26.4.3    Connection security
When a SSL stack is present (for example emSSL), the connection could be secured. To
do so the value of the Mode parameter of the API IP_FTPC_Connect() could be added with
FTPC_MODE_EXPLICIT_TLS_REQUIRED or FTPC_MODE_IMPLICIT_TLS_REQUIRED.

26.4.3.1    FTP implicit mode
When a server works in implicit mode, every connections are secured from the start. It
uses a different port than the regular 21 (usually 990). Thus the client has to connect to
the right port and upgrade the connection to a secure one.

26.4.3.2    FTP explicit mode
When a server works in explicit mode, the connection start normally as in plain mode.
Then the client sends a PROT command to request an upgrade of the connection. When the
connection is secured, the exchange goes on with user and password as usual.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com/emssl/


762 CHAPTER 26 FTP basics

26.4.4    Supported FTP client commands
emFTP client supports a subset of the defined FTP commands. Refer to [RFC 959] for
a complete detailed description of the FTP commands. The following FTP commands are
implemented:

FTP commands Description

CDUP Change to parent directory
CWD Change working directory
LIST List directory
MKD Make directory
PASS Password
PWD Print the current working directory
RETR Retrieve
RMD Remove directory
STOR Store
APPE Append
TYPE Transfer type
USER User name
PROT Set protection behavior.
PBSZ Set protection buffer size.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



763 CHAPTER 26 Configuration

26.5    Configuration
The emFTP client can be used without changing any of the compile time flags. All compile
time configuration flags are preconfigured with valid values, which match the requirements
of most applications.

The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the source code in place of a numerical constant.
A typical example is the configuration of the sector size of a storage medium.

Alias "A"

A macro which operates like a simple text substitute. An example would be the define U8,
which the preprocessor would replace with unsigned char.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations apply, as a
macro is still put into the source code as simple text replacement. Function replacements are
mainly used to add specific functionality to a module which is highly hardware-dependent.
This type of macro is always declared using brackets (and optional parameters).

26.5.1    FTP client compile time configuration switches

Type Symbolic name Default Description

F FTPc_WARN --

Defines a function to output
warnings. In debug configurations
(DEBUG = 1) FTPc_WARN maps to
IP_Warnf_Application().

F FTPc_LOG --

Defines a function to output logging
messages. In debug configurations
(DEBUG = 1) FTPc_LOG maps to
IP_Logf_Application() .

N FTPC_BUFFER_SIZE 512

Defines the size of the in and the
out buffer of the FTP client. This
means that the client requires
the defined number of bytes
for each buffer. For example,
FTPC_BUFFER_SIZE = 512 means
1024 bytes RAM requirement.

N FTPC_CTRL_BUFFER_SIZE 256 Defines the maximum length of the
buffer used for the control channel.

N FTPC_SERVER_REPLY_BUFFER_SIZE 128

Defines the maximum length of
the buffer used for the server reply
strings. This buffer is only required
and used in debug builds. In release
builds the memory will not be
allocated.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



764 CHAPTER 26 API functions

26.6    API functions
Function Description

IP_FTPC_Connect() Connects to a FTP server.

IP_FTPC_Disconnect()
Closes an established connection to a FTP
server.

IP_FTPC_ExecCmd()
Executes a FTP command to the FTP
server.

IP_FTPC_ExecCmdEx()
Executes a FTP command to the FTP
server.

IP_FTPC_Init() Initializes the context of the FTP client.
IP_FTPC_InitEx() Initializes the context of the FTP client.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



765 CHAPTER 26 API functions

26.6.1    IP_FTPC_Connect()

Description

Connects to a FTP server. The complete login process including the authentication is handled
by this function.

Prototype

int IP_FTPC_Connect(      IP_FTPC_CONTEXT * pContext,
                    const char            * sServer,
                    const char            * sUser,
                    const char            * sPass,
                          unsigned          PortCmd,
                          unsigned          Mode);

Parameters

Parameter Description

pContext Pointer to a structure of type IP_FTPC_CONTEXT.

sServer
Dot-decimal IP address of a FTP server, for example
“192.168.11.55”.

sUser User name if required for the authentication. Can be NULL.
sPass Password if required for the authentication. Can be NULL.

PortCmd
Port number in listening mode on the FTP server. Generally
servers are using 21.

Mode

FTP transfer mode. Mode is a mask describing the connection
mode and the security. Mask is as follow with default (0) set
to FTPC_MODE_ACTIVE and FTPC_MODE_PLAIN_FTP:
• FTPC_MODE_ACTIVE or FTPC_MODE_PASSIVE.
• FTPC_MODE_PLAIN_FTP or

FTPC_MODE_EXPLICIT_TLS_REQUIRED or
FTPC_MODE_IMPLICIT_TLS_REQUIRED.

Return value

0 Success.
1 Error. Illegal parameter (pContext = NULL).
-1 Error during the process of connection establishment.

Additional information

The function IP_FTPC_Init() must be called before a call IP_FTPC_Connect().

Note: In the current version of emNet, the FTP client supports only passive mode FTP.

Example

Refer to IP_FTPC_ExecCmd on page 767 for an example application which uses
IP_FTPC_Connect().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



766 CHAPTER 26 API functions

26.6.2    IP_FTPC_Disconnect()

Description

Closes an established connection to a FTP server.

Prototype

int IP_FTPC_Disconnect(IP_FTPC_CONTEXT * pContext);

Parameters

Parameter Description

pContext Pointer to a structure of type IP_FTPC_CONTEXT.

Return value

0 Success.
1 Error. Illegal parameter (pContext = NULL)

Example

Refer to IP_FTPC_ExecCmd on page 767 for an example application which uses
IP_FTPC_Disconnect().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



767 CHAPTER 26 API functions

26.6.3    IP_FTPC_ExecCmd()

Description

Executes a FTP command to the FTP server.

Prototype

int IP_FTPC_ExecCmd(      IP_FTPC_CONTEXT * pContext,
                          IP_FTPC_CMD       Cmd,
                    const char            * sPara);

Parameters

Parameter Description

pContext Pointer to a structure of type IP_FTPC_CONTEXT.
Cmd The command to perform.

sPara
String with the required parameters for the command.
Depending on the command, this parameter can be NULL.

Return value

0 Succes.
1 Error. Illegal parameter (pContext = NULL).
-1 Error during command execution.

Valid values for parameter Cmd

Valid values Description

FTPC_CMD_CDUP
The command CDUP (Change to
Parent Directory). sPara is NULL.

FTPC_CMD_CWD

The command CWD (Change
Working Directory). sPara is the
path to the directory that should
be accessed.

FTPC_CMD_LIST

The command LIST (List current
directory content). sPara can be
NULL to list the current directory.
sPara can be used to specify a
directory to list that is not the
current working directory.

FTPC_CMD_MKD

The command MKD (Make
directory). sPara is the name
of the directory that should be
created.

FTPC_CMD_PASS
The command PASS (Set
password). sPara is the
password.

FTPC_CMD_PWD
The command PWD (Print
Working Directory). sPara is
NULL.

FTPC_CMD_RETR

The command RETR (Retrieve).
sPara is the name of the file
that should be received from the
server. The FTP client creates a
file on the used storage medium
and stores the retrieved file.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



768 CHAPTER 26 API functions

Valid values Description

FTPC_CMD_RMD

The command RMD (Remove
directory). sPara is the name
of the directory that should be
removed.

FTPC_CMD_STOR

The command STOR (Store).
sPara is the name of the file that
should be stored on the server.
The FTP client opens the file and
transmits it to the FTP server.

FTPC_CMD_APPE

The command APPE (Append).
sPara is the name of the file
that should be appended on the
server. The FTP client opens the
file and transmits the content to
append to the end of the file to
the FTP server.

FTPC_CMD_TYPE
The command TYPE (Transfer
type). sPara is the transfer type.

FTPC_CMD_USER
The command USER (Set
username). sPara is the
username.

FTPC_CMD_DELE
The command DELE (delete file).
sPara is the name of the file to
delete.

FTPC_CMD_PROT
The command PROT (set
protection behavior). sPara is the
value to set.

FTPC_CMD_PBSZ
The command PBSZ (set
protection buffer size). sPara is
the value to set (typically 0).

Additional information

IP_FTPC_Init() and IP_FTPC_Connect() have to be called before IP_FTPC_ExecCmd().
Refer to IP_FTPC_Init on page 771 for detailed information about how to initialize the
FTP client and refer to IP_FTPC_Connect on page 765 for detailed information about how
to establish a connection to a FTP server.

IP_FTPC_ExecCmd() sends a command to the server and handles everything what is
required on FTP client side. The commands which are listed in section Supported FTP client
commands on page 663, but not explained here, are normally not directly called from
the user application. There is no need to call IP_ExecCmd() with these commands. The
FTP client uses these commands internally and sends them to the server if required. For
example, the call of IP_FTPC_Connect() sends the the commands USER, PASS and SYST
to the server and process the server replies for each of the commands, an explicit call of
IP_FTPC_Exec() with one of these commands is not required.

Example

/* Excerpt from the example application OS_IP_FTPClient.c */

/*********************************************************************
*
*       MainTask
*
*  Note:
*   The size of the stack of this task should be at least
*   1200 bytes + FTPC_CTRL_BUFFER_SIZE + 2 * FTPC_BUFFER_SIZE.
*/
void MainTask(void);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



769 CHAPTER 26 API functions

void MainTask(void) {
  IP_FTPC_CONTEXT FTPConnection;
  U8 acCtrlIn[FTPC_CTRL_BUFFER_SIZE];
  U8 acDataIn[FTPC_BUFFER_SIZE];
  U8 acDataOut[FTPC_BUFFER_SIZE];
  int r;

  //
  // Initialize the IP stack
  //
  IP_Init();
  OS_CREATETASK(&_TCB, "IP_Task", IP_Task  , 150, _IPStack);  // Start the IP_Task
  //
  // Check if target is configured
  //
  while (IP_IFaceIsReady() == 0) {
    BSP_ToggleLED(1);
    OS_Delay(50);
  }
  //
  // FTP client task
  //
  while (1) {
    BSP_SetLED(0);
    //
    // Initialize FTP client context
    //
    memset(&FTPConnection, 0, sizeof(FTPConnection));
    //
    // Initialize the FTP client
    //
    IP_FTPC_Init(&FTPConnection, &_IP_Api, &IP_FS_FS, acCtrlIn, sizeof(acCtrlIn),
                  acDataIn, sizeof(acDataIn), acDataOut, sizeof(acDataOut));
    //
    // Connect to the FTP server
    //
    r = IP_FTPC_Connect(&FTPConnection, "192.168.199.164", "Admin", "Secret",
                         21, FTPC_MODE_PASSIVE);
    if (r == FTPC_ERROR) {
      FTPC_LOG(("APP: Could not connect to FTP server.\r\n"));
      goto Disconnect;
    }
    //
    // Change from root directory into directory "Test"
    //
    r = IP_FTPC_ExecCmd(&FTPConnection, FTPC_CMD_CWD,  "/Test/");
    if (r == FTPC_ERROR) {
      FTPC_LOG(("APP: Could not change working directory.\r\n"));
      goto Disconnect;
    }
    //
    // Upload the file "Readme.txt
    //
    r = IP_FTPC_ExecCmd(&FTPConnection, FTPC_CMD_STOR, "Readme.txt");
    if (r == FTPC_ERROR) {
      FTPC_LOG(("APP: Could not upload data file.\r\n"));
      goto Disconnect;
    }
    //
    // Change back to root directory.
    //
    r = IP_FTPC_ExecCmd(&FTPConnection, FTPC_CMD_CDUP, NULL);
    if (r == FTPC_ERROR) {
      FTPC_LOG(("APP: Change to parent directory failed.\r\n"));
      goto Disconnect;
    }
    //
    // Disconnect.
    //
Disconnect:
    IP_FTPC_Disconnect(&FTPConnection);
    FTPC_LOG(("APP: Done.\r\n"));
    BSP_ClrLED(0);
    OS_Delay (10000);
  }
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



770 CHAPTER 26 API functions

26.6.4    IP_FTPC_ExecCmdEx()

Description

Executes a FTP command to the FTP server.

Prototype

int IP_FTPC_ExecCmdEx(IP_FTPC_CONTEXT    * pContext,
                      IP_FTPC_CMD          Cmd,
                      IP_FTPC_CMD_CONFIG * pConfig);

Parameters

Parameter Description

pContext Pointer to a structure of type IP_FTPC_CONTEXT.
Cmd The command to perform.

pConfig

Extended configuration of type IP_FTPC_CMD_CONFIG for
the command to execute. The old parameter sPara of
IP_FTPC_ExecCmd() can also be used via the member
IP_FTPC_CMD_CONFIG.sPara .

Return value

0 Succes.
1 Error. Illegal parameter (pContext = NULL).
-1 Error during command execution.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



771 CHAPTER 26 API functions

26.6.5    IP_FTPC_Init()

Description

Initializes the context of the FTP client.

Prototype

int IP_FTPC_Init(      IP_FTPC_CONTEXT * pContext,
                 const IP_FTPC_API     * pIP_API,
                 const IP_FS_API       * pFS_API,
                       U8              * pCtrlBuffer,
                       unsigned          NumBytesCtrl,
                       U8              * pDataInBuffer,
                       unsigned          NumBytesDataIn,
                       U8              * pDataOutBuffer,
                       unsigned          NumBytesDataOut);

Parameters

Parameter Description

pContext Pointer to a structure of type IP_FTPC_CONTEXT.
pIP_API Pointer to a structure of type IP_FTPC_API.

pFS_API

Pointer to the filesystem API. Can be NULL if only using
commands that do not depend on a filesystem are used.
Exmaples for this would be the STOR(e) or APPE(nd)
command being used with IP_FTPC_ExecCmdEx() and input
from a buffer instead from a file.

pCtrlBuffer
Pointer to the buffer used for the control channel
information.

NumBytesCtrl Size of the control buffer in bytes.
pDataInBuffer Pointer to the buffer used to receive data from the server.
NumBytesDataIn Size of the receive buffer in bytes.
pDataOutBuffer Pointer to the buffer used to transmit data to the server.
NumBytesDataOut Size of the transmit buffer in bytes.

Return value

0 Success.
1 Invalid parameters.

Additional information

IP_FTPC_Init() must be called before any other FTP client function will be called. For
detailed information about the structure type IP_FS_API refer to File system abstraction
layer on page 1296. For detailed information about the structure type IP_FTPC_API refer
to Structure IP_FTPC_API on page 773.

Example

Refer to IP_FTPC_ExecCmd on page 767 for an example application which uses
IP_FTPC_Init().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



772 CHAPTER 26 API functions

26.6.6    IP_FTPC_InitEx()

Description

Initializes the context of the FTP client.

Prototype

int IP_FTPC_InitEx(      IP_FTPC_CONTEXT     * pContext,
                   const IP_FTPC_API         * pIP_API,
                   const IP_FS_API           * pFS_API,
                         U8                  * pCtrlBuffer,
                         unsigned              NumBytesCtrl,
                         U8                  * pDataInBuffer,
                         unsigned              NumBytesDataIn,
                         U8                  * pDataOutBuffer,
                         unsigned              NumBytesDataOut,
                   const IP_FTPC_APPLICATION * pApplication);

Parameters

Parameter Description

pContext Pointer to a structure of type IP_FTPC_CONTEXT.
pIP_API Pointer to a structure of type IP_FTPC_API.

pFS_API

Pointer to the filesystem API. Can be NULL if only using
commands that do not depend on a filesystem are used.
Exmaples for this would be the STOR(e) or APPE(nd)
command being used with IP_FTPC_ExecCmdEx() and input
from a buffer instead from a file.

pCtrlBuffer
Pointer to the buffer used for the control channel
information.

NumBytesCtrl Size of the control buffer in bytes.
pDataInBuffer Pointer to the buffer used to receive data from the server.
NumBytesDataIn Size of the receive buffer in bytes.
pDataOutBuffer Pointer to the buffer used to transmit data to the server.
NumBytesDataOut Size of the transmit buffer in bytes.
pApplication Pointer to a structure of type IP_FTPC_APPLICATION.

Return value

0 Success.
1 Invalid parameters.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



773 CHAPTER 26 Data structures

26.7    Data structures

26.7.1    Structure IP_FTPC_API

Description

This structure contains the pointer to the socket functions which are required to use the
FTP client.

Prototype

typedef struct {
  FTPC_SOCKET  (*pfConnect)    (const char * SrvAddr, unsigned SrvPort);
  void         (*pfDisconnect) (FTPC_SOCKET Socket);
  int          (*pfSend)       (const char * pData, int Len,
                                FTPC_SOCKET Socket);
  int          (*pfReceive)    (char * pData, int Len, FTPC_SOCKET Socket);
  int          (*pfSetSecure)  (FTPC_SOCKET Socket, FTPC_SOCKET Clone);
} IP_FTPC_API;

Member Description

pfConnect
Callback function that handles the connect to a FTP server on socket
level.

pfDisconnect
Callback function that disconnects a connection to the FTP server on
socket level.

pfSend Callback function that sends data to the FTP server on socket level.

pfReceive
Callback function that receives data from the FTP server on socket
level.

pfSetSecure

Callback function to configure the socket as secured and eventually
clone it (Clone might be NULL). This is used when secured
connections with SSL are supported. Set this pointer to NULL if no
security is present.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



774 CHAPTER 26 Data structures

26.7.2    Structure IP_FTPC_APPLICATION

Description

This structure contains a callback that will be called for every received lines when getting
a reply from the server.

Prototype

typedef struct {
  void (*pfReply)(IP_FTPC_CONTEXT* pContext,
                  unsigned         Cmd,
                  const char*      sResponse,
                  unsigned         ResponseLength,
                  unsigned         IsLineComplete);
} IP_FTPC_APPLICATION;

Member Description

pfReply Callback.
pfReply\pContext Pointer on the FTP client context.
pfReply\Cmd Command id.
pfReply\sResponse Server reply.
pfReply\sResponseLength Server reply length.
pfReply\IsLineComplete Last line indication.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



775 CHAPTER 26 Data structures

26.7.3    IP_FTPC_CMD_CONFIG

Description

Configuration structure used with IP_FTPC_ExecCmdEx() for extended functionality.

Type definition

typedef struct {
  const char * sPara;
  const char * sLocalPath;
  const char * sRemotePath;
  U8         * pData;
  unsigned     NumBytes;
} IP_FTPC_CMD_CONFIG;

Structure members

Member Description

sPara
Same as sPara with old IP_FTPC_ExecCmd() for backwards
compatibility. Can be NULL if not required for command or
sLocalPath and/or sRemotePath are used.

sLocalPath

Local path (terminated string) to use with command.
Can be NULL if not supported by command (or makes no
sense). Overrides sPara . Can be used with the following
commands:
• FTPC_CMD_STOR
• FTPC_CMD_APPE
• FTPC_CMD_RETR

sRemotePath

Remote path (terminated string) to use with command.
Can be NULL if not supported by command (or makes no
sense). Overrides sPara . Can be used with the following
commands:
• FTPC_CMD_LIST
• FTPC_CMD_CWD
• FTPC_CMD_STOR
• FTPC_CMD_APPE
• FTPC_CMD_RETR
• FTPC_CMD_MKD
• FTPC_CMD_RMD
• FTPC_CMD_DELE

pData

Indicates that input data shall be taken from the buffer
at pData instead of a filesystem. Can be NULL if using
a filesystem and reading is intended to be done from a
filename given by sPara . Can be used with the following
commands:
• FTPC_CMD_STOR
• FTPC_CMD_APPE

NumBytes Number of bytes to input starting from pData .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



776 CHAPTER 26 Resource usage

26.8    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the FTP client presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

Configuration used

#define FTPC_BUFFER_SIZE               512
#define FTPC_CTRL_BUFFER_SIZE          256
#define FTPC_SERVER_REPLY_BUFFER_SIZE  128  // Only required in debug builds
                                            // with enabled logging.

26.8.1    ROM usage on an ARM7 system
The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon ROM

emFTP client approximately 2.0 kBytes

26.8.2    ROM usage on a Cortex-M3 system
The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon ROM

emFTP client approximately 1.7 kBytes

26.8.3    RAM usage
Almost all of the RAM used by the web server is taken from task stacks. The amount of
RAM required for every child task depends on the configuration of your client. The table
below shows typical RAM requirements for your task stacks.

Build Description RAM

Release
A task used for the FTP client without
debugging features and disabled debug
outputs.

approximately 500 bytes

The approximately task stack size required for the FTP client can be calculated as fol- lows:

TaskStackSize = 2 * FTPC_BUFFER_SIZE + FTPC_CTRL_BUFFER_SIZE

Build Description RAM

Debug A task used for the FTP client with debugging
features and enabled debug outputs. approximately 500 bytes

The approximately task stack size required for the FTP client can be calculated as follows:

TaskStackSize = 2 * FTPC_BUFFER_SIZE + FTPC_CTRL_BUFFER_SIZE +
FTPC_SERVER_REPLY_BUFFER_SIZE

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 27
 
TFTP client/server

The TFTP (Trivial File Transfer Protocol) is an extension to the TCP/IP stack. All functions
which are required to add a TFTP client or a TFPT server to your application are described
in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



778 CHAPTER 27 emNet TFTP

27.1    emNet TFTP
The emNet TFTP is an extension which adds the TFTP protocol to the stack. TFTP stands for
Trivial File Transfer Protocol. It is the basic mechanism for moving files via UDP between
machines over IP based networks. TFTP is a client/server protocol, meaning that one
machine, the client, initiates a file transfer by contacting another machine, the server and
making requests. The server must be operating before the client initiates his requests.

The TFTP server implements the relevant parts of the following RFCs.

RFC# Description

[RFC 1350] TFTP - THE TFTP PROTOCOL (REVISION 2)
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1350.txt

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



779 CHAPTER 27 Feature list

27.2    Feature list
• Low memory footprint.
• Independent of the file system: Any file system can be used.
• Independent of the TCP/IP stack: Any stack with sockets can be used.
• Demo application included.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



780 CHAPTER 27 TFTP basics

27.3    TFTP basics
The Trivial File Transfer Protocol (TFTP) is an application layer protocol.

When a TFTP client contacts a server, a UDP command is sent to the servers port. The
traditional port is 69. The command sent is either a read or a write request. The client will
send data always to the servers port whereas the server will respond with data to the port
on that the client is sending.

The TFTP requests are sent in a RFC conform format.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



781 CHAPTER 27 Using the TFTP samples

27.4    Using the TFTP samples
Ready to use examples for emNet are supplied. The sample applications are configured to
work with each other but can be used with any TFTP client/server with minimal modification.
The example applications requires a file system to make data files available. Refer to File
system abstraction layer on page 868 for detailed information.

27.4.1    Running the TFTP server example on target hardware
The emNet TFTP sample applications should always be the first step to check the proper
function of the TFTP client/server with your target hardware.

Add all source files located in the following directories (and their subdirectories) to your
project and update the include path:
• Application
• Config
• Inc
• IP
• IP\IP_FS\[NameOfUsedFileSystem]

It is recommended that you keep the provided folder structure.

The sample applications can be used on the most targets without the need for changing
any of the configuration flags.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



782 CHAPTER 27 API functions

27.5    API functions
Function Description

IP_TFTP_InitContext()
Initializes the context for storing
connection parameters of a TFTP client/
server.

IP_TFTP_RecvFile() Requests a file from a TFTP server.
IP_TFTP_SendFile() Sends a data file to a TFTP server.

IP_TFTP_ServerTask()
TFTP server task that can be be started in
a separate task.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



783 CHAPTER 27 API functions

27.5.1    IP_TFTP_InitContext()

Description

Initializes the context for storing connection parameters of a TFTP client/server.

Prototype

int IP_TFTP_InitContext(      TFTP_CONTEXT * pContext,
                              unsigned       IFace,
                        const IP_FS_API    * pFS_API,
                              char         * pBuffer,
                              int            BufferSize,
                              U16            ServerPort);

Parameters

Parameter Description

pContext Pointer to a structure of type TFTP_CONTEXT.
IFace Zero-based interface index.
pFS_API Pointer to the used file system API.

pBuffer
Pointer to buffer for storing transfer data. Needs to be
big enough to hold the biggest TFTP message (512 bytes
payload + 4 bytes TFTP header).

BufferSize Size of buffer assigned with pBuffer.

ServerPort
Port of the server. Can be 0 if the structure is used to
connect as a client or if the default TFTP port (69) should be
used.

Return value

= 0 Success.
< 0 Error, typically buffer too small or no buffer set.

Additional information

A static structure of TFTP_CONTEXT needs to be supplied by the application to provide space
to store connection parameters.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



784 CHAPTER 27 API functions

27.5.2    IP_TFTP_RecvFile()

Description

Requests a file from a TFTP server.

Prototype

int IP_TFTP_RecvFile(      TFTP_CONTEXT * pContext,
                           unsigned       IFace,
                           U32            IPAddr,
                           U16            Port,
                     const char         * sFileName,
                           int            Mode);

Parameters

Parameter Description

pContext Pointer to a structure of type TFTP_CONTEXT.
IFace Zero-based interface index.
IPAddr IP addresse of TFTP server.
Port Port of TFTP server listening.
sFileName Name of the file to retrieve from server.
Mode TFTP_MODE_OCTET.

Return value

≥ 0 O.K.
< 0 Error.

Additional information

A static structure of TFTP_CONTEXT needs to initialized with IP_TFTP_InitContext() before
using it with this function.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



785 CHAPTER 27 API functions

27.5.3    IP_TFTP_SendFile()

Description

Sends a data file to a TFTP server.

Prototype

int IP_TFTP_SendFile(      TFTP_CONTEXT * pContext,
                           unsigned       IFace,
                           U32            IPAddr,
                           U16            Port,
                     const char         * sFileName,
                           int            Mode);

Parameters

Parameter Description

pContext Pointer to a structure of type TFTP_CONTEXT.
IFace Zero-based interface index.
IPAddr IP addresse of TFTP server.
Port Port of TFTP server listening.
sFileName Name of file to send to server.
Mode TFTP_MODE_OCTET.

Return value

≥ 0 O.K.
< 0 Error.

Additional information

A static structure of TFTP_CONTEXT needs to initialized with IP_TFTP_InitContext() before
using it with this function.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



786 CHAPTER 27 API functions

27.5.4    IP_TFTP_ServerTask()

Description

TFTP server task that can be be started in a separate task.

Prototype

void IP_TFTP_ServerTask(void * pPara);

Parameters

Parameter Description

pPara Cast pointer to a structure of type TFTP_CONTEXT.

Additional information

A static structure of TFTP_CONTEXT needs to initialized with IP_TFTP_InitContext() before
using it with this function. The task does never return.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



787 CHAPTER 27 Resource usage

27.6    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the TFTP client/server presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

27.6.1    ROM usage on an ARM7 system
The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon ROM

emNet TFTP client approximately 1.2 kBytes
emNet TFTP server approximately 1.2 kBytes

27.6.2    ROM usage on a Cortex-M3 system
The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon ROM

emNet TFTP client approximately 1.2 kBytes
emNet TFTP server approximately 1.2 kBytes

27.6.3    RAM usage
Each connection requires approximately 550 bytes of RAM that split into space for the
required transfer buffer (app. 516 bytes) and the space for TFTP_CONTEXT.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 28
 
PPP / PPPoE (Add-on)

The emNet implementation of the Point to Point Protocol (PPP) is an optional extension to
emNet. It can be used to establish a PPP connection over Ethernet (PPPoE) or using modem
to connect via telephone carrier. All functions that are required to add PPP/PPPoE to your
application are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



789 CHAPTER 28 emNet PPP/PPPoE

28.1    emNet PPP/PPPoE
The emNet PPP implementation is an optional extension which can be seamlessly integrated
into your TCP/IP application. It combines a maximum of performance with a small memory
footprint. The PPP implementation allows an embedded system to connect via Point to Point
Protocol to a network.

The PPP module implements the relevant parts of the following Request For Comments
(RFC).

RFC# Description

[RFC 1334] PPP Authentication Protocols
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1334.txt

[RFC 1661] The Point-to-Point Protocol (PPP)
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1661.txt

[RFC 1994] PPP Challenge Handshake Authentication Protocol (CHAP)
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1994.txt

[RFC 2516] A Method for Transmitting PPP Over Ethernet (PPPoE)
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc2516.txt

The following table shows the contents of the emNet root directory:

Directory Content

.\Application\
Contains the example application to run the PPP
implementation with emNet.

.\Crypto\
Contains the required files when using MD5 based
CHAP authentication.

.\Inc\ Contains the required include files.

.\IP\

Contains the PPP sources, IP_PPP.c,
IP_PPP_CCP.c, IP_PPP_CHAP.c, IP_PPP_Int.h,
IP_PPP_IPCP.c, IP_PPP_LCP.c, IP_PPP_Line.c,
IP_PPP_PAP.c and IP_PPPoE.c. Additionally to
the main source code files of the PPP add-on an
example implementation for the connection of a
modem via USART (IP_Modem_UART.c) is supplied.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



790 CHAPTER 28 Feature list

28.2    Feature list
• Low memory footprint.
• Support PAP authentication protocol
• Support CHAP authentication protocol
• Support for PPP over Ethernet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



791 CHAPTER 28 Requirements

28.3    Requirements
TCP/IP stack

The emNet PPP implementation requires the emNet TCP/IP stack. Your modem has to be
able to be configured to respond in the format:

"<CR><LF><Response>"

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



792 CHAPTER 28 PPP backgrounds

28.4    PPP backgrounds
The Point to Point Protocol is a link layer protocol for establishing a direct connection
between two network nodes.

Using PPP, an emNet application can establish a PPP connection to a PPP server. The
handshaking mechanism includes normally an authentication process. The current version
of emNet supports the the following authentication schemes:
• PAP - Password Authentication Protocol
• CHAP - Challenge Handshake Authentication Protocol

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



793 CHAPTER 28 API functions

28.5    API functions
Function Description

PPPoE functions

IP_PPPOE_AddInterface() Adds a PPPoE interface.

IP_PPPOE_ConfigRetries()
Configures the number of times to resend
a lost message before breaking the
connection.

IP_PPPOE_Reset() Resets a PPPoE session.

IP_PPPOE_SetAuthInfo()
Sets the authentication information for the
PPPoE connection.

IP_PPPOE_SetUserCallback()
Sets a callback function to inform the user
about a status change.

PPP functions

IP_PPP_AddInterface() Adds a PPP driver.

IP_PPP_CHAP_AddWithMD5()
Adds support for the CHAP authentication
protocol with MD5 algorithm to the stack.

IP_PPP_OnRx()
Receives one or more characters from the
hardware.

IP_PPP_OnRxChar()
Receives a character from the hardware
(typ.

IP_PPP_OnTxChar() Sends a character via PPP.

IP_PPP_SetUserCallback()
Sets a callback function to inform the user
about a status change.

Modem functions

IP_MODEM_Connect()
Initializes a PPP connect on a modem
using the passed AT command.

IP_MODEM_Disconnect()
Disconnects the connection established
with a modem on a specific interface.

IP_MODEM_GetResponse()
Retrieves a pointer to the responses
received since the last sent AT command.

IP_MODEM_SendString()
Sends an AT command to the modem
without waiting for an answer.

IP_MODEM_SendStringEx()

Sends an AT command to the modem and
waits for the expected response with a
timeout or checks for responses received
in multpiple parts.

IP_MODEM_SetAuthInfo()
Sets authentication information if needed
for the connection to establish.

IP_MODEM_SetConnectTimeout()
Sets the connect timeout to wait
for a requested connection with
IP_MODEM_Connect() to be established.

IP_MODEM_SetInitCallback()
Sets a callback that is used to initialize
the modem before actually starting the
connection attempt.

IP_MODEM_SetInitString()
Sets an initialization string that is sent to
the modem before actually starting the
connection attempt.

IP_MODEM_SetUartConfig()
Sets the configuration to be used with the
BSP_UART_* API.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



794 CHAPTER 28 API functions

Function Description

IP_MODEM_SetSwitchToCmdDelay()

Sets the delay that is applied before and
after the “+++ATH” command that is used
to switch back the modem from data to
command mode.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



795 CHAPTER 28 PPPoE functions

28.6    PPPoE functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



796 CHAPTER 28 PPPoE functions

28.6.1    IP_PPPOE_AddInterface()

Description

Adds a PPPoE interface.

Prototype

int IP_PPPOE_AddInterface(unsigned HWIFaceId);

Parameters

Parameter Description

HWIFaceId
Zero-based interface index to be used as underlying
hardware interface.

Return value

≥ 0 Zero-based interface index of the newly created interface.
< 0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using IP_ConfigMaxIFaces() needs to be done before adding any interface and
must not be changed later.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



797 CHAPTER 28 PPPoE functions

28.6.2    IP_PPPOE_ConfigRetries()

Description

Configures the number of times to resend a lost message before breaking the connection.

Prototype

void IP_PPPOE_ConfigRetries(unsigned IFaceId,
                            U32      NumTries,
                            U32      Timeout);

Parameters

Parameter Description

IFaceId Zero-based interface index.
NumTries Number of times the stack will resend the message.
Timeout Timeout in ms before a resend is triggered.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



798 CHAPTER 28 PPPoE functions

28.6.3    IP_PPPOE_Reset()

Description

Resets a PPPoE session. The PPPoE layer is closed by sending a PADT if connected. Also
resets the PPP connection state, but does not send any more PPP packets.

Prototype

void IP_PPPOE_Reset(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



799 CHAPTER 28 PPPoE functions

28.6.4    IP_PPPOE_SetAuthInfo()

Description

Sets the authentication information for the PPPoE connection.

Prototype

void IP_PPPOE_SetAuthInfo(      unsigned   IFaceId,
                          const char     * sUser,
                          const char     * sPass);

Parameters

Parameter Description

IFaceId Zero-based interface index.
sUser PPPoE user name.
sPass PPPoE user password.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



800 CHAPTER 28 PPPoE functions

28.6.5    IP_PPPOE_SetUserCallback()

Description

Sets a callback function to inform the user about a status change.

Prototype

void IP_PPPOE_SetUserCallback(U32                         IFaceId,
                              IP_PPPOE_INFORM_USER_FUNC * pfInformUser);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pfInformUser
Pointer to a user function of type
IP_PPPOE_INFORM_USER_FUNC. which is called when a status
change occurs.

Additional information

Callback function will only be added if IP_PPPOE_AddInterface() has been called before.

IP_PPPOE_INFORM_USER_FUNC is defined as follows:

typedef void (IP_PPPOE_INFORM_USER_FUNC)(U32 IFaceId, U32 Status);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



801 CHAPTER 28 PPP functions

28.7    PPP functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



802 CHAPTER 28 PPP functions

28.7.1    IP_PPP_AddInterface()

Description

Adds a PPP driver.

Prototype

int IP_PPP_AddInterface(const IP_PPP_LINE_DRIVER * pLineDriver,
                              int                  ModemIndex);

Parameters

Parameter Description

pLineDriver Pointer to a structure IP_PPP_LINE_DRIVER.
ModemIndex Modem index; Fixed to 0.

Return value

≥ 0 Zero-based interface index of the newly created interface.
< 0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using IP_ConfigMaxIFaces() needs to be done before adding any interface and
must not be changed later.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



803 CHAPTER 28 PPP functions

28.7.2    IP_PPP_CHAP_AddWithMD5()

Description

Adds support for the CHAP authentication protocol with MD5 algorithm to the stack.

Prototype

void IP_PPP_CHAP_AddWithMD5(const IP_PPP_MD5_API * pAPI);

Parameters

Parameter Description

pAPI Pointer to MD5 APi of type IP_PPP_MD5_API .

Additional information

Typically most modern ISPs are happy with the insecure PAP authentication protocol or
even suggest it to us directly. In most modern use cases the client is identified for example
by its SIM card number and often the ISP does not even care what is sent for username and
password. Todays security is typically implemented on higher protocols like TLS on top of
TCP. If unsure if required or if you need to be compatible with the one or two providers that
absolutely need CHAP these days, you should add this protocol. If not, you should leave
it out for a smaller memory footprint.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



804 CHAPTER 28 PPP functions

28.7.3    IP_PPP_OnRx()

Description

Receives one or more characters from the hardware. Uses IP_PPP_OnRxChar() to receive
the characters one by one.

Prototype

void IP_PPP_OnRx(struct   IP_PPP_CONTEXT *pContext,
                 U8     * pData,
                 int      NumBytes);

Parameters

Parameter Description

pContext Pointer to a Structure IP_PPP_CONTEXT.
pData Pointer to a buffer which is storing the received data.
NumBytes Number of bytes to receive.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



805 CHAPTER 28 PPP functions

28.7.4    IP_PPP_OnRxChar()

Description

Receives a character from the hardware (typ. modem). Checks if the received character
is an escape character, removes the escape character if required and stores the character
into packet buffer. When a complete packet is received, it is given to the stack.

Prototype

void IP_PPP_OnRxChar(struct IP_PPP_CONTEXT *pContext,
                     U8     Data);

Parameters

Parameter Description

pContext Pointer to a structure IP_PPP_CONTEXT.
Data 1 received character.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



806 CHAPTER 28 PPP functions

28.7.5    IP_PPP_OnTxChar()

Description

Sends a character via PPP. The function checks if the character needs an escape character
for the HDLC framing and sends the escape character if required.

Prototype

int IP_PPP_OnTxChar(unsigned Unit);

Parameters

Parameter Description

Unit Zero-based interface index.

Return value

0 More data has been sent. Keep Tx interrupt enabled.
1 No more data to send. Disable Tx interrupt if necessary.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



807 CHAPTER 28 PPP functions

28.7.6    IP_PPP_SetUserCallback()

Description

Sets a callback function to inform the user about a status change.

Prototype

void IP_PPP_SetUserCallback(U32                       IFaceId,
                            IP_PPP_INFORM_USER_FUNC * pfInformUser);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pfInformUser
Pointer to a user function of type IP_PPP_INFORM_USER_FUNC
which is called when a status change occurs.

Additional information

Callback function will only be added if IP_PPP_AddInterface() has been called before.

IP_PPP_INFORM_USER_FUNC is defined as follows:

typedef void (IP_PPP_INFORM_USER_FUNC)(U32 IFaceId, U32 Status);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



808 CHAPTER 28 Modem functions

28.8    Modem functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



809 CHAPTER 28 Modem functions

28.8.1    IP_MODEM_Connect()

Description

Initializes a PPP connect on a modem using the passed AT command.

Prototype

int IP_MODEM_Connect(const char * sATCommand);

Parameters

Parameter Description

sATCommand
AT command string to dial up a connection. Must not use
<CR> at the end of the dial string. Typically this is the
command “ATD” followed by a dial number.

Return value

= 0 Connected
≠ 0 Error

Example

IP_MODEM_Connect("ATD*99***1#");

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



810 CHAPTER 28 Modem functions

28.8.2    IP_MODEM_Disconnect()

Description

Disconnects the connection established with a modem on a specific interface.

Prototype

void IP_MODEM_Disconnect(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Example

IP_MODEM_Disconnect(0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



811 CHAPTER 28 Modem functions

28.8.3    IP_MODEM_GetResponse()

Description

Retrieves a pointer to the responses received since the last sent AT command. It is able to
copy the response into a provided buffer if necessary.

Prototype

char *IP_MODEM_GetResponse(unsigned   IFaceId,
                           char     * pBuffer,
                           unsigned   NumBytes,
                           unsigned * pNumBytesInBuffer);

Parameters

Parameter Description

IFaceId Zero-based interface index.

pBuffer
Pointer to the buffer where the response shall be copied to.
May be NULL.

NumBytes Size of the buffer pointed to by pBuffer.
pNumBytesInBuffer Number of bytes in receive buffer. May be NULL.

Return value

= NULL No response in buffer. The last response might have already been cleared to
receive the response for the next command.

≠ NULL Pointer to buffer that holds the last response received. Beginning <CR><LF> is
skipped.

Example

U8 aBuffer[256];
unsigned NumBytesReceived;
IP_MODEM_SendString(0, "AT");
IP_MODEM_GetResponse(0, &aBuffer[0], sizeof(aBuffer), &NumBytesReceived);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



812 CHAPTER 28 Modem functions

28.8.4    IP_MODEM_SendString()

Description

Sends an AT command to the modem without waiting for an answer.

Prototype

void IP_MODEM_SendString(      unsigned   IFaceId,
                         const char     * sCmd);

Parameters

Parameter Description

IFaceId Zero-based interface index.
sCmd AT command to be sent.

Additional information

This routine is meant for sending simple AT commands to the modem that do not need to
be checked for their response.

It is not designed to be used with IP_MODEM_GetResponse(). If you intend to process the
modem response please use IP_MODEM_SendStringEx() instead.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



813 CHAPTER 28 Modem functions

28.8.5    IP_MODEM_SendStringEx()

Description

Sends an AT command to the modem and waits for the expected response with a timeout
or checks for responses received in multpiple parts.

Prototype

int IP_MODEM_SendStringEx(      unsigned   IFaceId,
                          const char     * sCmd,
                          const char     * sResponse,
                                unsigned   Timeout,
                                unsigned   RecvBufOffs);

Parameters

Parameter Description

IFaceId Zero-based interface index.
sCmd AT command to be sent. May be NULL.

sResponse
Expected response without <CR><LF> in front. May be
NULL.

Timeout Timeout to wait for any response in ms.

RecvBufOffs
Can be used to check for a response that is sent in multiple
parts.

Return value

0 OK, correct response received.
1 Timeout.
2 Wrong response received.

Additional information

Sending a new command with IP_MODEM_SendString() clears the buffer of previous
received responses.

RecvBufOffs can be used to check for responses that are sent by the modem in multiple
responses. If not passed ’0’ the receive buffer will not be cleared to not clear out already
received following responses from the previously sent command. RecvBufOffs id the offset
in bytes from the beginning of the first received response. Being able to receive responses
that are sent in multiple parts is necessary as some command may be responded with a
confirm for the command sent itself and respond with a second message after an undefined
time.

Example sending a command and checking for its response with a timeout

IP_MODEM_SendStringEx(0, "AT", "OK", 100, 0);

Example for checking the SIM status of a GSM modem

int r;

//
// Check if the modem is waiting for a SIM PIN to be entered
//
r = IP_MODEM_SendStringEx(0, "AT+CPIN?\r", "+CPIN: SIM PIN", 1000, 0);
if (r == 0) {
  //
  // The modem is waiting for the PIN to be entered
  //
  IP_MODEM_SendString(0, "AT^SSET=1\r");  // Enable "^SSIM READY" response once
                                          // the SIM data has been read

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



814 CHAPTER 28 Modem functions

  IP_OS_Delay(100);
  //
  // Enter SIM PIN. The OK response will arrive quickly. The modem then
  // reads data from the SIM.
  //
  IP_MODEM_SendStringEx(0, "AT+CPIN="1234"\r", "OK", 15000, 0);
  //
  // After receiving the "OK" response for the command the modem will need an
  // undefined time to read data from the SIM. The modem sends the response
  // "^SSIM READY" once it has finished. We will receive the response at an
  // 6 byte offset (OK<CR><LF><CR><LF>^SSIM READY).
  //
  IP_MODEM_SendStringEx(0, NULL, "^SSIM READY", 15000, 6);
} else {
  //
  // The modem does not seem to wait for a PIN, check if the modem
  // reports "READY". This means no PIN is set for the SIM card. In this case
  // the modem responds with "+CPIN: READY" that will be located at offset 0
  // in the receive buffer.
  //
  if (IP_MEMCMP(IP_MODEM_GetResponse(0, NULL, 0, NULL), "+CPIN: READY", 12) != 0) {
    IP_Panic("Unrecognized response from modem.");
  }
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



815 CHAPTER 28 Modem functions

28.8.6    IP_MODEM_SetAuthInfo()

Description

Sets authentication information if needed for the connection to establish.

Prototype

void IP_MODEM_SetAuthInfo(      unsigned   IFaceId,
                          const char     * sUser,
                          const char     * sPass);

Parameters

Parameter Description

IFaceId Zero-based interface index.
sUser String containing the user name to be used.
sPass String containing the password to be used.

Additional information

Setting a user name and a password is only necessary when required by your ISP.

Example

IP_MODEM_SetAuthInfo(0, "User", "Pass");

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



816 CHAPTER 28 Modem functions

28.8.7    IP_MODEM_SetConnectTimeout()

Description

Sets the connect timeout to wait for a requested connection with IP_MODEM_Connect() to
be established.

Prototype

void IP_MODEM_SetConnectTimeout(unsigned IFaceId,
                                unsigned ms);

Parameters

Parameter Description

IFaceId Zero-based interface index.
ms Timeout in ms. Default 15s.

Example

IP_MODEM_SetConnectTimeout(0, 30000);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



817 CHAPTER 28 Modem functions

28.8.8    IP_MODEM_SetInitCallback()

Description

Sets a callback that is used to initialize the modem before actually starting the connection
attempt. The callback is called from IP_MODEM_Connect().

Prototype

void IP_MODEM_SetInitCallback(void ( *pfInit)());

Parameters

Parameter Description

pfInit
Void callback routine for intialization of the modem before
connecting.

Example

static void _InitModem(void) {
  IP_MODEM_SendString(0, "AT");
}

IP_MODEM_SetInitCallback(_InitModem);
IP_MODEM_Connect("ATD*99***1#");

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



818 CHAPTER 28 Modem functions

28.8.9    IP_MODEM_SetInitString()

Description

Sets an initialization string that is sent to the modem before actually starting the connection
attempt. In case IP_MODEM_SetInitCallback() is used the init string is not sent.

Prototype

void IP_MODEM_SetInitString(const char * sInit);

Parameters

Parameter Description

sInit Command to be sent to the modem before connecting.

Example

IP_MODEM_SetInitString("ATE0V1");
IP_MODEM_Connect("ATD*99***1#");

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



819 CHAPTER 28 Modem functions

28.8.10    IP_MODEM_SetUartConfig()

Description

Sets the configuration to be used with the BSP_UART_* API.

Prototype

void IP_MODEM_SetUartConfig(unsigned int  Unit,
                            unsigned long Baudrate,
                            unsigned char NumDataBits,
                            unsigned char Parity,
                            unsigned char NumStopBits);

Parameters

Parameter Description

Unit Index of UART unit to use.
Baudrate Baudrate [Hz] to use.
NumDataBits Number of data bits to use.
Parity Parity of type BSP_UART_PARITY_* .
NumStopBits Number of stop bits to use.

Additional information

By default the IP_MODEM_* API calls BSP_UART_Init() with all parameters like unit and
baudrate set to zero as these parameters were originally not present. When they eventually
became available, zero parameters meant using the modules default values. Unfortunately
the default values are not loaded by all BSP_UART implementation or a different unit than
unit #0 is planned to be used. To avoid changing the complete API of IP_MODEM module,
the parameters can now be set using this API.

BSP_UART_Init() previously was also called with the interface id as unit number. This is
now also changed to use either zero for default or the configured value from this routine.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



820 CHAPTER 28 Modem functions

28.8.11    IP_MODEM_SetSwitchToCmdDelay()

Description

Sets the delay that is applied before and after the “+++ATH” command that is used to
switch back the modem from data to command mode.

Prototype

void IP_MODEM_SetSwitchToCmdDelay(unsigned IFaceId,
                                  unsigned ms);

Parameters

Parameter Description

IFaceId Zero-based interface index.
ms Timeout in ms between sending “+++” and “ATH”.

Additional information

Sending “+++ATH” to switch back to command mode and then hanging up the connection
is fine to be sent in one message. For some modem this does not apply. They need some
time to switch back to command mode before accepting “ATH” for hanging up.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



821 CHAPTER 28 Data structures

28.9    Data structures
Structure Description

IP_PPP_CONTEXT
Structure which stores the information
about the PPP connection.

RESEND_INFO
A structure which stores the resend
condition for different stages of the PPP
connection.

IP_PPP_LINE_DRIVER
Structure with pointers to application
related functions.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



822 CHAPTER 28 Data structures

28.9.1    Structure IP_PPP_CONTEXT

Description

A structure which stores the information about the PPP connection.

Prototype

typedef struct IP_PPP_CONTEXT {
  PPP_SEND_FUNC * pfSend;
  PPP_TERM_FUNC * pfTerm;
  PPP_INFORM_USER_FUNC * pfInformUser;
  void          * pSendContext;
  int             NumBytesPrepend;
  U8              IFaceId;
  struct {
    U32            NumTries;
    I32            Timeout;
  } Config;
  struct {
    U8             Id;
    U8             aOptCnt[MAX_OPT];
    PPP_LCP_STATE  AState;
    PPP_LCP_STATE  PState;
    RESEND_INFO    Resend;
    U16            MRU;
    U32            ACCM;
    U32            OptMask;
  } LCP;
  struct {
    U8             Id;
    U8             aOptCnt[MAX_OPT];
    PPP_CCP_STATE  AState;
    PPP_CCP_STATE  PState;
    RESEND_INFO    Resend;
    U32            OptMask;
  } CCP;
  struct {
    U8             Id;
    U8             aOptCnt[MAX_OPT];
    PPP_IPCP_STATE AState;
    PPP_IPCP_STATE PState;
    RESEND_INFO    Resend;
    IP_ADDR        IpAddr;
    IP_ADDR        aDNSServer[IP_MAX_DNS_SERVERS];
    U32            OptMask;
  } IPCP;
  struct {
    U8             UserLen;
    U8             abUser[64];
    U8             PassLen;
    U8             abPass[64];
    U16            Prot;
    U32            Data;
    PPP_AUTH_STATE State;
    RESEND_INFO    Resend;
    U32            OptMask;
  } Auth;
  IP_PPP_LINE_DRIVER * pLineDriver;
} IP_PPP_CONTEXT;

Member Description

pfSend Pointer to a function which sends a packet.
pfTerm Pointer to a function which terminates the connection.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



823 CHAPTER 28 Data structures

Member Description

pfInformUser
Pointer to a callback function which informs the user about a
status change of the connection.

pSendContext
Pointer to a user callback function which is triggered when a
status change of the PPP connection occurs.

NumBytesPrepend
The size of the PPP header to be prepended when sending
packets.

IFaceId Internal index number of the interface.

Config.NumTries
Defines the number of times the stack tries to initialize
a connection via PADI before giving up. Can be set via
IP_PPPOE_ConfigRetries(), the default is 5.

Config.Timeout
Sets the timeout between PADI configuration retries in ms, the
default is 2000.

LCP.Id Sequential ID number of the LCP packet.
LCP.aOptCnt An array of supported LPC options.

LCP.AState
An enum of type PPP_LCP_STATE. Indicates the active status of
the LPC connection.

LCP.PState
An enum of type PPP_LCP_STATE. Indicates the passive status
(modem side) of the LPC connection.

LCP.Resend A structure of type RESEND_INFO.
LCP.MRU Maximum-Receive-Unit.
LCP.ACCM Async-Control-Character-Map.

LCP.OptMask
Mask to identify the options which should be added to the LCP
packet.

CCP.Id Sequential ID number of the CCP packet.
CCP.aOptCnt An array of supported CCP options.

CCP.AState
An enum of type PPP_CCP_STATE. Indicates the active status of
the CCP connection.

CCP.PState
An enum of type PPP_CCP_STATE. Indicates the passive status
(modem side) of the LPC connection.

CCP.Resend A structure of type RESEND_INFO.

CCP.OptMask
Mask to identify the options which should be added to the CCP
packet.

IPCP.Id Sequential ID number of the IPCP packet.
IPCP.aOptCnt An array of supported IPCP options.

IPCP.AState
An enum of type PPP_IPCP_STATE. Indicates the active status of
the LPC connection.

IPCP.PState
An enum of type PPP_IPCP_STATE. Indicates the passive status
(modem side) of the LPC connection.

IPCP.Resend A structure of type RESEND_INFO.
IPCP.IpAddr An IP_ADDR to store the IP address of the PPP interface.
IPCP.aDNSServer An IP_ADDR to store the IP address of the PPP interface.

IPCP.OptMask
Mask to identify the options which should be added to the IPCP
packet.

Auth.UserLen Length of the user name, is being set internally.
Auth.abUser User name for the PPPoE connection.
Auth.PassLen Length of the user password, is being set internally.
Auth.abPass User password for the PPPoE connection.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



824 CHAPTER 28 Data structures

Member Description

Auth.Prot
Defines the PPP authentication protocol, is set typically to
PPP_PROT_PAP.

Auth.State An enum of type PPP_AUTH_STATE.
Auth.Resend A structure of type RESEND_INFO.
pLineDriver Pointer to a structure of type IP_PPP_LINE_DRIVER

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



825 CHAPTER 28 Data structures

28.9.2    Structure RESEND_INFO

Description

A structure which stores the resend condition for different stages of the PPP connection.

Prototype

typedef struct {
  IP_PACKET * pPacket;
  I32         Timeout;
  I32         InitialTimeout;
  U32         RemTries;
#if IP_DEBUG
  const char * sPacketName;
#endif
} RESEND_INFO;

Member Description

pPacket Pointer to an IP_PACKET structure.
Timeout Timeout in ms before a resend is triggered.

InitialTimeout
Initial timeout in ms before a resend is triggered. Saved to be
able to reset Timeout to it’s original state.

RemTries Counter for the remaining number of retries.
sPacketName (Only with IP_DEBUG ≥ 1.) Custom name assigned to the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



826 CHAPTER 28 Data structures

28.9.3    Structure IP_PPP_LINE_DRIVER

Description

Structure with pointers to application related functions.

Prototype

typedef struct {
  void (*pfInit) (struct IP_PPP_CONTEXT * pPPPContext);
  void (*pfSend) (U8 Data);
  void (*pfSendNext) (U8 Data);
  void (*pfTerminate) (U8 IFaceId);
  void (*pfOnPacketCompletion) (void);
} IP_PPP_LINE_DRIVER;

Member Description

pfInit Pointer to a function which initializes the PPP connection.
pfSend Pointer to a function which sends the first byte.

pfSendNext
Pointer to a function which sends the next byte. Typically
called from an interrupt that confirms that the last byte has
been sent.

pfTerminate Pointer to a function which terminates the connection.

pfOnPacketCompletion
Optional. Called when packet is complete. Normally used for
packet oriented PPP interfaces GPRS or USB modems.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



827 CHAPTER 28 PPPoE resource usage

28.10    PPPoE resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the PPP/PPPoE modules presented in the tables below have
been measured on an ARM7 and a Cortex-M3 system. Details about the further configuration
can be found in the sections of the specific example.

The resource usage of a typical PPPoE scenario with 1 WAN interface has been measured.

28.10.1    ROM usage on an ARM7 system
The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon ROM

emNet PPP used for PPPoE approximately 7.0 kBytes

28.10.2    ROM usage on a Cortex-M3 system
The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon ROM

emNet PPP used for PPPoE approximately 6.5 kBytes

28.10.3    RAM usage

Addon RAM

emNet PPP used for PPPoE approximately 100 Bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



828 CHAPTER 28 PPP resource usage

28.11    PPP resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the PPP modules presented in the tables below have been
measured on an ARM7 system. Details about the further configuration can be found in the
sections of the specific example.

The resource usage of a typical PPP scenario without network interface and one modem
connected via RS232 has been measured.

28.11.1    ROM usage on an ARM7 system
The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon ROM

emNet PPP used for PPPoE approximately 7.0 kBytes

28.11.2    RAM usage

Addon RAM

emNet PPP used for PPPoE approximately 0.5 kBytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 29
 
NetBIOS (Add-on)

The emNet implementation of the Network Basic Input/Output System Protocol (NetBIOS)
is an optional extension to emNet. It can be used to resolve NetBIOS names in a local area
network. All functions that are required to add NetBIOS to your application are described
in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



830 CHAPTER 29 emNet NetBIOS

29.1    emNet NetBIOS
The emNet NetBIOS implementation is an optional extension which can be seamlessly
integrated into your application. It combines a maximum of performance with a small
memory footprint. The NetBIOS implementation allows an embedded system to resolve
NetBIOS names in the local area network.

The NetBIOS module implements the relevant parts of the following Request For Comments
(RFC).

RFC# Description

[RFC 1001] NetBIOS Concepts and methods
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1001.txt

[RFC 1002] NetBIOS Detailed Specifications
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1002.txt

The following table shows the contents of the emNet root directory:

Directory Content

.\Application\
Contains the example application to run the
NetBIOS implementation with emNet.

.\Inc\ Contains the required include files.

.\IP\ Contains the NetBIOS sources IP_Netbios.c.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



831 CHAPTER 29 Feature list

29.2    Feature list
• Low memory footprint.
• Seamless integration with the emNet stack.
• Client based NetBIOS name resolution.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



832 CHAPTER 29 Requirements

29.3    Requirements
TCP/IP stack

The emNet NetBIOS implementation requires the emNet TCP/IP stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



833 CHAPTER 29 NetBIOS backgrounds

29.4    NetBIOS backgrounds
The Network Basic Input/Output System protocol is an API on top of the TCP/IP protocol, it
provides a way of communication between separate computers within a local arena network
via the session layer.

  

Using NetBIOS, an emNet application can resolve a NetBIOS name to an IP adress in the
local area network.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



834 CHAPTER 29 API functions

29.5    API functions
Function Description

NetBIOS

IP_NETBIOS_Init()
Initializes the NetBIOS Name Service
client.

IP_NETBIOS_Start()
Starts the NetBIOS client Creates an UDP
socket to receive NetBIOS Name Service
requests.

IP_NETBIOS_Stop()
Stops the NetBIOS client Closes the UDP
socket.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



835 CHAPTER 29 API functions

29.5.1    IP_NETBIOS_Init()

Description

Initializes the NetBIOS Name Service client.

Prototype

int IP_NETBIOS_Init(      U32               IFaceId,
                    const IP_NETBIOS_NAME * paHostnames,
                          U16               LPort);

Parameters

Parameter Description

IFaceId Zero-based interface index.

paHostnames
Pointer to an array of Structure IP_NETBIOS_NAME. Expects
last index to be filled with zero.

LPort
Local port used for listening. Typically 137. If parameter
LPort is 0, 137 will be used.

Return value

< 0 Error, invalid NetBIOS name.
> 0 Ok, Number of valid NetBIOS names assigned to the target.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



836 CHAPTER 29 API functions

29.5.2    IP_NETBIOS_Start()

Description

Starts the NetBIOS client Creates an UDP socket to receive NetBIOS Name Service requests.

Prototype

int IP_NETBIOS_Start(U32 IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 Error, could not create an UDP socket.
> 0 OK, number of the socket which is used for the NetBIOS Name Service.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



837 CHAPTER 29 API functions

29.5.3    IP_NETBIOS_Stop()

Description

Stops the NetBIOS client Closes the UDP socket.

Prototype

void IP_NETBIOS_Stop(U32 IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



838 CHAPTER 29 API functions

29.5.4    Structure IP_NETBIOS_NAME

Description

A structure which stores the information about the NetBIOS name.

Prototype

typedef struct IP_NETBIOS_NAME {
  char * sName;
  U8 NumBytes;
} IP_NETBIOS_NAME;

Member Description

sName Pointer to a string which stores the NetBIOS name.
NumBytes Length of the NetBIOS name without termination.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



839 CHAPTER 29 Resource usage

29.6    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the NetBIOS module presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

29.6.1    ROM usage on an ARM7 system
The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon ROM

emNet NetBIOS module approximately 0.8 kBytes

29.6.2    ROM usage on a Cortex-M3 system
The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon ROM

emNet NetBIOS module approximately 0.7 kBytes

29.6.3    RAM usage

Addon RAM

emNet NetBIOS module approximately 26 bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 30
 
SNTP client (Add-on)

The emNet implementation of the Simple Network Time Protocol (SNTP) client is an optional
extension to emNet. It can be used to request a timestamp with the current time from a NTP
server. All functions that are required to add SNTP client functionality to your application
are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



841 CHAPTER 30 emNet SNTP client

30.1    emNet SNTP client
The emNet SNTP client implementation is an optional extension which can be seamlessly
integrated into your application. It combines a maximum of performance with a small
memory footprint. The SNTP client implementation allows an embedded system to use real
timestamps from a remote NTP server without using a RTC or to initialize a RTC. The SNTP
protocol is based on SNTP v4.

The SNTP client module implements the relevant parts of the following Request For
Comments (RFC).

RFC# Description

[RFC 4330]
Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and
OSI
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc4330.txt

[RFC 1305]
Network Time Protocol (Version 3) - Specification, Implementation
and Analysis
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1305.txt

The following table shows the contents of the emNet SNTP client root directory:

Directory Content

.\IP\ Contains the SNTPc sources IP_SNTPC.c.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



842 CHAPTER 30 Feature list

30.2    Feature list
• Low memory footprint.
• Seamless integration with the emNet stack.
• Time synchronization with a remote NTP server.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



843 CHAPTER 30 Requirements

30.3    Requirements
TCP/IP stack

The emNet SNTPc implementation requires the emNet TCP/IP stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



844 CHAPTER 30 SNTP backgrounds

30.4    SNTP backgrounds
The SNTP protocol is an API on top of the TCP/IP protocol, it provides a way of synchronizing
the target time with a local or remote NTP server over the network.

 

Using SNTP, an emNet application can synchronize its time with a NTP server either in the
local network or in a remote network to use a timestamp with the current date and time
or to initialize its own RTC with a good start value.

30.4.1    The NTP timestamp
The NTP timestamp used is represented by a 64-bit value consisting of two 32-bit fields.
The first 32-bit field contains the complete seconds passed since January 1st 1900. The
second 32-bit field contains fractions of a second in 232 picoseconds.

More information about the NTP timestamp can be found in RFC 1305.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



845 CHAPTER 30 SNTP backgrounds

30.4.2    The epoch problem (year 2036 problem)
The NTP timestamp reserves only 32-bit for full seconds passed which equals a little bit
more than 136 years. As the NTP time is based on January 1st 1900 this means that the
timestamp will overlap back to 0 some time in 2036. A timestamp older than a reference
timestamp can be interpreted as valid time as well as long as it does not count up to the
reference timestamp.

Based on this solution there are several possible ways of extending this period even more:
• The simplest solution to extend the timestamp to be used for around 136 years is for

the target to remember the date it was built or has its firmware changed and can then
use this timestamp as reference extending the NTP timestamp for further 136 years.

• Storing the current year in non volatile memory using it as reference in which epoch
the target runs.

• Using other sources as reference for the epoch such as timestamps from other sources.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



846 CHAPTER 30 API functions

30.5    API functions
Function Description

SNTP client

IP_SNTPC_ConfigAcceptNoSyncSource()
Configures, if a timestamp that indicates
it originates from a source that is not
synchronized, is accepted.

IP_SNTPC_ConfigTimeout()
Configures the maximum time to wait for a
response from a NTP server.

IP_SNTPC_GetTimeStampFromServer()
Requests the actual time from a NTP
server.

IP_SNTPC_SetPort()
Sets the NTP Port to a user-configured
value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



847 CHAPTER 30 API functions

30.5.1    IP_SNTPC_ConfigAcceptNoSyncSource()

Description

Configures, if a timestamp that indicates it originates from a source that is not synchronized,
is accepted.

Prototype

void IP_SNTPC_ConfigAcceptNoSyncSource(U8 OnOff);

Parameters

Parameter Description

OnOff
• = 0: Disabled (default).
• = 1: Enabled, accept all timestamps sources.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



848 CHAPTER 30 API functions

30.5.2    IP_SNTPC_ConfigTimeout()

Description

Configures the maximum time to wait for a response from a NTP server

Prototype

void IP_SNTPC_ConfigTimeout(unsigned ms);

Parameters

Parameter Description

ms Timeout in ms.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



849 CHAPTER 30 API functions

30.5.3    IP_SNTPC_GetTimeStampFromServer()

Description

Requests the actual time from a NTP server. Server is passed via punctual IP address or
DNS name.

Prototype

int IP_SNTPC_GetTimeStampFromServer(      unsigned           IFaceId,
                                    const char             * sServer,
                                          IP_NTP_TIMESTAMP * pTimestamp);

Parameters

Parameter Description

IFaceId Zero-based interface index.

sServer
String containing either dotted decimal IP address
(129.250.35.251) or DNS name (us.pool.ntp.org) of NTP
server.

pTimestamp Pointer where to store the received timestamp.

Return value

= 0 IP_SNTPC_STATE_NO_ANSWER, Request sent but no answer from server received
within timeout.

= 1 IP_SNTPC_STATE_UPDATED, Timestamp updated from server response.
= 2 IP_SNTPC_STATE_KOD, Server sent Kiss-Of-Death and wants us to use another

server.
< 0 Other, Error

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



850 CHAPTER 30 API functions

30.5.4    IP_SNTPC_SetPort()

Description

Sets the NTP Port to a user-configured value.

Prototype

int IP_SNTPC_SetPort(U16 Port);

Parameters

Parameter Description

Port NTP Port to set.

Return value

-1 Error.
0 O.K.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



851 CHAPTER 30 API functions

30.5.5    Structure IP_NTP_TIMESTAMP

Description

A structure which stores the timestamp from a NTP request.

Prototype

typedef struct IP_NTP_TIMESTAMP {
  U32 Seconds;
  U32 Fractions;
} IP_NTP_TIMESTAMP;

Member Description

Seconds Seconds passed since start of epoch, typically January 1st 1900.
Fractions Fractions of a second in 232 picoseconds.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



852 CHAPTER 30 Resource usage

30.6    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the SNTP module presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

30.6.1    ROM usage on an ARM7 system
The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon ROM

emNet SNTP client approximately 0.5 kBytes

30.6.2    ROM usage on a Cortex-M3 system
The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon ROM

emNet SNTP client approximately 0.5 kBytes

30.6.3    RAM usage

Addon RAM

emNet SNTP client approximately 24 Bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 31
 
PTP Ordinary Clock (Add-on)

The emNet implementation of the Precision Time Protocol (PTP) is an optional extension
to emNet. Its primary purpose is to synchronize an embedded system to a master clock
in a local network. In addition a simple master functionality can be provided for other PTP
slaves in case no better master is available in the network. All functions that are required
to add PTP functionality to your application are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



854 CHAPTER 31 emNet PTP OC

31.1    emNet PTP OC
The emNet PTP implementation is an optional extension which can be seamlessly integrated
into your application. It combines a maximum of performance with a small memory
footprint. This implementation covers PTP version 2, primarily for ordinary slave-only clocks
with the Delay/Response mechanism. Only one PTP interface is supported at this time.

The PTP interface can be used as a slave, master or starting as slave/master with the master
being disabled later on when a master with a better clock source enters the network.

The PTP module implements the mandatory parts of the following IEEE Standard.

IEEE-Std Description

[1588-2008]

IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems.
A copy could be ordered here:
http://www.nist.gov/el/isd/ieee/ieee1588.cfm

The following table shows the contents of the emNet root directory:

Directory Content

.\IP\

Contains the PTP Ordinary Clock add-on sources.
If available and purchased, a driver for hardware
timestamps for a specific network interface
IP_DRIVER_NAME_PTP.c might be included as well.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



855 CHAPTER 31 emNet PTP OC slave

31.2    emNet PTP OC slave
The PTPv2 protocol allows an embedded system to have a precise synchronization with a
master clock present in its local network. This master clock periodically sends timing related
messages. The slave can use the received timestamp together with other synchronization
messages to the master to calculate an accurate offset to the timestamp that is periodically
sent by the master.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



856 CHAPTER 31 emNet PTP OC master

31.3    emNet PTP OC master
The emNet PTP implementation primarily targets the PTP slave role as this is the typical
role that will be assigned to an embedded target. Most embedded targets do not qualify for
a good PTP master as they are not able to provide a clock that qualifies as stable enough for
a serious PTP clock source compared to commercial PTP grandmaster clocks that typically
sync to a high precision time source like GPS.

emNet therefore only provides a “Simple PTP Master”. While it can be used to provide any
PTP master for a network at all, it should not be considered a serious master clock source
for precision above multiple microseconds, of course under the assumption that the master
can provide a timestamp that accurate at all.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



857 CHAPTER 31 Hardware timestamp support

31.4    Hardware timestamp support
By default the emNet PTP implementation uses software timestamps that rely on the
precision of the system tick, typically provided by an RTOS via the OS abstraction layer. This
tick source typically provides around 1 millisecond precision. On top of the timer precision
the code run-time to collect the timestamp and assign it to a specific packet has to be taken
into account. The precision might be further downgraded by interrupts and modern CPU
features such as pipelining and caches that make a precise code run-time unpredictable.

Some hardwares support PTP timestamps to be taken automatically based on a dedicated
PTP timer unit that then is capable of providing a much better and constant time source
compared to software timestamps. Hardware timestamps can easily reach a precision in
the order of nanoseconds if the PTP hardware timer allows it. To utilize the PTP timer unit,
a PTP driver suitable for the specific device and/or Ethernet controller needs to be added.

Warning

Software and hardware timestamping can not be combined due to API restrictions.
Typically this is also not necessary as master and slave timestamping works in the
same way and can therefore be used for both purposes, even at the same time.

Typically only the timestamps are provided by hardware with the actual PTP logic
remaining in software in the stack. External PTP units like the Renesas EtherC PTP unit
provide their own PTP logic that does more than just provide timestamps and can not
be easily combined with a software logic. Therefore it is currently not possible combine
EtherC PTP hardware timestamp for slave purposes with a software master logic.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



858 CHAPTER 31 Feature list

31.5    Feature list
• Low memory footprint.
• Seamless integration with the emNet stack.
• Time synchronization with a remote PTP master clock.
• Providing a “Simple PTP Master” for the network.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



859 CHAPTER 31 Requirements

31.6    Requirements
TCP/IP stack

The emNet PTP implementation requires the emNet TCP/IP stack. Although it is working
with a complete software solution, a hardware supporting PTP and an associated driver is
needed to reach a higher precision.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



860 CHAPTER 31 PTP background

31.7    PTP background
The PTP protocol is an API on top of the UDP/IP protocol or plain Ethernet. It provides a
way of synchronizing the target with a master clock over the local network.

  

PTP can be used with different protocols. This implementation currently supports PTP over
UDP IPv4, PTP over Ethernet and PTP over UDP IPv6 (If IPv6 add-on is present). PTP
messages are sent using multicast messages:
• Over UDP IPv4: multicast IP address is 224.0.1.129.
• Over Ethernet: multicast MAC address is 01:1B:19:00:00:00.
• Over UDP IPv6: multicast IP address is FF0X::181 (In this implementation X is set to

2 which corresponds to link-local multicast).

In case more than one master clock is present in the local network, a decision needs to
be done which clock is the best master clock. This decision is done by comparing the
parameters periodically sent by every master clock. The best master clock is then used as
the reference called the GrandMaster clock.

Parameters that define a clock (like priority, description, …) can be obtained (and for some
parameters modified) using “Management” messages. See the IEEE1588-2008 specification
for more details. (The emNet PTP implementation currently does not support “Management”
messages)

Using PTP, an emNet system can synchronize its time with a PTP master clock in its
local network by obtaining the transmission/reception timestamp of a series of messages
between the master and the slave. With these timestamps, the slave is able to compute
the time offset and the propagation time between both clocks.

This series of messages for the Delay/Response mechanism occurs periodically in order to
correct the deviation of the slave time with respect to the master.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



861 CHAPTER 31 PTP background

  
• At t1 the master clock sends a Sync message. It either contains t1 or it is followed by

a Follow-Up with t1 value.
• The slave stores at which time t2 it receives the Sync message.
• The slave sends a Delay_Req and stores at which time t3 the message is sent.
• The master sends to the slave in a Delay_Resp at which time t4 it has received the

Delay_Req.
• At the end, the slave has t1, t2, t3 and t4 and can compute the time offset.

Note that this implementation is not compatible with PTP version 1. Peer-to-peer
synchronization mechanism is also not supported. And as previously stated this
implementation is for slave-only ordinary clocks. Similarly the specification defines optional
features that are currently not supported.

31.7.1    Time representation
The PTP timestamp is represented by a structure of two 32-bit fields. The first 32-bit field
contains the complete seconds passed since the EPOCH. The other 32-bit field contains the
sub-second part of the time passed since the EPOCH expressed in nanoseconds.

The EPOCH of a PTP system could be any reference used by the grandmaster clock of the
network, but generally GPS TAI is used as reference with an EPOCH set to January the
1st 1970. The Temps Atomique International (TAI), the international atomic time is
currently ahead of UTC by 37 seconds and always ahead of GPS by 19 seconds.

A nice live view of different time representations live can be found at the following location:
http://leapsecond.com/java/gpsclock.htm

31.7.2    Hardware support
The emNet PTP add-on is able to work without the support of hardware. In this case is uses
a global IP callback that retrieves the time in microseconds. A default callback is provided
that uses the internal milliseconds time. It is possible to provide a more precise function
with IP_SetMicrosecondsCallback().

If the hardware supports PTP, a PTP driver can be added during the configuration with
IP_NI_AddPTPDriver(). Hardware based timestamps are of course more precise than any
software timestamp.

The structure IP_PACKET (accessible using the zero-copy interface) contains the timestamp
of arrival in seconds and nanoseconds for received packets (or time in microseconds when
PTP is not available in the driver).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

http://leapsecond.com/java/gpsclock.htm


862 CHAPTER 31 PTP configuration

31.8    PTP configuration
The emNet PTP ordinary clock can be used without changing any of the compile time flags.
All compile time configuration flags are preconfigured with valid values, which match the
requirements of most applications.

31.8.1    Configuration macro types
The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the source code in place of a numerical constant.
A typical example is the configuration of the sector size of a storage medium.

Alias "A"

A macro which operates like a simple text substitute. An example would be the define U8,
which the preprocessor would replace with unsigned char.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations apply, as a
macro is still put into the source code as simple text replacement. Function replacements are
mainly used to add specific functionality to a module which is highly hardware-dependent.
This type of macro is always declared using brackets (and optional parameters).

31.8.2    Configuration switches

Type Symbolic name Default Description

B IP_SUPPORT_PTP 0
Activates the support of PTP in the
stack, in the driver and in the PTP
module itself.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



863 CHAPTER 31 API functions

31.9    API functions
Function Description

PTP functionality

IP_PTP_GetDefaultDsClockIdentity()
Retrieves the DefaultDS (DataSet)
ClockIdenitity.

IP_PTP_GetTime()
Retrieves the current PTP time based on
the HW (driver) or based on the OS time.

IP_PTP_Halt()
Halts the PTP service based on a
configuration context.

IP_PTP_Init() Initializes a PTP context.

IP_PTP_SetTime()
Sets the PTP time (by applying a positive
coarse correction if necessary) and resets
the PTP sync state to uncalibrated state.

IP_PTP_Start()
Starts the PTP service based on a
configuration context.

IP_PTP_OC_AddMasterFallbackLogic()
Adds a fallback PTP OC logic that is used
by drivers that do not come with their own
logic in hardware.

IP_PTP_OC_AddSlaveFallbackLogic()
Adds a fallback PTP OC logic that is used
by drivers that do not come with their own
logic in hardware.

IP_PTP_MASTER_Add() Adds a PTP master to an interface.
IP_PTP_MASTER_Config() Configures parameters for a PTP Master.

IP_PTP_MASTER_Remove()
Removes a PTP master including fallback
logic assigned to it and removes it from its
assigned IP_PTP_CONTEXT as well.

IP_PTP_SLAVE_Add() Adds a PTP slave to an interface.
Optional PTP driver support

IP_NI_AddPTPDriver()
Adds an NI specific PTP driver for HW
timestamp support.

Optional configuration

IP_PTP_OC_SetInfoCallback()
Sets a callback that gets notified on
updates of the PTP clock.

IP_PTP_OC_SetProductDescription()
Sets the product description of the
Ordinary Clock.

IP_PTP_OC_SetUserDescription()
Sets the user description of the Ordinary
Clock.

IP_PTP_OC_SetRevision() Sets the revision of the Ordinary Clock.
Old API

IP_PTP_OC_Halt()
Halts the PTP messages processing on the
previously started interface.

IP_PTP_OC_Start()
Initializes and starts the PTP
synchronization process.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



864 CHAPTER 31 API functions

31.9.1    IP_PTP_GetDefaultDsClockIdentity()

Description

Retrieves the DefaultDS (DataSet) ClockIdenitity.

Prototype

U8 *IP_PTP_GetDefaultDsClockIdentity(IP_PTP_CONTEXT * pContext,
                                     U8             * pBuffer,
                                     unsigned         NumBytes);

Parameters

Parameter Description

pContext Pointer to PTP context.

pBuffer
Pointer to buffer where to store up to NumBytes of the
DefaultDS ClockIdentity. Zero bytes might be stored if PTP
has not yet been initialized and/or started. Can be NULL.

NumBytes
Number of bytes of the ClockIdentity to store at pBuffer .
Ignored if pBuffer is NULL.

Return value

= NULL Not yet initialized/started.
≠ NULL Pointer to the 8 byte internal ClockIdentity. The DefaultDS ClockIdentity

typically never changes, so a pointer to the internal buffer holding the 8 byte
ClockIdentity can be used directly for easier code and to avoid needing another
buffer.

Additional information

The DefaultDS is initialized during init/start of the PTP service. Until then it returns zero
bytes. The own ClockIdentity can also be calculated from the MAC address of the interface
as follows (following the standard): MAC[0], MAC[1], MAC[2], 0xFF, 0xFE, MAC[3], MAC[4],
MAC[5], MAC[6]

The DefaultsDS ClockIdentity typically is the own identity and can be used to identify a
master clock switch/fallback to the own clock as master if no other suitable master is
present in the network.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



865 CHAPTER 31 API functions

31.9.2    IP_PTP_GetTime()

Description

Retrieves the current PTP time based on the HW (driver) or based on the OS time.

Prototype

int IP_PTP_GetTime(IP_PTP_TIMESTAMP * pPTPTimestamp);

Parameters

Parameter Description

pPTPTimestamp
Pointer to an IP_PTP_TIMESTAMP structure (seconds and
nanoseconds).

Return value

= 0 Time is synchronized and based on HW time from driver.
= 1 Time is synchronized and based on OS time (no HW driver support).
= 2 PTP module not in slave state. No indication on the validity of the given time.
< 0 Error.

Additional information

All parameter checks have been removed for non-debug builds to ensure a fast access when
fetching the timestamp from PTP hardware.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



866 CHAPTER 31 API functions

31.9.3    IP_PTP_Halt()

Description

Halts the PTP service based on a configuration context.

Prototype

int IP_PTP_Halt(IP_PTP_CONTEXT * pContext);

Parameters

Parameter Description

pContext
Pointer the PTP context. Can be discarded upon succesful
halt of the service. Closes previously opened UDP ports if
thsi was the last service using them.

Return value

= 0 OK.
< 0 Error, not started.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



867 CHAPTER 31 API functions

31.9.4    IP_PTP_Init()

Description

Initializes a PTP context. This should be the first PTP API to call in the application.

Prototype

int IP_PTP_Init(      IP_PTP_CONTEXT * pContext,
                const IP_PTP_PROFILE * pProfile);

Parameters

Parameter Description

pContext Pointer to the PTP context.

pProfile
Pointer to the PTP profile to use. For the moment only
“IP_PTP_Profile_1588_2008” is supported.

Return value

= 0 OK.
< 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



868 CHAPTER 31 API functions

31.9.5    IP_PTP_SetTime()

Description

Sets the PTP time (by applying a positive coarse correction if necessary) and resets the
PTP sync state to uncalibrated state. Can be used to set a start time for PTP that is not
yet synchronized.

Prototype

int IP_PTP_SetTime(IP_PTP_TIMESTAMP * pPTPTimestamp);

Parameters

Parameter Description

pPTPTimestamp
Pointer to an IP_PTP_TIMESTAMP structure (seconds and
nanoseconds).

Return value

= 0 O.K.
< 0 Error.

Additional information

A negative coarse correction is not supported. In theory a very large positive coarse
correction can be used to make the time wrap around, back to an earlier timestamp. Please
consult the manual of your device what about the actual maximum register values for your
calculation of the values to apply.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



869 CHAPTER 31 API functions

31.9.6    IP_PTP_Start()

Description

Starts the PTP service based on a configuration context.

Prototype

int IP_PTP_Start(IP_PTP_CONTEXT * pContext);

Parameters

Parameter Description

pContext
Pointer the PTP context. Needs to stay valid as long as the
service is active.

Return value

= 0 OK.
< 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



870 CHAPTER 31 API functions

31.9.7    IP_PTP_OC_AddMasterFallbackLogic()

Description

Adds a fallback PTP OC logic that is used by drivers that do not come with their own logic
in hardware.

Prototype

void IP_PTP_OC_AddMasterFallbackLogic(IP_PTP_MASTER * pMaster);

Parameters

Parameter Description

pMaster
Master endpoint that is offered the default OC logic as
fallback.

Additional information

Needs to be called before actually adding the master endpoint/role using
IP_PTP_MASTER_Add() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



871 CHAPTER 31 API functions

31.9.8    IP_PTP_OC_AddSlaveFallbackLogic()

Description

Adds a fallback PTP OC logic that is used by drivers that do not come with their own logic
in hardware.

Prototype

void IP_PTP_OC_AddSlaveFallbackLogic(IP_PTP_SLAVE * pSlave);

Parameters

Parameter Description

pSlave
Slave endpoint that is offered the default OC logic as
fallback.

Additional information

Needs to be called before actually adding the slave endpoint/role using
IP_PTP_SLAVE_Add() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



872 CHAPTER 31 API functions

31.9.9    IP_PTP_MASTER_Add()

Description

Adds a PTP master to an interface.

Prototype

void IP_PTP_MASTER_Add(IP_PTP_CONTEXT * pContext,
                       IP_PTP_MASTER  * pMaster,
                       unsigned         IFaceId);

Parameters

Parameter Description

pContext Pointer to memory to use for the PTP context.
pMaster Pointer to management memory of type IP_PTP_MASTER .
IFaceId Zero-based interface index that shall be used as PTP master.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



873 CHAPTER 31 API functions

31.9.10    IP_PTP_MASTER_Config()

Description

Configures parameters for a PTP Master.

Prototype

void IP_PTP_MASTER_Config(IP_PTP_MASTER        * pMaster,
                          IP_PTP_MASTER_PARAMS * pParams);

Parameters

Parameter Description

pMaster Pointer to management memory of type IP_PTP_MASTER .

pParams
Pointer to Master configuration parameters of type
IP_PTP_MASTER_PARAMS . The parameters are internally
copied.

Additional information

The Master can only be configured before it is added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



874 CHAPTER 31 API functions

31.9.11    IP_PTP_MASTER_Remove()

Description

Removes a PTP master including fallback logic assigned to it and removes it from its
assigned IP_PTP_CONTEXT as well.

Prototype

void IP_PTP_MASTER_Remove(IP_PTP_MASTER * pMaster);

Parameters

Parameter Description

pMaster Pointer to management memory of type IP_PTP_MASTER .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



875 CHAPTER 31 API functions

31.9.12    IP_PTP_SLAVE_Add()

Description

Adds a PTP slave to an interface.

Prototype

void IP_PTP_SLAVE_Add(IP_PTP_CONTEXT * pContext,
                      IP_PTP_SLAVE   * pSlave,
                      unsigned         IFaceId);

Parameters

Parameter Description

pContext Pointer to memory to use for the PTP context.
pSlave Pointer to management memory of type IP_PTP_SLAVE .
IFaceId Zero-based interface index that shall be used as PTP slave.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



876 CHAPTER 31 API functions

31.9.13    IP_NI_AddPTPDriver()

Description

Adds an NI specific PTP driver for HW timestamp support.

Prototype

int IP_NI_AddPTPDriver(      unsigned        IFaceId,
                       const IP_PTP_DRIVER * pPTPDriver,
                             U32             Clock);

Parameters

Parameter Description

IFaceId Zero-based interface index.
pPTPDriver PTP driver to add.
Clock Clock [Hz] of the PTP timer. Can not be 0.

Return value

-1 Error, not supported
0 OK
1 Error, called after driver initialization has been completed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



877 CHAPTER 31 API functions

31.9.14    IP_PTP_OC_SetInfoCallback()

Description

Sets a callback that gets notified on updates of the PTP clock.

Prototype

void IP_PTP_OC_SetInfoCallback(IP_PTP_ON_INFO_FUNC * pf);

Parameters

Parameter Description

pf Callback to be notified about timer corrections.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



878 CHAPTER 31 API functions

31.9.15    IP_PTP_OC_SetProductDescription()

Description

Sets the product description of the Ordinary Clock.

Prototype

void IP_PTP_OC_SetProductDescription(const char * pDesc);

Parameters

Parameter Description

pDesc
NULL terminated string containing the description. Memory
has to stay valid after the call. Maximum 64 characters
without NULL termination.

Additional information

Product description contains 3 items separated by a semi-colon:

< Manufacturer_name>;<model_number>;<instance_identifier>

May be left undefined.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



879 CHAPTER 31 API functions

31.9.16    IP_PTP_OC_SetUserDescription()

Description

Sets the user description of the Ordinary Clock.

Prototype

void IP_PTP_OC_SetUserDescription(const char * pDesc);

Parameters

Parameter Description

pDesc
NULL terminated string containing the description. Memory
has to stay valid after the call. Maximum 128 characters
without NULL termination.

Additional information

User description contains 2 items separated by a semi-colon:

< Name_of_the_device>;<Physical_location_of_the_device>

The <Name_of_the_device> field represents a user-defined name for the define (e.g.
Sensor1). The <Physical_location_of_the_device> field is a user-defined location (e.g.
Rack-2 Shelf-3). One or both of the field could be left unset. For example, valid definitions
are: “Sensor1;Rack-2 Shelf-3”, “Sensor1” or “;Rack-2 Shelf-3”.

May be left undefined.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



880 CHAPTER 31 API functions

31.9.17    IP_PTP_OC_SetRevision()

Description

Sets the revision of the Ordinary Clock.

Prototype

void IP_PTP_OC_SetRevision(const char * pDesc);

Parameters

Parameter Description

pDesc
NULL terminated string containing the description. Memory
has to stay valid after the call. Maximum 32 characters
without NULL termination.

Additional information

Revision contains 3 items separated by a semi-colon: <HW>;<FW>;<SW>

They correspond to the revision indications of the 3 items. One or more item can be left
empty, for example: HW;;SW.

May be left undefined.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



881 CHAPTER 31 API functions

31.9.18    IP_PTP_OC_Halt()

Description

Halts the PTP messages processing on the previously started interface. Closes the UDP
ports previously opened.

Prototype

int IP_PTP_OC_Halt(void);

Return value

= 0 OK.
< 0 Error, not started.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



882 CHAPTER 31 API functions

31.9.19    IP_PTP_OC_Start()

Description

Initializes and starts the PTP synchronization process. Opens PTP specific UDP ports.

Prototype

int IP_PTP_OC_Start(unsigned IFaceId);

Parameters

Parameter Description

IFaceId Zero-based interface index.

Return value

= 0 OK.
< 0 Error, unable to start.

Additional information

PTP uses the MAC address in order to define the clock identity. It is mandatory to call this
API after the MAC address has been set for the selected interface, for example by calling
IP_SetHWAddr[Ex]() from IP_X_Config() .

Only one interface can be active as PTP Ordinary Clock at once.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



883 CHAPTER 31 Data structures

31.10    Data structures

31.10.1    IP_PTP_TIMESTAMP

Description

A structure which stores the PTP timestamp. This is the time passed since the EPOCH of
the system.

Type definition

typedef struct {
  U32  Seconds;
  U32  Nanoseconds;
} IP_PTP_TIMESTAMP;

Structure members

Member Description

Seconds
Time [s] passed since start of epoch of the network, typically
since January 1st 1970.

Nanoseconds
The sub-second part of the time passed since the EPOCH
expressed in nanoseconds.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



884 CHAPTER 31 Data structures

31.10.2    IP_PTP_INFO

Description

Returns information about the current PTP status. The Type field has to be evaluated for
further information about what part of the union is the information to look at.

Type definition

typedef struct {
  IP_PTP_CONTEXT * pContext;
  U8               Type;
} IP_PTP_INFO;

Structure members

Member Description

pContext PTP context that this information originates from.

Type

Type of information and what part of the union to look at.
The Type member is followed by a union that might not be
correctly displayed or completely missing in the manual. The
following information describes this union part:
• IP_PTP_INFO_TYPE_CORRECTION : Information about the

latest local time correction can be found in pInfo-
>Correction in form of IP_PTP_CORRECTION_INFO .

• IP_PTP_INFO_TYPE_OFFSET : Information about the offset
between slave and master can be found in pInfo->Offset
in form of IP_PTP_OFFSET_INFO .

• IP_PTP_INFO_TYPE_MASTER_CHANGED: Information about
a newly selected master can be found in pInfo-
>Master or pInfo->MasterNewOld.New in form of
IP_PTP_MASTER_INFO .

Information about the previous selected master can
be found in pInfo->MasterNewOld.Old in form of
IP_PTP_MASTER_INFO .
• IP_PTP_INFO_TYPE_MASTER_UPDATED: Information about

parameter updates for the currently selected master can
be found in pInfo->Master or pInfo->MasterNewOld.New
in form of IP_PTP_MASTER_INFO .

• IP_PTP_INFO_TYPE_MASTER_RESET : Reset to or initial
start being our own master. Information can be retrieved in
the same way as for IP_PTP_INFO_TYPE_MASTER_CHANGED
.

pInfo->Master or pInfo->MasterNewOld.New typically
contains our own DefaultDS ClockIdentity. pInfo-
>MasterNewOld.Old contains either the ClockIdentity of
the previously selected master (the old master and no
other suitable is available, so we fall back to being our own
master) or is all zero bytes if the first setup is applied during
the init/start phase.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



885 CHAPTER 31 Data structures

31.10.3    IP_PTP_CORRECTION_INFO

Description

Returns information about the latest local time correction.

Type definition

typedef struct {
  U32  Seconds;
  U32  Nanoseconds;
  U32  Flags;
  U8   State;
} IP_PTP_CORRECTION_INFO;

Structure members

Member Description

Seconds Seconds

Nanoseconds Nanoseconds

Flags ORR-ed combination of IP_PTP_FLAGS_*
State State before applying the correction.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



886 CHAPTER 31 Data structures

31.10.4    IP_PTP_OFFSET_INFO

Description

Returns information about the offset between slave and master.

Type definition

typedef struct {
  U32  Seconds;
  U32  Nanoseconds;
  U32  Flags;
} IP_PTP_OFFSET_INFO;

Structure members

Member Description

Seconds Seconds

Nanoseconds Nanoseconds

Flags ORR-ed combination of IP_PTP_FLAGS_*

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



887 CHAPTER 31 Data structures

31.10.5    IP_PTP_PROT_TYPE

Description

The PTP protocol type can be used to override the default of the system which is typically
IPv4/UDP .

Type definition

typedef enum {
  IP_PTP_PROT_TYPE_DEFAULT,
  IP_PTP_PROT_TYPE_UDP_IPV4,
  IP_PTP_PROT_TYPE_UDP_IPV6,
  IP_PTP_PROT_TYPE_ETHERNET
} IP_PTP_PROT_TYPE;

Enumeration constants

Constant Description

IP_PTP_PROT_TYPE_DEFAULT
Use the system default which is typically
IP_PTP_PROT_TYPE_UDP_IPV4 .

IP_PTP_PROT_TYPE_UDP_IPV4Use PTP over Layer 3 IPv4/UDP protocol.
IP_PTP_PROT_TYPE_UDP_IPV6Use PTP over Layer 3 IPv6/UDP protocol.
IP_PTP_PROT_TYPE_ETHERNETUse PTP over Layer 2 Ethernet protocol.

Additional information

The protocol type is typically set automatically based on the last PTP message received.
For a PTP Slave this means that upon receiving a SYNC for example, the DELAY-REQ that
is then sent by the Slave will use the same type.

For a Master the protocol type can be set as there will be no previous message being
received when sending its SYNC or ANNOUNCE message.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



888 CHAPTER 31 Data structures

31.10.6    IP_PTP_MASTER_PARAMS

Description

Configuration parameters for a PTP Master.

Type definition

typedef struct {
  IP_PTP_PROT_TYPE  Prot;
  I8                LogAnnounceInterval;
  I8                LogSyncInterval;
  I8                LogMinDelayReqInterval;
} IP_PTP_MASTER_PARAMS;

Structure members

Member Description

Prot
Primary protocol to use when sending ANNOUNCE/SYNC
messages. Default: IP_PTP_PROT_TYPE_UDP_IPV4 .

LogAnnounceInterval

Log2 interval in which ANNOUNCE messages are sent.
For the moment the smaller value of the parameters
LogAnnounceInterval and LogSyncInterval is used
for both, ANNOUNCE and SYNC messages. Default: 0 (1
second).

LogSyncInterval

Log2 interval in which SYNC messages are sent. For
the moment the smaller value of the parameters
LogAnnounceInterval and LogSyncInterval is used
for both, ANNOUNCE and SYNC messages. Default: 0 (1
second).

LogMinDelayReqInterval
Log2 interval to report to the SLAVE in a DELAY-RESP
message when to check the DELAY between Slave and
Master. Default: 0 (1 second).

Additional information

Logarithmic time parameters are given as exponent of a two’s base of a second (log2) with
a range between -128 and +127. Examples:
• LogSyncInterval = 0: Send a SYNC every second.
• LogSyncInterval = 1: Send a SYNC every two seconds.
• LogSyncInterval = -2: Send a SYNC every 250 milliseconds.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



889 CHAPTER 31 Data structures

31.10.7    IP_PTP_MASTER_INFO

Description

Returns information about a newly selected master or updated parameters with the
currently selected one.

Type definition

typedef struct {
  U8   abGrandmasterIdentity[];
  U32  UtcOffset;
  U8   IsUtcOffsetValid;
} IP_PTP_MASTER_INFO;

Structure members

Member Description

abGrandmasterIdentity Master clock ID.
UtcOffset Offset between TAI and UTC in seconds.

IsUtcOffsetValid
Is the offset valid ? Basically this means, has this offset been
updated/set by a master ?

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



890 CHAPTER 31 Resource usage

31.11    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the PTP client presented in the tables below have been
measured on a Cortex-M4 system with the default configuration.

31.11.1    ROM usage on a Cortex-M4 system
The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio, size optimized.

Addon ROM

emNet PTP client approximately 7.0 kBytes

31.11.2    RAM usage

Addon RAM

emNet PTP client approximately 300 Bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 32
 
NTP client (Add-on)

The emNet implementation of the Network Time Protocol (NTP) client is an optional
extension to emNet. It can be used to get current time from NTP servers. All functions that
are required to add NTP client functionality to your application are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



892 CHAPTER 32 emNet NTP client

32.1    emNet NTP client
The emNet NTP client implementation is an optional extension which can be seamlessly
integrated into your application. The NTP client implementation allows an embedded system
to use real timestamps from a remote NTP server without using a without using a Real Time
Clock (RTC). The NTP protocol is based on NTP v4.

The NTP client module implements the relevant parts of the following Request For
Comments (RFC).

RFC# Description

[RFC 5905]
Network Time Protocol Version 4: Protocol and Algorithms
Specification
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc5905.txt

The following table shows the contents of the emNet NTP client root directory:

Directory Content

.\IP\ Contains the NTP client sources IP_NTP_CLIENT.c.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



893 CHAPTER 32 Feature list

32.2    Feature list
• Low memory footprint.
• Seamless integration with the emNet stack.
• Time synchronization with remote NTP servers.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



894 CHAPTER 32 Requirements

32.3    Requirements
TCP/IP stack

The emNet NTP client implementation requires the emNet TCP/IP stack. In order to use a
server pool, a DNS environment needs to be present and configured.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



895 CHAPTER 32 NTP backgrounds

32.4    NTP backgrounds
The NTP protocol is a service on top of the UDP/IP protocol, it provides a way of
synchronizing the target time with a local or remote NTP server over the network.

 

Using NTP, an emNet application can synchronize its time with a NTP server either in the
local network or in a remote network to use a timestamp with the current date and time
or to initialize its own RTC with a good start value.

32.4.1    The NTP timestamp
The NTP timestamp used is represented by a 64-bit value consisting of two 32-bit fields.
The first 32-bit field contains the complete seconds passed since January 1st 1900. The
second 32-bit field contains fractions of a second in 232 picoseconds.

Instead of using this structure, a unsigned 64 bits variable (U64) bit could be used with
seconds in the upper 32 bits part and fraction in the lower 32 bits part.

More information about the NTP timestamp can be found in RFC 5905.

Warning

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



896 CHAPTER 32 NTP backgrounds

In order to work, the emNet NTP client add-on requires timestamp in IP packets. The
switch IP_SUPPORT_PACKET_TIMESTAMP shall be set to 1.

32.4.2    The epoch problem (year 2036 problem)
The NTP timestamp reserves only 32-bit for full seconds passed which equals a little bit
more than 136 years. As the NTP time is based on January 1st 1900 this means that the
timestamp will overlap back to 0 some time in 2036. A timestamp older than a reference
timestamp can be interpreted as valid time as well as long as it does not count up to the
reference timestamp.

Based on this the offset to the OS clock is initialized at January 2017.

32.4.3    Algorithm and memory
Although the time conversion is quite simple, the NTP algorithm requires many computation
and memory usage. From a measurement on a server, some parameters are computed (like
delay, dispersion,…) and for every monitored server the last height of these parameters
should be kept to enter the mitigation algorithm which will choose the best clocks to use
for the time correction.

The full RFC implementation cost many RAM and computation power. In order to mitigate
this issue on embedded targets, emNet NTP client add-on proposes along with the full
RFC implementation, a simpler (not RFC compliant) but less demanding implementation,
activated through a compilation switch.

Another bias to the standard is that the NTP module will always be a client only. It always
indicates itself as not synchronized to the other clocks in the network, so it won’t be used
as a reference.

32.4.4    NTP server pool
To synchronize its time, the emNet NTP client uses server clocks. There are three sources
to populate its list of server clocks that work simultaneously:
• User defined clock through the APIs IP_NTP_CLIENT_AddServerClock() and

IP_NTP_CLIENT_AddServerClockIPv6().
• Local clocks which broadcast periodically their time on UDP port 123 will also be used.
• Usage of server pool.

A server pool is a network name (i.e. “0.pool.ntp.org”). When a DNS request is sent for its
address, the DNS reply provides in general four IP addresses of four different clocks.

In order to use this pool mechanism request, a DNS server should be present in the network
and its address known by emNet either by configuration or given by the DHCP server for
example.

32.4.5    Time function
The emNet NTP client add-on uses an IP callback to retrieve the current time
in microseconds. By default a function is provided which uses IP_OS_GetTime32()
in milliseconds. It is possible to provide a clock with a better precision using
IP_SetMicrosecondsCallback(). For example when using embOS:

IP_SetMicrosecondsCallback(OS_GetTime_us64);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



897 CHAPTER 32 NTP client configuration

32.5    NTP client configuration
The emNet NTP client can be used without changing any of the compile time flags. All
compile time configuration flags are preconfigured with valid values, which match the
requirements of most applications.

32.5.1    Configuration macro types
The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the source code in place of a numerical constant.
A typical example is the configuration of the sector size of a storage medium.

Alias "A"

A macro which operates like a simple text substitute. An example would be the define U8,
which the preprocessor would replace with unsigned char.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations apply, as a
macro is still put into the source code as simple text replacement. Function replacements are
mainly used to add specific functionality to a module which is highly hardware-dependent.
This type of macro is always declared using brackets (and optional parameters).

32.5.2    Configuration switches

Type Symbolic name Default Description

B NTP_USE_SIMPLER_VERSION 1

As the RFC implementation is quite
demanding in resources, activating
this switch makes the NTP add-on
use less memory and computation,
but it is not strictly speaking RFC
compliant as the algorithm used to
select reference clocks is simpler.

B IP_SUPPORT_PACKET_TIMESTAMP0
NTP needs timestamping capabilities
in IP_PACKET. To use emNet NTP
add-on, this switch shall be set to 1.

N NTP_MAX_POOL 4 Maximum number of pool to be
configured.

N NTP_MAX_SERVER 8 Maximum number of server clock to
monitor.

N NTP_POOL_RESOLUTION_TIMEOUT2000
Timeout in ms to wait for the DNS
reply after having sent a request to a
server pool.

N NTP_SERVER_REACH 4 Number of attempts to connect to a
server clock before giving up.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



898 CHAPTER 32 API functions

32.6    API functions
Function Description

NTP client

IP_NTP_CLIENT_Start()
Starts the NTP processing and open the
corresponding UDP ports.

IP_NTP_CLIENT_Halt()
Stops the NTP message processing and
closes the corresponding UDP ports.

IP_NTP_CLIENT_ResetAll() Resets all internal contexts.

IP_NTP_CLIENT_Run()
NTP management function to be called
periodically.

IP_NTP_CLIENT_AddServerPool()
Adds a server pool where to look for
clocks.

IP_NTP_CLIENT_FavorLocalClock()
Sets the flag to favor clock found on local
network and user defined clocks.

IP_NTP_CLIENT_AddServerClock()
Adds a user defined clock by its IPv4 IP
address.

IP_NTP_CLIENT_AddServerClockIPv6()
Adds a user defined clock by its IPv6 IP
address.

IP_NTP_GetTimestamp()
Returns the current NTP time in timestamp
format.

IP_NTP_GetTime()
Returns the current NTP time in NTP U64
format.

IP_NTP_SetPort() Sets NTP Port to user-configured value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



899 CHAPTER 32 API functions

32.6.1    IP_NTP_CLIENT_Start()

Description

Starts the NTP processing and open the corresponding UDP ports.

Prototype

int IP_NTP_CLIENT_Start(void);

Return value

= 0 Success.
< 0 Error.

Additional information

In order for NTP to work, it is needed to call first IP_NTP_CLIENT_Start() and then
periodically call IP_NTP_CLIENT_Run() .

Example

Example of a code that starts the emNet NTP client, runs it and gets every 5s the current
time:

Time = IP_OS_GetTime32() + 5000;
//
// Start the NTP client.
//
IP_NTP_CLIENT_Start();
//
for (;;) {
  //
  // Run the NTP state machine.
  //
  IP_NTP_CLIENT_Run();
  //
  // Every 5s, print the current time.
  //
  if (IP_IsExpired(Time) != 0) {
    //
    // Next expiry in 5s.
    //
    Time += 5000;
    //
    // Get the NTP time.
    //
    NTPTime = IP_NTP_GetTime(&Status);
    //
    // Pretty print of the current time.
    //
    _PrintNTPTime(NTPTime, Status);
  }
  //
  // Give some time to other lower priority tasks to run.
  //
  OS_Delay(10);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



900 CHAPTER 32 API functions

32.6.2    IP_NTP_CLIENT_Halt()

Description

Stops the NTP message processing and closes the corresponding UDP ports.

Prototype

int IP_NTP_CLIENT_Halt(unsigned ClearUserDefined);

Parameters

Parameter Description

ClearUserDefined Flag to clear or keep user defined clocks.

Return value

= 0 Success.
< 0 Error.

Additional information

Halt doesn’t reset the time offset thus a call to IP_NTP_GetTime() or
IP_NTP_GetTimestamp() is still possible.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



901 CHAPTER 32 API functions

32.6.3    IP_NTP_CLIENT_ResetAll()

Description

Resets all internal contexts. This also resets the variables that are otherwise untouched
by a simple halt.

Prototype

int IP_NTP_CLIENT_ResetAll(void);

Return value

= 0 Success.
< 0 Error, NTP is currently running.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



902 CHAPTER 32 API functions

32.6.4    IP_NTP_CLIENT_Run()

Description

NTP management function to be called periodically.

Prototype

int IP_NTP_CLIENT_Run(void);

Return value

= 0 Success.
< 0 NTP is not initialized (no call to start).

See IP_NTP_CLIENT_Start on page 899 for an example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



903 CHAPTER 32 API functions

32.6.5    IP_NTP_CLIENT_AddServerPool()

Description

Adds a server pool where to look for clocks.

Prototype

int IP_NTP_CLIENT_AddServerPool(      unsigned   IFaceId,
                                const char     * sPool);

Parameters

Parameter Description

IFaceId
Zero-based interface index on which the pool could be
reached.

sPool

Null terminated string with the pool address. Internally the
NTP module does not copy this string, but saves the pointer.
The memory where the string is stored must remain valid
until the NTP client is stopped (IP_NTP_CLIENT_Halt) and
IP_NTP_CLIENT_ResetAll() is called.

Return value

= 0 The pool was added.
< 0 The pool was not added (list is full)

Additional information

It is possible to add NTP_MAX_POOL pool.

The string gives the address of the pool, for example “0.pool.ntp.org”.

In order to resolve the pool and get servers addresses, a DNS request is sent. It is needed
to have a DNS server in the network to use this feature.

Example

IP_NTP_CLIENT_Start();
//
// Configure maximum 4 pools.
//
IP_NTP_CLIENT_AddServerPool(_IFaceId, "0.pool.ntp.org");
IP_NTP_CLIENT_AddServerPool(_IFaceId, "1.pool.ntp.org");
IP_NTP_CLIENT_AddServerPool(_IFaceId, "2.pool.ntp.org");
IP_NTP_CLIENT_AddServerPool(_IFaceId, "3.pool.ntp.org");

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



904 CHAPTER 32 API functions

32.6.6    IP_NTP_CLIENT_FavorLocalClock()

Description

Sets the flag to favor clock found on local network and user defined clocks.

Prototype

void IP_NTP_CLIENT_FavorLocalClock(unsigned OnOff);

Parameters

Parameter Description

OnOff Flag to set.

Additional information

Clock on local network should broadcast regularly their time to be identified.

When the full RFC is used, this has only an impact on the survivors list. A local clock would
be anyway discarded if it doesn’t pass the clock filter algorithm.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



905 CHAPTER 32 API functions

32.6.7    IP_NTP_CLIENT_AddServerClock()

Description

Adds a user defined clock by its IPv4 IP address.

Prototype

void IP_NTP_CLIENT_AddServerClock(unsigned IFaceId,
                                  U32      IPAddr);

Parameters

Parameter Description

IFaceId Zero-based interface index on which the clock is reachable.
IPAddr IP address in host byte order.

Example

//
// Configure a local clock.
//
IP_NTP_CLIENT_AddServerClock(_IFaceId, IP_BYTES2ADDR(192, 168, 5, 10));

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



906 CHAPTER 32 API functions

32.6.8    IP_NTP_CLIENT_AddServerClockIPv6()

Description

Adds a user defined clock by its IPv6 IP address.

Prototype

void IP_NTP_CLIENT_AddServerClockIPv6(unsigned   IFaceId,
                                      U8       * pIPAddr);

Parameters

Parameter Description

IFaceId Zero-based interface index on which the clock is reachable.
pIPAddr Pointer to the 16 bytes of the IPv6 address.

Notes

To use this function, the IPv6 add-on should be present and activated (IP_SUPPORT_IPV6
is 1).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



907 CHAPTER 32 API functions

32.6.9    IP_NTP_GetTimestamp()

Description

Returns the current NTP time in timestamp format.

Prototype

int IP_NTP_GetTimestamp(IP_NTP_TIMESTAMP * pTimestamp);

Parameters

Parameter Description

pTimestamp Pointer to the structure filled with the current time.

Return value

-1 NTP is not started.
1 NTP is started but not synced to a master clock.
0 NTP is started and synced.

Refer to Structure IP_NTP_TIMESTAMP on page 851 in SNTP chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



908 CHAPTER 32 API functions

32.6.10    IP_NTP_GetTime()

Description

Returns the current NTP time in NTP U64 format.

Prototype

U64 IP_NTP_GetTime(int * pStatus);

Parameters

Parameter Description

pStatus

Variable giving indication on the time validity (could be
NULL).
• -1: NTP is not started.
• 1: NTP is started but not synced to a master clock.
• 0: NTP is started and synced.

Return value

Current time in NTP 64 bits format.

Additional information

The current time in NTP 64 bits format contains the seconds in the higher 32 bits and the
fraction part in the lower 32 bits.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



909 CHAPTER 32 API functions

32.6.11    IP_NTP_SetPort()

Description

Sets NTP Port to user-configured value.

Prototype

int IP_NTP_SetPort(U16 Port);

Parameters

Parameter Description

Port NTP Port to set.

Return value

-1 Error.
0 O.K.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



910 CHAPTER 32 Resource usage

32.7    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the NTP client presented in the tables below have been
measured on a Cortex-M4 system with the default configuration.

32.7.1    Full RFC configuration
The switch NTP_USE_SIMPLER_VERSION is set to 0.

32.7.1.1    ROM usage on a Cortex-M4 system full RFC
The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio, size optimized.

Addon ROM

emNet NTP client with IPv6 approximately 4.8 kBytes
emNet NTP client without IPv6 approximately 4.5 kBytes

32.7.1.2    RAM usage full RFC

Addon RAM

emNet NTP client with IPv6 approximately 3.4 kBytes
emNet NTP client without IPv6 approximately 3.2 kBytes

32.7.2    Simpler configuration
The switch NTP_USE_SIMPLER_VERSION is set to 1 (default).

32.7.2.1    ROM usage on a Cortex-M4 system simpler version
The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio, size optimized.

Addon ROM

emNet NTP client with IPv6 approximately 3.4 kBytes
emNet NTP client without IPv6 approximately 3.1 kBytes

32.7.2.2    RAM usage simpler version

Addon RAM

emNet NTP client with IPv6 approximately 0.8 kBytes
emNet NTP client without IPv6 approximately 0.6 kBytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 33
 
SNMP Agent (Add-on)

The emNet Simple Network Management Protocol (SNMP) Agent is an optional extension
to emNet. The SNMP Agent can be used with emNet or with a different UDP/IP stack. All
functions that are required to add an SNMP Agent to your application are described in this
chapter.

Although SNMP can grow very complex very fast, the emNet SNMP Agent aims to be easily
usable for anyone, even if you do not have too much in depth knowledge about SNMP at
all. Therefore the API is kept to a minimum while still providing everything necessary for
a full SNMP Agent implementation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



912 CHAPTER 33 emNet SNMP Agent

33.1    emNet SNMP Agent
The emNet SNMP Agent is an optional extension which adds SNMP Agent functionality to
the stack. It combines a maximum of performance with a small memory footprint. The
SNMP Agent allows an embedded system to handle SNMP requests from an SNMP Manager
and sending TRAP and INFORM messages to Managers. It comes with all features typically
required by embedded systems: Maximum flexibility, easily portable and low RAM usage.
RAM usage has been kept to a minimum by smart buffer handling.

The SNMP Agent implements the relevant parts of the following Request For Comments
(RFC).

RFC# Description

[RFC 2578] Structure of Management Information Version 2 (SMIv2)
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc2578.txt

[RFC 3411]
An Architecture for Describing Simple Network Management Protocol
(SNMP) Management Frameworks
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc3411.txt

[RFC 3412]
Message Processing and Dispatching for the Simple Network
Management Protocol (SNMP)
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc3412.txt

[RFC 3416]
Version 2 of the Protocol Operations for the Simple Network
Management Protocol (SNMP)
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc3416.txt

[RFC 4181] Guidelines for Authors and Reviewers of MIB Documents
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc4181.txt

[RFC 5343]
“Simple Network Management Protocol (SNMP) Context EngineID
Discovery”
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc5343.txt

The following table shows the contents of the emNet SNMP Agent root directory:

Directory Content

.\Application\
Contains the example application to run the SNMP
Agent with emNet.

.\Config\
Contains the SNMP Agent configuration file. Refer
to SNMP Agent configuration on page 935 for
detailed information.

.\CRYPTO\
Cryptographic hash and/or encrypt/decrypt modules
required for SNMPv3 support. Only included with
the SNMPv3 extension.

.\Doc\ Contains release notes and documentation.

.\IP\
Contains the SNMP Agent sources and header files,
IP_SNMP_AGENT*.

.\SEGGER\ Contains SEGGER helper routines.

.\Shared\
Modules shared between multiple SEGGER products
or application samples.

.\Windows\IP\SNMP_Agent\

Contains the source, the project files and an
executable to run the emNet SNMP Agent on
a Microsoft Windows host. Refer to Using the
SNMP Agent samples on page 928 for detailed
information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



913 CHAPTER 33 Feature list

33.2    Feature list
• Low memory footprint.
• Only few SNMP knowledge required.
• Easy MIB tree setup.
• Supports SNMPv1 and SNMPv2c.
• SNMPv3 available as optional component.
• Supports SNMPv1 & SNMPv2 TRAP messages.
• Supports SNMPv2 INFORM messages.
• SNMPv3 RFC 3414 authentication support.
• SNMPv3 RFC 3414 privacy support.
• SNMPv3 Engine discovery supported.
• MIB-II support (System and Interfaces branch) for emNet out of the box.
• Easy to use API for all typical SNMP types (Unsigned32, Counter32, …).
• Independent of the TCP/IP stack: any stack with sockets can be used.
• Can even be used without sockets e.g. with zero-copy API.
• Demo with custom sample MIB with sockets or zero-copy API included.
• Project for executable on PC for Microsoft Visual Studio included.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



914 CHAPTER 33 SNMP Agent requirements

33.3    SNMP Agent requirements
TCP/IP stack

The emNet SNMP Agent requires an UDP/IP stack. It is optimized for emNet, but any RFC-
compliant UDP/IP stack can be used. The shipment includes a Win32 simulation, which uses
the standard Winsock API and an implementation which uses the socket API of emNet as
well as an implementation which uses the zero-copy API of emNet.

IANA Private Enterprise Number (PEN)

For implementing SNMP in your own product you need to acquire a Private Enterprise
Number (PEN) from the IANA. A PEN can be requested free of charge at the following
location:
http://pen.iana.org/pen/app

The PEN used in the samples (dec. 46410) is the PEN registered for SEGGER Microcontroller
GmbH & Co. KG. This needs to be be changed to your own PEN in your product and the
content of the MIB is subject to change in the future.

Some API might require the PEN in byte BER encoding. An easy way to encode your decimal
PEN to byte BER is to use the IP_SNMP_AGENT_EncodeOIDValue() API.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

http://pen.iana.org/pen/app


915 CHAPTER 33 SNMP backgrounds

33.4    SNMP backgrounds
The Simple Network Management Protocol is a standard protocol to manage IP based
devices in a network. Typical usage is to monitor counters and status in network switches
and other network equipment but can also be used for configuration read/write operations.
The development of SNMP is coordinated by the IETF (Internet Engineering Task Force) with
the widely used SNMPv2c inspired from several other sources. The current protocol version
supported by the emNet SNMP Agent is v1 and v2c. The latest protocol version is v3.

The SNMP Agent is the part that is implemented directly inside a device to fulfill requests
like status information and configuration of the device.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



916 CHAPTER 33 SNMP backgrounds

33.4.1    Data organization in SNMP
SNMP data is organized in Management Information Base (MIB) blocks. The blocks itself
are typically called MIB to keep it short, instead of “MIB blocks”. Each of these MIBs is
organized in a tree like structure, able to have one parent and multiple childs. Every MIB
has an unique Object Identifier (OID) on its level, making it possible to exactly walk
the tree from top to bottom by following one MIB child OID after another.

A typical MIB tree for access to your own enterprise specific data is shown below. In this
example the MIBs from the root node down to the SEGGER enterprise MIB are shown.

  

As can be seen from the MIB tree above, the SEGGER MIB is located at 1.3.6.1.4.1.46410 .
While everything above your own enterprise MIB is typically standardized, it is completely
up to you what happens below your own MIB.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



917 CHAPTER 33 SNMP backgrounds

33.4.2    OID value, address and index
All locations and even items to access within the MIB tree are addressed by a so called “OID
value”. The OID value consists of multiple OIDs addressing one specific item of a specific
MIB in the tree. For this purpose in general the OID value consists of two parts:

The address part describes which MIB in the tree needs to be addressed. The index specifies
the element of the MIB to access. Typically index .0 is used as scalar item which means that
this is the main item of the addressed MIB. Typically this index is always present and serves
the main feature of this MIB. For a hardware timer related MIB, index .0 could contain the
current value of the timer. However it completely depends on the MIB which purpose any
index serves.

Although typically the last OID is used as index, the index is not limited to one OID, making
it impossible to know the address length if not known from any other source like a MIB
description. As it completely depends upon the implementor of the MIB how the MIB and
addresses below this MIB are used, indexes can even be multi dimensional:

This can be used for example to access a table by column and row index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



918 CHAPTER 33 SNMP backgrounds

33.4.3    SNMP data types
The SNMP standard defines various generic data types throughout its versions and several
pseudo data types. These pseudo data types use the same type IDs as the data type
they base on and from the pure data stream they can not be differentiated from their
original type. They are used in MIB descriptions to give several items a clean meaning and
boundaries that the original type does not support. However both sides need to be aware
that this type and its characteristics are required for this specific item.

The following is a list of data types currently supported by the SNMP Agent and includes
the most common native data types and some of their more generic pseudo data types
that are typically in use in the wild.

33.4.3.1    Native data types
These data types are types that in general are available since SNMPv1. Some of them have
been renamed for SNMPv2 but in general still serve the same functionality and newer types
are constructed from them.

Data Type ID Description

INTEGER 0x02 Signed 32-bit integer.
OCTET STRING 0x04 U8 data array.
OBJECT
IDENTIFIER 0x06 OID value used as address to access or value like a pointer.

IpAddress 0x40 U32 IP address.

Counter 0x41
Unsigned 32-bit value, non decreasing. Allowed to be used
with SNMPv2. Using the SNMPv2 Counter32 is advised when
working with SNMPv2 only.

Gauge 0x42 Unsigned 32-bit value. Only SNMPv1.

Gauge32 0x42
Unsigned 32-bit value. Only SNMPv2 and above. Can be
considered an alias of Gauge as its own type as only present
for SNMPv2 and above.

TimeTicks 0x43 Unsigned 32-bit value, non decreasing.

Opaque 0x44

The Opaque type is typically only used in SMIv1 MIBs
and can be used to extend the list of existing types with
encapsulated and constructed types. The downside is
that these types are not generic and can therefore not be
understood by anyone else if they do not know the exact
content encapsulated. The status with SNMPv2 for this type
is deprecated but allowed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



919 CHAPTER 33 SNMP backgrounds

33.4.3.2    Constructed and new data types
These data types are either newer versions of an old SNMPv1 data type and have been
renamed to be more precise in their name or they are technically the same as other
native data types but respect other boundaries in their values. For all types the same rule
applies: Both, Manager and Agent need to be aware of how to handle this data type and
its characteristics.

Data Type ID Description

Integer32 0x02
Signed 32-bit integer. SNMPv2 version of the INTEGER data
type.

BITS 0x04
Array of bit values sent in an U8 data array. Basically the
same as the OCTET STRING data type.

Counter32 0x41
Unsigned 32-bit value, non decreasing. SNMPv2 version of
Counter. Only supported by SNMPv2 and above.

Unsigned32 0x42
Unsigned 32-bit value. Only SNMPv2. Basically the same as
the Gauge data type.

Opaque based data types

Counter64 0x46
Unsigned 64-bit value, non decreasing. Implemented using
the Opaque type.

Float 0x78
IEEE 754 single-precision float. Implemented using the
Opaque type.

Double 0x79
IEEE 754 double-precision float. Implemented using the
Opaque type.

Integer64 0x7A Signed 64-bit integer. Implemented using the Opaque type.
Unsigned64 0x7B Unsigned 64-bit value. Implemented using the Opaque type.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



920 CHAPTER 33 SNMP backgrounds

33.4.4    Participants in an SNMP environment
In an SNMP environment there are typically at least an SNMP Agent serving requests and
a Manager sending requests to the Agent and waiting for a response sent back. The only
exception to this behavior is a TRAP message that is being sent unrequested from Agent
to Manager to signal an event has happened. While for a TRAP message no answer is sent
back from a Manager to the Agent, SNMPv2c introduces the INFORM message that awaits
an acknowledge sent back from Manager to Agent.

While a single Manager can operate with several Agents alone, sometimes it is more efficient
to use a master Agent in between. The job of the master Agent is to collect information
from several Agents and to provide a single communication partner for the Manager to
operate with. A Manager can operate with multiple single Agents and master Agents at
the same time.

The following picture shows the topology between a Manager, one master Agent and
multiple Agents:

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



921 CHAPTER 33 SNMP backgrounds

33.4.5    Differences between SNMP versions
Today there are three SNMP versions that are used in products and can be considered as
standards when talking about SNMP.

SNMPv1

The initial version of the protocol starting from 1988 supports the following message types:

Type Description

get-request Requests one or more values from specific OID values.

getnext-request
Requests the next available OID value after the start OID value
sent with the getnext-request. Multiple requests can be sent in
one getnext-request message.

get-response Responses sent back upon any request message received.
set-request Sets one or more values for specific OID values.

TRAPv1
Unrequested message sent from Agent to one or more Managers.
Does not check for reception of the message.

Although criticized for its poor security, only using a community string that is transmitted
in cleartext SNMPv1 became the de facto standard for device management in a network.

SNMPv2c

SNMPv2 has been designed with better security in mind and supports the following new
message types:

Type Description

getbulk-request
Used for sending one or multiple getnext-requests to retrieve a
large amount of data.

TRAPv2

Unrequested message sent from Agent to one or more Managers.
Does not check for reception of the message. Same as a TRAPv1
message but does not use its own message format anymore but
the standard SNMP PDU message format.

INFORM
Unrequested message sent from Agent to one or more Managers.
Awaits an acknowledge sent back from the Manager and is
retransmitted if the acknowledge is not received.

The original SNMPv2 introduced a new security system which was seen by many as too
complex and therefore not widely accepted. The de facto standard later became SNMPv2c
which stand for SNMPv2 with community based security which works the same as in SNMPv1
by using a clear-type community string. SNMPv2c therefore combines the simple to use
and implement community based security model with the improved performance and new
message types introduced with SNMPv2.

SNMPv3

SNMPv3 adds support for extensible security layers while in general keeping the same
message types as SNMPv2c. It supports the following new message type:

Type Description

REPORT

SNMP messages can let the receiver know that they would like
to receive a report in case the message was not accepted due
to some parameters the sender has used, maybe due to not
knowing them when originally formulating the first iteration of
the message. This includes timestamps for replax protection of
messages as well as knowing more details about which SNMP
instance to address as receiver exactly.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



922 CHAPTER 33 SNMP backgrounds

While SNMPv2c introduced a simple security mechanism it is subject to being transmitted
in cleartext and at the same time only serves a very simple single password protection
without any hardening against replay attacks. SNMPv3 allows different combinations of
security layers while providing simple enough protection against replay attacks to not over
complicate things while still providing a small enough time window to prevent most replay
attacks that are typically executed based on recorded messages long after the original
message has been sent originally.

The most common and widely used security concept of the User-based Security Model
(USM) provides username based access with optional support for a password/key
based authentication of messages as well as optional privacy/encryption on top of the
authentication, with the authentication being done last to authenticate the whole encrypted
message.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



923 CHAPTER 33 SNMP backgrounds

33.4.6    SNMPv3 specific information
While SNMPv3 messages in their principles operate in the same way as with previous
SNMP protocol versions, SNMPv3 and the USM security layer introduce the concept of an
authoritative SNMP Engine. An SNMP Engine acts as a handler to receive and create SNMP
messages and was introduced with SNMPv3 to introduce a layered message structure that
can be extended in the future.

Differences between SNMPv3 and older version message types

SNMPv3 in general uses the same message/PDU types as in older SNMP versions. The
headers before the PDU content (the part with the VarBinds of OIDs and values) is however
no longer of a fixed structure rather than being constructed out of several security layers
defined by the security model selected for the Engine.

The User-based Security Model (USM)

The User-based Security Model (USM) used with SNMPv3 is the standard security model
used with SNMPv3. As the name implies it uses a user database that is managed by a so
called “SNMP Engine”. Different permissions and security levels in terms of AUTH(entication)
and PRIV(acy) aka encryption can be assigned to each user.

SNMPv3 (USM) Engine identifier

The Engine used by the User-based Security Model (USM) for authoritative purposes in a
message is defined by RFC 3411 and RFC 3412 . The EngineId used in a message is typically
the EngineId of the receiver of the message which typically is the Agent receiving a request.

The “SnmpEngineId” OCTET STRING in RFC 3412 is not limited in length and different
implementations exist. RFC 3411 specifies the “SnmpEngineID” as “OCTET STRING
(SIZE(5..32))”. While we are not limited in the length of foreign “SnmpEngineID” fields in
SNMP messages due to how we parse the message, it is suggested to stick to an RFC 3411
conform “SnmpEngineID”. An EngineId based on a 6 byte MAC address is constructed as
follows:
• 4 bytes consisting of the PrivateEnterpriseNumber (PEN) with bit 31 set to indicate the

EngineId is following RFC 3411 .
• 1 byte with value 0x03, indicating that the rest of the EngineId is a 6 byte MAC address.
• 6 bytes MAC address.

Example for the EngineId for the SEGGER PEN 46410:
0x80 0x00 0xB5 0x4A 0x03 <6 byte MAC address>

Engine discovery and REPORT messages

The (primary) Engine used by an SNMP participant as well as its EngineId and further details
can be discovered by sending an empty get-request messages that has the REPORT flag
set. If the receiver supports SNMPv3 messages it responds back with a REPORT messages
containing its EngineId and depending on other factors like steps done towards a successful
authentication with the peer more information to utilize deeper security layers.

If only the IP address of an SNMPv3 peer is known its Engine has to be first discovered
before being able to send meaningful SNMPv3 requests to it. Depending on the security level
requested by the peer Engine it might also require us to utilize its current time that it will tell
us in a REPORT when sending a message. Sending a message outside of the authentitative
Engines time window generates a REPORT with the new time to use to prevent replay
attacks with messages that are considered as too old to be trusted.

TRAP/INFORM usage of the EngineId

While the EngineId is typically the Engine of the message receiver, this is not true for TRAP
messages to stay true to their original meaning of an unconfirmed notification. For this
purpose the authentitative Engine used in a TRAP message is the Engine of the sender. The
receiver needs to be able to authenticate and maybe even decrypt the message if required
by exactly knowing the details about the sender Engine, the username used within the

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



924 CHAPTER 33 SNMP backgrounds

message and the potential authentication and privacy settings used by this user. Except
for receiving an encrypted message a receiver might simply trust the content of a TRAP
received as the authentitative Engine is of the sender anyhow.

As INFORM messages technically behave like a set-request followed by a get-response from
the receiver, the authentitative EngineId used in INFORM messages is once again the Engine
of the receiver as it is used for any regular request.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



925 CHAPTER 33 SNMP backgrounds

33.4.7    SNMP communication basics
SNMP is a request and response protocol. This means that always a Manager sends a request
to an Agent and the Agent sends back a response to the Manager. The only exception from
this concept is for TRAP and INFORM messages where the Agent sends a notification about
an event that has happened at the Agent to a defines list of one or more Managers.

The encoding used in SNMP messages is a binary encoding, so the data can not be read
clear-type. An SNMP message consists of several nested elements as can be seen in the
following example picture:

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



926 CHAPTER 33 SNMP backgrounds

33.4.8    SNMP Agent return codes
The emNet SNMP Agent API distinguishes two types of return codes.
• Generic SNMP protocol error codes
• emNet SNMP Agent API error codes

Both types might be returned by the emNet SNMP Agent API depending on if an internal
error in the API or an SNMP protocol error has occurred.

Generic SNMP protocol return codes

These return codes are generic for the SNMP protocol and are sent in an SNMP message.
Only these return codes are expected to be used in a MIB callback registered with the
emNet SNMP Agent API.

Return code Value Description

IP_SNMP_OK 0 Everything O.K.

IP_SNMP_ERR_TOO_BIG 1
Either the request received was too big to
parse or the response to send does not fit
into one SNMP message.

IP_SNMP_ERR_NO_SUCH_NAME 2 The OID value to access does not exist.
IP_SNMP_ERR_BAD_VALUE 3 Syntax or value error.
IP_SNMP_ERR_GENERIC 5 Generic error, not further specified.

IP_SNMP_ERR_NO_ACCESS 6
The OID value to access is not available.
Might be due to not being visible for the
supplied community string.

IP_SNMP_ERR_WRONG_TYPE 7

Typically sent back for a set-request with a
non-matching type field for a value to set.
For example if an INTEGER is expected but
the set-request conatins an Unsigned32
value to set.

IP_SNMP_ERR_NO_CREATION 11
The OID value to access in a set-request
does not exist and the Agent is unable to
create it.

IP_SNMP_ERR_AUTH 16 No access to this OID value, e.g. wrong
community string.

emNet SNMP Agent API return codes

These return codes are used by the emNet SNMP Agent API to return the result of internal
processes such as parsing results and generating responses.

Return code Value Description

IP_SNMP_AGENT_OK 0 Everything O.K.

IP_SNMP_AGENT_ERR_MISC -1 Generic error, not further
specified.

IP_SNMP_AGENT_ERR_UNSUPPORTED_VERSION -2
A message has been received
with an unsupported protocol
version.

IP_SNMP_AGENT_ERR_AUTH -3

Wrong community string
received in request.
Requested action is not
allowed.

IP_SNMP_AGENT_ERR_MALFORMED_MESSAGE -4 Error while parsing a received
message.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



927 CHAPTER 33 SNMP backgrounds

Return code Value Description

IP_SNMP_AGENT_ERR_TOO_BIG -5 Response to send back is too
big to send.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



928 CHAPTER 33 Using the SNMP Agent samples

33.5    Using the SNMP Agent samples
Ready to use examples for Microsoft Windows and emNet are supplied. If you use another
UDP/IP stack, the samples have to be adapted.

The supplied sample application IP_SNMP_AGENT_Start.c and
IP_SNMP_AGENT_Start_ZeroCopy.c basically do the same. They open the UDP ports 161
and 162 to listen for incoming SNMP messages. Port 161 is the default port for SNMP
requests and is mandatory for SNMP communication. Port 162 is the default port for sending
SNMP TRAP messages and receiving SNMP INFORM messages and the acknowledge sent
back. Therefore in an SNMP Agent if no INFORM messages shall be sent at all, listening
on this port is optional.

The two samples supplied for emNet do the same for the SNMP Agent. However they differ
in the way they are using the UDP/IP stack used for communication.

33.5.1    IP_SNMP_AGENT_Start.c
This sample uses the standard BSD socket interface and can be easily ported to any other
BSD socket compatible UDP/IP stack. It requires static or allocated buffers for most of the
SNMP processing and typically causes several data copy operations in the IP stack itself
due to the nature of the socket interface.

SNMP messages received need to be copied into a local buffer that can then be supplied
to the SNMP Agent API for message parsing. A second local buffer needs to be supplied
to store the response to send back. The response then needs to be copied into the socket
buffer by the IP stack for the UDP message to send.

Sending a TRAP or INFORM message again requires several local buffers to form and send/
receive messages.

33.5.2    IP_SNMP_AGENT_Start_ZeroCopy.c
This sample uses the emNet UDP zero-copy API to handle SNMP messages in a very effective
way without unnecessary copy operations in the receive and send paths.

In addition to saving almost all local buffers that are required for SNMP message processing,
the SNMP Agent can be handled easily without any task at all which saves task stack as well.

Received SNMP messages are directly passed to the SNMP Agent together with their packet
descriptor to the message parser routines without the need to copy their UDP payload into
another buffer. The same applies for the response output. An allocated packet buffer can be
passed completely to the parser routines and the response is stored directly in the packet
buffer. This way the response can be passed to emNet for sending without first having to
copy the payload into another buffer.

As the packet buffers are pre-allocated in emNet upon initialization and the memory is not
freed internally, this also prevents memory fragmentation while providing a flexible way to
allocate memory for receiving and sending SNMP messages.

33.5.3    Using the Windows SNMP Agent sample
If you have MS Visual C++ 6.00 or any later version available, you will be able to work with
a Windows sample project using the emNet SNMP Agent. If you do not have the Microsoft
compiler, a precompiled executable of the SNMP Agent is also supplied.

Building the sample program

Open the workspace SNMP_Agent.dsw with MS Visual Studio (for example, double-clicking
it). There is no further configuration necessary. You should be able to build the application
without any error or warning message.

The server uses the IP address of the host PC on which it runs.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



929 CHAPTER 33 Using the SNMP Agent samples

33.5.4    Features of the SNMP Agent sample application
The sample as shipped is configured for operating/simulating a system with 8 LEDs.

A base MIB tree is added providing a sample implementation
of a custom MIB node at the SEGGER enterprise OID value
“1.3.6.1.4.1.46410”. This evaluates to the following OID path in clear text:
“iso(1).org(3).dod(6).internet(1).private(4).enterprise(1).ENCODED(46410)”.

The ID “46410” is the Private Enterprise Number (PEN) registered for SEGGER. All OIDs
above the value “127” have to be BER encoded. You will need to apply for your own PEN
with the IANA to avoid collisions with other enterprises. You are only allowed to design a
product with SNMP with your own PEN. Registering for your own PEN is free of charge. For
more information please refer to SNMP Agent requirements on page 914.

The sample provided is able to retrieve and set the status of 8 LEDs. A callback registered
to the OID “iso(1).org(3).dod(6).internet(1).private(4).enterprise(1).ENCODED(46410)”
handles all further OIDs beneath the OID of the MIB with the callback. The LED is indexed
with a single dimensional index. The following indexes are supported:
• .0: Read only. Status of all LEDs in one single byte. Bit 0 set in this byte means that

the first LED is on. Bit 1 set in this byte means that the second LED is on.
• .1 to .8: Read/Write. The status of the LEDs with index 0 to 7 can be retrieved/set using

the corresponding index. For a set-request a value of type INTEGER is expected. A value
of 0 clears the LED while any other value sets the LED.

After the initialization of the SNMP Agent the sample application sends a coldBoot trap with
a bogus Varbind to the hosts configured in the configuration area at the top of the sample
application. This is typically done to notify Managers of the availability of this Agent.

The sample is configured to use two community strings for authentication:
• “public”: Read only access.
• “Segger”: Read/write access.

33.5.5    SNMPv3 samples
The SNMPv3 features are built into the samples and can be enabled by changing the
configuration define SUPPORT_SNMPV3 in the samples. Dedicated versions of the samples
with SNMPv3 enabled might exist as well.

When enabling SNMPv3 support in the applications a variety of SNMPv3 users are added.
The users added and their capabilities should be looked up in the application sample directly.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



930 CHAPTER 33 Using the SNMP Agent samples

33.5.6    Testing the SNMP Agent sample application
For an easy test of the SNMP protocol the de facto standard SNMP tool set Net-SNMP can
be used. It can be downloaded from the following location:
http://www.net-snmp.org

The following command line examples show how the SNMP functionality of the sample
can be tested. The majority of the examples are shown for SNMPv2c as except for some
additional parameters they are the same for SNMPv3 with these tools.

Clear the first LED

snmpset -v2c -c Segger <AgentIP> 1.3.6.1.4.1.46410.1 i 0
...
iso.3.6.1.4.1.46410.1 = INTEGER: 0

Clear the first LED with SNMPv3

With SNMPv3 various combinations of security are possible. It is not subject of this
documentation to list all possible combination but to give an example of how to test the
provided examples in principle.

The combination of optional authentication and privacy depends on the specific user of the
respective authoritative SNMP Engine. Therefore the following command line is only one
example for the provided application example and the SNMPv3 users created in it. For a
sample command line for each user created in the example application please refer to the
application routine creating the users. For each user created a sample command line is
stated.

snmpset -v3 -u testuser_authPriv_MD5 -l authPriv -a MD5 -A AUTHpass -x DES -X
 PRIVpass <AgentIP> 1.3.6.1.4.1.46410.1 i 0
...
iso.3.6.1.4.1.46410.1 = INTEGER: 0

Set the second LED

snmpset -v2c -c Segger <AgentIP> 1.3.6.1.4.1.46410.2 i 1
...
iso.3.6.1.4.1.46410.2 = INTEGER: 1

Retrieve the status of all 8 LEDs in one byte

snmpget -v2c -c public <AgentIP> 1.3.6.1.4.1.46410.0
...
iso.3.6.1.4.1.46410.0 = INTEGER: 2

First LED (bit 0) is cleared, second LED (bit 1) is set, all other LEDs are cleared.

Get the next available value in MIB tree.

Retrieve the first element available starting from “iso(1).org(3).dod(6)”.

snmpgetnext -v2c -c public <AgentIP> 1.3.6
...
iso.3.6.1.4.1.46410.0 = INTEGER: 2

Returns the next available element in the MIB tree which is the the current LED status.

Get the LED in single byte and all single LED status in one request.

Retrieve the LED status and output up to 9 elements after the LED status index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

http://www.net-snmp.org


931 CHAPTER 33 Using the SNMP Agent samples

snmpbulkget -v2c -c public -Cn1 -Cr9 <AgentIP> 1.3.6.1.4.1.46410
 1.3.6.1.4.1.46410.0
...
iso.3.6.1.4.1.46410.0 = INTEGER: 2
iso.3.6.1.4.1.46410.1 = INTEGER: 0
iso.3.6.1.4.1.46410.2 = INTEGER: 1
iso.3.6.1.4.1.46410.3 = INTEGER: 0
iso.3.6.1.4.1.46410.4 = INTEGER: 0
iso.3.6.1.4.1.46410.5 = INTEGER: 0
iso.3.6.1.4.1.46410.6 = INTEGER: 0
iso.3.6.1.4.1.46410.7 = INTEGER: 0
iso.3.6.1.4.1.46410.8 = INTEGER: 0
iso.3.6.1.4.1.46410.8 = No more variables left in this MIB View (It is past the
end of the MIB tree)

A getbulk-request is a combination of multiple getnext-requests. In this example “-Cn1”
defines that the first OID value of all OIDs given as parameter shall only retrieve one value.
“-Cn2” would mean that the two first OID values given shall return only one value each.
For all following OID values “-Cr9” defines that up to 9 values shall be retrieved for each
OID value. In this example only one OID value follows the single value OID value(s) and as
only the index .0 to .8 is available in the sample and we start at .0 with a getnext-request,
this retrieves the values for the indexes .1 to .8 with an exception that we reached the end
of the MIB tree searching for the next element at index .8 .

Testing TRAP and INFORM messages

The sample sends a coldBoot TRAP or INFORM message depending on the configuration
set in the sample to selected SNMP Managers.

For testing TRAP and INFORM messages you will need either a fully functional SNMP
Manager or any other software that is able to open the trap UDP port (typically 162) and
listens for TRAP or INFORM messages to be sent by an Agent.

One simple software to test TRAP and INFORM messages is the free MIB browser available
from ManageEngine that can be downloaded from the following location:
https://www.manageengine.com/products/mibbrowser-free-tool/trap-receiver.html

It does not only provide a GUI driven SNMP Manager to test the Agent but also comes with
a TRAP browser to collect and visualize TRAP and INFORM messages sent by the emNet
SNMP Agent. You will need to configure the IP address of the host running the TRAP browser
in the SNMP Agent sample.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://www.manageengine.com/products/mibbrowser-free-tool/trap-receiver.html


932 CHAPTER 33 The MIB callback

33.6    The MIB callback
To each MIB of the emNet SNMP Agent MIB tree, a callback for handling sub OIDs and
indexes can be registered. For each OID value to access the SNMP Agent will search for the
first available OID of a parent MIB and execute the callback assigned to it. This callback
will then be given information about the OID value to access. It then needs to parse the
information available in the received message and form a response if no error shall be sent
back.

As for an SNMP Agent internally getbulk-requests are handled the same way as getnext-
requests, the SNMP Agent will use getnext-requests for the callback to fulfill, even if it
originally was a getbulk-request that has been received.

Therefore the three types that shall be handled by a MIB callback are:
• set-request
• get-request
• getnext-request

A sample implementation can be found in the provided samples in the function
_SNMP_cbSample():

/*********************************************************************
*
*       _SNMP_cbSample()
*
*  Function description
*    Callback handler that can be assign to one or more MIBs.
*
*  Parameters
*    pContext    : Context for the current message and response.
*    pUserContext: User specific context passed to the process message API.
*    pMIB        : Pointer to the MIB that is currently accessed.
*    MIBLen      : Length of the MIB that is currently accessed.
*    pIndex      : Pointer to the encoded index of the OID.
*    IndexLen    : Length of the encoded index in bytes.
*    RequestType : IP_SNMP_PDU_SET_REQUEST or
*                  IP_SNMP_PDU_GET_REQUEST or
                   IP_SNMP_PDU_TYPE_GET_NEXT_REQUEST .
*    VarType     : Type of variable that waits to be parsed for input data.
*                  Only valid if RequestType is IP_SNMP_PDU_SET_REQUEST .
*
*  Return value
*    Everything O.K.    : IP_SNMP_OK
*    In case of an error: IP_SNMP_ERR_*
*
*  Additional information
*    - pIndex might point to more than one index OID value e.g. when
*      using multi dimensional arrays. In any case the index should
*      be decoded before it is used to make sure values above 127
*      are correctly used.
*    - Parameters of a set-request need to be stored back with their new value.
*    - The memory that pMIB and pIndex point to might be reused by store
*      functions. If the data stored at their location is important you
*      have to save them locally on your own. It is advised to do all
*      checks at the beginning of the callback so you do not rely on these
*      parameters while or after you use store functions.
*/
static int _SNMP_cbSample(      IP_SNMP_AGENT_CONTEXT* pContext,
                                void*                  pUserContext,
                          const U8*                    pMIB,
                                U32                    MIBLen,
                          const U8*                    pIndex,
                                U32                    IndexLen,
                                U8                     RequestType,
                                U8                     VarType) {
  I32 OnOff;
  U32 Index;
  U32 NumBytesDecoded;
  U8  LEDMask;

  (void)pUserContext;  // Context passed through the whole SNMP API by
                       // the application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



933 CHAPTER 33 The MIB callback

  (void)pMIB;          // OID part with the address of the MIB found.
  (void)MIBLen;        // Length of the MIB OID.

  LEDMask         = 0;
  NumBytesDecoded = IndexLen;

  if (IP_SNMP_AGENT_DecodeOIDValue(pIndex, &NumBytesDecoded, &Index, &pIndex) != 0) {
    return IP_SNMP_ERR_GENERIC;
  }
  if (RequestType == IP_SNMP_PDU_TYPE_GET_NEXT_REQUEST) {  // Handle getnext-request.
    //
    // A getnext-request has to provide the next indexed item after the
    // one addressed. As for this sample we expect to have only a one
    // dimensional index this is simply incrementing the read index by one.
    // For a getnext-request the callback has to store the OID value of the new item
    // as well.
    // In general the callback has the following options how to react:
    //   1) The callback is     able to store the next item after the given index:
    //      The callback has to store the the OID and the value of the next item.
    //   2) The callback is NOT able to store the next item after the given index:
    //      The callback has to store an NA exception or to report an
    //      IP_SNMP_ERR_NO_CREATION error.
    //
    Index++;
  }
  //
  // Do some checks.
  //
  if ((Index > 8) ||                   // This sample is designed for an index
                                       // of 0..8 where 0 is the status of all
                                       // LEDs and 1..8 is a LED index.
      (IndexLen > NumBytesDecoded)) {  // We expect to have only one index, if
                                       //there are more index bytes to parse this
                                       // means an error (trying to access .x.y
                                       // where only .x is available).
    if (IP_SNMP_AGENT_StoreInstanceNA(pContext) != 0) {
      return IP_SNMP_ERR_TOO_BIG;
    }
    return IP_SNMP_OK;
    //
    // As alternate IP_SNMP_ERR_NO_CREATION can be returned but
    // will abort processing of the VarbindList.
    //
    // return IP_SNMP_ERR_NO_CREATION;  // This resource does not exist.
  }
  if (Index != 0) {
    LEDMask = (1 << (Index - 1));
  }
  //
  // Process get-, getnext- or set-request.
  //
  if (RequestType == IP_SNMP_PDU_TYPE_SET_REQUEST) {  // Handle set-request.
    //
    // Check that the parameter type of the variable is what we expect.
    //
    if (VarType != IP_SNMP_TYPE_INTEGER) {
      return IP_SNMP_ERR_WRONG_TYPE;
    }
    if (IP_SNMP_AGENT_ParseInteger(pContext, &OnOff) != 0) {
      return IP_SNMP_ERR_GENERIC;
    }
    //
    // Set LED state based on index:
    //   Index 0: Invalid.
    //   Other  : Set LED state for one specific LED by one byte.
    //
    if (Index == 0) {
      return IP_SNMP_ERR_NO_ACCESS;
    } else {
      //
      // Set status of one LED.
      //
      if (OnOff != 0) {  // On ?
        _LEDState |= LEDMask;
        BSP_SetLED(Index - 1);
      } else {

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



934 CHAPTER 33 The MIB callback

        _LEDState &= (LEDMask ^ 255);
        BSP_ClrLED(Index - 1);
      }
      if (IP_SNMP_AGENT_StoreInteger(pContext, OnOff) != 0) {
        return IP_SNMP_ERR_TOO_BIG;
      }
    }
  } else {                                            // Handle get-request.
    if (RequestType == IP_SNMP_PDU_TYPE_GET_NEXT_REQUEST) {
      //
      // Store OID of "next" item returned if this is for a getnext-request.
      // The value will be stored by the folowing code in case of a getnext-
      // and a get-request.
      //
      if (IP_SNMP_AGENT_StoreCurrentMibOidAndIndex(pContext, pContext, 1, Index) != 0) {
        return IP_SNMP_ERR_TOO_BIG;
      }
    }
    //
    // Get LED state based on index:
    //   Index 0: Get LED state for all 8 possible LEDs in one byte.
    //   Other  : Get LED state for one specific LED in one byte.
    //
    if (Index == 0) {
      if (IP_SNMP_AGENT_StoreInteger(pContext, _LEDState) != 0) {
        return IP_SNMP_ERR_TOO_BIG;
      }
    } else {
      //
      // Return status of one LED.
      //
      if ((_LEDState & LEDMask) != 0) {
        OnOff = 1;
      } else {
        OnOff = 0;
      }
      if (IP_SNMP_AGENT_StoreInteger(pContext, OnOff) != 0) {
        return IP_SNMP_ERR_TOO_BIG;
      }
    }
  }
  return IP_SNMP_OK;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



935 CHAPTER 33 SNMP Agent configuration

33.7    SNMP Agent configuration
The emNet SNMP Agent can be used without changing any of the compile time flags.
All compile time configuration flags are preconfigured with valid values, which match the
requirements of most applications.

33.7.1    SNMP Agent configuration macro types
The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the source code in place of a numerical constant.
A typical example is the configuration of the sector size of a storage medium.

Alias "A"

A macro which operates like a simple text substitute. An example would be the define U8,
which the preprocessor would replace with unsigned char.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations apply, as a
macro is still put into the source code as simple text replacement. Function replacements are
mainly used to add specific functionality to a module which is highly hardware-dependent.
This type of macro is always declared using brackets (and optional parameters).

33.7.2    SNMP Agent compile time configuration switches

Type Symbolic name Default Description

F IP_SNMP_AGENT_WARN --

Defines a function to output
warnings. In debug configurations
(DEBUG = 1) IP_SNMP_AGENT_WARN
maps to IP_Warnf_Application().

F IP_SNMP_AGENT_LOG --

Defines a function to output logging
messages. In debug configurations
(DEBUG = 1) IP_SNMP_AGENT_LOG
maps to IP_Logf_Application().

F IP_SNMP_AGENT_MEMCPY memcpy memcpy function.

B IP_SNMP_AGENT_SUPPORT_PANIC_CHECK
Debug: 1
Release: 0

Defines if upon a critical error the
execution shall be halted.

B IP_SNMP_AGENT_SUPPORT_64_BIT_TYPES1 Defines if 64-bit types like double
and relatives like float are supported.

N IP_SNMP_AGENT_WORK_BUFFER 64
Defines the size of the buffer used to
do internal work like assembling OID
values for further usage.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



936 CHAPTER 33 API functions

33.8    API functions
Function Description

IP_SNMP_AGENT_AddCommunity()
Adds a community string for access rights
management.

IP_SNMP_AGENT_AddMIB() Adds a MIB to the tree.

IP_SNMP_AGENT_AddInformResponseHook()
Registers a hook that is called upon a state
change of an INFORM item waiting for an
ACK.

IP_SNMP_AGENT_CancelInform()
Cancels an INFORM message that might be
still in process of resending.

IP_SNMP_AGENT_CheckInformStatus()
Retrieves the status of an INFORM
message sent.

IP_SNMP_AGENT_DeInit() Deinitializes the SNMP Agent.
IP_SNMP_AGENT_Exec() Executes management tasks.

IP_SNMP_AGENT_GetMessageType()
Retrieves the message type of the
message in the given buffer.

IP_SNMP_AGENT_Init() Initializes the SNMP Agent.
IP_SNMP_AGENT_PrepareTrapInform() Prepares a TRAP/INFORM message.

IP_SNMP_AGENT_ProcessInformResponse()
Processes a response that has been
received for a previously sent INFORM
message.

IP_SNMP_AGENT_ProcessMessage()
Processes a received message and fills
the output buffer with the response for
sending back.

IP_SNMP_AGENT_SendTrapInform() Sends a TRAP/INFORM message.
IP_SNMP_AGENT_SetCommunityPerm() Sets permissions for a community profile.

SNMPv3 specific functions

IP_SNMP_AGENT_MPV3_Add()
Adds the MessageProcessor (MP) for
SNMPv3 messages.

IP_SNMP_AGENT_SetInformReportCallback()
Sets a callback that is executed when
information about an SNMPv3 engine are
received.

IP_SNMP_AGENT_SM_USM_Add()
Adds the User-basedSecurityModel (USM)
processor for SNMPv3 messages.

IP_SNMP_AGENT_SM_USM_CalcKey()
Calculates the AuthKey or PrivKey for a
password and SNMP EngineId.

IP_SNMP_AGENT_SM_USM_SetUserTable() Sets the SNMPv3 user table.
Standard MIB tree setup functions

IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetIetfMib2Interfaces()
Adds the base MIBs
iso(1).org(3).dod(6).internet(1).ietf(2).mib2(1).interfaces(2)
to the tree.

IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetIetfMib2System()
Adds the base MIBs
iso(1).org(3).dod(6).internet(1).ietf(2).mib2(1).system(1)
to the tree.

IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetPrivateEnterprise()
Adds the base MIBs
iso(1).org(3).dod(6).internet(1).private(4).enterprise(1)
to the tree.

Message construct functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



937 CHAPTER 33 API functions

Function Description

IP_SNMP_AGENT_CloseVarbind()
Closes a previously opened Varbind after
an OID and value pair has been stored and
inserts the length into the Varbind header.

IP_SNMP_AGENT_OpenVarbind()
Prepares a Varbind in the output buffer of
the given context.

IP_SNMP_AGENT_StoreBits() Stores a bitfield into an SNMP message.
IP_SNMP_AGENT_StoreCounter() Stores a Counter into an SNMP message.

IP_SNMP_AGENT_StoreCounter32()
Stores a Counter32 into an SNMP
message.

IP_SNMP_AGENT_StoreCounter64()
Stores a Counter64 into an SNMP
message.

IP_SNMP_AGENT_StoreCurrentMibOidAndIndex()

Stores the currently processed MIB OID
into an output buffer of another or the
same context and adds the given indexes
to the output buffer as well.

IP_SNMP_AGENT_StoreDouble()
Stores a double-precision float into an
SNMP message.

IP_SNMP_AGENT_StoreFloat()
Stores a single-precision float into an
SNMP message.

IP_SNMP_AGENT_StoreGauge() Stores an Gauge into an SNMP message.

IP_SNMP_AGENT_StoreGauge32()
Stores an Gauge32 into an SNMP
message.

IP_SNMP_AGENT_StoreInstanceNA()
Stores a Varbind exception into an SNMP
message if an instance (index) addressed
is not available.

IP_SNMP_AGENT_StoreInteger()
Stores an INTEGER into an SNMP
message.

IP_SNMP_AGENT_StoreInteger32()
Stores an INTEGER32 into an SNMP
message.

IP_SNMP_AGENT_StoreInteger64()
Stores an Integer64 into an SNMP
message.

IP_SNMP_AGENT_StoreIpAddress()
Stores an IpAddress into an SNMP
message.

IP_SNMP_AGENT_StoreOctetString()
Stores an octet string into an SNMP
message.

IP_SNMP_AGENT_StoreOID() Stores an OID into an SNMP message.
IP_SNMP_AGENT_StoreOpaque() Stores an Opaque into an SNMP message.

IP_SNMP_AGENT_StoreTimeTicks()
Stores a 32-bit TimeTick into an SNMP
message.

IP_SNMP_AGENT_StoreUnsigned32()
Stores an Unsigned32 into an SNMP
message.

IP_SNMP_AGENT_StoreUnsigned64()
Stores an Unsigned64 into an SNMP
message.

Message parsing functions

IP_SNMP_AGENT_ParseBits() Parses a bitfield out of an SNMP message.

IP_SNMP_AGENT_ParseCounter()
Parses a Counter field out of an SNMP
message.

IP_SNMP_AGENT_ParseCounter32()
Parses a Counter32 field out of an SNMP
message.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



938 CHAPTER 33 API functions

Function Description

IP_SNMP_AGENT_ParseCounter64()
Parses a Counter64 field out of an SNMP
message.

IP_SNMP_AGENT_ParseDouble()
Parses a double field out of an SNMP
message.

IP_SNMP_AGENT_ParseFloat()
Parses a float field out of an SNMP
message.

IP_SNMP_AGENT_ParseGauge()
Parses a Gauge field out of an SNMP
message.

IP_SNMP_AGENT_ParseGauge32()
Parses a Gauge32 field out of an SNMP
message.

IP_SNMP_AGENT_ParseInteger()
Parses an INTEGER field out of an SNMP
message.

IP_SNMP_AGENT_ParseInteger32()
Parses an INTEGER32 field out of an SNMP
message.

IP_SNMP_AGENT_ParseInteger64()
Parses an Integer64 field out of an SNMP
message.

IP_SNMP_AGENT_ParseIpAddress()
Parses an IpAddr field (IPv4) out of an
SNMP message.

IP_SNMP_AGENT_ParseOctetString()
Parses an OCTET STRING out of an SNMP
message.

IP_SNMP_AGENT_ParseOID() Parses an OID out of an SNMP message.

IP_SNMP_AGENT_ParseOpaque()
Parses an Opaque field out of an SNMP
message.

IP_SNMP_AGENT_ParseTimeTicks()
Parses a 32-bit TimeTick field out of an
SNMP message.

IP_SNMP_AGENT_ParseUnsigned32()
Parses an Unsigned32 field out of an SNMP
message.

IP_SNMP_AGENT_ParseUnsigned64()
Parses an Unsigned64 field out of an SNMP
message.

Helper functions

IP_SNMP_AGENT_DecodeOIDValue()
Parses and decodes an OID value of max
(2^32) - 1 into an U32 to work with.

IP_SNMP_AGENT_EncodeOIDValue()
Encodes an OID value of max (2^32) - 1
(U32) into a buffer.

IP_SNMP_AGENT_TRAP_INFORM_SetIPv4AddrPort()

Helper function that sets
an IPv4 address in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT
context.

IP_SNMP_AGENT_TRAP_INFORM_SetIPv6AddrPort()

Helper function that sets
an IPv6 address in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT
context.

IP_SNMP_AGENT_TRAP_INFORM_SetType()

Helper function that sets the
Type structure member in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT
context.

IP_SNMP_AGENT_TRAP_INFORM_SetCommunity()

Helper function that sets the
Community structure member in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT
context.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



939 CHAPTER 33 API functions

Function Description

IP_SNMP_AGENT_TRAP_INFORM_SetUser()

Helper function that sets the
User structure member in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT
context.

IP_SNMP_AGENT_TRAP_INFORM_SetTimeoutRetries()

Helper function that sets the Timeout
and Retries structure members in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT
context.

IP_SNMP_AGENT_TRAP_INFORM_SetMPFlags()

Helper function that sets the Message
Processor (MP) flags to use in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT
context.

IP_SNMP_SM_USM_USER_SetEngine()

Helper function that sets the
Engine structure member in an
IP_SNMP_SM_USM_USER_TABLE_ENTRY
entry.

IP_SNMP_SM_USM_USER_SetUsername()

Helper function that sets the
Username structure member in an
IP_SNMP_SM_USM_USER_TABLE_ENTRY
entry.

IP_SNMP_SM_USM_USER_SetPerm()

Helper function that sets the
permission structure member in an
IP_SNMP_SM_USM_USER_TABLE_ENTRY
entry.

IP_SNMP_SM_USM_USER_SetAuthParamsAndKey()

Helper function that sets the
AUTH(thentication) parameters used
for AUTH(entication) handling and the
calculated AuthKey structure member in
an IP_SNMP_SM_USM_USER_TABLE_ENTRY
entry.

IP_SNMP_SM_USM_USER_SetPrivParamsAndKey()

Helper function that sets the
PRIV(acy) parameters used for
PRIV(acy) handling and the calculated
PrivKey structure member in an
IP_SNMP_SM_USM_USER_TABLE_ENTRY
entry.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



940 CHAPTER 33 API functions

33.8.1    IP_SNMP_AGENT_AddCommunity()

Description

Adds a community string for access rights management.

Prototype

void IP_SNMP_AGENT_AddCommunity(      IP_SNMP_AGENT_COMMUNITY * pCommunity,
                                const char                    * sCommunity,
                                      U32                       Len);

Parameters

Parameter Description

pCommunity Pointer to IP_SNMP_AGENT_COMMUNITY memory block.
sCommunity Community string to add.
Len Length of the community string without termination.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



941 CHAPTER 33 API functions

33.8.2    IP_SNMP_AGENT_AddMIB()

Description

Adds a MIB to the tree.

Prototype

int IP_SNMP_AGENT_AddMIB(const U8                  * pParentOID,
                               U32                   Len,
                               IP_SNMP_AGENT_MIB   * pMIB,
                               IP_SNMP_AGENT_pfMIB   pf,
                               U32                   Id);

Parameters

Parameter Description

pParentOID Pointer to parent OID in MIB tree.
Len Length of parent OID.
pMIB Pointer to new MIB to add.
pf Callback handler for this MIB.
Id Actual identifier of the new OID.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



942 CHAPTER 33 API functions

33.8.3    IP_SNMP_AGENT_AddInformResponseHook()

Description

Registers a hook that is called upon a state change of an INFORM item waiting for an ACK.

Prototype

void IP_SNMP_AGENT_AddInformResponseHook
                                    (IP_SNMP_AGENT_HOOK_ON_INFORM_RESPONSE * pHook,
                                     IP_SNMP_AGENT_pfOnInformResponse        pf);

Parameters

Parameter Description

pHook
Pointer to element of type
IP_SNMP_AGENT_HOOK_ON_INFORM_RESPONSE.

pf Function pointer to callback to hook in.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



943 CHAPTER 33 API functions

33.8.4    IP_SNMP_AGENT_CancelInform()

Description

Cancels an INFORM message that might be still in process of resending. Resources for this
message can then be freed.

Prototype

void IP_SNMP_AGENT_CancelInform
                          (IP_SNMP_AGENT_TRAP_INFORM_CONTEXT * pTrapInformContext);

Parameters

Parameter Description

pTrapInformContext Pointer to context of message sent.

Additional information

Canceling a message will not overwrite an already set status.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



944 CHAPTER 33 API functions

33.8.5    IP_SNMP_AGENT_CheckInformStatus()

Description

Retrieves the status of an INFORM message sent.

Prototype

int IP_SNMP_AGENT_CheckInformStatus(IP_SNMP_AGENT_TRAP_INFORM_CONTEXT * pContext);

Parameters

Parameter Description

pContext Pointer to INFORM context that has been used for sending.

Return value

Current status of the INFORM message:
• IP_SNMP_AGENT_INFORM_STATUS_WAITING_FOR_ACK
• IP_SNMP_AGENT_INFORM_STATUS_ACK_RECEIVED
• IP_SNMP_AGENT_INFORM_STATUS_NACK_RECEIVED
• IP_SNMP_AGENT_INFORM_STATUS_CANCELED
• IP_SNMP_AGENT_INFORM_STATUS_TIMEOUT

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



945 CHAPTER 33 API functions

33.8.6    IP_SNMP_AGENT_DeInit()

Description

Deinitializes the SNMP Agent.

Prototype

void IP_SNMP_AGENT_DeInit(void);

Additional information

All tasks and external resources that use the SNMP Agent API need to be stopped before
deinitialization.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



946 CHAPTER 33 API functions

33.8.7    IP_SNMP_AGENT_Exec()

Description

Executes management tasks.

Prototype

U32 IP_SNMP_AGENT_Exec(void);

Return value

Time [ms] until the next timeout expires. Returns with 1000 milliseconds/ticks if nothing
expires earlier.

Additional information

Typically checks if it is time to resend an INFORM message for which we have not yet
received an ACK. The return value describes how long a task calling this function can sleep
before it should execute this function again to handle management functionality.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



947 CHAPTER 33 API functions

33.8.8    IP_SNMP_AGENT_GetMessageType()

Description

Retrieves the message type of the message in the given buffer.

Prototype

int IP_SNMP_AGENT_GetMessageType(U8  * pIn,
                                 U32   NumBytesIn,
                                 U8  * pType);

Parameters

Parameter Description

pIn
Pointer to received SNMP message. The buffer needs to be
able to get temporarily modified.

NumBytesIn Length of received SNMP message.
pType Pointer where to store the parsed PDU message type.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

By checking the message type beforehand it is possible to use the same port for normal
get-requests and INFORM handling by using this routine to distinguish which API is required
to process the received message.

Only supports SNMPv1/SNMPv2c messages. For SNMPv3 coexistance use
IP_SNMP_AGENT_ProcessMessage() directly for SNMPv1/SNMPv2c/SNMPv3 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



948 CHAPTER 33 API functions

33.8.9    IP_SNMP_AGENT_Init()

Description

Initializes the SNMP Agent.

Prototype

void IP_SNMP_AGENT_Init(const IP_SNMP_AGENT_API * pAPI);

Parameters

Parameter Description

pAPI Pointer to SNMP Agent API.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



949 CHAPTER 33 API functions

33.8.10    IP_SNMP_AGENT_PrepareTrapInform()

Description

Prepares a TRAP/INFORM message.

Prototype

void IP_SNMP_AGENT_PrepareTrapInform
                                   (      IP_SNMP_AGENT_CONTEXT * pContext,
                                          void                  * pUserContext,
                                    const U8                    * pEnterpriseOID,
                                          U32                     EnterpriseOIDLen,
                                    const U8                    * pTrapOID,
                                          U32                     TrapOIDLen,
                                          U8                    * pBuffer,
                                          U32                     BufferSize,
                                          U32                     AgentAddr);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pUserContext User specific context passed to callbacks.
pEnterpriseOID Pointer to enterprise OID sent in TRAP/INFORM.
EnterpriseOIDLen Length of enterprise OID.
pTrapOID Pointer to SMIv2 TRAP OID sent as source.
TrapOIDLen Length of TRAP OID.
pBuffer Pointer to buffer where to construct the Varbinds to send.
BufferSize Size of the construct buffer.
AgentAddr IP addr. of Agent sending the traps. For IPv6 simply 0.

Additional information

This routine prepares the context so that by using store functions a custom VarbindList can
be build. The message can then be sent either once or multiple times using this context
with the send routine. For SNMPv1 and SNMPv2 TRAP/INFORM messages there are different
information sent in them. What both share is that at least either the enterprise OID value
or the TRAP OID value are inlcuded. The biggest difference is that SNMPv1 TRAPs did not
have a location in the MIB tree and were a separate message type with its own message
format that differs from all other SNMP messages. With SNMPv2 TRAPs now have a location
inside the MIB tree.

For sending SNMPv1 and sending SNMPv2 messages there are different rules that apply
but can be easily satisfied in your application by always providing both pEnterpriseOID/
EnterpriseOIDLen and pTrapOID/TrapOIDLen. The information required for the specific
SNMP version to send will be chosen automatically.

The SNMP Agent API expects the TRAP OID value to be in SMIv2 form which means that
the second to last OID is a zero. This is due to the fact that it is simpler to convert an SMIv2
OID value to SMIv1 than the other way round. For an SNMPv2 TRAP/INFORM the TRAP OID
value is sent as it is as no conversion is necessary. For sending an SNMPv1 TRAP the TRAP
OID value needs to be converted.

For a specific SNMPv1 TRAP this means that the last OID of the TRAP OID value is written
into the SpecificID field of the message and all OIDs before the second to last zero OID are
used as the enterprise OID value. However there is one exception to this procedure:

For a generic SNMPv1 TRAP a special rule applies. As TRAPs are now mapped into the MIB
tree as well there is a difference to their previous form of not having a location at all. Their
SMIv2 form does not have the second to last zero OID and they are not directly converted

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



950 CHAPTER 33 API functions

from SMIv2 to SMIv1 TRAP OID values as others but instead are mapped to their previous
GenericIDs. In case of a generic SNMPv1 TRAP this means that the EnterpriseID is taken as
provided by pEnterpriseOID/EnterpriseOIDLen and the SMIv2 TRAP OID value provided
via pTrapOID/TrapOIDLen is replaced by the proper SMIv1 TRAP OID value.

The following table shows the list of defines available from the SNMP Agent header file to
be used with pTrapOID / TrapOIDLen for sending SNMPv1 generic TRAPs:

Define SMIv2 OID

IP_SNMP_GENERIC_TRAP_OID_COLD_START 1.3.6.1.6.3.1.1.5.1
IP_SNMP_GENERIC_TRAP_OID_WARM_START 1.3.6.1.6.3.1.1.5.2
IP_SNMP_GENERIC_TRAP_OID_LINK_DOWN 1.3.6.1.6.3.1.1.5.3
IP_SNMP_GENERIC_TRAP_OID_LINK_UP 1.3.6.1.6.3.1.1.5.4
IP_SNMP_GENERIC_TRAP_OID_AUTHENTICATION_FAILURE 1.3.6.1.6.3.1.1.5.5
IP_SNMP_GENERIC_TRAP_OID_EGP_NEIGHBOR_LOSS 1.3.6.1.6.3.1.1.5.6
IP_SNMP_GENERIC_TRAP_OID_ENTERPRISE_SPECIFIC 1.3.6.1.6.3.1.1.5.7

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



951 CHAPTER 33 API functions

33.8.11    IP_SNMP_AGENT_ProcessInformResponse()

Description

Processes a response that has been received for a previously sent INFORM message.

Prototype

int IP_SNMP_AGENT_ProcessInformResponse(U8  * pIn,
                                        U32   NumBytesIn);

Parameters

Parameter Description

pIn
Pointer to received SNMP message. The buffer needs to be
able to get temporarily modified.

NumBytesIn Length of received SNMP message.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

Only supports SNMPv1/SNMPv2c messages. For SNMPv3 coexistance use
IP_SNMP_AGENT_ProcessMessage() directly.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



952 CHAPTER 33 API functions

33.8.12    IP_SNMP_AGENT_ProcessMessage()

Description

Processes a received message and fills the output buffer with the response for sending back.

Prototype

int IP_SNMP_AGENT_ProcessMessage(U8   * pIn,
                                 U32    NumBytesIn,
                                 U8   * pOut,
                                 U32    NumBytesOut,
                                 void * pUserContext);

Parameters

Parameter Description

pIn
Pointer to received SNMP message. The buffer needs to be
able to get temporarily modified.

NumBytesIn Length of received SNMP message.
pOut Pointer to output buffer to store the SNMP response.
NumBytesOut Size of buffer for response.
pUserContext User specific context passed to callbacks.

Return value

> 0 Length of response to send.
= 0 No response to send.
< 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



953 CHAPTER 33 API functions

33.8.13    IP_SNMP_AGENT_SendTrapInform()

Description

Sends a TRAP/INFORM message.

Prototype

int IP_SNMP_AGENT_SendTrapInform
                          (void                              * pContext,
                           IP_SNMP_AGENT_CONTEXT             * pVarbindContext,
                           IP_SNMP_AGENT_TRAP_INFORM_CONTEXT * pTrapInformContext);

Parameters

Parameter Description

pContext Send context, typically a socket.
pVarbindContext Pointer to an SNMP Agent context holding Varbinds to send.
pTrapInformContext Pointer to context of message to send.

Return value

= 0 (TRAP) O.K., pContext and pTrapInformContext can be freed.
< 0 (TRAP) Error (buffer not big enough ?), pContext and pTrapInformContext can

be freed.
= 1 (INFORM) O.K., pContext and pTrapInformContext need to be preserved for

further usage.
< 0 (INFORM) Error (buffer not big enough ?), pContext and pTrapInformContext

need to be preserved for further usage.

Additional information

An error while sending the first INFORM message might not mean that a resend can not
succeed. This might happen if at the moment of sending the first message from this routine
no send buffer is available. However in a resend a buffer might be available.

To be on the safe side if resources might be freed or not IP_SNMP_AGENT_CancelInform()
should be called for the message in question. After this it is safe to free the resources.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



954 CHAPTER 33 API functions

33.8.14    IP_SNMP_AGENT_SetCommunityPerm()

Description

Sets permissions for a community profile.

Prototype

void IP_SNMP_AGENT_SetCommunityPerm(      IP_SNMP_AGENT_COMMUNITY * pCommunity,
                                    const IP_SNMP_AGENT_PERM      * pPerm);

Parameters

Parameter Description

pCommunity Pointer to IP_SNMP_AGENT_COMMUNITY memory block.

pPerm
Pointer to the NULL entry terminated permissions table to
use for this community.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



955 CHAPTER 33 API functions

33.8.15    IP_SNMP_AGENT_MPV3_Add()

Description

Adds the MessageProcessor (MP) for SNMPv3 messages.

Prototype

void IP_SNMP_AGENT_MPV3_Add(const IP_SNMP_AGENT_MPV3_CONFIG * pConfig);

Parameters

Parameter Description

pConfig
Pointer to a configuration of type
IP_SNMP_AGENT_MPV3_CONFIG .

Additional information

First the MP for SNMPv3 message handling needs to be added using this routine. Then an
SNMPv3 security model needs to be added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



956 CHAPTER 33 API functions

33.8.16    IP_SNMP_AGENT_SetInformReportCallback()

Description

Sets a callback that is executed when information about an SNMPv3 engine are received.

Prototype

void IP_SNMP_AGENT_SetInformReportCallback
                                        (IP_SNMP_AGENT_ON_INFORM_REPORT_FUNC * pf);

Parameters

Parameter Description

pf Callback to execute when Engine information is received.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



957 CHAPTER 33 API functions

33.8.17    IP_SNMP_AGENT_SM_USM_Add()

Description

Adds the User-basedSecurityModel (USM) processor for SNMPv3 messages.

Prototype

void IP_SNMP_AGENT_SM_USM_Add(const IP_SNMP_AGENT_SM_USM_CONFIG * pConfig);

Parameters

Parameter Description

pConfig
Pointer to a configuration of type
IP_SNMP_AGENT_SM_USM_CONFIG .

Additional information

The SNMPv3 Messageprocessor (MP) needs to be added before adding any SecurityModel
(SM).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



958 CHAPTER 33 API functions

33.8.18    IP_SNMP_AGENT_SM_USM_CalcKey()

Description

Calculates the AuthKey or PrivKey for a password and SNMP EngineId.

Prototype

int IP_SNMP_AGENT_SM_USM_CalcKey(const IP_SNMP_SM_USM_AUTH_PARAMS * pAuthParams,
                                       U8                         * pBuffer,
                                       unsigned                     BufferSize,
                                 const U8                         * pEngineId,
                                       unsigned                     EngineIdLen,
                                 const U8                         * pPass,
                                       unsigned                     PassLen);

Parameters

Parameter Description

pAuthParams
Pointer to a configuration of type
IP_SNMP_SM_USM_AUTH_PARAMS .

pBuffer
Pointer where to store the calculated key. The key/
digest length depends on the selected hash algorithm of
pAuthParams .

BufferSize Available buffer size.
pEngineId Pointer to the SNMP EngineId for which to calculate a key.
EngineIdLen Length of the EngineId.
pPass Pointer to the password.
PassLen Length of the password.

Return value

= 0 O.K.
≠ 0 Error, buffer too small for hash algorithm digest ?

Additional information

SNMP uses AUTH and PRIV keys that are calculated per EngineId. This means that one and
the same password can not be used with different EngineIds. The username however is
not part of the calculation which means that if multiple users share the same password
on the same EngineId, this becomes visible in the user table as they will have the same
AUTH or PRIVACY key.

Depending on the overall CPU speed, calculating the key from a given password on the fly
when needed might easily exceed the timeouts of request. On systems that do not come
with enough RAM to populate an SNMP user table on the fly, most likely the CPU is also
not fast enough to calculate the key on the fly when needed. Therefore the user table is
created upfront and is then installed for immediate lookups of the key for a user.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



959 CHAPTER 33 API functions

33.8.19    IP_SNMP_AGENT_SM_USM_SetUserTable()

Description

Sets the SNMPv3 user table.

Prototype

int IP_SNMP_AGENT_SM_USM_SetUserTable
                              (const IP_SNMP_SM_USM_USER_TABLE_ENTRY * pUserTable,
                                     U8                                NumEntries);

Parameters

Parameter Description

pUserTable
Pointer to the first entry of the user table of type
IP_SNMP_SM_USM_USER_TABLE_ENTRY .

NumEntries Number of entries at pUserTable .

Return value

= 0 O.K.
≠ 0 Sanity check failed for usernames using more than 32 characters or something

else. Please refer to the debug warning outputs for more details.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



960 CHAPTER 33 API functions

33.8.20    IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetIetfMib2Interfaces()

Description

Adds the base MIBs iso(1).org(3).dod(6).internet(1).ietf(2).mib2(1).interfaces(2) to the
tree.

Prototype

int IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetIetfMib2Interfaces
                                  (const IP_SNMP_AGENT_MIB2_INTERFACES_API * pAPI);

Parameters

Parameter Description

pAPI
Pointer to information and callback structure of type
IP_SNMP_AGENT_MIB2_INTERFACES_API.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



961 CHAPTER 33 API functions

33.8.21    IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetIetfMib2System()

Description

Adds the base MIBs iso(1).org(3).dod(6).internet(1).ietf(2).mib2(1).system(1) to the tree.

Prototype

int IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetIetfMib2System
                                      (const IP_SNMP_AGENT_MIB2_SYSTEM_API * pAPI);

Parameters

Parameter Description

pAPI
Pointer to information and callback structure of type
IP_SNMP_AGENT_MIB2_SYSTEM_API.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



962 CHAPTER 33 API functions

33.8.22    IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetPrivateEnterprise()

Description

Adds the base MIBs iso(1).org(3).dod(6).internet(1).private(4).enterprise(1) to the tree.

Prototype

int IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetPrivateEnterprise(void);

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



963 CHAPTER 33 API functions

33.8.23    IP_SNMP_AGENT_CloseVarbind()

Description

Closes a previously opened Varbind after an OID and value pair has been stored and inserts
the length into the Varbind header.

Prototype

int IP_SNMP_AGENT_CloseVarbind(IP_SNMP_AGENT_CONTEXT * pContext);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



964 CHAPTER 33 API functions

33.8.24    IP_SNMP_AGENT_OpenVarbind()

Description

Prepares a Varbind in the output buffer of the given context.

Prototype

int IP_SNMP_AGENT_OpenVarbind(IP_SNMP_AGENT_CONTEXT * pContext);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.

Return value

= 0 O.K.
≠ 0 Error (buffer not big enough ?).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



965 CHAPTER 33 API functions

33.8.25    IP_SNMP_AGENT_StoreBits()

Description

Stores a bitfield into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreBits(      IP_SNMP_AGENT_CONTEXT * pContext,
                            const U8                    * pData,
                                  U32                     NumBytes);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pData Pointer to bitfield.
NumBytes Length of bitfield in bytes.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



966 CHAPTER 33 API functions

33.8.26    IP_SNMP_AGENT_StoreCounter()

Description

Stores a Counter into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreCounter(IP_SNMP_AGENT_CONTEXT * pContext,
                               U32                     v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v Counter to store.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



967 CHAPTER 33 API functions

33.8.27    IP_SNMP_AGENT_StoreCounter32()

Description

Stores a Counter32 into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreCounter32(IP_SNMP_AGENT_CONTEXT * pContext,
                                 U32                     v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v Counter32 to store.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



968 CHAPTER 33 API functions

33.8.28    IP_SNMP_AGENT_StoreCounter64()

Description

Stores a Counter64 into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreCounter64(IP_SNMP_AGENT_CONTEXT * pContext,
                                 U64                     v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v Counter64 to store.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

Can only be used when IP_SNMP_AGENT_SUPPORT_64_BIT_TYPES = 1.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



969 CHAPTER 33 API functions

33.8.29    IP_SNMP_AGENT_StoreCurrentMibOidAndIndex()

Description

Stores the currently processed MIB OID into an output buffer of another or the same context
and adds the given indexes to the output buffer as well.

Prototype

int IP_SNMP_AGENT_StoreCurrentMibOidAndIndex(IP_SNMP_AGENT_CONTEXT * pDstContext,
                                             IP_SNMP_AGENT_CONTEXT * pSrcContext,
                                             U32                     NumIndexes,
                                                                     ...);

Parameters

Parameter Description

pDstContext Pointer to an SNMP Agent context to store the OID value.

pSrcContext
Pointer to an SNMP Agent context from where to generate
the OID value.

NumIndexes Number of variable arguments passed to this function.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



970 CHAPTER 33 API functions

33.8.30    IP_SNMP_AGENT_StoreDouble()

Description

Stores a double-precision float into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreDouble(IP_SNMP_AGENT_CONTEXT * pContext,
                              double                  v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v Double to store.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

A value of type double is expected to be presented in IEEE 754 form. This is true for
all compilers following the C99 standard and typically even for almost all other compilers
following older C-standards. An easy way to check this is to test that a variable of
type float with value 1.0 is stored as 0x3FF00000 in memory. Can only be used when
IP_SNMP_AGENT_SUPPORT_64_BIT_TYPES = 1.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



971 CHAPTER 33 API functions

33.8.31    IP_SNMP_AGENT_StoreFloat()

Description

Stores a single-precision float into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreFloat(IP_SNMP_AGENT_CONTEXT * pContext,
                             float                   v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v Float to store.

Return value

= 0 O.K.
< 0 Error.

Additional information

A value of type float is expected to be presented in IEEE 754 form. This is true for all
compilers following the C99 standard and typically even for almost all other compilers
following older C-standards. An easy way to check this is to test that a variable of type float
with value 1.0 is stored as 0x3F800000 in memory.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



972 CHAPTER 33 API functions

33.8.32    IP_SNMP_AGENT_StoreGauge()

Description

Stores an Gauge into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreGauge(IP_SNMP_AGENT_CONTEXT * pContext,
                             U32                     v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v Gauge to store.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



973 CHAPTER 33 API functions

33.8.33    IP_SNMP_AGENT_StoreGauge32()

Description

Stores an Gauge32 into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreGauge32(IP_SNMP_AGENT_CONTEXT * pContext,
                               U32                     v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v Gauge32 to store.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



974 CHAPTER 33 API functions

33.8.34    IP_SNMP_AGENT_StoreInstanceNA()

Description

Stores a Varbind exception into an SNMP message if an instance (index) addressed is not
available.

Prototype

int IP_SNMP_AGENT_StoreInstanceNA(IP_SNMP_AGENT_CONTEXT * pContext);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



975 CHAPTER 33 API functions

33.8.35    IP_SNMP_AGENT_StoreInteger()

Description

Stores an INTEGER into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreInteger(IP_SNMP_AGENT_CONTEXT * pContext,
                               I32                     v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v INTEGER to store.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



976 CHAPTER 33 API functions

33.8.36    IP_SNMP_AGENT_StoreInteger32()

Description

Stores an INTEGER32 into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreInteger32(IP_SNMP_AGENT_CONTEXT * pContext,
                                 I32                     v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v INTEGER32 to store.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



977 CHAPTER 33 API functions

33.8.37    IP_SNMP_AGENT_StoreInteger64()

Description

Stores an Integer64 into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreInteger64(IP_SNMP_AGENT_CONTEXT * pContext,
                                 I64                     v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v Integer64 to store.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

Can only be used when IP_SNMP_AGENT_SUPPORT_64_BIT_TYPES = 1.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



978 CHAPTER 33 API functions

33.8.38    IP_SNMP_AGENT_StoreIpAddress()

Description

Stores an IpAddress into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreIpAddress(IP_SNMP_AGENT_CONTEXT * pContext,
                                 U32                     IpAddress);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
IpAddress IPv4 addr. as U32 in host order to store.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



979 CHAPTER 33 API functions

33.8.39    IP_SNMP_AGENT_StoreOctetString()

Description

Stores an octet string into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreOctetString(      IP_SNMP_AGENT_CONTEXT * pContext,
                                   const U8                    * pData,
                                         U32                     NumBytes);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pData Pointer to octet string to store.
NumBytes Length of octet string.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



980 CHAPTER 33 API functions

33.8.40    IP_SNMP_AGENT_StoreOID()

Description

Stores an OID into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreOID(      IP_SNMP_AGENT_CONTEXT * pContext,
                           const U8                    * pOIDBytes,
                                 U32                     OIDLen,
                                 U32                     MIBLen,
                                 U8                      IsValue);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pOIDBytes Pointer to OID value.
OIDLen Length of OID value.
MIBLen Length of OID value that is part of the MIB.

IsValue
• 0: This is the OID value for which the result is sent.
• 1: This is a value field that contains an OID value.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



981 CHAPTER 33 API functions

33.8.41    IP_SNMP_AGENT_StoreOpaque()

Description

Stores an Opaque into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreOpaque(      IP_SNMP_AGENT_CONTEXT * pContext,
                              const U8                    * pData,
                                    U32                     NumBytes);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pData Pointer to Opaque data to store.
NumBytes Size of Opaque data.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

As an Opaque is a complex type and the content can be anything this function provides
only the Opaque type field and the length field. All other content like the type inside the
Opaque and the value itself has to be provided by the application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



982 CHAPTER 33 API functions

33.8.42    IP_SNMP_AGENT_StoreTimeTicks()

Description

Stores a 32-bit TimeTick into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreTimeTicks(IP_SNMP_AGENT_CONTEXT * pContext,
                                 U32                     v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v TimeTicks to store.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



983 CHAPTER 33 API functions

33.8.43    IP_SNMP_AGENT_StoreUnsigned32()

Description

Stores an Unsigned32 into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreUnsigned32(IP_SNMP_AGENT_CONTEXT * pContext,
                                  U32                     v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v Unsigned32 to store.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



984 CHAPTER 33 API functions

33.8.44    IP_SNMP_AGENT_StoreUnsigned64()

Description

Stores an Unsigned64 into an SNMP message.

Prototype

int IP_SNMP_AGENT_StoreUnsigned64(IP_SNMP_AGENT_CONTEXT * pContext,
                                  U64                     v);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
v Unsigned64 to store.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

Can only be used when IP_SNMP_AGENT_SUPPORT_64_BIT_TYPES = 1.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



985 CHAPTER 33 API functions

33.8.45    IP_SNMP_AGENT_ParseBits()

Description

Parses a bitfield out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseBits(      IP_SNMP_AGENT_CONTEXT  * pContext,
                            const U8                    ** ppData,
                                  U32                    * pLen);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.

ppData
Pointer where to store the pointer to the data in the
message.

pLen Pointer where to store the data len.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

This function expects that the type field has not been eaten out of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



986 CHAPTER 33 API functions

33.8.46    IP_SNMP_AGENT_ParseCounter()

Description

Parses a Counter field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseCounter(IP_SNMP_AGENT_CONTEXT * pContext,
                               U32                   * pCounter);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pCounter Pointer where to store the parsed Counter.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

By design a Counter is a 32-bit unsigned value which does not mean that always 4 bytes
are used in a message. This function expects that the type field has not been eaten out
of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



987 CHAPTER 33 API functions

33.8.47    IP_SNMP_AGENT_ParseCounter32()

Description

Parses a Counter32 field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseCounter32(IP_SNMP_AGENT_CONTEXT * pContext,
                                 U32                   * pCounter32);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pCounter32 Pointer where to store the parsed Counter32.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

By design a Counter32 is a 32-bit unsigned value which does not mean that always 4 bytes
are used in a message.

This function expects that the type field has not been eaten out of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



988 CHAPTER 33 API functions

33.8.48    IP_SNMP_AGENT_ParseCounter64()

Description

Parses a Counter64 field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseCounter64(IP_SNMP_AGENT_CONTEXT * pContext,
                                 U64                   * pCounter64);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pCounter64 Pointer where to store the parsed Counter64.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

By design a Counter64 is a 64-bit unsigned value which does not mean that always 8 bytes
are used in a message.

This function expects that the type field has not been eaten out of the buffer.

Can only be used when IP_SNMP_AGENT_SUPPORT_64_BIT_TYPES = 1.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



989 CHAPTER 33 API functions

33.8.49    IP_SNMP_AGENT_ParseDouble()

Description

Parses a double field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseDouble(IP_SNMP_AGENT_CONTEXT * pContext,
                              double                * pDouble);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pDouble Pointer where to store the parsed double.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

A value of type double is expected to be presented in IEEE 754 form. This is true for
all compilers following the C99 standard and typically even for almost all other compilers
following older C-standards.

An easy way to check this is to test that a variable of type double with value 1.0 is stored
as 0x3FF0000000000000 in memory. This function expects that the type field has not been
eaten out of the buffer.

Can only be used when IP_SNMP_AGENT_SUPPORT_64_BIT_TYPES = 1.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



990 CHAPTER 33 API functions

33.8.50    IP_SNMP_AGENT_ParseFloat()

Description

Parses a float field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseFloat(IP_SNMP_AGENT_CONTEXT * pContext,
                             float                 * pFloat);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pFloat Pointer where to store the parsed float.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

A value of type float is expected to be presented in IEEE 754 form. This is true for all
compilers following the C99 standard and typically even for almost all other compilers
following older C-standards.

An easy way to check this is to test that a variable of type float with value 1.0 is stored
as 0x3F800000 in memory. This function expects that the type field has not been eaten
out of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



991 CHAPTER 33 API functions

33.8.51    IP_SNMP_AGENT_ParseGauge()

Description

Parses a Gauge field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseGauge(IP_SNMP_AGENT_CONTEXT * pContext,
                             U32                   * pUnsigned32);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pUnsigned32 Pointer where to store the parsed Gauge.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

By design an gauge is a 32-bit unsigned value which does not mean that always 4 bytes
are used in a message. This function expects that the type field has not been eaten out
of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



992 CHAPTER 33 API functions

33.8.52    IP_SNMP_AGENT_ParseGauge32()

Description

Parses a Gauge32 field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseGauge32(IP_SNMP_AGENT_CONTEXT * pContext,
                               U32                   * pUnsigned32);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pUnsigned32 Pointer where to store the parsed Gauge32.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

By design an Gauge32 is a 32-bit unsigned value which does not mean that always 4 bytes
are used in a message. This function expects that the type field has not been eaten out
of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



993 CHAPTER 33 API functions

33.8.53    IP_SNMP_AGENT_ParseInteger()

Description

Parses an INTEGER field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseInteger(IP_SNMP_AGENT_CONTEXT * pContext,
                               I32                   * pInteger);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pInteger Pointer where to store the parsed INTEGER.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

By design an INTEGER is a 32-bit signed value which does not mean that always 4 bytes
are used in a message. This function expects that the type field has not been eaten out
of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



994 CHAPTER 33 API functions

33.8.54    IP_SNMP_AGENT_ParseInteger32()

Description

Parses an INTEGER32 field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseInteger32(IP_SNMP_AGENT_CONTEXT * pContext,
                                 I32                   * pInteger32);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pInteger32 Pointer where to store the parsed INTEGER32.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

By design an INTEGER32 is a 32-bit signed value which does not mean that always 4 bytes
are used in a message. This function expects that the type field has not been eaten out
of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



995 CHAPTER 33 API functions

33.8.55    IP_SNMP_AGENT_ParseInteger64()

Description

Parses an Integer64 field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseInteger64(IP_SNMP_AGENT_CONTEXT * pContext,
                                 I64                   * pInteger64);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pInteger64 Pointer where to store the parsed Integer64.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

By design an Integer64 is a 64-bit signed value which does not mean that always 8 bytes
are used in a message. This function expects that the type field has not been eaten out
of the buffer.

Can only be used when IP_SNMP_AGENT_SUPPORT_64_BIT_TYPES = 1.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



996 CHAPTER 33 API functions

33.8.56    IP_SNMP_AGENT_ParseIpAddress()

Description

Parses an IpAddr field (IPv4) out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseIpAddress(IP_SNMP_AGENT_CONTEXT * pContext,
                                 U32                   * pIpAddress);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.

pIpAddress
Pointer where to store the parsed IpAddr. The IP addr. is
stored as U32 in host order.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

This function expects that the type field has not been eaten out of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



997 CHAPTER 33 API functions

33.8.57    IP_SNMP_AGENT_ParseOctetString()

Description

Parses an OCTET STRING out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseOctetString(      IP_SNMP_AGENT_CONTEXT  * pContext,
                                   const U8                    ** ppData,
                                         U32                    * pLen);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.

ppData
Pointer where to store the pointer to the data in the
message.

pLen Pointer where to store the data len.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

This function expects that the type field has not been eaten out of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



998 CHAPTER 33 API functions

33.8.58    IP_SNMP_AGENT_ParseOID()

Description

Parses an OID out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseOID(      IP_SNMP_AGENT_CONTEXT  * pContext,
                           const U8                    ** ppData,
                                 U32                    * pLen);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.

ppData
Pointer where to store the pointer to the data in the
message.

pLen Pointer where to store the data len.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

This function expects that the type field has not been eaten out of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



999 CHAPTER 33 API functions

33.8.59    IP_SNMP_AGENT_ParseOpaque()

Description

Parses an Opaque field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseOpaque(      IP_SNMP_AGENT_CONTEXT  * pContext,
                              const U8                    ** ppData,
                                    U32                    * pLen);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.

ppData
Pointer where to store the pointer to the Opaque data in the
message.

pLen Pointer where to store the Opaque data len.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

This function expects that the type field has not been eaten out of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1000 CHAPTER 33 API functions

33.8.60    IP_SNMP_AGENT_ParseTimeTicks()

Description

Parses a 32-bit TimeTick field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseTimeTicks(IP_SNMP_AGENT_CONTEXT * pContext,
                                 U32                   * pTimeTicks);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pTimeTicks Pointer where to store the parsed TimeTicks.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

This function expects that the type field has not been eaten out of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1001 CHAPTER 33 API functions

33.8.61    IP_SNMP_AGENT_ParseUnsigned32()

Description

Parses an Unsigned32 field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseUnsigned32(IP_SNMP_AGENT_CONTEXT * pContext,
                                  U32                   * pUnsigned32);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pUnsigned32 Pointer where to store the parsed Unsigned32.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

By design an Unsigned32 is a 32-bit unsigned value which does not mean that always 4
bytes are used in a message. This function expects that the type field has not been eaten
out of the buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1002 CHAPTER 33 API functions

33.8.62    IP_SNMP_AGENT_ParseUnsigned64()

Description

Parses an Unsigned64 field out of an SNMP message.

Prototype

int IP_SNMP_AGENT_ParseUnsigned64(IP_SNMP_AGENT_CONTEXT * pContext,
                                  U64                   * pUnsigned64);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pUnsigned64 Pointer where to store the parsed Unsigned64.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

By design an Unsigned64 is a 64-bit unsigned value which does not mean that always 8
bytes are used in a message. This function expects that the type field has not been eaten
out of the buffer.

Can only be used when IP_SNMP_AGENT_SUPPORT_64_BIT_TYPES = 1.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1003 CHAPTER 33 API functions

33.8.63    IP_SNMP_AGENT_DecodeOIDValue()

Description

Parses and decodes an OID value of max (2^32) - 1 into an U32 to work with.

Prototype

int IP_SNMP_AGENT_DecodeOIDValue(const U8   * pOID,
                                       U32  * pLen,
                                       U32  * pValue,
                                 const U8  ** ppNext);

Parameters

Parameter Description

pOID Pointer to next OID value to decode.

pLen
In Pointer to length of the OID at pOID. Out Pointer where to
store the number of bytes decoded.

pValue Pointer where to store the decoded OID value.

ppNext
Pointer to the pointer to the next OID value after the one
processed. Can be NULL.

Return value

= 0 O.K.
≠ 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1004 CHAPTER 33 API functions

33.8.64    IP_SNMP_AGENT_EncodeOIDValue()

Description

Encodes an OID value of max (2^32) - 1 (U32) into a buffer.

Prototype

int IP_SNMP_AGENT_EncodeOIDValue(U32    Value,
                                 U8   * pBuffer,
                                 U32    BufferSize,
                                 U8  ** ppNext,
                                 U8   * pNumEncodedBytes);

Parameters

Parameter Description

Value OID value to encode and store at pBuffer.
pBuffer Pointer where to store the encoded OID value.
BufferSize Size of destination buffer.

ppNext
Pointer to the pointer to the next OID value after the one
processed.

pNumEncodedBytes
Pointer where to store the number of encoded and stored
bytes.

Return value

= 0 O.K.
≠ 0 Error.

Additional information

BufferSize needs to be big enough for the encoded OID value. If unsure use a buffer of
5 bytes as this is the maximum size of an encoded OID value or use at least enough bytes
as required for the value in memory + 1 byte as a rough calculation. Examples:

127 will be encoded in one byte + 1 byte just to be on the safe side. 128 will be encoded
in two bytes + 1 byte is required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1005 CHAPTER 33 API functions

33.8.65    IP_SNMP_AGENT_TRAP_INFORM_SetIPv4AddrPort()

Description

Helper function that sets an IPv4 address in an IP_SNMP_AGENT_TRAP_INFORM_CONTEXT
context.

Prototype

void IP_SNMP_AGENT_TRAP_INFORM_SetIPv4AddrPort
                                (IP_SNMP_AGENT_TRAP_INFORM_CONTEXT * pContext,
                                 U32                                 IPAddr,
                                 U16                                 Port,
                                 U16                                 DiscoverPort);

Parameters

Parameter Description

pContext
Pointer to TRAP/INFORM context of type
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT .

IPAddr
IPv4 address where to send the TRAP/INFORM message in
host order.

Port UDP port to send to in host order. Typically 162.

DiscoverPort
UDP port to use for SNMPv3 Engine discovery in host order.
Typically 161. Can be 0 if not using Engine discovery.

Additional information

The purpose of this helper function is to provide a persistent API while allowing the
members of the IP_SNMP_AGENT_TRAP_INFORM_CONTEXT structure to be moved around for
best memory efficiency when extending the structure in the future.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1006 CHAPTER 33 API functions

33.8.66    IP_SNMP_AGENT_TRAP_INFORM_SetIPv6AddrPort()

Description

Helper function that sets an IPv6 address in an IP_SNMP_AGENT_TRAP_INFORM_CONTEXT
context.

Prototype

void IP_SNMP_AGENT_TRAP_INFORM_SetIPv6AddrPort
                                (IP_SNMP_AGENT_TRAP_INFORM_CONTEXT * pContext,
                                 U8                                * pIPAddr,
                                 U16                                 Port,
                                 U16                                 DiscoverPort);

Parameters

Parameter Description

pContext
Pointer to TRAP/INFORM context of type
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT .

pIPAddr
Pointer to the IPv6 address where to send the TRAP/INFORM
message.

Port UDP port to send to in host order. Typically 162.

DiscoverPort
UDP port to use for SNMPv3 Engine discovery in host order.
Typically 161. Can be 0 if not using Engine discovery.

Additional information

The purpose of this helper function is to provide a persistent API while allowing the
members of the IP_SNMP_AGENT_TRAP_INFORM_CONTEXT structure to be moved around for
best memory efficiency when extending the structure in the future.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1007 CHAPTER 33 API functions

33.8.67    IP_SNMP_AGENT_TRAP_INFORM_SetType()

Description

Helper function that sets the Type structure member in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT context.

Prototype

void IP_SNMP_AGENT_TRAP_INFORM_SetType
                                     (IP_SNMP_AGENT_TRAP_INFORM_CONTEXT * pContext,
                                      U8                                  Type);

Parameters

Parameter Description

pContext
Pointer to TRAP/INFORM context of type
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT .

Type

TRAP/INFORM message type to send:
• IP_SNMP_PDU_TYPE_TRAPV1 : Send an SNMPv1 TRAP.
• IP_SNMP_PDU_TYPE_TRAPV2 : Send an SNMPv2c TRAP (also

SNMPv3).
• IP_SNMP_PDU_TYPE_INFORMV2: Send an SNMPv2c INFORM

(also SNMPv3).

Additional information

The purpose of this helper function is to provide a persistent API while allowing the
members of the IP_SNMP_AGENT_TRAP_INFORM_CONTEXT structure to be moved around for
best memory efficiency when extending the structure in the future.

SNMPv3 TRAP/INFORM messages use the same PDUs as SNMPv2c TRAP/INFORM
messages. To send SNMPv2 TRAP/INFORM messages a community needs to be set using
IP_SNMP_AGENT_TRAP_INFORM_SetCommunity() . If no community is set SNMPv3 TRAP/
INFORM messages are sent.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1008 CHAPTER 33 API functions

33.8.68    IP_SNMP_AGENT_TRAP_INFORM_SetCommunity()

Description

Helper function that sets the Community structure member in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT context.

Prototype

void IP_SNMP_AGENT_TRAP_INFORM_SetCommunity
                                  (IP_SNMP_AGENT_TRAP_INFORM_CONTEXT * pContext,
                                   IP_SNMP_AGENT_COMMUNITY           * pCommunity);

Parameters

Parameter Description

pContext
Pointer to TRAP/INFORM context of type
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT .

pCommunity
Pointer to community handle of type
IP_SNMP_AGENT_COMMUNITY .

Additional information

The purpose of this helper function is to provide a persistent API while allowing the
members of the IP_SNMP_AGENT_TRAP_INFORM_CONTEXT structure to be moved around for
best memory efficiency when extending the structure in the future.

SNMPv3 TRAP/INFORM messages use the same PDUs as SNMPv1/SNMPv2c TRAP/INFORM
messages. To send SNMPv1/SNMPv2 TRAP/INFORM messages a community needs to be
set. If no community is set this generates an SNMPv3 TRAP/INFORM messages instead.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1009 CHAPTER 33 API functions

33.8.69    IP_SNMP_AGENT_TRAP_INFORM_SetUser()

Description

Helper function that sets the User structure member in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT context.

Prototype

void IP_SNMP_AGENT_TRAP_INFORM_SetUser
                                     (IP_SNMP_AGENT_TRAP_INFORM_CONTEXT * pContext,
                                      IP_SNMP_SM_USM_USER_TABLE_ENTRY   * pUser);

Parameters

Parameter Description

pContext
Pointer to TRAP/INFORM context of type
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT .

pUser
Pointer to User handle of type
IP_SNMP_SM_USM_USER_TABLE_ENTRY .

Additional information

The purpose of this helper function is to provide a persistent API while allowing the
members of the IP_SNMP_AGENT_TRAP_INFORM_CONTEXT structure to be moved around for
best memory efficiency when extending the structure in the future.

SNMPv3 TRAP/INFORM messages use the same PDUs as SNMPv1/SNMPv2c TRAP/INFORM
messages. To send SNMPv1/SNMPv2 TRAP/INFORM messages a community needs to be
set. If no community is set this generates an SNMPv3 TRAP/INFORM messages instead.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1010 CHAPTER 33 API functions

33.8.70    IP_SNMP_AGENT_TRAP_INFORM_SetTimeoutRetries()

Description

Helper function that sets the Timeout and Retries structure members in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT context.

Prototype

void IP_SNMP_AGENT_TRAP_INFORM_SetTimeoutRetries
                                     (IP_SNMP_AGENT_TRAP_INFORM_CONTEXT * pContext,
                                      U32                                 Timeout,
                                      U8                                  Retries);

Parameters

Parameter Description

pContext
Pointer to TRAP/INFORM context of type
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT .

Timeout INFORM timeout [ms] of each message sent.
Retries Number of INFORM retries to send.

Additional information

The purpose of this helper function is to provide a persistent API while allowing the
members of the IP_SNMP_AGENT_TRAP_INFORM_CONTEXT structure to be moved around for
best memory efficiency when extending the structure in the future.

The Timeout and Retries parameters are typically only used when sending INFORM
messages. When the peer EngineId shall be discovered the Retries value is the combined
number of retries for discovering the peer EngineId and receiving a response for the INFORM
message.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1011 CHAPTER 33 API functions

33.8.71    IP_SNMP_AGENT_TRAP_INFORM_SetMPFlags()

Description

Helper function that sets the Message Processor (MP) flags to use in an
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT context.

Prototype

void IP_SNMP_AGENT_TRAP_INFORM_SetMPFlags
                                     (IP_SNMP_AGENT_TRAP_INFORM_CONTEXT * pContext,
                                      U8                                  MPFlags);

Parameters

Parameter Description

pContext
Pointer to TRAP/INFORM context of type
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT .

MPFlags

OR-combination of IP_SNMPV3_MSG_FLAG_* to use. Valid
flags are:
• IP_SNMPV3_MSG_FLAG_AUTH_MASK: If the user has

AUTH(thentication) parameters and shall use them.
• IP_SNMPV3_MSG_FLAG_PRIV_MASK: If the user has

PRIV(acy) parameters and shall use them (automatically
sets IP_SNMPV3_MSG_FLAG_AUTH_MASK as well).

Additional information

The purpose of this helper function is to provide a persistent API while allowing the
members of the IP_SNMP_AGENT_TRAP_INFORM_CONTEXT structure to be moved around for
best memory efficiency when extending the structure in the future.

The Timeout and Retries parameters are only required for sending INFORM messages.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1012 CHAPTER 33 API functions

33.8.72    IP_SNMP_SM_USM_USER_SetEngine()

Description

Helper function that sets the Engine structure member in an
IP_SNMP_SM_USM_USER_TABLE_ENTRY entry.

Prototype

void IP_SNMP_SM_USM_USER_SetEngine(IP_SNMP_SM_USM_USER_TABLE_ENTRY * pEntry,
                                   IP_SNMP_SM_USM_ENGINE_ENTRY     * pEngine);

Parameters

Parameter Description

pEntry
Pointer to user table entry of type
IP_SNMP_SM_USM_USER_TABLE_ENTRY .

pEngine
Pointer to the Engine to use for this user of type
IP_SNMP_SM_USM_ENGINE_ENTRY .

Additional information

The purpose of this helper function is to provide a persistent API while allowing the members
of the IP_SNMP_SM_USM_USER_TABLE_ENTRY structure to be moved around for best memory
efficiency when extending the structure in the future.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1013 CHAPTER 33 API functions

33.8.73    IP_SNMP_SM_USM_USER_SetUsername()

Description

Helper function that sets the Username structure member in an
IP_SNMP_SM_USM_USER_TABLE_ENTRY entry.

Prototype

void IP_SNMP_SM_USM_USER_SetUsername
                                   (IP_SNMP_SM_USM_USER_TABLE_ENTRY * pEntry,
                                    U8                              * pUsername,
                                    U8                                UsernameLen);

Parameters

Parameter Description

pEntry
Pointer to user table entry of type
IP_SNMP_SM_USM_USER_TABLE_ENTRY .

pUsername Pointer to the Username to set (without string termination).
UsernameLen Length of the Username at pUsername .

Additional information

The purpose of this helper function is to provide a persistent API while allowing the members
of the IP_SNMP_SM_USM_USER_TABLE_ENTRY structure to be moved around for best memory
efficiency when extending the structure in the future.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1014 CHAPTER 33 API functions

33.8.74    IP_SNMP_SM_USM_USER_SetPerm()

Description

Helper function that sets the permission structure member in an
IP_SNMP_SM_USM_USER_TABLE_ENTRY entry.

Prototype

void IP_SNMP_SM_USM_USER_SetPerm(IP_SNMP_SM_USM_USER_TABLE_ENTRY * pEntry,
                                 IP_SNMP_AGENT_PERM              * pPerm);

Parameters

Parameter Description

pEntry
Pointer to user table entry of type
IP_SNMP_SM_USM_USER_TABLE_ENTRY .

pPerm
Pointer to the NULL entry terminated permissions table to
set.

Additional information

The purpose of this helper function is to provide a persistent API while allowing the members
of the IP_SNMP_SM_USM_USER_TABLE_ENTRY structure to be moved around for best memory
efficiency when extending the structure in the future.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1015 CHAPTER 33 API functions

33.8.75    IP_SNMP_SM_USM_USER_SetAuthParamsAndKey()

Description

Helper function that sets the AUTH(thentication) parameters used for
AUTH(entication) handling and the calculated AuthKey structure member in an
IP_SNMP_SM_USM_USER_TABLE_ENTRY entry.

Prototype

void IP_SNMP_SM_USM_USER_SetAuthParamsAndKey
                                    (IP_SNMP_SM_USM_USER_TABLE_ENTRY * pEntry,
                                     IP_SNMP_SM_USM_AUTH_PARAMS      * pAuthParams,
                                     U8                              * pAuthKey);

Parameters

Parameter Description

pEntry
Pointer to user table entry of type
IP_SNMP_SM_USM_USER_TABLE_ENTRY .

pAuthParams
Pointer to a configuration of type
IP_SNMP_SM_USM_AUTH_PARAMS .

pAuthKey Pointer to the calculated AuthKey.

Additional information

The purpose of this helper function is to provide a persistent API while allowing the members
of the IP_SNMP_SM_USM_USER_TABLE_ENTRY structure to be moved around for best memory
efficiency when extending the structure in the future.

A call to this function can be omitted if the entry created shall be of type “noAuthNoPriv”.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1016 CHAPTER 33 API functions

33.8.76    IP_SNMP_SM_USM_USER_SetPrivParamsAndKey()

Description

Helper function that sets the PRIV(acy) parameters used for PRIV(acy) handling and the
calculated PrivKey structure member in an IP_SNMP_SM_USM_USER_TABLE_ENTRY entry.

Prototype

void IP_SNMP_SM_USM_USER_SetPrivParamsAndKey
                                    (IP_SNMP_SM_USM_USER_TABLE_ENTRY * pEntry,
                                     IP_SNMP_SM_USM_PRIV_PARAMS      * pPrivParams,
                                     U8                              * pPrivKey);

Parameters

Parameter Description

pEntry
Pointer to user table entry of type
IP_SNMP_SM_USM_USER_TABLE_ENTRY .

pPrivParams
Pointer to a configuration of type
IP_SNMP_SM_USM_PRIV_PARAMS .

pPrivKey Pointer to the calculated PrivKey.

Additional information

The purpose of this helper function is to provide a persistent API while allowing the members
of the IP_SNMP_SM_USM_USER_TABLE_ENTRY structure to be moved around for best memory
efficiency when extending the structure in the future.

A call to this function can be omitted if the entry created shall be of type “noAuthNoPriv”.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1017 CHAPTER 33 Data structures

33.9    Data structures

33.9.1    Structure IP_SNMP_AGENT_API

Description

Used to provide an interface to external functions required for proper function of the SNMP
Agent.

Prototype

typedef struct {
  void  (*pfInit)             (void);
  void  (*pfDeInit)           (void);
  void  (*pfLock)             (void);
  void  (*pfUnlock)           (void);
  void* (*pfAllocSendBuffer)  (void* pUserContext, U8** ppBuffer,
                               U32 NumBytes, U8 IPAddrLen);
  void  (*pfFreeSendBuffer)   (void* pUserContext, void* p,
                               char SendCalled, int r);
  int   (*pfSendTrapInform)   (void* pContext, void* pUserContext,
                               void* hBuffer , const U8* pData,
                               U32 NumBytes  , U8* pIPAddr,
                               U16 Port      , U8 IPAddrLen);
  U32   (*pfGetTime)          (void);
  U32   (*pfSysTicks2SnmpTime)(U32 SysTicks);
  U32   (*pfSnmpTime2SysTicks)(U32 SnmpTime);
} IP_SNMP_AGENT_API;

Member Description

pfInit
Callback for initialization required for any other callback such as
pfLock/pfUnlock. Called from IP_SNMP_AGENT_Init().

pfDeInit
Callback for deinitialization called from
IP_SNMP_AGENT_DeInit().

pfLock Callback for API locking in a multitasking environment.
pfUnlock Callback for API unlocking in a multitasking environment.

pfAllocSendBuffer
Callback for allocating a buffer to store a message that can be
sent at a later time via pfSendTrapInform.

pfFreeSendBuffer
Callback for freeing a buffer previously allocated with
pfAllocSendBuffer.

pfSendTrapInform
Callback for sending a previously allocated buffer that has been
filled with a message to send.

pfGetTime Callback to retrieve the current system time in milliseconds.

pfSysTicks2SnmpTime
Callback to convert the system time (typically 1ms) into SNMP
time of 1/100 seconds since an epoch.

pfSnmpTime2SysTicks
Callback to convert an SNMP timestamp of 1/100 seconds since
an epoch into the system time (typically 1ms).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1018 CHAPTER 33 Data structures

33.9.2    Structure IP_SNMP_AGENT_PERM

Description

Used to grant permissions to a community that has been added to the SNMP Agent.

Prototype

typedef struct {
  const U8* pOID;
        U16 Len;
        U8  Perm;
} IP_SNMP_AGENT_PERM;

Member Description

pOID Pointer to OID value to grant access permissions.
Len Length of OID located at pOID .
Perm Permissions to grant at this OID value and its child OIDs.

Additional information

Permissions for various OID values can be set by using an array of IP_SNMP_AGENT_PERM
entries that can then be used with IP_SNMP_AGENT_SetCommunityPerm(). Even if there is
only one permission rule to set, there has to be an additional entry that always needs to
be present. This last entry will specify the default permissions to grant for every OID that
can not inherit permissions from a parent rule.

The default entry works the same way as any other entry but it needs to be the last entry
and pOID/Len are set to the values NULL/0.

The permissions that can be set for Perm are an ORRed value of the following masks:

Define Description

IP_SNMP_AGENT_PERM_READ_MASK
Grants read access to this community for
the OID value specified in the entry and its
child OIDs.

IP_SNMP_AGENT_PERM_WRITE_MASK
Grants write access to this community for
the OID value specified in the entry and its
child OIDs.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1019 CHAPTER 33 Data structures

33.9.3    Structure IP_SNMP_AGENT_MIB2_SYSTEM_API

Description

System description represented at MIB-II at oid value 1.3.6.1.2.1.1 . For more details
please refer to http://www.alvestrand.no/objectid/1.3.6.1.2.1.1.html.

A sample implementation can be found in the shipped SNMP Agent samples.

Prototype

typedef struct {
  const char* sSysDescr;
  const U8*   pSysObjectID;
        U32   SysObjectIDLen;
  U32 (*pfGetSysUpTime)     (void);
  int (*pfGetSetSysContact) (char* pBuffer, U32* pNumBytes, char IsWrite);
  int (*pfGetSetSysName)    (char* pBuffer, U32* pNumBytes, char IsWrite);
  int (*pfGetSetSysLocation)(char* pBuffer, U32* pNumBytes, char IsWrite);
  U8          SysServices;
} IP_SNMP_AGENT_MIB2_SYSTEM_API;

Member Description

sSysDescr
String including full name and version of the target and other
information. Up to 255 characters + termination.

pSysObjectID
The vendor’s authoritative identification of the network
management subsystem contained in the entity.

SysObjectIDLen Length of the oid value at pSysObjectID.

pfGetSysUpTime
Time in in hundredths of a second since the network
management portion of the system was last re-initialized.

pfGetSetSysContact
String including information regarding the contact person for
this managed node and how to contact this person. Up to 255
characters + termination.

pfGetSetSysName
String including an administratively-assigned name for this
managed node e.g. FQDN. Up to 255 characters + termination.

pfGetSetSysLocation
String including the physical location of this node. Up to 255
characters + termination.

SysServices Value representing the services offered.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

http://www.alvestrand.no/objectid/1.3.6.1.2.1.1.html


1020 CHAPTER 33 Data structures

33.9.4    Structure IP_SNMP_AGENT_MIB2_INTERFACES_API

Description

Interfaces description represented at MIB-II at oid value 1.3.6.1.2.1.1 . For more details
please refer to http://www.alvestrand.no/objectid/1.3.6.1.2.1.1.html.

A sample implementation for emNet is shipped with the SNMP Agent in the file
IP_SNMP_AGENT_MIB2_INTERFACES_emNet.c . The members of the structure are based on
the SNMP structure of MIB-II interface counters.

To enable statistic counters in emNet to provide the SNMP MIB-II interfaces counters with
valid values please enable IP_SUPPORT_STATS_IFACE.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

http://www.alvestrand.no/objectid/1.3.6.1.2.1.1.html


1021 CHAPTER 33 Data structures

33.9.5    IP_SNMP_HASH_INIT_FUNC

Description

Returns/initializes a fresh hash context.

Type definition

typedef void * IP_SNMP_HASH_INIT_FUNC(void);

Return value

Initialized hash context.

Additional information

Calculating hashes is done from a task that uses the API lock. Therefore it is typically
sufficient to use a single static hash context.

For the moment the routine is not expected to fail and return a NULL pointer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1022 CHAPTER 33 Data structures

33.9.6    IP_SNMP_HASH_ADD_FUNC

Description

Adds data to the hash calculation.

Type definition

typedef void IP_SNMP_HASH_ADD_FUNC(      void   * pContext,
                                   const U8     * pInput,
                                         unsigned InputLen);

Parameters

Parameter Description

pContext Pointer to hash context returned from init callback.
pInput Pointer to data to add.
InputLen Length of the data to add from pInput .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1023 CHAPTER 33 Data structures

33.9.7    IP_SNMP_HASH_FINAL_FUNC

Description

Finalizes the hash calculation and returns the digest.

Type definition

typedef void IP_SNMP_HASH_FINAL_FUNC(void   * pContext,
                                     U8     * pDigest,
                                     unsigned DigestLen);

Parameters

Parameter Description

pContext Pointer to hash context returned from init callback.
pDigest Pointer where to store the result.
DigestLen Maximum size of the buffer where to store the result.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1024 CHAPTER 33 Data structures

33.9.8    IP_SNMP_HASH_API

Description

Hash API for the User-basedSecurityModel (USM) AUTH(entication) of a user.

Type definition

typedef struct {
  IP_SNMP_HASH_INIT_FUNC  * pfInit;
  IP_SNMP_HASH_ADD_FUNC   * pfAdd;
  IP_SNMP_HASH_FINAL_FUNC * pfFinal;
} IP_SNMP_HASH_API;

Structure members

Member Description

pfInit Callback to allocate a fresh hash algorithm context.
pfAdd Callback to add more data into the hash algorithm.
pfFinal Callback to finalize hashing and return the digest.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1025 CHAPTER 33 Data structures

33.9.9    IP_SNMP_SM_USM_AUTH_PARAMS

Description

Configuration parameters for the User-basedSecurityModel (USM) authentication for a user.

Type definition

typedef struct {
  const IP_SNMP_SM_USM_AUTH_API * pAuthAPI;
  const IP_SNMP_HASH_API        * pHashAPI;
} IP_SNMP_SM_USM_AUTH_PARAMS;

Structure members

Member Description

pAuthAPI Pointer to the AUTH(entication) specific handling API.
pHashAPI Pointer to the hash API to use.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1026 CHAPTER 33 Data structures

33.9.10    IP_SNMP_SM_USM_PRIV_API_EXEC_FUNC

Description

Executes the PRIV(acy) specific cipher handling.

Type definition

typedef int IP_SNMP_SM_USM_PRIV_API_EXEC_FUNC(IP_SNMP_AGENT_CONTEXT * pContext,
                                              U8                    * pData,
                                              unsigned                NumBytes,
                                              unsigned                SaltLen,
                                              IP_SNMP_CIPHER_DIR      Direction);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.
pData Pointer to the data to decrypt or encrypt in-place.
NumBytes Number of bytes to decrypt/encrypt.
SaltLen Length of the value of the “msgPrivacyParameters” field.

Direction
Decrypt or encrypt direction of type IP_SNMP_CIPHER_DIR .
• IP_SNMP_CIPHER_DIR_DECRYPT
• IP_SNMP_CIPHER_DIR_ENCRYPT

Return value

= 0 O.K.
< 0 Error (not enough bytes in buffer?)

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1027 CHAPTER 33 Data structures

33.9.11    IP_SNMP_SM_USM_PRIV_API

Description

Cipher specific driver-like API for the User-basedSecurityModel (USM) PRIV(acy) of a user.

Type definition

typedef struct {
  IP_SNMP_SM_USM_PRIV_API_EXEC_FUNC * pfExec;
  U8                                  BlockLen;
} IP_SNMP_SM_USM_PRIV_API;

Structure members

Member Description

pfExec Callback executing the cipher specific PRIV(acy) handling.
BlockLen Length of each individual ciphertext block.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1028 CHAPTER 33 Data structures

33.9.12    IP_SNMP_CIPHER_INIT_FUNC

Description

Returns/initializes a fresh cipher context for a decrypt or encrypt operation.

Type definition

typedef void * IP_SNMP_CIPHER_INIT_FUNC(const U8               * pKey,
                                              unsigned           KeyLen,
                                              IP_SNMP_CIPHER_DIR Direction);

Parameters

Parameter Description

pKey
Pointer to the cipher key to use. Its length is determined by
the PRIV(acy) cipher selected via the user table.

KeyLen Length of the key at pKey .

Direction
Decrypt or encrypt direction of type IP_SNMP_CIPHER_DIR .
• IP_SNMP_CIPHER_DIR_DECRYPT
• IP_SNMP_CIPHER_DIR_ENCRYPT

Return value

Initialized cipher context.

Additional information

Decrypt/encrypt is done from a task that uses the API lock. Therefore it is typically sufficient
to use a single static cipher context.

For the moment the routine is not expected to fail and return a NULL pointer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1029 CHAPTER 33 Data structures

33.9.13    IP_SNMP_CIPHER_EXEC_FUNC

Description

Decrypts/encrypts data.

Type definition

typedef void IP_SNMP_CIPHER_EXEC_FUNC(      void             * pContext,
                                            U8               * pOutput,
                                      const U8               * pInput,
                                            unsigned           InputLen,
                                            U8               * pIV,
                                            IP_SNMP_CIPHER_DIR Direction);

Parameters

Parameter Description

pContext Pointer to cipher context returned from init callback.
pOutput Pointer where to store the decrypted output.
pInput Pointer to the encrypted input.
InputLen Length of the data to decrypt from pInput .

pIV
Pointer to the IV (InitializationVector) to use. The size of the
IV is determined by the PRIV(acy) cipher selected via the
user table.

Direction
Decrypt or encrypt direction of type IP_SNMP_CIPHER_DIR .
• IP_SNMP_CIPHER_DIR_DECRYPT
• IP_SNMP_CIPHER_DIR_ENCRYPT

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1030 CHAPTER 33 Data structures

33.9.14    IP_SNMP_CIPHER_FINAL_FUNC

Description

Finalizes the decrypt or encrypt operation.

Type definition

typedef void IP_SNMP_CIPHER_FINAL_FUNC(void             * pContext,
                                       IP_SNMP_CIPHER_DIR Direction);

Parameters

Parameter Description

pContext Pointer to hash context returned from init callback.

Direction
Decrypt or encrypt direction of type IP_SNMP_CIPHER_DIR .
• IP_SNMP_CIPHER_DIR_DECRYPT
• IP_SNMP_CIPHER_DIR_ENCRYPT

Additional information

This callback can be used to free resources allocated during init or to kill any security related
leftovers from the cipher operation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1031 CHAPTER 33 Data structures

33.9.15    IP_SNMP_CIPHER_API

Description

Cipher API for the User-basedSecurityModel (USM) PRIV(acy) of a user.

Type definition

typedef struct {
  IP_SNMP_CIPHER_INIT_FUNC  * pfInit;
  IP_SNMP_CIPHER_EXEC_FUNC  * pfExec;
  IP_SNMP_CIPHER_FINAL_FUNC * pfFinal;
} IP_SNMP_CIPHER_API;

Structure members

Member Description

pfInit Callback to allocate a fresh cipher algorithm context.
pfExec Callback to decrypt/encrypt data.
pfFinal Callback to finalize cipher operations and free resources.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1032 CHAPTER 33 Data structures

33.9.16    IP_SNMP_SM_USM_PRIV_PARAMS

Description

Configuration parameters for the User-basedSecurityModel (USM) data encryption for a
user.

Type definition

typedef struct {
  const IP_SNMP_SM_USM_PRIV_API * pPrivAPI;
  const IP_SNMP_CIPHER_API      * pCipherAPI;
} IP_SNMP_SM_USM_PRIV_PARAMS;

Structure members

Member Description

pPrivAPI Pointer to the PRIV(acy) specific handling API.
pCipherAPI Pointer to the cipher API to use.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1033 CHAPTER 33 Data structures

33.9.17    IP_SNMP_SM_USM_ENGINE_ENTRY

Description

Information related to an SNMP Engine.

Type definition

typedef struct {
  const U8 * pEngineId;
  I32        EngineBoots;
  I32        EngineTime;
  U8         EngineIdLen;
} IP_SNMP_SM_USM_ENGINE_ENTRY;

Structure members

Member Description

pEngineId Pointer to an EngineId.

EngineBoots

Number of how often the SNMP engine has been “booted”.
Ideally this value is increased for each time the hardware
boots or SNMP is started. However, EngineBoots shall also
be incremented once EngineTime reaches its I32 maximum
of 2147483647 seconds, then resetting EngineTime back to
0 again.

EngineTime
Seconds since the SNMP engine has “booted”. Once the I32
maximum of 2147483647 seconds is reached, EngineBoots
shall be incremented and EngineTime starts from 0 again.

EngineIdLen Length of the EngineId.

Additional information

An SNMP(v3) Engine not only has an EngineId but also has some parameters that need
to be maintained such as the EngineBoots and EngineTime parameters. Some of these
parameters might even be actively learned from peer Engines when receiving REPORT
messages.

If an SNMP Engine entry is used for the local Engine the EngineTime of this
entry needs to be periodically updated by the application. The EngineTime should
be updated once every second or at least before the previous “EngineTime +
IP_SNMP_AGENT_SM_USM_CONFIG.Timeout” expires.

The SNMPv3 USM “msgAuthoritativeEngineBoots” and “msgAuthoritativeEngineTime”
values do not necessarily reflect an actual 1:1 time of the system since booting. Their value
is only exchanged between two SNMP entities once AUTH(entication) has succeeded. If the
time of an SNMP engine is unknown or outside the time window, the time might need to be
retrieved in a separate request. The initiator/client can maintain the discovered values on
its own and try to directly send more messages using its own maintained values without
having to discover the engine time to use again and again.

The parameters EngineBoots and EngineTime are meant to be stored in non-volatile
memory when the SNMP Agent is shut down and be restored when starting again. This
procedure does not even need to increase the EngineBoots necessarily. This only makes
sense if SNMP is started again before the timeout expires in which another entity might
be sending further messages.

The EngineBoots and EngineTime values do not have to be strictly maintained by the
application. Their purpose is to prevent replay attacks of messages by limiting the time
window in which they can be utilized. It should also be perfectly fine to use randomized
start values for these parameters each time as this will typically only lead to having to
discover the engine time again with an additional message while also needing to successfully
AUTH(enticate) again for these values to be included in the response.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1034 CHAPTER 33 Data structures

33.9.18    IP_SNMP_AGENT_SM_USM_CONFIG

Description

Used to configure the User-basedSecurityModel (USM).

Type definition

typedef struct {
  const IP_SNMP_SM_USM_ENGINE_ENTRY * pLocalEngine;
  unsigned                            Timeout;
} IP_SNMP_AGENT_SM_USM_CONFIG;

Structure members

Member Description

pLocalEngine Pointer to the local SNMP Engine to use.

Timeout

Timeout in seconds, relative to the EngineTime in which
a received message is valid. The default according to RFC
3414 is 150 seconds, which means that messages are in the
time window if they use NOW +- Timeout .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1035 CHAPTER 33 Data structures

33.9.19    IP_SNMP_SM_USM_USER_TABLE_ENTRY

Description

The SNMPv3 user access is managed by a table/array of
IP_SNMP_SM_USM_USER_TABLE_ENTRY items that allow to set different combinations of
“noAuthNoPriv”, “authNoPriv” and “authPriv” along with the different hash and encryption
algorithms.

Type definition

typedef struct {
  const IP_SNMP_SM_USM_ENGINE_ENTRY * pEngine;
  const U8                          * pUsername;
  const IP_SNMP_AGENT_PERM          * pPerm;
  const IP_SNMP_SM_USM_AUTH_PARAMS  * pAuthParams;
  const U8                          * pAuthKey;
  const IP_SNMP_SM_USM_PRIV_PARAMS  * pPrivParams;
  const U8                          * pPrivKey;
  U8                                  UsernameLen;
} IP_SNMP_SM_USM_USER_TABLE_ENTRY;

Structure members

Member Description

pEngine
Pointer to the authorizational Engine that this user entry
belongs to.

pUsername Pointer to the Username (without string termination).

pPerm
Pointer to the permissions table of type
IP_SNMP_AGENT_PERM .

pAuthParams
Pointer to an AUTHentication configuration of type
IP_SNMP_SM_USM_AUTH_PARAMS . Can be NULL to create a
“noAuthNoPriv” type entry.

pAuthKey

Pointer to a calculated AuthKey for the EngineId at
pEngineId . The length of the AuthKey is determined by the
digest length of pAuthParams . Can be NULL if pAuthParams
is NULL .

pPrivParams
Pointer to a PRIVacy configuration of type
IP_SNMP_SM_USM_PRIV_PARAMS .

pPrivKey

Pointer to a calculated PrivKey for the EngineId at pEngineId
. The length of the PrivKey is determined by the digest
length of pAuthParams as the PRIV key is also calculated
based on the hash algorithm used for AUTH . Can be NULL if
pPrivParams is NULL .

UsernameLen Length of the Username at pUsername .

Additional information

The user table can be constructed directly by using either the fields in order as they
are or by using “Designated Initializers” (initialization with a structs member name in
form of “.<StructMember≥<Value>”). Members of this structure might change their order
of appearance in the future to allow for memory efficient extension of the structure
and user table. For this reason structure members should only be initialized by either
using “Designated Initializers” for a ROM/const placement for example or by using the
IP_SNMP_SM_USM_USER_* API.

When extending this structure in the future, structure members are expected to move in
patterns that will be easily recognizable as they lead to compile errors. In case of doubt
(when directly interacting based on fixed order initialization), the application should check

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1036 CHAPTER 33 Data structures

the size of the structure and compare it to a previously known size of this structure and
raise an error if the size (and most likely order of members) has changed.

To support “view-based” permissions, based on the security level achieved (“noAuthNoPriv”,
“authNoPriv” or “authPriv”), a username can be added multiple times for the same EngineId
with different parameters being available/set or not set. The selection is done using a perfect
match, which means that no entry with a higher security level is used to handle a lower
security level request.

When creating the user table as array of IP_SNMP_SM_USM_USER_TABLE_ENTRY placeholder
entries can be used by settings these entries with “pEngine = NULL”. This can be used to
allocate contiguous space once and providing space for up to that many entries without
having to reallocate the memory when adding or removing entries.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1037 CHAPTER 33 Data structures

33.9.20    IP_SNMP_USM_ENGINE_INFO

Description

Provides information about a peer SNMPv3 Engine that can be used to maintain the list
of Engines and their parameters.

Type definition

typedef struct {
  IP_SNMP_SM_USM_ENGINE_ENTRY  Engine;
} IP_SNMP_USM_ENGINE_INFO;

Structure members

Member Description

Engine
Pointer to Engine information of type
IP_SNMP_SM_USM_ENGINE_ENTRY .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1038 CHAPTER 33 Data structures

33.9.21    IP_SNMP_AGENT_MPV3_CONFIG

Description

Used to configure the MessageProcessor (MP) for SNMPv3.

Type definition

typedef struct {
  I32  MaxSize;
} IP_SNMP_AGENT_MPV3_CONFIG;

Structure members

Member Description

MaxSize

Value to use for the “msgMaxSize” field in SNMPv3
messages. This field describes the maxmimum size
of a “ScopedPDU” that can be received without the
SNMP headers for various layers preceeding it. This
value can not be simply calculated as the header size
might differ due to fields of variable length such as the
“msgAuthoritativeEngineID” field. The typical Ethernet
limit for IPv4 UDP payload is around 1472 bytes for the
“ScopedPDU” plus SNMP headers. A “good” value used by
other implementations is 1400 bytes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1039 CHAPTER 33 Data structures

33.9.22    IP_SNMP_AGENT_ON_INFORM_REPORT_FUNC

Description

Callback executed whenever a REPORT with new information about an SNMPv3 Engine is
received for a pending INFORM.

Type definition

typedef int (IP_SNMP_AGENT_ON_INFORM_REPORT_FUNC)
                               (IP_SNMP_AGENT_CONTEXT             * pContext,
                                IP_SNMP_AGENT_TRAP_INFORM_CONTEXT * pInformContext,
                                void                              * pUserContext,
                                IP_SNMP_USM_ENGINE_INFO           * pInfo);

Parameters

Parameter Description

pContext Pointer to an SNMP Agent context.

pInformContext
Pointer to the INFORM context of type
IP_SNMP_AGENT_TRAP_INFORM_CONTEXT for which new Engine
information have been discovered.

pUserContext User specific context passed to the process message API.
pInfo Pointer to information received about an Engine.

Return value

= 0 Retry to send the INFORMs when returning from the callback.
< 0 Do not access pInformContext when returning from the callback (removed?).

Additional information

This callback gets executed when a REPORT message with (new) SNMPv3 Engine
information for a yet to be sent INFORM is received. This is typically the case when sending
an INFORM while only knowing the IP address of the receiving Manager but not the EngineId.
Another case where a REPORT is received is when the peer Engine time window was missed.
In this case the REPORT lets us know the current time of the peer Engine and we have to
send the INFORM again after updating our information about the peer Engine time which
prevents replay attacks with old messages if the AUTH(thorization) security level is used.

Once new Engine information is received the Engine table maintained by the application
should be updated and the INFORM should either be resent immediately from within this
callback or is resent by the retry mechanism for INFORM messages.

Once initial EngineBoots and EngineTime values have been discovered for an Engine they
can be maintained locally by the application to prevent the discover part being necessary
if the authoritative Engine is happy with what we send. In the worst case we will receive a
REPORT by the peer Engine telling us the latest information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1040 CHAPTER 33 Resource usage (SNMPv2c)

33.10    Resource usage (SNMPv2c)
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the SNMP Agent for SNMPv2c only support presented in
the tables below have been measured on a Cortex-M4 system. Details about the further
configuration can be found in the sections of the specific example.

Configuration used

#define IP_SNMP_AGENT_WORK_BUFFER  64

33.10.1    ROM usage on a Cortex-M4 system
The following resource usage has been measured on a Cortex-M4 system using the SEGGER
compiler with size optimization.

Addon ROM

emNet SNMP Agent approximately 6.2 kBytes

33.10.2    RAM usage
The following resource usage shows typical RAM requirements for an SNMPv2c Agent
implementation. Most of the RAM is consumed for building the MIB tree in the application
which is not subject of this measurement as it depends upon the application itself.

Addon RAM

emNet SNMP Agent approximately 300 Bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1041 CHAPTER 33 Resource usage (SNMPv3 USM)

33.11    Resource usage (SNMPv3 USM)
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the SNMP Agent for SNMPv3 with User-based Security Model
(USM) on top of an existing SNMPv2c configuration presented in the tables below have been
measured on a Cortex-M4 system. Details about the further configuration can be found in
the sections of the specific example.

33.11.1    ROM usage on a Cortex-M4 system
The following resource usage has been measured on a Cortex-M4 system using the SEGGER
compiler with size optimization.

Addon ROM

emNet SNMP Agent SNMPv3 add-on with
noAuthNoPriv approximately 3.7 kBytes

emNet SNMP Agent SNMPv3 add-on with
authPriv using AUTH(MD5) and PRIV(DES) approximately 9.0 kBytes

33.11.2    RAM usage
Adding SNMPv3 support to an existing SNMPv2c application requires nearly zero additional
RAM.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 34
 
CoAP client/server (Add-on)

The emNet Constrained Application Protocol (CoAP) client/server is an optional extension
to emNet. The CoAP client/server can be used with emNet or with a different UDP/IP stack.
All functions that are required to add a CoAP client/server to your application are described
in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1043 CHAPTER 34 emNet CoAP

34.1    emNet CoAP
The emNet CoAP client/server is an optional extension which adds CoAP support to the
stack. It combines a maximum of performance with a small memory footprint. The CoAP
server allows an embedded system to handle CoAP requests from a CoAP client. The CoAP
client allows an embedded system to send request to a CoAP server.

The CoAP client/server implements the relevant parts of the following Request For
Comments (RFC).

RFC# Description

[RFC 7252] The Constrained Application Protocol (CoAP)
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc7252.txt

[RFC 6690] Constrained RESTful Environments (CoRE) Link Format
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc6690.txt

[RFC 7641] Observing Resources in the Constrained Application Protocol (CoAP)
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc7641.txt

[RFC 7959] Block-Wise Transfers in the Constrained Application Protocol (CoAP)
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc7959.txt

The following table shows the contents of the emNet CoAP root directory:

Directory Content

.\Application\
Contains the example application to run the CoAP
client/server with emNet.

.\Config\
Contains the CoAP configuration file. Refer to CoAP
configuration on page 1058 for detailed information.

.\Inc\ Contains the required include files.

.\IP\
Contains the CoAP sources and header files,
IP_COAP*.

.\Windows\IP\CoAP_Server\

Contains the source, the project files and an
executable to run the emNet CoAP server on a
Microsoft Windows host. Refer to Using the CoAP
samples on page 1055 for detailed information.

.\Windows\IP\CoAP_Client\

Contains the source, the project files and an
executable to run the emNet CoAP client on a
Microsoft Windows host. Refer to Using the CoAP
samples on page 1055 for detailed information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1044 CHAPTER 34 Feature list

34.2    Feature list
• Low memory footprint.
• GET, DELETE, PUT, POST supported.
• Confirmable (CON) and non-confirmable (NON) requests supported.
• The server supports multiple clients.
• Independent of the UDP/IP stack: any stack with sockets can be used.
• Block transfer supported.
• Observe option supported.
• Example applications included.
• Demo with various option, request types, observable data included.
• Project for executable on PC for Microsoft Visual Studio included.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1045 CHAPTER 34 Requirements

34.3    Requirements
UDP/IP stack

The emNet CoAP client/server requires an UDP/IP stack. It is optimized for emNet, but any
RFC-compliant UDP/IP stack can be used. The shipment includes a Win32 simulation, which
uses the standard Winsock API and an implementation which uses the socket API of emNet.

Multi tasking

The client/server doesn’t required any multi-tasking environment to run. But the various
CoAP APIs are not thread safe and should be protected accordingly if used in different
threads.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1046 CHAPTER 34 CoAP background

34.4    CoAP background
The Constrained Application Protocol (CoAP) is an Internet of Things (IoT) protocol which
allows machine to machine (M2M) communication with small footprint applications. It uses
Uniform Resource Identifier (URI) to identify resources on the server. With its small and
simple 4 bytes header, it’s ideal for devices with limited resources.

  

34.4.1    Protocol overview
The CoAP protocol implements a RESTful client-server based on four methods: GET, POST,
PUT and DELETE. It could be embedded in the web transfer protocol thanks to CoAP proxys
which could convert a web request (with address starting with coap://) into a CoAP request
or used directly with a CoAP client.

The CoAP protocol is based on UDP (or DTLS for the secured version) and thus has to
deal with potential message loss and repetition. It is a simple message exchange between
endpoints. It relies on confirmable (CON) or non-confirmable (NON) messages.

Message type

They are four message types:

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1047 CHAPTER 34 CoAP background

• CON messages used for requests. they expect to receive an acknowledgment (ACK)
or a reset (RST), otherwise the message is retransmitted with an exponential back-off
between retransmissions.

• NON messages don’t expect any confirmation. They could be used as request or
response.

• ACK messages are acknowledgment of a CON.
• RST messages are sent as a reply when the server is not able to process the request.

Requests

A request is sent with a message of type CON or NON. There are four possible request
methods defined by the CoAP protocol:
• GET: The GET method retrieves a representation for the information that currently

corresponds to the resource identified by the request URI.
• PUT: The PUT method requests that the resource identified by the request URI be

updated with the enclosed representation.
• POST: The POST method requests that the representation enclosed in the request be

processed to create a new resource or update an existing one.
• DELETE: The DELETE method requests that the resource identified by the request URI

be deleted.

For example a client would like to receive the value of the URI “/temp” on a server. It could
send a “CON GET /temp”. The server could directly answer with the data added to the
ACK message (piggybacked ACK), or reply with an empty ACK and send a separate CON
message with the data. This separate CON shall also be acknowledged.

 

Depending on the requests parameters, different reply codes or error codes could be
expected.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1048 CHAPTER 34 CoAP background

34.4.2    Message format
CoAP messages are encoded in a simple binary format. The message format starts with a
fixed-size 4-byte header. This is followed by a variable-length Token value, which can be
between 0 and 8 bytes long.

Following the Token value comes a sequence of zero or more CoAP Options in Type-Length-
Value (TLV) format, optionally followed by a payload that takes up the rest of the datagram.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Ver| T |  TKL  |      Code     |          Message ID           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Token (if any, TKL bytes) ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Options (if any) ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |1 1 1 1 1 1 1 1|    Payload (if any) ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The fields in the header are defined as follow:

Version (Ver):
2-bit unsigned integer. Indicates the CoAP version number. This implementation sets
this field to 1 (01 binary).

Type (T):
2-bit unsigned integer. Indicates if this message is of type Confirmable (0), Non-
confirmable (1), Acknowledgement (2), or Reset (3).

Token Length (TKL):
4-bit unsigned integer. Indicates the length of the variable-length Token field (0-8 bytes).

Code:
8-bit unsigned integer, split into a 3-bit class (most significant bits) and a 5-bit detail
(least significant bits), documented as “c.dd” where “c” is a digit from 0 to 7 for the
3-bit subfield and “dd” are two digits from 00 to 31 for the 5-bit subfield. The class
can indicate a request (0), a success response (2), a client error response (4), or a
server error response (5). As a special case, Code 0.00 indicates an Empty message. In
case of a request, the Code field indicates the Request Method; in case of a response,
a Response Code.

Message ID:
16-bit unsigned integer in network byte order. Used to detect message duplication and
to match messages of type Acknowledegment/Reset to messages of type Confirmable/
Non-confirmable.

The header is followed by the Token value, which may be 0 to 8 bytes, as specified by the
Token Length field. Header and Token are followed by zero or more Options. An Option
can be followed by the end of the message, by another Option, or by the Payload Marker
(0xFF) and the payload.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1049 CHAPTER 34 CoAP background

34.4.3    Response code
After receiving and interpreting a request, a server responds with a CoAP response. A
response is identified by the Code field in the CoAP header being set to a Response Code.
Similar to the HTTP Status Code, the CoAP Response Code indicates the result of the attempt
to understand and satisfy the request.

                              0
                              0 1 2 3 4 5 6 7
                             +-+-+-+-+-+-+-+-+
                             |class|  detail |
                             +-+-+-+-+-+-+-+-+

The upper three bits of the 8-bit Response Code number define the class of response. The
lower five bits do not have any categorization role; they give additional detail to the overall
class

As a human-readable notation for specifications and protocol diagnostics, CoAP code
numbers including the Response Code are documented in the format “c.dd”, where “c” is
the class in decimal, and “dd” is the detail as a two-digit decimal. For example, “Forbidden”
is written as 4.03 -- indicating an 8-bit code value of hexadecimal 0x83 (4*0x20+3) or
decimal 131 (4*32+3).

There are 3 classes of Response Codes:
• 2 - Success: The request was successfully received, understood, and accepted.
• 4 - Client Error: The request contains bad syntax or cannot be fulfilled.
• 5 - Server Error: The server failed to fulfill an apparently valid request.

Here are the basic response code from RFC 7252:

            +------+------------------------------+
            | Code | Description                  |
            +------+------------------------------+
            | 2.01 | Created                      |
            | 2.02 | Deleted                      |
            | 2.03 | Valid                        |
            | 2.04 | Changed                      |
            | 2.05 | Content                      |
            | 4.00 | Bad Request                  |
            | 4.01 | Unauthorized                 |
            | 4.02 | Bad Option                   |
            | 4.03 | Forbidden                    |
            | 4.04 | Not Found                    |
            | 4.05 | Method Not Allowed           |
            | 4.06 | Not Acceptable               |
            | 4.12 | Precondition Failed          |
            | 4.13 | Request Entity Too Large     |
            | 4.15 | Unsupported Content-Format   |
            | 5.00 | Internal Server Error        |
            | 5.01 | Not Implemented              |
            | 5.02 | Bad Gateway                  |
            | 5.03 | Service Unavailable          |
            | 5.04 | Gateway Timeout              |
            | 5.05 | Proxying Not Supported       |
            +------+------------------------------+

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1050 CHAPTER 34 CoAP background

34.4.4    CoAP options
Both requests and responses may include a list of one or more options. CoAP defines a
single set of options that are used in both requests and responses:

Options are present to parametrize the request or the response. Some of the options are:

Content-Format:
Used to specify the format of a data (plain/text, binary, …).

ETag:
An entity-tag is intended for use as a resource-local identifier for differentiating between
representations of the same resource that vary over time.
When sending a response to a request (typically a GET), the server may provide an ETag
identifying the current state/value of the entity.
When a client sends a GET request with an ETag, the server can issue a 2.03
Valid response in place of a 2.05 Content response if the ETag match the current
representation.

Max-Age:
The Max-Age option indicates the maximum time (in s) a response may be cached before
it is considered not fresh

Uri-Path:
This is one of the option used to define the URI (with Uri-Host, Uri-Port and Uri-Query).
Uri-Path specifies one segment of the absolute path to the resource (without the leading
’/’).

Accept:
The CoAP Accept option can be used to indicate which Content-Format is acceptable
to the client.

If-Match:
The If-Match option may be used to make a request conditional on the current existence
or value of an ETag for one or more representations of the target resource.
The value of an If-Match option is either an ETag or the empty string. An If-Match option
with an ETag matches a representation with that exact ETag. The If-Match with an empty
string matches all representations as long as the data exists already.
It is typically used in a PUT request to protect the update of a data.

If-None-Match:
The If-None-Match option may be used to make a request conditional on the
nonexistence of the target resource. If-None-Match is useful for resource creation
requests, such as POST requests.

There are more options defined, refer to the RFC for the complete list.

Note that some options are repeatable. This means they could appear more than once per
CoAP message.

34.4.5    Retry mechanism
Confirmable messages should be acknowledged. If the CON or the ACK doesn’t reach its
target, the CON is retransmitted with a exponential back-off between the retransmissions.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1051 CHAPTER 34 CoAP background

  

Per default, there are four retransmissions. The initial timeout between the initial message
and the first retransmission is a random number between two and three seconds (with the
default RFC values).

34.4.6    Block transfer
Basic CoAP messages work well for small payloads, however, it might be requested to
transfer larger amount of data. CoAP is based on datagram transport layer and is thus
subject to fragmentation.

Instead of relying on IP fragmentation, CoAP uses “Block” options in order to transfer
multiple blocks of information from a resource representation in multiple request-response
pairs.

Two block options are defined:
• Block1 is present in a request. Typically in a PUT or POST to send data to the server.
• Block2 is present in a response. Typically in a GET response to send the data in chunks.

The block option is composed of three values:

Block Size:
The possible block sizes are power of 2 values between 16 and 1024 included.

More Flag:
The more flag bit is set to 1 to indicate more blocks are to be expected. If set to 0 this
means the current block is the last block of the transfer.

NUM:
This is the block number. Block number 0 indicates the first block.

The notation used to describe block is <block type>:<NUM>/<More>/<Block Size>. For
example the first Block2 of a transfer where the More flag is set and the size of block is
128 bytes is written 2:0/1/128.

The block size used in the transfer is always the smaller of the sizes proposed by the client
and the server. For example if a client makes a request with a block size of 128, but the
server can only handle blocks of 64 bytes, then the server will reply with a block of 64 bytes
and the following request from the client will also use blocks of 64 bytes.

There are two other options Size1 and Size2. Size1 (resp. Size2) is optionally used to give
an indication of the total size of a Block1 (resp. Block2) transfer.

The following example gives a simple overview of a GET request with a Block2 option of
128 bytes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1052 CHAPTER 34 CoAP background

  

Similarly with a PUT request with Block1 option.

  

34.4.7    Observe
The Observe option specifies a way for a client to register to a server resource. This allows
a client to follow the evolution of a resource over a period of time.

The client (observer) registers to a server specific resource and receives a notification each
time this resource is updated.

Request

In order to register, the client sends a GET with the Observe option set to 0. To de-register
its interest, the client could either send another GET on the resource with Observe set to 1,
or just “forget” the registered observe request. In this last case, when the server will send
a notification on the resource, the client will reply with a RST message and the server will
understand that the registration is not valid anymore.

In order to identify the following notifications, the client must provide a token in the request.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1053 CHAPTER 34 CoAP background

Notification

Notifications are additional responses sent by the server in reply to the single extended
GET request that created the registration. Each notification includes the token specified by
the client in the request.

Notifications typically have a 2.05 (Content) response code. They include an Observe Option
with a sequence number for reordering detection.

The notifications could have a different type than the one used for the request. For example
if a registration is made with a CON, the server will reply with an ACK, but the following
notifications could either be CON or NON or a mix of both. For example a server could decide
to send a NON at a “MaxAge” period and to send a CON when the value is actually changing.

  

Of course, the observe notifications could use blocks when data to transfer is big. CON
messages are also retransmitted if needed. If the retransmission maximum count is
reached, the observation is canceled.

34.4.8    Built-In resource discovery
The discovery of resources offered by a CoAP endpoint is extremely important in machine-
to-machine applications where there are no humans in the loop and static interfaces result
in fragility.

Using the default UDP port, a client sends a GET request to the server with the Uri-Path
set to “.well-known/core”. The server will provide a response following the CoRE Link
Format describing the resources present on the server.

An example of this discover reply is seen bellow. Note that line breaks were added for
readability purpose and are not part of the actual message:

</obs>;obs;title="Simple observable data.",
</test>;title="test entry",
</separate>;title="simple variable with GET with LATE reply",
</BlockTransfer/ObsData>;obs;title="Observable data block.",
</ObsSensor>;obs;title="Observable value.",
</BlockTransfer/Data128bytes>;title="Textual value. GET and PUT, block support.
 Size 128 Bytes.",
</BlockTransfer/DelayedBlock>;title="Textual value. GET late reply with block
 support.",
</DataSupportingDelete>;title="Binary value (int). GET piggybacked, Support
 DELETE",
</temperature/average>;title="Textual value. GET late reply.",

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1054 CHAPTER 34 CoAP background

</temperature/meas2>;title="Binary value (int). GET piggybacked",
</temperature/meas1>;ct=0;title="Textual or binary value. GET piggybacked, PUT",
</.well-known/core>

34.4.9    Implementation choices
A few choices were made for this CoAP implementation.

A POST on an existing resource is treated as a PUT. But a PUT with a URI that doesn’t
correspond to any resource is treated as an error (and not as a POST).

In order to reduce RAM usage, the implementation is stateless. This means in a block
transfer it doesn’t check the block sequence. It is indicating for example by clearing the
“More” bit in a Block1 option when sending a “2.31 Continue” acknowledgment. It is of
course possible for the application to perform this test as the block information is given in
all payload related callbacks.

When the server receives a GET request on a branch (for example on “/temperature”), it
will automatically reply with the list of all resources under this branch (like “/temperature/
meas”, “/temperature/average”, …) unless a resource exists with the actual Uri-Path (“/
temperature”).

The server couldn’t be used as a proxy. Therefore it doesn’t support the Proxy-Uri and
Proxy-Scheme options and replies with an error “5.05 Proxying Not Supported” in this case.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1055 CHAPTER 34 Using the CoAP samples

34.5    Using the CoAP samples
Ready to use examples for Microsoft Windows and emNet are supplied. If you use another
UDP/IP stack, the samples have to be adapted.

34.5.1    Running the sample on target hardware
The emNet CoAP sample applications should always be the first step to check the proper
function of the CoAP client/server with your target hardware.

Add all source files located in the following directories (and their subdirectories) to your
project and update the include path:
• Application\
• Config\
• Inc\
• IP\

It is recommended that you keep the provided folder structure.

The sample application can be used on the most targets without the need for changing any
of the configuration flags.

34.5.2    Using the Windows samples
If you have MS Visual C++ 6.00 or any later version available, you will be able to work
with a Windows sample projects using the emNet CoAP client/server. If you do not have
the Microsoft compiler, a precompiled executable is also supplied.

Building the sample program

Open the workspace .dsw with MS Visual Studio (for example, double-clicking it). There
is no further configuration necessary. You should be able to build the application without
any error or warning message.

The server uses the IP address of the host PC on which it runs.

34.5.3    Sample CoAP server application
The sample server application initializes and configures a CoAP server
(IP_COAP_SERVER_CONTEXT ) with a few resources (IP_COAP_SERVER_DATA ). Each resource
provides one or more handlers to process the requests (GET, PUT, …). These handlers are
simple example and not representative of a full application.

The applications defines the number or possible simultaneous “connections” of the server.
It’s not actual connections like with TCP, but more a context to handle a transfer. As a
connection is closed once the transfer is completed, a server could handle way more clients
than configured connections, especially when using confirmable messages since they are
retransmitted when not acknowledged which could mitigate potential congestions.

After the server configurations, the server enters an infinite loop to call periodically the
IP_COAP_SERVER_Process() function. This function does all the CoAP server processing:
• Handling of requests from clients.
• Retry mechanism of CON messages.
• Notification of observed resources.

34.5.4    Server callbacks description
The resource are defined by the IP_COAP_SERVER_DATA  and have several function pointers
to allow and handle the various procedure.

All the callbacks have as parameter an IP_COAP_CALLBACK_PARAM  which gives information
on the message like header, options or block parameters.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1056 CHAPTER 34 Using the CoAP samples

Refer to IP_COAP_pfGETPayload on page 1138, IP_COAP_pfPUTPayload on page 1141 and
IP_COAP_pfDELHandler on page 1143.

34.5.5    Testing the server
A possibility to test the server is to use the CoAP plug-in for firefox called Copper:

Start by sending a CoAP ping (CON Empty) to verify the server is receiving data. Then
performs a discover (GET .well-known/core) to populate the resource tree.

34.5.6    Sample CoAP client application
The server address used for testing is defined in COAP_SERVER. By default it uses the test
server coap://vs0.inf.ethz.ch. As the resource requested in the sample client application
are also defined in the sample server application, the client could use the IP address of the
running sample server application.

For example if both Windows samples are used, the COAP_SERVER define sould be set to
the localhost 127.0.0.1.

The sample client application initializes first a CoAP client (IP_COAP_CLIENT_CONTEXT ).

A client is composed of a requests array (IP_COAP_CLIENT_REQUEST). As a client may
receive asynchronous messages (like observe notifications, retransmit of messages), it
performs an infinite loop similarly to the server.

The main processing of the client could be summarized by:

  while(1) {
    IP_COAP_CLIENT_Process(&_COAPClient);
    //
    // Check if there is a pending result.
    //
    r = IP_COAP_CLIENT_GetLastResult(&_COAPClient, &ResultCode, &pError, &ErrorLength);
    if (r >= 0) {
      _HandleResult(r, ResultCode, pError, ErrorLength);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1057 CHAPTER 34 Using the CoAP samples

    }
    //
    // Check if there is something to do.
    //
    if (SomethingToDo) {
      //
      // Check if there is a free request available.
      //
      if (IP_COAP_CLIENT_GetFreeRequestIdx(&_COAPClient, &Index) == IP_COAP_RETURN_OK) {
        //
        // Initialize the new request.
        //
        r = IP_COAP_CLIENT_SetCommand(&_COAPClient, Index, ...);
        r = IP_COAP_CLIENT_SetOptionXxx(&_COAPClient, Index, ...);
        //
        // Send the request.
        //
        r = IP_COAP_CLIENT_BuildAndSend(&_COAPClient, Index);
      }
    }
  };

This way the client could handle requests and observations in parallel.

If the client is using only one request (i.e. connection) at a time (for example NSTART is
defined as 1 as per default), and if the client doesn’t make use of the observe functionality,
the main loop could be avoided and instead have just a simpler request handler.

The processing would be similar to:

  //
  // Check if there is a free request to execute a new one.
  //
  if (IP_COAP_CLIENT_GetFreeRequestIdx(&_COAPClient, &Index) == IP_COAP_RETURN_OK) {
    //
    // Initialize the new request.
    //
    r = IP_COAP_CLIENT_SetCommand(&_COAPClient, Index, ...);
    r = IP_COAP_CLIENT_SetOptionXxx(&_COAPClient, Index, ...);
    //
    // Send the request.
    //
    r = IP_COAP_CLIENT_BuildAndSend(&_COAPClient, Index);
    //
    // Do CoAP processing until the reply is received.
    //
    do {
      IP_COAP_CLIENT_Process(&_COAPClient);
      //
      // Get last result.
      //
      r = IP_COAP_CLIENT_GetLastResult(&_COAPClient, &ResultCode, &pError, &ErrorLength);
    } while (r < 0);
    _HandleResult(r, ResultCode, pError, ErrorLength);
  }

34.5.7    Client callbacks description
When sending a GET, POST or PUT request, the user is invited to define a callback to handle
the payload through the function IP_COAP_CLIENT_SetPayloadHandler().

A payload callback have as parameter an IP_COAP_CALLBACK_PARAM  which gives
information on the message like header, options or block parameters.

Refer to PF_CLIENT_PAYLOAD on page 1146.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1058 CHAPTER 34 CoAP configuration

34.6    CoAP configuration
The emNet CoAP client/server can be used without changing any of the compile time flags.
All compile time configuration flags are preconfigured with valid values, which match the
requirements of most applications.

34.6.1    CoAP configuration macro types
The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the source code in place of a numerical constant.
A typical example is the configuration of the sector size of a storage medium.

Alias "A"

A macro which operates like a simple text substitute. An example would be the define U8,
which the preprocessor would replace with unsigned char.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations apply, as a
macro is still put into the source code as simple text replacement. Function replacements are
mainly used to add specific functionality to a module which is highly hardware-dependent.
This type of macro is always declared using brackets (and optional parameters).

34.6.2    Configuration switches

Type Symbolic name Default Description

F IP_COAP_WARN --

Defines a function to output
warnings. In debug configurations
(DEBUG = 1) IP_COAP_WARN maps to
IP_Warnf_Application().

F IP_COAP_LOG --

Defines a function to output logging
messages. In debug configurations
(DEBUG = 1) IP_COAP_LOG maps to
IP_Logf_Application().

N IP_COAP_NSTART 1
Number of connections possible
at the same time. This value shall
match the CoAP network setting.

N IP_COAP_MAX_RETRANSMIT 4
Maximum number of retransmission
of a CON message. This value shall
match the CoAP network setting.

N IP_COAP_ACK_TIMEOUT 2000

Time [ms] to wait for an ACK.
Please note that this is the base
timeout to wait. This value gets
randomized between 1x and 1.5x for
the first CON and is used as is for
the last retry. For all other retries the
randomized value gets doubled for
each retry.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1059 CHAPTER 34 CoAP configuration

Type Symbolic name Default Description

N IP_COAP_DEFAULT_LEISURE 5000
Default leisure time in milliseconds
to randomize the time to reply to a
multicast NON request.

N IP_COAP_OBS_FORCE_CON_TIMEOUT2000

Time [ms] after which the next
observable report is sent as CON
instead of NON to check if the client
is still alive. The RFC suggests
maximum 24 hours, we use 12 by
default.

F IP_COAP_MEMSET memset memset function.
F IP_COAP_MEMCPY memcpy memcpy function.
F IP_COAP_MEMCMP memcmp memcmp function.
F IP_COAP_MEMMOVE memmove memmove function.
F IP_COAP_STRLEN strlen strlen function.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1060 CHAPTER 34 API functions

34.7    API functions
Function Description

Server

IP_COAP_SERVER_Init() Initializes the CoAP server context.

IP_COAP_SERVER_Process()
Called periodically to handle CoAP server
processing: handles pending actions, read
and handle received packet.

IP_COAP_SERVER_GetMsgBuffer() Returns the buffer used to send messages.
IP_COAP_SERVER_AddData() Adds a data entry to the server.

IP_COAP_SERVER_RemoveData()
Removes a previously configured data
from the server.

IP_COAP_SERVER_AddClientBuffer()
Adds a pool of client structures to be used
by the server to handle request.

IP_COAP_SERVER_AddObserverBuffer()
Adds a pool of observer structures to be
used by the server to handle observer
request.

IP_COAP_SERVER_UpdateData()
Called by the user to indicate data are
ready or changed.

IP_COAP_SERVER_SetDefaultBlockSize()
Configures the default block size used by
the server.

IP_COAP_SERVER_SetPOSTHandler()
Configures the callback used when
receiving a POST request to create a new
server data entry.

IP_COAP_SERVER_ConfigSet()
Activates the given options from the server
configuration.

IP_COAP_SERVER_ConfigClear()
Clears the given options from the server
configuration.

IP_COAP_SERVER_SetURIPort()
Configures the UDP port to be sent as URI-
Port in reply to a GET.

IP_COAP_SERVER_SetHostName()
Configures the host name to be sent as
URI-Host in reply to a GET.

IP_COAP_SERVER_SetErrorDescription()
Configures a temporary error description
to be sent as payload in an error message.

Client

IP_COAP_CLIENT_Init() Initializes a CoAP client.

IP_COAP_CLIENT_Process()
Periodic function called to manage CoAP
request and observer of a client.

IP_COAP_CLIENT_GetFreeRequestIdx() Returns a free request.
IP_COAP_CLIENT_AbortRequestIdx() Aborts an on-going request.

IP_COAP_CLIENT_SetServerAddress()
Configures the UDP parameters of the
server.

IP_COAP_CLIENT_SetDefaultBlockSize()
Sets the default block size to be used by
the client.

IP_COAP_CLIENT_SetCommand() Configures the request type and code.
IP_COAP_CLIENT_SetToken() Configures the token of a request.

IP_COAP_CLIENT_SetPayloadHandler()
Configures the callback used to manage
the payload of the request.

IP_COAP_CLIENT_SetReplyWaitTime()
Configures the time to wait for the reply
after sending the request.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1061 CHAPTER 34 API functions

Function Description

IP_COAP_CLIENT_BuildAndSend()
Builds the CoAP message and sends it
based on a configured request.

IP_COAP_CLIENT_GetLastResult()
Returns the status and information when a
request is completed.

IP_COAP_CLIENT_GetMsgBuffer() Returns the buffer used to send messages.
IP_COAP_CLIENT_GetLocationPath() Returns the Location-Path received.
IP_COAP_CLIENT_GetLocationQuery() Returns the Location-Query received.
IP_COAP_CLIENT_SetOptionURIPath() Adds the URI-Path option to a request.
IP_COAP_CLIENT_SetOptionURIHost() Adds the URI-Host option to a request.
IP_COAP_CLIENT_SetOptionURIPort() Adds the URI-Port option to a request.
IP_COAP_CLIENT_SetOptionURIQuery() Adds the URI-Query option to a request.
IP_COAP_CLIENT_SetOptionETag() Adds the ETag option to a request.
IP_COAP_CLIENT_SetOptionBlock() Adds the block option to a request.
IP_COAP_CLIENT_SetOptionAccept() Adds the Accept option to a request.

IP_COAP_CLIENT_SetOptionContentFormat()
Adds the Content-Format option to a
request.

IP_COAP_CLIENT_SetOptionIfNoneMatch()
Adds the If-None-Match option to a
request.

IP_COAP_CLIENT_SetOptionLocationPath()Adds the location path option to a request.

IP_COAP_CLIENT_SetOptionLocationQuery()
Adds the location query option to a
request.

IP_COAP_CLIENT_SetOptionProxyURI() Adds the proxy URI option to a request.

IP_COAP_CLIENT_SetOptionProxyScheme()
Adds the proxy scheme option to a
request.

IP_COAP_CLIENT_SetOptionSize1() Adds the Size1 option to a request.
IP_COAP_CLIENT_SetOptionAddIFMatch() Adds the If-Match option to a request.
IP_COAP_CLIENT_OBS_Init() Initializes an observe request.
IP_COAP_CLIENT_OBS_Abort() Stops an active observer.

IP_COAP_CLIENT_OBS_SetEndCallback()
Configures the end callback for an observe
request.

Utility

IP_COAP_CheckAcceptFormat()
Verifies if the Accept-Format matches the
requested one.

IP_COAP_GetAcceptFormat() Reads the Accept-Format option value.

IP_COAP_CheckContentFormat()
Verifies if the Content-Format match the
requested one.

IP_COAP_GetContentFormat() Reads the Content-Format option value.

IP_COAP_IsLastBlock()
Checks if the current block is the last one
of the transfer.

IP_COAP_GetURIHost()
Sets a pointer on the start of the URI-
HostName.

IP_COAP_GetURIPath() Sets a pointer on the start of the URI-Path.
IP_COAP_GetURIPort() Reads the URI-Port option value.

IP_COAP_GetQuery()
Sets a pointer on the start of the Query
field.

IP_COAP_GetETag() Sets a pointer on the ETag value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1062 CHAPTER 34 API functions

Function Description

IP_COAP_GetMaxAge() Reads the MaxAge option value.
IP_COAP_GetSize1() Reads the Size1 option value.
IP_COAP_GetSize2() Reads the Size2 option value.

IP_COAP_GetLocationPath()
Sets a pointer on the start of the Location-
Path.

IP_COAP_GetLocationQuery()
Sets a pointer on the start of the Location-
Query field.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1063 CHAPTER 34 API functions

34.7.1    Server

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1064 CHAPTER 34 API functions

34.7.1.1    IP_COAP_SERVER_Init()

Description

Initializes the CoAP server context. This function needs to be called first.

Prototype

int IP_COAP_SERVER_Init(      IP_COAP_SERVER_CONTEXT * pContext,
                              U8                     * pMsgBuffer,
                              U16                      MsgBufferSize,
                        const IP_COAP_API            * pAPI);

Parameters

Parameter Description

pContext Server context to initialize.
pMsgBuffer Buffer used to handle UDP packets.
MsgBufferSize Size of pMsgBuffer in bytes.
pAPI API used for UDP transfer and time.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

If possible, the message buffer should be as big as the MTU but since fragmentation is not
used, this is useless to have a message buffer bigger than 1500 bytes.

The default block size will be adjusted to take into account the buffer size. Thus if the buffer
is small (i.e. 512 bytes) the default block size will be adjusted (to 256 in this case).

APIs are used to send and receive UDP packets. The third one is used to retrieve the time
in ms.

Example

static IP_COAP_SERVER_CONTEXT      _COAPServer;
static IP_COAP_CONN_INFO           _ConnInfo;
static U8                          _MsgBuffer[1500];
static IP_COAP_SERVER_CLIENT_INFO  _COAPClientInfo[IP_COAP_MAX_NUM_CLIENT];
static IP_COAP_OBSERVER            _COAPObservers[IP_COAP_MAX_NUM_OBS];

static const IP_COAP_API _APP_Api = {
  _APP_Receive,
  _APP_Send,
  _APP_GetTimeMs
};

void Server(void) {
  //
  // Initializes the CoAP server.
  //
  IP_COAP_SERVER_Init(&_COAPServer, _MsgBuffer, sizeof(_MsgBuffer), &_APP_Api);
  //
  // Add the clients and observers buffers.
  //
  IP_COAP_SERVER_AddClientBuffer(&_COAPServer, &_COAPClientInfo[0], IP_COAP_MAX_NUM_CLIENT);
  IP_COAP_SERVER_AddObserverBuffer(&_COAPServer, &_COAPObservers[0], IP_COAP_MAX_NUM_OBS);
  //
  // Add a handler to perform POST command.
  //
  IP_COAP_SERVER_SetPOSTHandler(&_COAPServer, _POSTCreateEntry);
  //
  // Configure a default block size.
  //

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1065 CHAPTER 34 API functions

  IP_COAP_SERVER_SetDefaultBlockSize(&_COAPServer, 32);
  //
  // Configuration of the server by adding ServerData structures.
  //
  _ConfigureServer();
  //
  _ConnInfo.Family   = IP_COAP_IPV4;
  _ConnInfo.Port     = IP_COAP_DEFAULT_PORT;
  //
  // Run the main loop.
  //
  while (1) {
    //
    // Call regularly the CoAP processing function.
    //
    IP_COAP_SERVER_Process(&_COAPServer, &_ConnInfo);
    //
    // Perform the application processing.
    //
    _ApplicationProcessing();
  }
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1066 CHAPTER 34 API functions

34.7.1.2    IP_COAP_SERVER_Process()

Description

Called periodically to handle CoAP server processing: handles pending actions, read and
handle received packet.

Prototype

int IP_COAP_SERVER_Process(IP_COAP_SERVER_CONTEXT * pContext,
                           IP_COAP_CONN_INFO      * pConnInfo);

Parameters

Parameter Description

pContext Pointer to the server CoAP context.
pConnInfo Pointer to the connection info used to receive UDP packets.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

IP_COAP_SERVER_Process() is not thread safe. If it is used in a multithreading
environment, it shall be proofed by the user that no calls to configuration functions (such
as _AddData(), _RemoveData(), …) are made while this function runs.

Refer to IP_COAP_SERVER_Init on page 1064 for usage example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1067 CHAPTER 34 API functions

34.7.1.3    IP_COAP_SERVER_GetMsgBuffer()

Description

Returns the buffer used to send messages.

Prototype

U8 *IP_COAP_SERVER_GetMsgBuffer(IP_COAP_SERVER_CONTEXT * pContext,
                                U16                    * pMsgLength);

Parameters

Parameter Description

pContext Server context.
pMsgLength Filled with buffer length. Can be NULL.

Return value

≠ NULL Pointer to the message buffer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1068 CHAPTER 34 API functions

34.7.1.4    IP_COAP_SERVER_AddData()

Description

Adds a data entry to the server.

Prototype

int IP_COAP_SERVER_AddData(IP_COAP_SERVER_CONTEXT * pContext,
                           IP_COAP_SERVER_DATA    * pData);

Parameters

Parameter Description

pContext Server context.
pData Data to add.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Refer to Structure IP_COAP_SERVER_DATA on page  for usage example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1069 CHAPTER 34 API functions

34.7.1.5    IP_COAP_SERVER_RemoveData()

Description

Removes a previously configured data from the server.

Prototype

int IP_COAP_SERVER_RemoveData(IP_COAP_SERVER_CONTEXT * pContext,
                              IP_COAP_SERVER_DATA    * pData);

Parameters

Parameter Description

pContext Server context.
pData Data to remove.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error, data not found.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1070 CHAPTER 34 API functions

34.7.1.6    IP_COAP_SERVER_AddClientBuffer()

Description

Adds a pool of client structures to be used by the server to handle request. The number of
clients represents the number of clients that could be handled at the same time (request
on-going).

Prototype

int IP_COAP_SERVER_AddClientBuffer(IP_COAP_SERVER_CONTEXT     * pContext,
                                   IP_COAP_SERVER_CLIENT_INFO * pClientInfo,
                                   unsigned                     NumClientInfo);

Parameters

Parameter Description

pContext Server context.
pClientInfo Start of the client pool.
NumClientInfo Number of clients in the given pool.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

At least one client is mandatory. Without any client configured the server won’t be able
to handle requests.

This represents the total number of clients/connections active at the same time. Since a
connection is closed when the transfer is completed, a server could handle much more
clients than this configuration, depending on the traffic generated by each client.

Refer to IP_COAP_SERVER_Init on page 1064 for usage example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1071 CHAPTER 34 API functions

34.7.1.7    IP_COAP_SERVER_AddObserverBuffer()

Description

Adds a pool of observer structures to be used by the server to handle observer request.
When the pool is full, no more observer request could be handled.

Prototype

int IP_COAP_SERVER_AddObserverBuffer(IP_COAP_SERVER_CONTEXT * pContext,
                                     IP_COAP_OBSERVER       * pObs,
                                     unsigned                 NumObservers);

Parameters

Parameter Description

pContext Server context.
pObs Start of the observer pool.
NumObservers Number of observers in the given pool.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Refer to IP_COAP_SERVER_Init on page 1064 for usage example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1072 CHAPTER 34 API functions

34.7.1.8    IP_COAP_SERVER_UpdateData()

Description

Called by the user to indicate data are ready or changed. It is used in two cases:
• GET with a separate reply (ACK then reply in another request) to indicate the reply is

ready to be sent.
• Observable data has changed. This needs to be called each time an observable data

changes.

Prototype

int IP_COAP_SERVER_UpdateData(IP_COAP_SERVER_CONTEXT * pContext,
                              IP_COAP_SERVER_DATA    * pData,
                              U8                       ObsUpdateType,
                              unsigned                 AutoETag);

Parameters

Parameter Description

pContext Server context.
pData Data that is ready or changed.

ObsUpdateType

Type of the request to send in case of observable data
update:
• IP_COAP_TYPE_CON.
• IP_COAP_TYPE_NON.

AutoETag
Flag to generate a new ETag automatically.
• 1: Automatic ETag increment.
• 0: No change on ETag.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

When set to 1, AutoETag flag will increase by 1 the ETag value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1073 CHAPTER 34 API functions

34.7.1.9    IP_COAP_SERVER_SetDefaultBlockSize()

Description

Configures the default block size used by the server.

Prototype

int IP_COAP_SERVER_SetDefaultBlockSize(IP_COAP_SERVER_CONTEXT * pContext,
                                       U16                      BlockSize);

Parameters

Parameter Description

pContext Server context.
BlockSize Requested block size in bytes.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Refer to IP_COAP_SERVER_Init on page 1064 for usage example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1074 CHAPTER 34 API functions

34.7.1.10    IP_COAP_SERVER_SetPOSTHandler()

Description

Configures the callback used when receiving a POST request to create a new server data
entry.

Prototype

int IP_COAP_SERVER_SetPOSTHandler(IP_COAP_SERVER_CONTEXT * pContext,
                                  PF_POST_HANDLER          pfPOSTCreateEntry);

Parameters

Parameter Description

pContext Server context.
pfPOSTCreateEntry Pointer to the function to call.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Refer to IP_COAP_SERVER_Init on page 1064 for usage example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1075 CHAPTER 34 API functions

34.7.1.11    IP_COAP_SERVER_ConfigSet()

Description

Activates the given options from the server configuration.

Prototype

int IP_COAP_SERVER_ConfigSet(IP_COAP_SERVER_CONTEXT * pContext,
                             U8                       ConfigMask);

Parameters

Parameter Description

pContext Server context.
ConfigMask Mask of the configurable options (IP_COAP_CONFIG_xxx).

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

The possible options to configure are:
• IP_COAP_CONFIG_DISABLE_BLOCK1 to disable Block1 usage.
• IP_COAP_CONFIG_DISABLE_BLOCK2 to disable Block2 usage.
• IP_COAP_CONFIG_DISABLE_BLOCKS to disable both Block1 and Block2.
• IP_COAP_CONFIG_DISABLE_OBSERVE to disable Observe option support.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1076 CHAPTER 34 API functions

34.7.1.12    IP_COAP_SERVER_ConfigClear()

Description

Clears the given options from the server configuration.

Prototype

int IP_COAP_SERVER_ConfigClear(IP_COAP_SERVER_CONTEXT * pContext,
                               U8                       ConfigMask);

Parameters

Parameter Description

pContext Server context.
ConfigMask Mask of the configurable options (IP_COAP_CONFIG_xxx).

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

The possible options to configure are:
• IP_COAP_CONFIG_DISABLE_BLOCK1 to re-enable Block1 usage.
• IP_COAP_CONFIG_DISABLE_BLOCK2 to re-enable Block2 usage.
• IP_COAP_CONFIG_DISABLE_BLOCKS to re-enable both Block1 and Block2.
• IP_COAP_CONFIG_DISABLE_OBSERVE to re-enable Observe option support.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1077 CHAPTER 34 API functions

34.7.1.13    IP_COAP_SERVER_SetURIPort()

Description

Configures the UDP port to be sent as URI-Port in reply to a GET.

Prototype

int IP_COAP_SERVER_SetURIPort(IP_COAP_SERVER_CONTEXT * pContext,
                              U16                      Port);

Parameters

Parameter Description

pContext Server context.
Port UDP port.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

The server data should be configured to send the URI-Port option in a GET reply.

It has no impact on the actual port used in the IP_COAP_CONN_INFO structure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1078 CHAPTER 34 API functions

34.7.1.14    IP_COAP_SERVER_SetHostName()

Description

Configures the host name to be sent as URI-Host in reply to a GET.

Prototype

int IP_COAP_SERVER_SetHostName(      IP_COAP_SERVER_CONTEXT * pContext,
                               const char                   * sHostName);

Parameters

Parameter Description

pContext Server context.
sHostName Null terminating string with the hostname.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

The server data should be configured to send the URI-Host option in a GET reply.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1079 CHAPTER 34 API functions

34.7.1.15    IP_COAP_SERVER_SetErrorDescription()

Description

Configures a temporary error description to be sent as payload in an error message. This
is typically called from payload callbacks.

Prototype

int IP_COAP_SERVER_SetErrorDescription(      IP_COAP_SERVER_CONTEXT * pContext,
                                       const char                   * sErrorDesc);

Parameters

Parameter Description

pContext Server context.
sErrorDesc Null terminating string with the error description.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1080 CHAPTER 34 API functions

34.7.2    Client

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1081 CHAPTER 34 API functions

34.7.2.1    IP_COAP_CLIENT_Init()

Description

Initializes a CoAP client.

Prototype

int IP_COAP_CLIENT_Init(      IP_COAP_CLIENT_CONTEXT * pContext,
                              U8                     * pMsgBuffer,
                              U16                      MsgBufferSize,
                        const IP_COAP_API            * pAPI);

Parameters

Parameter Description

pContext Client context.
pMsgBuffer Buffer used to handle UDP packets.
MsgBufferSize Size of pMsgBuffer in bytes.
pAPI API used for UDP transfer and time.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

If possible, the message buffer should be as big as the MTU but since fragmentation is not
used, this is useless to have a message buffer bigger than 1500 bytes.

The default block size will be adjusted to take into account the buffer size. Thus if the buffer
is small (i.e. 512 bytes) the default block size will be adjusted (to 256 in this case).

APIs are used to send and receive UDP packets. The third one is used to retrieve the time
in ms.

Example

static IP_COAP_CLIENT_CONTEXT  _COAPClient;
static IP_COAP_CONN_INFO       _ConnInfo;
static U8                      _MsgBuffer[1500];

static const IP_COAP_API _APP_Api = {
  _APP_Receive,
  _APP_Send,
  _APP_GetTimeMs
};

void _ClientInit(void) {
  //
  // Initializes the CoAP client.
  //
  IP_COAP_CLIENT_Init(&_COAPClient, &_MsgBuffer[0], sizeof(_MsgBuffer), &_APP_Api);
  //
  // Configure server address.
  //
  _ConnInfo.Family   = IP_COAP_IPV4;
  _ConnInfo.Port     = COAP_PORT;
  _ConnInfo.IPAddrV4 = COAP_SERVER_ADDRESS;
  IP_COAP_CLIENT_SetServerAddress(&_COAPClient, &_ConnInfo);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1082 CHAPTER 34 API functions

34.7.2.2    IP_COAP_CLIENT_Process()

Description

Periodic function called to manage CoAP request and observer of a client.

Prototype

int IP_COAP_CLIENT_Process(IP_COAP_CLIENT_CONTEXT * pContext);

Parameters

Parameter Description

pContext Client context.

Return value

= IP_COAP_RETURN_OK A free request is present.
≠ IP_COAP_RETURN_OK No free request available.

Refer to Sample CoAP client application on page 1056 for usage example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1083 CHAPTER 34 API functions

34.7.2.3    IP_COAP_CLIENT_GetFreeRequestIdx()

Description

Returns a free request. Should be called to get the index of a free request to be used to
configure and send the request.

Prototype

int IP_COAP_CLIENT_GetFreeRequestIdx(IP_COAP_CLIENT_CONTEXT * pContext,
                                     unsigned               * pIndex);

Parameters

Parameter Description

pContext Client context.
pIndex Filled with the free request index.

Return value

= IP_COAP_RETURN_OK A free request is present.
≠ IP_COAP_RETURN_OK No free request available.

Refer to Sample CoAP client application on page 1056 for usage example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1084 CHAPTER 34 API functions

34.7.2.4    IP_COAP_CLIENT_AbortRequestIdx()

Description

Aborts an on-going request.

Prototype

int IP_COAP_CLIENT_AbortRequestIdx(IP_COAP_CLIENT_CONTEXT * pContext,
                                   unsigned                 Index);

Parameters

Parameter Description

pContext Client context.
Index Index of the request to abort.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1085 CHAPTER 34 API functions

34.7.2.5    IP_COAP_CLIENT_SetServerAddress()

Description

Configures the UDP parameters of the server.

Prototype

int IP_COAP_CLIENT_SetServerAddress(IP_COAP_CLIENT_CONTEXT * pContext,
                                    IP_COAP_CONN_INFO      * pConnInfo);

Parameters

Parameter Description

pContext Client context.
pConnInfo UDP connection information.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Refer to IP_COAP_CLIENT_Init on page 1081 for usage example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1086 CHAPTER 34 API functions

34.7.2.6    IP_COAP_CLIENT_SetDefaultBlockSize()

Description

Sets the default block size to be used by the client.

Prototype

int IP_COAP_CLIENT_SetDefaultBlockSize(IP_COAP_CLIENT_CONTEXT * pContext,
                                       U16                      BlockSize);

Parameters

Parameter Description

pContext Client context.
BlockSize Size of the block in bytes.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

The given block size will be adjusted if it is too big for the configured message buffer size.

A specific request could still be configured with another block size by calling
IP_COAP_CLIENT_SetOptionBlock().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1087 CHAPTER 34 API functions

34.7.2.7    IP_COAP_CLIENT_SetCommand()

Description

Configures the request type and code.

Prototype

int IP_COAP_CLIENT_SetCommand(IP_COAP_CLIENT_CONTEXT * pContext,
                              unsigned                 Index,
                              U8                       Type,
                              U8                       Code);

Parameters

Parameter Description

pContext Client context.
Index Free request index.

Type
Type of the request:
• IP_COAP_TYPE_CON.
• IP_COAP_TYPE_NON.

Code

Code of the request:
• IP_COAP_CODE_REQ_GET.
• IP_COAP_CODE_REQ_DEL.
• IP_COAP_CODE_REQ_PUT.
• IP_COAP_CODE_REQ_POST.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Example

  //
  // Build the request with the given free index.
  //
  IP_COAP_CLIENT_SetCommand(&_COAPClient, Index, IP_COAP_TYPE_CON, IP_COAP_CODE_REQ_GET);
  IP_COAP_CLIENT_SetOptionURIPath(&_COAPClient, Index, (U8*)".well-known/core", 16);
  IP_COAP_CLIENT_SetOptionBlock(&_COAPClient, Index, 128);
  IP_COAP_CLIENT_SetPayloadHandler(&_COAPClient, Index, _DISCOVER_Handler);
  //
  r = IP_COAP_CLIENT_BuildAndSend(&_COAPClient, Index);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1088 CHAPTER 34 API functions

34.7.2.8    IP_COAP_CLIENT_SetToken()

Description

Configures the token of a request.

Prototype

int IP_COAP_CLIENT_SetToken(IP_COAP_CLIENT_CONTEXT * pContext,
                            unsigned                 Index,
                            U8                     * pToken,
                            U8                       TokenLength);

Parameters

Parameter Description

pContext Client context.
Index Free request index.
pToken Pointer to the token.
TokenLength Length of the token.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1089 CHAPTER 34 API functions

34.7.2.9    IP_COAP_CLIENT_SetPayloadHandler()

Description

Configures the callback used to manage the payload of the request. For GET it’s the function
that will be called with the data when receiving the reply. For PUT/POST, this is the function
that will be used to add the data in the request message.

Prototype

int IP_COAP_CLIENT_SetPayloadHandler(IP_COAP_CLIENT_CONTEXT * pContext,
                                     unsigned                 Index,
                                     PF_CLIENT_PAYLOAD        pf);

Parameters

Parameter Description

pContext Client context.
Index Free request index.
pf Pointer to the callback.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Refer to IP_COAP_CLIENT_SetCommand on page 1087 for usage example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1090 CHAPTER 34 API functions

34.7.2.10    IP_COAP_CLIENT_SetReplyWaitTime()

Description

Configures the time to wait for the reply after sending the request. This is intended when
using multicast/broadcast request.

Prototype

int IP_COAP_CLIENT_SetReplyWaitTime(IP_COAP_CLIENT_CONTEXT * pContext,
                                    unsigned                 Index,
                                    U32                      Seconds);

Parameters

Parameter Description

pContext Client context.
Index Free request index.
Seconds Number of seconds to wait for the reply.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

When sending a request to a multicast/broadcast address, the type should be set to NON.
The server should wait a random time before sending the reply (up to DEFAULT_LEISURE).
The random time could be bigger than the normal wait time. This function is there to alter
the wait time in this specific case.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1091 CHAPTER 34 API functions

34.7.2.11    IP_COAP_CLIENT_BuildAndSend()

Description

Builds the CoAP message and sends it based on a configured request.

Prototype

int IP_COAP_CLIENT_BuildAndSend(IP_COAP_CLIENT_CONTEXT * pContext,
                                unsigned                 Index);

Parameters

Parameter Description

pContext Client context.
Index Configured request index to build and send.

Return value

≥ 0 Success.
< 0 Error.

Refer to IP_COAP_CLIENT_SetCommand on page 1087 for usage example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1092 CHAPTER 34 API functions

34.7.2.12    IP_COAP_CLIENT_GetLastResult()

Description

Returns the status and information when a request is completed.

Prototype

int IP_COAP_CLIENT_GetLastResult(IP_COAP_CLIENT_CONTEXT  * pContext,
                                 U8                      * pCode,
                                 U8                     ** ppError,
                                 U16                     * pLength);

Parameters

Parameter Description

pContext Client context.
pCode To be filled with the CoAP code of the result.

ppError
In case of error sent by the server (class 2 or 4), it may
contain a string with a comment on the error. To be ignored
in case of success or other error classes.

pLength Length of the ppError.

Return value

≥ 0 Index of the completed request.
< 0 No request just finished.

Additional information

When a request is sent, it is needed to call periodically IP_COAP_CLIENT_process() and
IP_COAP_CLIENT_GetLastResult() to process the request and check when it is completed.

The data pointed by ppError may not be valid anymore after another received or sent
message (case of IP_COAP_NSTART > 1).

Refer to Sample CoAP client application on page 1056 for usage example.

Warning

Observer result (apart from the abort) are transparent to this function. This means
the return value will remain to -1 (nothing on-going) even when the observer request
is completed, but the function needs to be called anyway in this case.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1093 CHAPTER 34 API functions

34.7.2.13    IP_COAP_CLIENT_GetMsgBuffer()

Description

Returns the buffer used to send messages.

Prototype

U8 *IP_COAP_CLIENT_GetMsgBuffer(IP_COAP_CLIENT_CONTEXT * pContext,
                                U16                    * pMsgLength);

Parameters

Parameter Description

pContext Client context.
pMsgLength Value to fill with the buffer length.

Return value

≠ NULL Message buffer.
= NULL Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1094 CHAPTER 34 API functions

34.7.2.14    IP_COAP_CLIENT_GetLocationPath()

Description

Returns the Location-Path received. This should be call when processing reply of a POST
for example.

Prototype

int IP_COAP_CLIENT_GetLocationPath(IP_COAP_CLIENT_CONTEXT  * pContext,
                                   unsigned                  Index,
                                   U8                     ** ppLoc,
                                   U8                      * pLocLength);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
ppLoc Pointer to place at the path start.
pLocLength Value to fill with the path length.

Return value

= IP_COAP_RETURN_OK Location-Path is present.
≠ IP_COAP_RETURN_OK Error.

Additional information

The data pointed by the location pointer will not be valid after another received or sent
message.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1095 CHAPTER 34 API functions

34.7.2.15    IP_COAP_CLIENT_GetLocationQuery()

Description

Returns the Location-Query received. This should be call when processing reply of a POST
for example.

Prototype

int IP_COAP_CLIENT_GetLocationQuery(IP_COAP_CLIENT_CONTEXT  * pContext,
                                    unsigned                  Index,
                                    U8                     ** ppQuery,
                                    U8                      * pQueryLength);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
ppQuery Pointer to place at the query start.
pQueryLength Value to fill with the Query length.

Return value

= IP_COAP_RETURN_OK Location-Query is present.
≠ IP_COAP_RETURN_OK Error.

Additional information

The data pointed by the query will not be valid after another message is received or sent.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1096 CHAPTER 34 API functions

34.7.2.16    IP_COAP_CLIENT_SetOptionURIPath()

Description

Adds the URI-Path option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionURIPath(IP_COAP_CLIENT_CONTEXT * pContext,
                                    unsigned                 Index,
                                    U8                     * pURI,
                                    U8                       URILength);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
pURI Start of the URI-Path (without the first ’/’).
URILength Length of the URI-Path.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

Only the pointer is kept, thus the passed data should be valid at least during the life of
the request.

The given string for the URI-Path contains the complete URI-Path with ’/’ except for the
first one. The break-down in many URI-Path options is done internally.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1097 CHAPTER 34 API functions

34.7.2.17    IP_COAP_CLIENT_SetOptionURIHost()

Description

Adds the URI-Host option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionURIHost(IP_COAP_CLIENT_CONTEXT * pContext,
                                    unsigned                 Index,
                                    U8                     * pHost,
                                    U8                       HostLength);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
pHost Start of the host name.
HostLength Length of the host name.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

Only the pointer is kept, thus the passed data should be valid at least during the life of
the request.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1098 CHAPTER 34 API functions

34.7.2.18    IP_COAP_CLIENT_SetOptionURIPort()

Description

Adds the URI-Port option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionURIPort(IP_COAP_CLIENT_CONTEXT * pContext,
                                    unsigned                 Index,
                                    U16                      Port);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
Port URI-Port value.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1099 CHAPTER 34 API functions

34.7.2.19    IP_COAP_CLIENT_SetOptionURIQuery()

Description

Adds the URI-Query option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionURIQuery(IP_COAP_CLIENT_CONTEXT * pContext,
                                     unsigned                 Index,
                                     U8                     * pQuery,
                                     U8                       QueryLength);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
pQuery Start of the query.
QueryLength Length of the query.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

Only the pointer is kept, thus the passed data should be valid at least during the life of
the request.

The given string for the URI-Query contains the complete URI-Query. The break-down in
many URI-Query options is done internally using the character ’&’ as separators.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1100 CHAPTER 34 API functions

34.7.2.20    IP_COAP_CLIENT_SetOptionETag()

Description

Adds the ETag option to a request. It’S possible to add only one ETag per request.

Prototype

int IP_COAP_CLIENT_SetOptionETag(IP_COAP_CLIENT_CONTEXT * pContext,
                                 unsigned                 Index,
                                 U8                     * pETag,
                                 U8                       ETagLength);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
pETag Start of the ETag.
ETagLength Length of the ETag.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

Only the pointer is kept, thus the passed data should be valid at least during the life of
the request.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1101 CHAPTER 34 API functions

34.7.2.21    IP_COAP_CLIENT_SetOptionBlock()

Description

Adds the block option to a request. Block1 of a request is a PUT or a POST, Block2 for a GET.

Prototype

int IP_COAP_CLIENT_SetOptionBlock(IP_COAP_CLIENT_CONTEXT * pContext,
                                  unsigned                 Index,
                                  U16                      Size);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
Size Size of the block in bytes. 0 for default size.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

It is possible to give 0 as Size. The default block size will then be used.

Per default, GET requests don’t have the Block2 option configured. If a reply is received with
blocks, then the default block size is used. This function could be used to send the request
with the Block2 option already set. In case of PUT/POST, Block1 option is always added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1102 CHAPTER 34 API functions

34.7.2.22    IP_COAP_CLIENT_SetOptionAccept()

Description

Adds the Accept option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionAccept(IP_COAP_CLIENT_CONTEXT * pContext,
                                   unsigned                 Index,
                                   U16                      Value);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
Value Accept format to be set in the request.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

Some format are already defined in IP_COAP.h but any numerical value defined in RFCs
could be used.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1103 CHAPTER 34 API functions

34.7.2.23    IP_COAP_CLIENT_SetOptionContentFormat()

Description

Adds the Content-Format option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionContentFormat(IP_COAP_CLIENT_CONTEXT * pContext,
                                          unsigned                 Index,
                                          U16                      Value);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
Value Content format to be set in the request.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

Some format are already defined in IP_COAP.h but any numerical value defined in RFCs
could be used.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1104 CHAPTER 34 API functions

34.7.2.24    IP_COAP_CLIENT_SetOptionIfNoneMatch()

Description

Adds the If-None-Match option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionIfNoneMatch(IP_COAP_CLIENT_CONTEXT * pContext,
                                        unsigned                 Index);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1105 CHAPTER 34 API functions

34.7.2.25    IP_COAP_CLIENT_SetOptionLocationPath()

Description

Adds the location path option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionLocationPath(IP_COAP_CLIENT_CONTEXT * pContext,
                                         unsigned                 Index,
                                         U8                     * pLocation,
                                         U8                       LocationLength);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
pLocation Pointer to the path.
LocationLength Length of the path.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

Only the pointer is kept, thus the passed data should be valid at least during the life of
the request.

This function is provided even though the location path option appears normally only in
replies (to POST requests).

The given string for the Location-Path contains the complete Location-Path with ’/’ except
for the first one. The break-down in many Location-Path options is done internally.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1106 CHAPTER 34 API functions

34.7.2.26    IP_COAP_CLIENT_SetOptionLocationQuery()

Description

Adds the location query option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionLocationQuery(IP_COAP_CLIENT_CONTEXT * pContext,
                                          unsigned                 Index,
                                          U8                     * pQuery,
                                          U8                       QueryLength);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
pQuery Pointer to the query.
QueryLength Length of the query.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

Only the pointer is kept, thus the passed data should be valid at least during the life of
the request.

This function is provided even though the location query option appears normally only in
replies (to POST requests).

The given string for the Location-Query contains the complete Location-Query. The break-
down in many Location-Query options is done internally using the character ’&’ as
separators.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1107 CHAPTER 34 API functions

34.7.2.27    IP_COAP_CLIENT_SetOptionProxyURI()

Description

Adds the proxy URI option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionProxyURI(IP_COAP_CLIENT_CONTEXT * pContext,
                                     unsigned                 Index,
                                     U8                     * pURI,
                                     U16                      URILength);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
pURI Pointer to the URI.
URILength Length of the URI.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

Only the pointer is kept, thus the passed data should be valid at least during the life of
the request.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1108 CHAPTER 34 API functions

34.7.2.28    IP_COAP_CLIENT_SetOptionProxyScheme()

Description

Adds the proxy scheme option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionProxyScheme(IP_COAP_CLIENT_CONTEXT * pContext,
                                        unsigned                 Index,
                                        U8                     * pScheme,
                                        U8                       SchemeLength);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
pScheme Pointer to the scheme.
SchemeLength Length of the scheme.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

Only the pointer is kept, thus the passed data should be valid at least during the life of
the request.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1109 CHAPTER 34 API functions

34.7.2.29    IP_COAP_CLIENT_SetOptionSize1()

Description

Adds the Size1 option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionSize1(IP_COAP_CLIENT_CONTEXT * pContext,
                                  unsigned                 Index,
                                  U32                      Value);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
Value Value of the Size1 option.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1110 CHAPTER 34 API functions

34.7.2.30    IP_COAP_CLIENT_SetOptionAddIFMatch()

Description

Adds the If-Match option to a request.

Prototype

int IP_COAP_CLIENT_SetOptionAddIFMatch(IP_COAP_CLIENT_CONTEXT * pContext,
                                       unsigned                 Index,
                                       IP_COAP_IF_MATCH_INFO  * pIFMatch);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to configure.
pIFMatch Parameter of the If-Match option.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

In a CoAP message, there could me many If-Match option. This option could indicate an
ETag to match. It’s also possible to have a “match all” with an empty ETag. To add a “match
all”, either provide a pIFMatch structure with the ETagLength set to 0, or give a NULL
parameter as pIFMatch.

Only the pointer is kept, thus the passed data should be valid at least during the life of
the request.

Example

  static IP_COAP_IF_MATCH_INFO   IfMatch0;
  static IP_COAP_IF_MATCH_INFO   IfMatch1;
  static IP_COAP_IF_MATCH_INFO   IfMatch2;

  //
  // Send a PUT if the current ETag of "test" matches
  // one of the three given ETag.
  //
  IP_COAP_CLIENT_SetCommand(&_COAPClient, Index, IP_COAP_TYPE_CON, IP_COAP_CODE_REQ_PUT);
  IP_COAP_CLIENT_SetOptionURIPath(&_COAPClient, Index, "test", 4);
  IfMatch0.ETagLength = 2;
  IfMatch0.pETag      = "\x02\x03";
  IP_COAP_CLIENT_SetOptionAddIFMatch(&_COAPClient, Index, &IfMatch0);
  IfMatch1.ETagLength = 2;
  IfMatch1.pETag      = "\x01\x02";
  IP_COAP_CLIENT_SetOptionAddIFMatch(&_COAPClient, Index, &IfMatch1);
  IfMatch2.ETagLength = 2;
  IfMatch2.pETag      = "\x03\x03";
  IP_COAP_CLIENT_SetOptionAddIFMatch(&_COAPClient, Index, &IfMatch2);
  IP_COAP_CLIENT_SetOptionBlock(&_COAPClient, Index, 128);
  IP_COAP_CLIENT_SetPayloadHandler(&_COAPClient, Index, _PUT_Handler);
  //
  IP_COAP_CLIENT_BuildAndSend(&_COAPClient, Index);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1111 CHAPTER 34 API functions

34.7.2.31    IP_COAP_CLIENT_OBS_Init()

Description

Initializes an observe request.

Prototype

int IP_COAP_CLIENT_OBS_Init(IP_COAP_CLIENT_CONTEXT * pContext,
                            unsigned                 Index,
                            IP_COAP_CLIENT_OBS     * pObs,
                            unsigned                 AutoToken);

Parameters

Parameter Description

pContext Client context.
Index Index of the free request to use to send the registration.
pObs Observer to initializes.
AutoToken Generates a token for the observe request.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

Additional information

An observe request must have a token. Either use this simple AutoToken mechanism or
provide a token using IP_COAP_CLIENT_SetToken(). Note that the AutoToken is based on
the current time. Thus creating two observe request at the same time will generate the
same token for both requests and create issues.

Example

  //
  // Observe specific initialization.
  //
  IP_COAP_CLIENT_OBS_Init(&_COAPClient, Index, &_Observer, 0);
  IP_COAP_CLIENT_OBS_SetEndCallback(&_Observer, _OBS_EndHandler, (void*)(U32)Index);
  //
  // Regular request initialization. Observe uses a GET request.
  //
  IP_COAP_CLIENT_SetCommand(&_COAPClient, Index, IP_COAP_TYPE_CON, IP_COAP_CODE_REQ_GET);
  IP_COAP_CLIENT_SetOptionURIPath(&_COAPClient, Index, (U8*)"obs", 3);
  IP_COAP_CLIENT_SetOptionBlock(&_COAPClient, Index, 16);
  IP_COAP_CLIENT_SetPayloadHandler(&_COAPClient, Index, _GET_Handler);
  //
  // Token is mandatory for an observe, so either use the AutoToken from the Init or
  // provide one.
  //
  IP_COAP_CLIENT_SetToken(&_COAPClient, Index, "\x01\x02\x03\x04", 4);
  //
  r = IP_COAP_CLIENT_BuildAndSend(&_COAPClient, Index);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1112 CHAPTER 34 API functions

34.7.2.32    IP_COAP_CLIENT_OBS_Abort()

Description

Stops an active observer.

Prototype

int IP_COAP_CLIENT_OBS_Abort(IP_COAP_CLIENT_CONTEXT * pContext,
                             unsigned                 Index,
                             IP_COAP_CLIENT_OBS     * pObs,
                             unsigned                 TryActiveAbort);

Parameters

Parameter Description

pContext Client context.

Index
Available request index to send the abort. Unused if
TryActiveAbort is set to 0.

pObs Observer to abort.

TryActiveAbort
Flag (0 or 1) used to prepare pObs to send a request to
abort the registration.

Return value

IP_COAP_RETURN_OK Success.
IP_COAP_RETURN_NOT_ALLOWED Abort done, no request available for active abort.
Other Error.

Example

Either perform a “lazy” abort. The clients will only remove the observer from its context.
When the server will send a notification, the client will automatically reply with an error.

  //
  // Abort the observe (no abort sent to the server).
  //
  IP_COAP_CLIENT_OBS_Abort(&_COAPClient, 0 /* unused */, &_Observer, 0);

Or perform an active abort by sending a GET with the Observe option set to 1. The function
is already setting the Observe value. Note that this abort request will be returned by
IP_COAP_CLIENT_GetLastResult() contrarily to other observer related messages.

  //
  // Abort the observe indicating an abort will be sent.
  //
  IP_COAP_CLIENT_OBS_Abort(&_COAPClient, Index, &_Observer, 1);
  //
  // And actually send the abort reusing the on-going request.
  //
  IP_COAP_CLIENT_SetCommand(&_COAPClient, Index, IP_COAP_TYPE_CON, IP_COAP_CODE_REQ_GET);
  IP_COAP_CLIENT_SetOptionURIPath(&_COAPClient, Index, (U8*)"obs", 3);
  IP_COAP_CLIENT_SetPayloadHandler(&_COAPClient, Index, _GET_Handler);
  //
  r = IP_COAP_CLIENT_BuildAndSend(&_COAPClient, Index);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1113 CHAPTER 34 API functions

34.7.2.33    IP_COAP_CLIENT_OBS_SetEndCallback()

Description

Configures the end callback for an observe request. This callback is called after every
transfer.

Prototype

int IP_COAP_CLIENT_OBS_SetEndCallback(IP_COAP_CLIENT_OBS  * pObs,
                                      PF_OBS_END_TRANSFER   pfObsEndTransfer,
                                      void                * pParam);

Parameters

Parameter Description

pObs Observer to configure.
pfObsEndTransfer Callback called at the end of every transfer.
pParam Parameter given to the callback. No internal usage.

Return value

= IP_COAP_RETURN_OK Success.
≠ IP_COAP_RETURN_OK Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1114 CHAPTER 34 API functions

34.7.3    Utility
These utility functions are helper functions to check various CoAP options. They are designed
to be called from the payload callbacks.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1115 CHAPTER 34 API functions

34.7.3.1    IP_COAP_CheckAcceptFormat()

Description

Verifies if the Accept-Format matches the requested one.

Prototype

int IP_COAP_CheckAcceptFormat(IP_COAP_CALLBACK_PARAM * pParam,
                              U16                      Format);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
Format Requested format.

Return value

IP_COAP_RETURN_OK Accept-Format option value is not present or the Accept-Format
matches the requested one.

IP_COAP_RETURN_ERR Accept-Format option doesn’t match.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1116 CHAPTER 34 API functions

34.7.3.2    IP_COAP_GetAcceptFormat()

Description

Reads the Accept-Format option value.

Prototype

int IP_COAP_GetAcceptFormat(IP_COAP_CALLBACK_PARAM * pParam,
                            U16                    * pFormat);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
pFormat Variable to store the Accept-Format value.

Return value

IP_COAP_RETURN_OK Accept-Format option value is present and set in pFormat.
IP_COAP_RETURN_ERR Accept-Format option not present.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1117 CHAPTER 34 API functions

34.7.3.3    IP_COAP_CheckContentFormat()

Description

Verifies if the Content-Format match the requested one.

Prototype

int IP_COAP_CheckContentFormat(IP_COAP_CALLBACK_PARAM * pParam,
                               U16                      Format,
                               unsigned                 OptionMandatory);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
Format Requested Content-Format.

OptionMandatory

Flag to indicate if the presence of the Content-Format option
is mandatory or not.
• 1: Mandatory.
• 0: Optional.

Return value

IP_COAP_RETURN_OK The option format matches the requested
one or the option is not present (and the flag
OptionMandatory is 0).

IP_COAP_RETURN_OPTION_ERROR Option is not present (OptionMandatory is 1)
IP_COAP_RETURN_ERR Content-Format doesn’t match the requested one.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1118 CHAPTER 34 API functions

34.7.3.4    IP_COAP_GetContentFormat()

Description

Reads the Content-Format option value.

Prototype

int IP_COAP_GetContentFormat(IP_COAP_CALLBACK_PARAM * pParam,
                             U16                    * pFormat);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
pFormat Variable to store the Content-Format value.

Return value

IP_COAP_RETURN_OK Content-Format option value is present and set in pFormat.
IP_COAP_RETURN_ERR Content-Format option not present.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1119 CHAPTER 34 API functions

34.7.3.5    IP_COAP_IsLastBlock()

Description

Checks if the current block is the last one of the transfer.

Prototype

int IP_COAP_IsLastBlock(IP_COAP_CALLBACK_PARAM * pParam,
                        U8                       Code);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.

Code
Code of the procedure
• IP_COAP_CODE_REQ_GET
• IP_COAP_CODE_REQ_PUT / IP_COAP_CODE_REQ_POST

Return value

1 This is the last block (or no block transfer)
0 More blocks are expected.

Additional information

If the procedure is a GET, Block2 is checked. Otherwise Block1 is checked.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1120 CHAPTER 34 API functions

34.7.3.6    IP_COAP_GetURIHost()

Description

Sets a pointer on the start of the URI-HostName.

Prototype

int IP_COAP_GetURIHost(IP_COAP_CALLBACK_PARAM  * pParam,
                       U8                     ** ppHost,
                       U8                      * pHostLength);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
ppHost Address of the pointer where the HostName starts.
pHostLength To be filled with the actual Host length.

Return value

IP_COAP_RETURN_OK URI-Host option is present and ppHost, pHostLength are
updated.

IP_COAP_RETURN_ERR URI-Host option not present.

Additional information

If you plan on using the string later, make a copy of it as the pointer won’t be valid after
the callbacks.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1121 CHAPTER 34 API functions

34.7.3.7    IP_COAP_GetURIPath()

Description

Sets a pointer on the start of the URI-Path.

Prototype

int IP_COAP_GetURIPath(IP_COAP_CALLBACK_PARAM  * pParam,
                       U8                     ** ppURI,
                       U8                      * pURILength);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
ppURI Address of the pointer where the URI starts.
pURILength To be filled with the actual URI length.

Return value

IP_COAP_RETURN_OK URI-Path option is present and ppURI, pURILength are updated.
IP_COAP_RETURN_ERR URI-Path option not present.

Additional information

It makes only sense to be used by the server. In this case, the URI is re-assembled with
’/’ (the first one is omitted). For example if two URI-Path options are present with “sensor”
and “temp”, the returned string will be “sensor/temp”.

If you plan on using the string later, make a copy of it as the pointer won’t be valid after
the callbacks.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1122 CHAPTER 34 API functions

34.7.3.8    IP_COAP_GetURIPort()

Description

Reads the URI-Port option value.

Prototype

int IP_COAP_GetURIPort(IP_COAP_CALLBACK_PARAM * pParam,
                       U16                    * pURIPort);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
pURIPort Variable to store the URI-Port value.

Return value

IP_COAP_RETURN_OK URI-Port option value is present and set in pURIPort.
IP_COAP_RETURN_ERR URI-Port option not present.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1123 CHAPTER 34 API functions

34.7.3.9    IP_COAP_GetQuery()

Description

Sets a pointer on the start of the Query field.

Prototype

int IP_COAP_GetQuery(IP_COAP_CALLBACK_PARAM  * pParam,
                     U8                     ** ppQuery,
                     U16                     * pQueryLength);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
ppQuery Address of the pointer where the Query starts.
pQueryLength To be filled with the actual Query length.

Return value

IP_COAP_RETURN_OK Query option is present and ppQuery, pQueryLength are
updated.

IP_COAP_RETURN_ERR Query option not present.

Additional information

If you plan on using the string later, make a copy of it as the pointer won’t be valid after
the callbacks.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1124 CHAPTER 34 API functions

34.7.3.10    IP_COAP_GetETag()

Description

Sets a pointer on the ETag value.

Prototype

int IP_COAP_GetETag(IP_COAP_CALLBACK_PARAM  * pParam,
                    U8                     ** ppETag,
                    U8                      * pETagLength);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
ppETag Address of the pointer where the ETag starts.
pETagLength To be filled with the actual ETag length.

Return value

IP_COAP_RETURN_OK ETag option is present and ppETag, pETagLength are updated.
IP_COAP_RETURN_ERR ETag option not present.

Additional information

If you plan on using the string later, make a copy of it as the pointer won’t be valid after
the callbacks.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1125 CHAPTER 34 API functions

34.7.3.11    IP_COAP_GetMaxAge()

Description

Reads the MaxAge option value.

Prototype

int IP_COAP_GetMaxAge(IP_COAP_CALLBACK_PARAM * pParam,
                      U32                    * pMaxAge);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
pMaxAge Variable to store the MaxAge value.

Return value

IP_COAP_RETURN_OK MaxAge option value is present and set in pMaxAge.
IP_COAP_RETURN_ERR MaxAge option not present.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1126 CHAPTER 34 API functions

34.7.3.12    IP_COAP_GetSize1()

Description

Reads the Size1 option value.

Prototype

int IP_COAP_GetSize1(IP_COAP_CALLBACK_PARAM * pParam,
                     U32                    * pSize1);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
pSize1 Variable to store the Size1 value.

Return value

IP_COAP_RETURN_OK Size1 option value is present and set in pSize1.
IP_COAP_RETURN_ERR Size1 option not present.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1127 CHAPTER 34 API functions

34.7.3.13    IP_COAP_GetSize2()

Description

Reads the Size2 option value.

Prototype

int IP_COAP_GetSize2(IP_COAP_CALLBACK_PARAM * pParam,
                     U32                    * pSize2);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
pSize2 Variable to store the Size2 value.

Return value

IP_COAP_RETURN_OK Size2 option value is present and set in pSize2.
IP_COAP_RETURN_ERR Size2 option not present.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1128 CHAPTER 34 API functions

34.7.3.14    IP_COAP_GetLocationPath()

Description

Sets a pointer on the start of the Location-Path.

Prototype

int IP_COAP_GetLocationPath(IP_COAP_CALLBACK_PARAM  * pParam,
                            U8                     ** ppLoc,
                            U8                      * pLocLength);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
ppLoc Address of the pointer where the location starts.
pLocLength To be filled with the actual URI length.

Return value

IP_COAP_RETURN_OK Location option is present and ppLoc, pLocLength are updated.
IP_COAP_RETURN_ERR Location option not present.

Additional information

If you plan on using the string later, make a copy of it as the pointer won’t be valid after
the callbacks.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1129 CHAPTER 34 API functions

34.7.3.15    IP_COAP_GetLocationQuery()

Description

Sets a pointer on the start of the Location-Query field.

Prototype

int IP_COAP_GetLocationQuery(IP_COAP_CALLBACK_PARAM  * pParam,
                             U8                     ** ppQuery,
                             U16                     * pQueryLength);

Parameters

Parameter Description

pParam Pointer to the callback’s parameter structure.
ppQuery Address of the pointer where the Query starts.
pQueryLength To be filled with the actual Query length.

Return value

IP_COAP_RETURN_OK Query option is present and ppQuery, pQueryLength are
updated.

IP_COAP_RETURN_ERR Query option not present.

Additional information

If you plan on using the string later, make a copy of it as the pointer won’t be valid after
the callbacks.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1130 CHAPTER 34 Data structures

34.8    Data structures
Structure / Callback Description

Server

IP_COAP_SERVER_CONTEXT Main context of the server.

IP_COAP_SERVER_DATA Server context to describe a resource.

PF_POST_HANDLER
Server callback to create a new resource
when receiving a POST.

IP_COAP_pfGETPayload
Server data callback to fill the payload of a
GET request.

IP_COAP_pfPUTPayload
Server data callback to store the payload
of a PUT request.

IP_COAP_pfDELHandler
Server data callback to check the
authorization to perform a DELETE
request.

Client

IP_COAP_CLIENT_CONTEXT Main context of the client.

PF_OBS_END_TRANSFER Observer end-of-transfer indication.

PF_CLIENT_PAYLOAD
Client callback to handle the payload of
GET/PUT.

Common

IP_COAP_API
Contains the functions to perform the UDP
receive and send as well as a function to
get the current time in ms.

IP_COAP_CALLBACK_PARAM
Argument of the payload callbacks
describing connection parameters.

IP_COAP_OPTIONS_INFO CoAP options description.

IP_COAP_IF_MATCH_INFO
Utility structure to parametrize the If-
Match option.

IP_COAP_HEADER_INFO Parsed CoAP header.

IP_COAP_BLOCK_INFO
Definition of the block used for Block1 and
Block2 options.

IP_COAP_CONN_INFO UDP connection definition.

IP_COAP_pfReceive Callback used to receive UDP packets.

IP_COAP_pfSend Callback used to send UDP packets.

IP_COAP_pfGetTimeMs
Callback used to get the current time in
milliseconds.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1131 CHAPTER 34 Data structures

34.8.1    IP_COAP_SERVER_CONTEXT

Description

Main context of the server.

Type definition

typedef struct {
  IP_COAP_pfReceive            pfReceive;
  IP_COAP_pfSend               pfSend;
  IP_COAP_pfGetTimeMs          pfGetTimeMs;
  const char                 * sHostName;
  const char                 * sErrorDesc;
  IP_COAP_SERVER_DATA        * pFirstData;
  IP_COAP_SERVER_DATA          DataWellKnownCore;
  IP_COAP_SERVER_CLIENT_INFO * pFirstClient;
  IP_COAP_SERVER_CLIENT_INFO * pFreeCLient;
  IP_COAP_OBSERVER           * pFirstObs;
  IP_COAP_OBSERVER           * pFreeObs;
  PF_POST_HANDLER              pfPOSTCreateEntry;
  IP_COAP_SERVER_DATA        * pDataFirstFound;
  U8                         * pPayload;
  U32                          OptionMask;
  U16                          UDPPort;
  U16                          PayloadLength;
  U16                          StructureETag;
  U16                          URILengthReq;
  U16                          RxMsgLength;
  U16                          MsgLength;
  U16                          BadOption;
  U16                          MessageId;
  U8                           DefaultSzx;
  U8                           ConfigMask;
  U8                         * pMsgBuffer;
  U16                          MsgBufferSize;
} IP_COAP_SERVER_CONTEXT;

Structure members

Member Description

pfReceive Callback to receive UDP packets (see IP_COAP_pfReceive)
pfSend Callback to send UDP packets (see IP_COAP_pfSend)

pfGetTimeMs
Callback to get the current time in milliseconds (see
IP_COAP_pfGetTimeMs)

sHostName

If it is requested to send the Uri-Host option by a
IP_COAP_SERVER_DATA , the hostname used is this one.
(initialized to a null pointer). All resources associated to
a server are using the same host name. This is a null
terminated string.

sErrorDesc Null terminated string sent in an error message.

pFirstData
Start of the linked list of server resources.
Used by IP_COAP_SERVER_AddData() and
IP_COAP_SERVER_RemoveData().

DataWellKnownCore
Resource used to reply to a discover (GET .well-known/
core). This will automatically return the list of all resources
of the server with the CoRE format.

pFirstClient
Start of the linked list of the currently connected clients.
Internal usage only.

pFreeCLient
Linked list of the client structure pool. Initialized with
IP_COAP_SERVER_AddClientBuffer().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1132 CHAPTER 34 Data structures

Member Description

pFirstObs
Start of the linked list of the currently connected observers.
Internal usage only.

pFreeObs
Linked list of the observer structure pool. Initialized with
IP_COAP_SERVER_AddObserverBuffer().

pfPOSTCreateEntry

Call back used to create a new entry when
getting a POST command. Initialized with
IP_COAP_SERVER_SetPOSTHandler(). If left unset (NULL),
the server won’t allow the creation of new resource entries
and will automatically reply with a 4.05 Method Not Allowed.

pDataFirstFound Internal use.
pPayload Internal use.
OptionMask Internal use.
UDPPort Internal use.
PayloadLength Internal use.
StructureETag Internal use.
URILengthReq Internal use.
RxMsgLength Internal use.
MsgLength Internal use.
BadOption Internal use.
MessageId Internal use.
DefaultSzx Internal use.
ConfigMask Buffer for the UDP packet handling (Rx/Tx).

pMsgBuffer
Buffer used to receive and send CoAP messages in UDP.
Initialized in IP_COAP_SERVER_Init().

MsgBufferSize Size of the message buffer.

Additional information

The fields of this structure should be set only via APIs or internal functions.

A client pool is given to the server with the function IP_COAP_SERVER_AddClientBuffer().
The size of this pool defines the number of clients connected to the server at the same time.
The server could handle more clients as the connections are closed once data transfers are
completed. Thus a buffer of at least one client is mandatory but even in this case, many
more actual clients could be served especially if there are no long block transfers and CON
is used to mitigate congestions.

An observer pool is given to the server with the function
IP_COAP_SERVER_AddObserverBuffer(). The size of this pool defines the number of
observers handled by the server at the same time. It could be null if no observable resources
are configured.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1133 CHAPTER 34 Data structures

34.8.2    IP_COAP_SERVER_DATA

Description

Server context to describe a resource.

Type definition

typedef struct {
  struct IP_COAP_SERVER_DATA * pNext;
  const char                 * sURI;
  const char                 * sDescription;
  U8                           ETag[];
  U32                          MaxAge;
  U32                          Size2;
  U32                          DefGetOptMask;
  U16                          ContentFormat;
  U8                           ETagLength;
  U8                           ObsConfig;
  IP_COAP_pfGETPayload         pfGETPayload;
  IP_COAP_pfPUTPayload         pfPUTPayload;
  IP_COAP_pfDELHandler         pfDELHandler;
} IP_COAP_SERVER_DATA;

Structure members

Member Description

pNext Anchor for the linked list. Internal use only.

sURI
Null terminated string for the resource Uri-Path. The first ’/’ is
omitted.

sDescription
Null terminated string for the description of the resource in CoRE
format. If the resource is an observable, “obs” is automatically added
and should not be set here.

ETag entity-tag (ETag) of the resource.
MaxAge MaxAge (value validity) duration of a the resource after a GET.
Size2 Size of the resource sent in a GET reply if configured so.

DefGetOptMask
Default options characterizing the resource sent in a GET reply (see
below).

ContentFormat
Content-Format of the resource. Some format are defined in the RFC
and are in IP_COAP.h (IP_COAP_CT_xxx) but other numerical values
could be used.

ETagLength Length of ETag.

ObsConfig
Configuration of the observe parameters of the resource (see below).
Set to 0 if the resource is not observable.

pfGETPayload
Callback used to fill the payload when replying to a GET (see
IP_COAP_pfGETPayload ). If set to NULL, the server will reply with a
4.05 Not Allowed when receiving the request.

pfPUTPayload
Callback used to handle the payload when receiving a PUT or POST
(see IP_COAP_pfPUTPayload ). If set to NULL, the server will reply
with a 4.05 Not Allowed when receiving the request.

pfDELHandler
Callback used to check the authorization of a DELETE request (see
IP_COAP_pfDELHandler ). If set to NULL, the server will reply with a
4.05 Not Allowed when receiving the request.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1134 CHAPTER 34 Data structures

Additional information

This structure should be initialized with 0 (memset) and then configured before being added
to the server with the function IP_COAP_SERVER_AddData().

The DefGetOptMask describes which options should be sent by default in a GET reply
to inform the client. The mask format is defined by IP_COAP_OPTMASK_xxx defines. The
possible options to set in this define are:
• IP_COAP_OPTMASK_ETAG:

Send the entity-tag of the resource. ETag and ETagLength should be correctly set.
• IP_COAP_OPTMASK_URI_PORT:

Send the UDP Port used to communicate with the resource. UDPPort of the server
context IP_COAP_SERVER_CONTEXT  should be correctly set.

• IP_COAP_OPTMASK_URI_HOST:
Send the Uri-Host of the resource. sHostName of the server context
IP_COAP_SERVER_CONTEXT  should be correctly set.

• IP_COAP_OPTMASK_CONTENT_FORMAT:
Send the content-format of the resource. ContentFormat should be correctly set.

• IP_COAP_OPTMASK_MAX_AGE:
Send the max-age of the resource (validity time) in seconds. MaxAge should be correctly
set.

• IP_COAP_OPTMASK_SIZE2:
Send the data length of the resource (approximated value). This could be used by the
client in case of block transfer. Size2 should be correctly set.

The observe configuration in ObsConfig is also a mask using the define
IP_COAP_OBS_xxx. The bit IP_COAP_OBS_OBSERVABLE should always be set to
indicate the resource is observable. It is possible to optionally configure either
IP_COAP_OBS_AUTO_CON_ON_MAX_AGE or IP_COAP_OBS_AUTO_NON_ON_MAX_AGE. The server
will then automatically send a notification (either CON or NON) every MaxAge
seconds. For example, it is possible to send a NON notification at every MaxAge
expiry and a CON notification when the value is actually changed (by calling
IP_COAP_SERVER_UpdateData()).

Example

  pServerData                    = &_COAPServerData[0];
  IP_COAP_MEMSET(pServerData, 0, sizeof(IP_COAP_SERVER_DATA));
  //
  // URI-Path with the first '/' omitted.
  //
  pServerData->sURI              = "temperature/meas";
  //
  // Description: optional and could be set to NULL. Follows the CoRE format.
  // "obs" is added automatically is the resource is defined as observable.
  //
  pServerData->sDescription      = "ct=0;title=\"Temperature measurement done every 2
 minutes\"";
  //
  // Callback to perform GET and PUT. DELETE is disabled as the callback
  // is not set.
  //
  pServerData->pfGETPayload      = _Temperature_Meas1_GetPayload;
  pServerData->pfPUTPayload      = _Temperature_Meas1_PutPayload;
  //
  // Default content format is plain/text.
  //
  pServerData->ContentFormat     = IP_COAP_CT_TXT;
  //
  // Configure an ETag.
  //
  IP_COAP_MEMCPY(&pServerData->ETag[0], "\x01\x02\x03\x04\x05\x06\x07\x08", 8);
  pServerData->ETagLength        = 8;
  //
  // Data are valid for 2 minutes.
  //
  pServerData->MaxAge            = 120;
  //

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1135 CHAPTER 34 Data structures

  // data size is approximately 8 bytes long.
  //
  pServerData->Size2             = 8;
  //
  // In a reply to a GET, send the options: ETag, Content-Format, Max-Age and Size2.
  //
  pServerData->DefGetOptMask     = IP_COAP_OPTMASK_ETAG | IP_COAP_OPTMASK_CONTENT_FORMAT |
                                   IP_COAP_OPTMASK_MAX_AGE | IP_COAP_OPTMASK_SIZE2;
  //
  // This resource is observable. Server will send a NON at Max-Age period.
  //
  pServerData->ObsConfig         = IP_COAP_OBS_OBSERVABLE | IP_COAP_OBS_AUTO_NON_ON_MAX_AGE;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1136 CHAPTER 34 Data structures

34.8.3    PF_POST_HANDLER

Description

Server callback to create a new resource when receiving a POST.

Type definition

typedef int ( * PF_POST_HANDLER((struct IP_COAP_SERVER_CONTEXT * pContext,
                                IP_COAP_CALLBACK_PARAM         * pParam,
                                U32                              PayloadLength,
                                IP_COAP_SERVER_DATA          * * ppServerData);

Parameters

Parameter Description

pContext Pointer on the server context.
pParam Parameter structure. See IP_COAP_CALLBACK_PARAM.

PayloadLength
Indication on the payload length. It is either the Size1
parameter if given or the length of the 1st block.

ppServerData
Receives the created IP_COAP_SERVER_DATA. Don’t call
IP_COAP_SERVER_AddData() as it will be done by the server
if the pointer is set.

Additional information

The return values are of type IP_COAP_RETURN. The possible values are:
• IP_COAP_RETURN_OK: Entry created.
• Any one of the defined error return values. If an error is returned, it could be usefull for

the operator to add a short description (null-terminated string) that would be appended
to the error message.

The actual payload will be handle by the PUT payload handler (pfPUTPayload) of the newly
created resource. If an error happens the resource will be removed from the server context.

Example

static int _POSTCreateEntry(IP_COAP_SERVER_CONTEXT* pContext, IP_COAP_CALLBACK_PARAM* pParam,
                            U32 PayloadLength, IP_COAP_SERVER_DATA** ppServerData) {
  U8* pURI;
  U8  Length;

  //
  // Check the validity of the POST request.
  //
  if (POST_Is_Authorized) {
    IP_COAP_SERVER_SetErrorDescription(pContext, "Client not authorized");
    return IP_COAP_RETURN_NOT_ALLOWED;
  }
  //
  if (PayloadLength > POST_DATA_LENGTH) {
    IP_COAP_SERVER_SetErrorDescription(pContext, "Maximum size is 128 bytes");
    return IP_COAP_RETURN_BUFFER_TOO_SMALL;
  }
  //
  if (IP_COAP_GetURIPath(pParam, &pURI, &Length) != IP_COAP_RETURN_OK) {
    return IP_COAP_RETURN_ERR;
  }
  //
  if (Length >= 64) {
    IP_COAP_SERVER_SetErrorDescription(pContext, "Maximum URI path is 64 long");
    return IP_COAP_RETURN_BUFFER_TOO_SMALL;
  }
  //
  // Create the new data.
  // 1. Copy the Uri-Path in a static string.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1137 CHAPTER 34 Data structures

  //
  IP_COAP_MEMCPY(&_POSTUriPath[0], pURI, Length);
  _POSTUriPath[Length]         = 0;  // Terminate the string with a '0'.
  //
  // 2. Initialize the new resource.
  //
  IP_COAP_MEMSET(&_ServerData, 0, sizeof(IP_COAP_SERVER_CLIENT_INFO));
  _POSTServerData.sURI         = &_POSTUriPath[0];
  _POSTServerData.sDescription = "title=\"User created entry\"";
  _POSTServerData.pfGETPayload = _POSTCreateEntry_GetPayload;
  _POSTServerData.pfPUTPayload = _POSTCreateEntry_PutPayload;
  _POSTServerData.pfDELHandler = _POSTCreateEntry_DelHandler;
  //
  // 3. Set the ServerData pointer. Don't call IP_COAP_SERVER_AddData(), it is done
  // by the server automatically.
  //
  *ppServerData = &_POSTServerData;

  return IP_COAP_RETURN_OK;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1138 CHAPTER 34 Data structures

34.8.4    IP_COAP_pfGETPayload

Description

Server data callback to fill the payload of a GET request.

Type definition

typedef int ( * IP_COAP_pfGETPayload((struct IP_COAP_SERVER_CONTEXT * pContext,
                                     U8                           * * ppBuffer,
                                     U16                            * pLength,
                                     IP_COAP_CALLBACK_PARAM         * pParam);

Parameters

Parameter Description

pContext Pointer on the server context.

ppBuffer
Start of the payload location. To be moved to the end of the
copied data.

pLength
Length of the remaining bytes in the message/block. To be
reduced from the number of added data.

pParam Callback parameters. Refer to IP_COAP_CALLBACK_PARAM.

Additional information

The callback parameter contains information regarding the request, especially the block
information. The return values are of type IP_COAP_RETURN. The possible values are:
• IP_COAP_RETURN_SEND_END: The payload is added and this is the last block (or no block

used).
• IP_COAP_RETURN_SEND_SEPARATE: The data are not ready, send an ACK.

IP_COAP_SERVER_UpdateData() will be called later to reply to the client with a new
request.

• IP_COAP_RETURN_SEND_BLOCK: The payload is added but there are more data to copy.
The block should be fully filled.

• Any one of the defined error return values. If an error is returned, it could be useful for
the operator to add a short description (null-terminated string) that would be appended
to the error message.

Note: There are two other possible return values:
• IP_COAP_RETURN_IGNORE_BLOCK and IP_COAP_RETURN_IGNORE_END: These have the

same behavior as IP_COAP_RETURN_SEND_BLOCK and IP_COAP_RETURN_SEND_END, but
the server won’t send the message currently built. It is up to the application to build
and send the complete CoAP message on its own. It shouldn’t be needed to use them.

Example

First example with a simple short data (no block). The data needs some time to be computed
and thus sends a separate reply (first send a simple ACK and when the data is ready the
application have to call IP_COAP_SERVER_UpdateData() which will call the callback again
to send the reply).

static int _GetPayload(IP_COAP_SERVER_CONTEXT* pContext, U8** ppBuffer,
                       U16* pLength, IP_COAP_CALLBACK_PARAM* pParam) {
  U8* pBuffer;
  U16 Length;
  int r;

  (void)pContext;

  if (IP_COAP_CheckAcceptFormat(pParam, IP_COAP_CT_TXT) != IP_COAP_RETURN_OK) {
    IP_COAP_SERVER_SetErrorDescription(pContext, "plain/text only");
    return IP_COAP_RETURN_CT_FORMAT_ERROR;
  }

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1139 CHAPTER 34 Data structures

  //
  pBuffer = *ppBuffer;
  Length  = *pLength;
  //
  if (_IsDataReady() == 0) {
    //
    // Trigger the processing to get the data.
    // Ask to send an ACK in the meantime.
    //
    return IP_COAP_RETURN_SEND_SEPARATE;
  }
  //
  // Result is ready.
  //
  r = SEGGER_snprintf((char*)pBuffer, Length, "Data: %d", _Data);
  pBuffer += r;
  Length  -= r;
  //
  *ppBuffer = pBuffer;
  *pLength  = Length;

  return IP_COAP_RETURN_SEND_END;
}

Second example with block support. The resource data is in _Data and its length is in
_DataLength. Reply is piggybacked with the ACK.

//
// The data stored in the variable _Data have a length of _DataLength.
//
static int _GetPayload(IP_COAP_SERVER_CONTEXT* pContext, U8** ppBuffer,
                       U16* pLength, IP_COAP_CALLBACK_PARAM* pParam) {
  U8* pBuffer;
  U16 Length;
  int Offset;
  int Len;
  int r;

  (void)pContext;

  //
  // If the content format option is present, check this is a plain/text.
  //
  if (IP_COAP_CheckAcceptFormat(pParam, IP_COAP_CT_TXT) != IP_COAP_RETURN_OK) {
    IP_COAP_SERVER_SetErrorDescription(pContext, "plain/text only");
    return IP_COAP_RETURN_CT_FORMAT_ERROR;
  }
  //
  pBuffer = *ppBuffer;
  Length  = *pLength;
  r       = IP_COAP_RETURN_SEND_BLOCK;  // By default indicates there are more data.
  Len     = Length;
  //
  if (pParam->pBlock != NULL) {
    Offset = pParam->pBlock->Index * pParam->pBlock->Size;
  } else {
    Offset = 0;
  }
  //
  if (Offset >= _DataLength) {
    return IP_COAP_RETURN_NO_PAYLOAD;
  }
  if ((Offset + Len) >= _DataLength) {
    //
    // Last block of the transfer.
    //
    Len = _DataLength - Offset;
    r   = IP_COAP_RETURN_SEND_END;
  }
  IP_COAP_MEMCPY(pBuffer, _Data + Offset, Len);
  pBuffer += Len;
  Length  -= Len;
  //
  *ppBuffer = pBuffer;
  *pLength  = Length;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1140 CHAPTER 34 Data structures

  return r;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1141 CHAPTER 34 Data structures

34.8.5    IP_COAP_pfPUTPayload

Description

Server data callback to store the payload of a PUT request.

Type definition

typedef int ( * IP_COAP_pfPUTPayload((struct IP_COAP_SERVER_CONTEXT * pContext,
                                     U8                             * pPayload,
                                     U16                              Length,
                                     IP_COAP_CALLBACK_PARAM         * pParam);

Parameters

Parameter Description

pContext Pointer on the server context.
pPayload Start of the payload memory.
Length Length of the payload.
pParam Callback parameters. Refer to IP_COAP_CALLBACK_PARAM.

Additional information

The callback parameter contains information regarding the request, especially the block
information. The return values are of type IP_COAP_RETURN. The possible values are:
• IP_COAP_RETURN_OK: The resource is updated with the received data block.
• Any one of the defined error return values. If an error is returned, it could be useful for

the operator to add a short description (null-terminated string) that would be appended
to the error message. For example IP_COAP_RETURN_NO_PAYLOAD will trigger an error
“4.08 Request Entity Incomplete”.

Example

The first example is a short data (no block support) accepting either plain/text or
application/octet-stream.

static int _PutPayload(IP_COAP_SERVER_CONTEXT* pContext, U8* pPayload,
                       U16 Length, IP_COAP_CALLBACK_PARAM* pParam) {
  int r;
  U16 Format;

  if (Length == 0) {
    return IP_COAP_RETURN_ERR;
  }
  if (pParam->pBlock != NULL) {
    if (pParam->pBlock->Index > 0) {
      IP_COAP_SERVER_SetErrorDescription(pContext, "Block transfer not supported");
      return IP_COAP_RETURN_ERR;
    }
  }
  //
  // Check if there is a content format specified.
  //
  if (IP_COAP_GetContentFormat(pParam, &Format) != IP_COAP_RETURN_OK) {
    //
    // Assume plain/text by default if Content-Format option is not set.
    //
    Format = IP_COAP_CT_TXT;
  }
  //
  if (Format == IP_COAP_CT_TXT) {
    //
    // Format plain/text.
    //
    r = _ParseString(pPayload, Length);
    if (r != 0) {
      IP_COAP_SERVER_SetErrorDescription(pContext, "Invalid string format");

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1142 CHAPTER 34 Data structures

      return IP_COAP_RETURN_ERR;
    }
  } else if (Format == IP_COAP_CT_OCTET_STREAM) {
    //
    // Format binary.
    //
    r = _ParseBinary(pPayload, Length);
    if (r != 0) {
      IP_COAP_SERVER_SetErrorDescription(pContext, "Invalid binary format");
      return IP_COAP_RETURN_ERR;
    }
  } else {
    IP_COAP_SERVER_SetErrorDescription(pContext, "Accept either plain/text or octet-
stream");
    return IP_COAP_RETURN_CT_FORMAT_ERROR;
  }

  return IP_COAP_RETURN_OK;
}

Other example with block support.

static int _PutPayload(IP_COAP_SERVER_CONTEXT* pContext, U8* pPayload,
                       U16 Length, IP_COAP_CALLBACK_PARAM* pParam) {
  int Offset;

  //
  // Request that content format is present and of type plain/text.
  //
  if (IP_COAP_CheckContentFormat(pParam, IP_COAP_CT_TXT, 1) != IP_COAP_RETURN_OK) {
    IP_COAP_SERVER_SetErrorDescription(pContext, "Content Format plain/text requested");
    return IP_COAP_RETURN_CT_FORMAT_ERROR;
  }
  //
  if (pParam->pBlock != NULL) {
    Offset = pParam->pBlock->Index * pParam->pBlock->Size;
  } else {
    Offset = 0;
  }
  //
  if (Offset >= 128) {
    return IP_COAP_RETURN_BUFFER_TOO_SMALL;
  }
  if ((Offset + Length) > 128) {
    return IP_COAP_RETURN_BUFFER_TOO_SMALL;
  }
  IP_COAP_MEMCPY(_Data + Offset, pPayload, Length);
  //
  // Check if this is the end of the transfer.
  //
  if (IP_COAP_IsLastBlock(pParam, IP_COAP_CODE_REQ_PUT) != 0) {
    _FinishDataUpdate();
  }

  return IP_COAP_RETURN_OK;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1143 CHAPTER 34 Data structures

34.8.6    IP_COAP_pfDELHandler

Description

Server data callback to check the authorization to perform a DELETE request.

Type definition

typedef int ( * IP_COAP_pfDELHandler((struct IP_COAP_SERVER_CONTEXT * pContext,
                                     IP_COAP_CALLBACK_PARAM         * pParam);

Parameters

Parameter Description

pContext Pointer on the server context.
pParam Callback parameters. Refer to IP_COAP_CALLBACK_PARAM.

Additional information

The callback parameter contains information regarding the request, especially the client
UDP connection info. The return values are of type IP_COAP_RETURN. The possible values
are:
• IP_COAP_RETURN_OK: The resource is deleted. Do not call

IP_COAP_SERVER_RemoveData(). It will be done by the server.
• IP_COAP_RETURN_OK_NO_DELETE: The server will reply with a 2.02 Deleted but will not

actually remove the data (no call to IP_COAP_SERVER_RemoveData()).
• Any one of the defined error return values. If an error is returned, it could be useful for

the operator to add a short description (null-terminated string) that would be appended
to the error message.

Example

static int _DelHandler(IP_COAP_SERVER_CONTEXT* pContext, IP_COAP_CALLBACK_PARAM* pParam) {

  (void)pContext;

  if (_IsDeleteAuthorized(pParam->pConnInfo) == 0) {
    return IP_COAP_RETURN_NOT_ALLOWED;
  }
  //
  // Data will be deleted, free some memory.
  //
  _FreeData();

  return IP_COAP_RETURN_OK;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1144 CHAPTER 34 Data structures

34.8.7    IP_COAP_CLIENT_CONTEXT

Description

Main context of the client. A client is dedicated to a server. If it is needed to have activities
with two servers during the same period of time, then two clients are needed.

Type definition

typedef struct {
  U8                    * pMsgBuffer;
  U16                     MsgBufferSize;
  IP_COAP_pfReceive       pfReceive;
  IP_COAP_pfSend          pfSend;
  IP_COAP_pfGetTimeMs     pfGetTimeMs;
  IP_COAP_CLIENT_REQUEST  aRequest[];
  IP_COAP_CONN_INFO       ConnInfo;
  IP_COAP_CLIENT_OBS    * pFirstObs;
  U8                    * pPayload;
  U16                     PayloadLength;
  U16                     MessageId;
  U8                      DefaultSzx;
} IP_COAP_CLIENT_CONTEXT;

Structure members

Member Description

pMsgBuffer
Buffer used to receive and send CoAP messages in UDP.
Initialized in IP_COAP_CLIENT_Init().

MsgBufferSize Size of the message buffer.
pfReceive Callback to receive UDP packets (see IP_COAP_pfReceive)
pfSend Callback to send UDP packets (see IP_COAP_pfSend)

pfGetTimeMs
Callback to get the current time in milliseconds (see
IP_COAP_pfGetTimeMs).

aRequest Structure used to describe a request to the server.

ConnInfo
UDP connection information of the server. Set by calling
IP_COAP_CLIENT_SetServerAddress().

pFirstObs
Start of the linked list of the active observers.
Modified through IP_COAP_CLIENT_OBS_Init() and
IP_COAP_CLIENT_OBS_Abort()..

pPayload Internal use.
PayloadLength Internal use.
MessageId Internal use.
DefaultSzx Internal use.

Additional information

This structure shouldn’t be directly modified. Only APIs should be used.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1145 CHAPTER 34 Data structures

34.8.8    PF_OBS_END_TRANSFER

Description

Observer end-of-transfer indication. This function is called by the client process whenever
a notification from an observed data is totally received.

Type definition

typedef void ( * PF_OBS_END_TRANSFER((U8    Code,
                                     int    IsFinal,
                                     void * pParam);

Parameters

Parameter Description

Code CoAP code of the received notification.

IsFinal
Indication that the server canceled the observe, either
because of some errors or because the server didn’t reply
with the observe option.

pParam
Parameter given to the function
IP_COAP_CLIENT_OBS_SetEndCallback(). It is unused by
the the client process (application usage only)

Additional information

The server may “lose” the observer information without informing the client (due to loss of
packets for example). This is the role of the application to refresh the observe registration
if no notification is received for some time.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1146 CHAPTER 34 Data structures

34.8.9    PF_CLIENT_PAYLOAD

Description

Client callback to handle the payload of GET/PUT.

Type definition

typedef int ( * PF_CLIENT_PAYLOAD((struct IP_COAP_CLIENT_CONTEXT * pContext,
                                  U8                           * * ppPayload,
                                  U16                            * pLength,
                                  IP_COAP_CALLBACK_PARAM         * pParam);

Parameters

Parameter Description

pContext Pointer on the server context.

ppPayload
Start of the payload location. To be moved to the end of the
copied data.

pLength
Length of the remaining bytes in the message/block. To be
reduced from the number of added data.

pParam Callback parameters. Refer to IP_COAP_CALLBACK_PARAM.

Additional information

The return values are of type IP_COAP_RETURN. The possible values are:
• IP_COAP_RETURN_SEND_END: The payload is added to PUT or POST request and this is

the last block (or no block used).
• IP_COAP_RETURN_SEND_BLOCK: The payload is added to PUT or POST request and there

are more data to copy. The block should be fully filled.
• IP_COAP_RETURN_NO_PAYLOAD: For some reason, there are no payload to copy.
• IP_COAP_RETURN_OK: The payload from a GET reply is handled.
• Any one of the defined error return values. If an error is returned, it could be useful for

the operator to add a short description (null-terminated string) that would be appended
to the error message. if no notification is received for some time.

Examples

This first example is a callback for a GET request. The callback will be called when the
response with the content is received. Separate responses are transparent for the client.

static int _GET_Handler(IP_COAP_CLIENT_CONTEXT* pContext, U8** ppPayload,
                        U16* pLength, IP_COAP_CALLBACK_PARAM* pParam) {
  int Offset;

  (void)pContext;
  //
  // Check the content-format if present.
  //
  if (IP_COAP_CheckContentFormat(pParam, IP_COAP_CT_TXT, 0) !=  IP_COAP_RETURN_OK) {
    return IP_COAP_RETURN_CT_FORMAT_ERROR;
  }
  //
  // Some init on the first block.
  //
  if (pParam->pBlock->Index == 0) {
    _InitData();
  }
  //
  // Copy the data block.
  //
  Offset = pParam->pBlock->Index * pParam->pBlock->Size;
  IP_COAP_MEMCPY(_Data + Offset, *ppPayload, *pLength);
  //
  // Perform some processing on the last block.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1147 CHAPTER 34 Data structures

  //
  if (IP_COAP_IsLastBlock(pParam, IP_COAP_CODE_REQ_GET) != 0) {
    _HandleGetEnd();
  }

  return IP_COAP_RETURN_OK;
}

The second example is a callback for a PUT/POST request.

static int _PUT_Handler(IP_COAP_CLIENT_CONTEXT* pContext, U8** ppPayload,
                        U16* pLength, IP_COAP_CALLBACK_PARAM* pParam) {
  int Offset;
  U8* pBuf;
  U16 Length;
  U16 l;
  int r;

  (void)pContext;

  pBuf          = *ppPayload;
  Length        = *pLength;
  r             = IP_COAP_RETURN_SEND_END;          // By default, this is the last block.
  //
  Offset = pParam->pBlock->Index * pParam->pBlock->Size;
  if (Offset >= _PayloadLength) {
    _ErrorDetected = 1;
    return IP_COAP_RETURN_NO_PAYLOAD;
  }
  //
  // Compute the remaining length of the payload not sent yet.
  //
  l = _PayloadLength - Offset;
  //
  // If the remaining length of the payload is bigger than this
  // block size, reduce it to the block size.
  //
  if (l > Length) {
    r = IP_COAP_RETURN_SEND_BLOCK;  // More data to send in a next block.
    l = Length;
  }
  IP_COAP_MEMCPY(pBuf, _Payload + Offset, l);
  pBuf   += l;
  Length -= l;
  //
  *ppPayload = pBuf;
  *pLength   = Length;

  return r;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1148 CHAPTER 34 Data structures

34.8.10    IP_COAP_API

Description

Contains the functions to perform the UDP receive and send as well as a function to get
the current time in ms.

Type definition

typedef struct {
  IP_COAP_pfReceive    pfReceive;
  IP_COAP_pfSend       pfSend;
  IP_COAP_pfGetTimeMs  pfGetTimeMs;
} IP_COAP_API;

Structure members

Member Description

pfReceive Callback to receive UDP packets (see IP_COAP_pfReceive).
pfSend Callback to send UDP packets (see IP_COAP_pfSend).

pfGetTimeMs
Callback to get the current time in milliseconds (see
IP_COAP_pfGetTimeMs).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1149 CHAPTER 34 Data structures

34.8.11    IP_COAP_CALLBACK_PARAM

Description

Argument of the payload callbacks describing connection parameters.

Type definition

typedef struct {
  IP_COAP_BLOCK_INFO   * pBlock;
  IP_COAP_CONN_INFO    * pConnInfo;
  IP_COAP_HEADER_INFO  * pHeader;
  IP_COAP_OPTIONS_INFO * pOptDesc;
} IP_COAP_CALLBACK_PARAM;

Structure members

Member Description

pBlock Block information. See IP_COAP_BLOCK_INFO.
pConnInfo UDP connection information. See IP_COAP_CONN_INFO.
pHeader Parsed CoAP message header. See IP_COAP_HEADER_INFO.

pOptDesc
CoAP message option description. See
IP_COAP_OPTIONS_INFO.

Warning

Always check that the pointer is valid (not NULL) before accessing one of the different
fields as some might not be set depending on the context.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1150 CHAPTER 34 Data structures

34.8.12    IP_COAP_OPTIONS_INFO

Description

CoAP options description.

Type definition

typedef struct {
  U32                     OptionPresentMask;
  U8                    * pHost;
  U8                    * pURI;
  U8                    * pQuery;
  U8                    * pETag;
  U8                    * pBlockLast;
  U8                    * pProxyURI;
  U8                    * pProxyScheme;
  IP_COAP_IF_MATCH_INFO * pIfMatch;
  U32                     Observe;
  U32                     MaxAge;
  U32                     Size1;
  U32                     Block2;
  U32                     Block1;
  U32                     Size2;
  U16                     URIPort;
  U16                     Accept;
  U16                     ContentFormat;
  U16                     ProxyURILength;
  U8                      ProxySchemeLength;
  U8                      HostLength;
  U8                      URILength;
  U8                      QueryLength;
  U8                      ETagLength;
} IP_COAP_OPTIONS_INFO;

Structure members

Member Description

OptionPresentMask
Mask indicating the presence of options
(IP_COAP_OPTMASK_xxx).

pHost Pointer on the Uri-Host.
pURI Pointer on the Uri-Path.
pQuery Pointer on the Uri-Query.
pETag Pointer on the ETag.
pBlockLast Pointer used internally.
pProxyURI Pointer on the Proxy-Uri.
pProxyScheme Pointer on the Proxy-Scheme.
pIfMatch If-Match linked list start.
Observe Observe value.
MaxAge Max-Age value.
Size1 Size1 value.
Block2 Block2 value.
Block1 Block1 value.
Size2 Size2 value.
URIPort URIPort value.
Accept Accept value.
ContentFormat Content-Format value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1151 CHAPTER 34 Data structures

Member Description

ProxyURILength Length of pProxyURI.
ProxySchemeLength Length of pProxyScheme.
HostLength Length of pHost.
URILength Length of pURI.
QueryLength Length of pQuery.
ETagLength Length of pETag.

Additional information

In the callbacks, it is recommended to access the options through the utility functions
instead of directly accessing this structure as some options might have been reformatted.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1152 CHAPTER 34 Data structures

34.8.13    IP_COAP_IF_MATCH_INFO

Description

Utility structure to parametrize the If-Match option.

Type definition

typedef struct {
  struct IP_COAP_IF_MATCH_INFO * pNext;
  U8                           * pETag;
  U8                             ETagLength;
} IP_COAP_IF_MATCH_INFO;

Structure Members

Member Description

pNext Anchor of the linked list.
pETag Pointer on the ETag value.
ETagLength Length of the ETag value.

Additional information

This list is used to allow requesting more than one ETag in the If-Match option. When the
ETagLength is 0 (pETag is NULL), the check is for all ETags, meaning it is an “existence”
verification.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1153 CHAPTER 34 Data structures

34.8.14    IP_COAP_HEADER_INFO

Description

Parsed CoAP header.

Type definition

typedef struct {
  U8   Type;
  U8   Code;
  U16  MessageId;
  U8   aToken[];
  U8   TokenLength;
} IP_COAP_HEADER_INFO;

Structure members

Member Description

Type CoAP message type (IP_COAP_TYPE_xxx).
Code CoAP message code (IP_COAP_CODE_xxx).
MessageId CoAP message id.
aToken Length of aToken. Could be 0 if no token is present.
TokenLength CoAP message token.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1154 CHAPTER 34 Data structures

34.8.15    IP_COAP_BLOCK_INFO

Description

Definition of the block used for Block1 and Block2 options.

Type definition

typedef struct {
  U16  Index;
  U16  Size;
} IP_COAP_BLOCK_INFO;

Structure members

Member Description

Index Index of the block. 0 is the first block.
Size Size of the block.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1155 CHAPTER 34 Data structures

34.8.16    IP_COAP_CONN_INFO

Description

UDP connection definition.

Prototype

typedef struct {
  void* hSock;
  union {
    U8  IPAddrV6[16];
    U32 IPAddrV4;
  };
  U16   Port;
  U8    Family;
} IP_COAP_CONN_INFO;

Structure Members

Member Description

hSock
Socket information of the UDP connection. This field is not used by
the CoAP processing, but only by the application callbacks pfReceive
and pfSend. It could thus have any format adapted to the system.

IPAddrV6 IPv6 address.
IPAddrV4 IPv4 address
Port UDP Port.

Family
Indication to use IPv4 (IP_COAP_IPV4) or IPv6 (IP_COAP_IPV6)
address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1156 CHAPTER 34 Data structures

34.8.17    IP_COAP_pfReceive

Description

Callback used to receive UDP packets.

Type definition

typedef int ( * IP_COAP_pfReceive((U8               * pBuffer,
                                  unsigned            BufferSize,
                                  IP_COAP_CONN_INFO * pInfo,
                                  unsigned          * pIsMulticast);

Parameters

Parameter Description

pBuffer Start of the message buffer.
BufferSize Length of the message buffer.
pInfo UDP connection information.

pIsMulticast
Flag to set to indicate that the received message is a
multicast/broadcast (1) or a unicast (0) message. If not
known always set to 0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1157 CHAPTER 34 Data structures

34.8.18    IP_COAP_pfSend

Description

Callback used to send UDP packets.

Type definition

typedef int ( * IP_COAP_pfSend((U8               * pBuffer,
                               unsigned            BufferSize,
                               IP_COAP_CONN_INFO * pInfo);

Parameters

Parameter Description

pBuffer Start of the message buffer.
BufferSize Length of the message buffer.
pInfo UDP connection information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1158 CHAPTER 34 Data structures

34.8.19    IP_COAP_pfGetTimeMs

Description

Callback used to get the current time in milliseconds.

Type definition

typedef U32 ( * IP_COAP_pfGetTimeMs(( (void);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1159 CHAPTER 34 Resource usage

34.9    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the CoAP client/server presented in the tables below have
been measured on a Cortex-M4 system with the default configuration.

34.9.1    Server ROM usage on a Cortex-M4 system
The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio, size optimized.

Addon ROM

emNet CoAP server approximately 9.2 kBytes

34.9.2    Client ROM usage on a Cortex-M4 system
The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio, size optimized.

Addon ROM

emNet CoAP client approximately 6.5 kBytes

34.9.3    Server RAM usage.
All of the RAM used by the server is taken from task stacks or from the application configured
buffers. The application needs to provide:
• Server main context: A context of type IP_COAP_SERVER_CONTEXT needs 132 bytes.
• Message buffer: Minimum size is 272 bytes (blocks of 16 bytes), maximum 1500.
• Server resources: A resource of type IP_COAP_SERVER_DATA needs 48 bytes plus all the

string defining the resource (Uri-Path) if in memory (could be constant though).
• Client context: At least one client context of type IP_COAP_SERVER_CLIENT_INFO with

a size of 144 bytes is needed. Depending on the load of the server, more clients may
be required.

• Observer context: It is needed only if server provides observable data. One observer
context of type IP_COAP_OBSERVER needs 56 bytes.

For a minimal server configuration without observable resources: 548 + Number of
resources x 48 bytes.

34.9.4    Client RAM usage.
All of the RAM used by the client is taken from task stacks or from the application configured
buffers. The application needs to provide:
• Client main context: A context of type IP_COAP_CLIENT_CONTEXT needs 184 bytes.
• Message buffer: Minimum size is 272 bytes (blocks of 16bytes), maximum 1500.
• Observer context: It is needed only when registering to an observable data. One

observer context of type IP_COAP_CLIENT_OBS needs 32 bytes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 35
 
MQTT client (Add-on)

The emMQTT client is an optional extension to emNet. The MQTT (Message Queuing
Telemetry Transport) client can be used with emNet or with a different TCP/IP stack. All
functions that are required to add the MQTT client to your application are described in this
chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1161 CHAPTER 35 emMQTT client

35.1    emMQTT client
The emMQTT client is an optional extension which can be seamlessly integrated into your
TCP/IP application. It combines a maximum of performance with a small memory footprint.

The MQTT client implements the relevant parts of the following Standard.

Standard# Description

MQTT V 3.1.1
Plus Errata 01

MQTT Version 3.1.1 Plus Errata 01
docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-
errata01-os-complete.pdf

MQTT V 5 MQTT Version 5
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

The following table shows the contents of the emMQTT client root directory:

Directory Content

.\Application\
Contains the example application to run the MQTT
client with emNet.

.\Config\
Contains the MQTT client configuration file. Refer to
MQTT client configuration on page  for detailed
information.

.\IP\
Contains the MQTT client sources and header files,
IP_MQTT_CLIENT.c and IP_MQTT_CLIENT.h.

.\Windows\IP\
Contains the source, the project files and
executables to run the emMQTT client on a
Microsoft Windows host.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1162 CHAPTER 35 Feature list

35.2    Feature list
• Full MQTT version 3.1.1 support.
• Full MQTT version 5 support.
• Publish/subscribe client included.
• Support for Quality of Service data delivery.
• Low memory footprint.
• Independent of the TCP/IP stack: any stack with sockets can be used.
• Example applications included.
• Project for executable on PC for Microsoft Visual Studio included.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1163 CHAPTER 35 Requirements

35.3    Requirements
TCP/IP stack

The emMQTT client requires a TCP/IP stack. It is optimized for emNet, but any RFC-
compliant TCP/IP stack can be used. The shipment includes a Win32 simulation, which uses
the standard Winsock API and an implementation which uses the socket API of emNet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1164 CHAPTER 35 MQTT backgrounds

35.4    MQTT backgrounds
MQTT is a very lightweight communication protocol originally designed for communication
in M2M (Machine-To-Machine) contexts. It is easy to implement on the client side and has
only a minimal packet overhead. This makes it ideal for the use with devices with limited
resources.

  

It uses the publish/subscribe pattern, which is an alternative to the well known client/server
model. In opposite to the client/server model, where a client directly communicates with an
endpoint, the publish/subscribe pattern decouples the sender and receiver of a particular
message. In the MQTT context the sending client is called publisher, the receiving client
is called subscriber.

  

Publisher and subscriber do not know about the existence of one another. To enable the
transport of a message, a third party is required. This third party is called a broker in the
MQTT context. The broker distributes all incoming messages from the publishers to the
subscribers, filtered on the topics the subscribers have assigned to.

MQTT uses topic-based filtering of messages. Publishers send topic related messages,
subscribers receive messages if they have subscribed the topic.

To get messages a from a MQTT broker, a subscriber establishes a connection to the broker.
The broker checks if a publisher has sent a message for the subscribed topic and if so,
sends it to the subscriber. The advantage of this approach is that publisher and subscriber
do not need to know each other and that they do not need to run at the same time. All
they need to know is the IP address of the broker.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1165 CHAPTER 35 MQTT backgrounds

35.4.1    MQTT Quality of service
emMQTT client delivers application messages according to the chosen Quality of Service
(QoS) level. The MQTT standard defines three qualities of service.

Quality of service Description

QoS 0 QoS 0 is defined by the standard as “At most once”.
QoS 1 QoS 1 is defined by the standard as “At least once”.
QoS 2 QoS 2 is defined by the standard as “Exactly once”.

QoS 0: At most once delivery

Quality of service 0 means that the MQTT message is delivered according to the capabilities
of the underlying network. The message arrives the receiver either once or not at all.

QoS 1: At least once delivery

Quality of service 1 means that the MQTT message arrives at the receiver at least once.
Each QoS 1 PUBLISH packet contains a packet identifier and is acknowledged by a PUBACK
packet from the receiver.

The PUBACK packet includes the packet identifier of the PUBLISH message, which should
be acknowledged.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1166 CHAPTER 35 MQTT backgrounds

QoS 2: Exactly once delivery

Quality of service 2 means that the MQTT message will be arrive exactly once. Each QoS
2 PUBLISH packet contains a packet identifier. The receiver acknowledges receipt with a
two-step acknowledgment process.

The receipt of a PUBLISH message with QoS 2 is replied with a PUBREC message. The
PUBREC packet includes the packet identifier of the PUBLISH message, which should be
acknowledged. With the receipt of the PUBREC message knows the sender of the PUBLISH
packet, that the message has been received and replies with a PUBREL packet. After the
receiver gets the PUBREL packet it can discard every stored state and sends PUBCOMP.

QoS Downgrade

The quality of service is set between a single client and the broker and can be set differently
for different topics. The QoS configured for the publisher and the subscriber are two different
things.

In the following example client A is publishing to a topic with QoS2 and client B is subscribed
to the same topic with QoS0. In this case the PUBLISH will arrive at the broker with QoS2
and the broker will perform a “QoS downgrade” before sending the PUBLISH to the client
B. Client B will receive the message with QoS0.

QoS Upgrade

While the broker will downgrade QoS levels to meet subscriber’s requirements the broker
will never perform a QoS upgrade on incoming PUBLISH packets before sending them to
topic subscribers.

Example:
• Client A sends PUBLISH with QoS1
• Client B subscribes with QoS 2 —> receives the message with QoS 1
• Client C subscribes with QoS 1 —> receives the message with QoS 1
• Client D subscribes with QoS 0 —> receives the message with QoS 0

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1167 CHAPTER 35 emMQTT client configuration

35.5    emMQTT client configuration
The emMQTT client can be used without changing any of the compile time flags. All compile
time configuration flags are preconfigured with valid values, which match the requirements
of most applications.

The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the source code in place of a numerical constant.
A typical example is the configuration of the sector size of a storage medium.

Alias "A"

A macro which operates like a simple text substitute. An example would be the define U8,
which the preprocessor would replace with unsigned char.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations apply, as a
macro is still put into the source code as simple text replacement. Function replacements are
mainly used to add specific functionality to a module which is highly hardware-dependent.
This type of macro is always declared using brackets (and optional parameters).

Compile time configuration switches

Type Symbolic name Default Description

F IP_MQTT_CLIENT_WARN --

Defines a function to output
warnings. In debug configurations
(DEBUG = 1) IP_MQTT_CLIENT_WARN
maps to IP_Warnf_Application().

F IP_MQTT_CLIENT_LOG --

Defines a function to output logging
messages. In debug configurations
(DEBUG = 1) IP_MQTT_CLIENT_LOG
maps to IP_Logf_Application().

B IP_MQTT_CLIENT_SUPPORT_V5 1
Enables MQTT v5 support. Setting
this to 0 will slightly reduce needed
memory requirements.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1168 CHAPTER 35 API functions

35.6    API functions
Function Description

MQTT client configuration functions

IP_MQTT_CLIENT_Init() Initializes an MQTT client.

IP_MQTT_CLIENT_SetLastWill()
Sets the last will message of an MQTT
client.

IP_MQTT_CLIENT_SetUserPass()
Configures the username and password to
be used to connect to a broker.

IP_MQTT_CLIENT_SetKeepAlive()
Sets the KeepAlive period to be given to
the broker when connecting to it.

MQTT client operational functions

IP_MQTT_CLIENT_ConnectEx() Connects a client to an MQTT broker.
IP_MQTT_CLIENT_Disconnect() Disconnects a client from an MQTT broker.
IP_MQTT_CLIENT_Publish() Publishes a message.

IP_MQTT_CLIENT_Subscribe()
Subscribes to one or more topics with a
broker.

IP_MQTT_CLIENT_Unsubscribe()
Unsubscribes from one or more topics
registered with a broker.

IP_MQTT_CLIENT_WaitForNextMessage()
Waits for the next message ready to be
received.

IP_MQTT_CLIENT_Recv()
Reads the payload of an MQTT message
received.

IP_MQTT_CLIENT_Timer() Timer function to send MQTT ping packets.

IP_MQTT_CLIENT_CheckMessageTimeouts()
Function which is used to check whether
we have queued outgoing messages which
did not receive a reply yet.

IP_MQTT_CLIENT_Exec() Maintenance and house keeping.
IP_MQTT_CLIENT_ParsePublishEx() Parses a given PUBLISH message.

IP_MQTT_CLIENT_IsClientConnected()
Checks if the client is connected to a
broker.

MQTT debug functions

IP_MQTT_Property2String() Converts the Property ID into a string.
IP_MQTT_ReasonCode2String() Converts the Reason Code into a string.

MQTT deprecated functions

IP_MQTT_CLIENT_Connect()
Deprecated, use
IP_MQTT_CLIENT_ConnectEx().

IP_MQTT_CLIENT_ParsePublish()
Deprecated please use
IP_MQTT_CLIENT_ParsePublishEx().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1169 CHAPTER 35 API functions

35.6.1    IP_MQTT_CLIENT_Init()

Description

Initializes an MQTT client.

Prototype

int IP_MQTT_CLIENT_Init(      IP_MQTT_CLIENT_CONTEXT       * pClient,
                              char                         * pBuffer,
                              U32                            BufferSize,
                        const IP_MQTT_CLIENT_TRANSPORT_API * pAPI,
                        const IP_MQTT_CLIENT_APP_API       * pAppAPI,
                        const char                         * sId);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.

pBuffer
Pointer to a memory block, which is used by the client to
process MQTT messages.

BufferSize Buffer size of pBuffer.
pAPI Pointer to IP_MQTT_CLIENT_TRANSPORT_API structure.
pAppAPI Pointer to IP_MQTT_CLIENT_APP_API structure.

sId
Pointer to a string which holds the client ID. This ID must
be unique for each client, normally an application should
generate a unique client ID for each device.

Return value

≥ 0 O.K.
= -1 Parameter error.

Additional information

The application needs to make sure that this function does not get called while
IP_MQTT_CLIENT_Timer() is active as it modifies internal lists that are accessed by it.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1170 CHAPTER 35 API functions

35.6.2    IP_MQTT_CLIENT_SetLastWill()

Description

Sets the last will message of an MQTT client.

Prototype

int IP_MQTT_CLIENT_SetLastWill(IP_MQTT_CLIENT_CONTEXT * pClient,
                               IP_MQTT_CLIENT_MESSAGE * pLastWill);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.

pLastWill
Pointer to IP_MQTT_CLIENT_MESSAGE structure which holds
the message to set as last will on the broker.

Return value

0 O.K., last will set.
-1 Error, could not set last will (currently connected ?).

Additional information

This function needs to be called before connect as the last will parameter is
given to the broker during connect. The pLastWill message needs to remain
valid until IP_MQTT_CLIENT_ConnectEx() is done and for every further calls to
IP_MQTT_CLIENT_ConnectEx().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1171 CHAPTER 35 API functions

35.6.3    IP_MQTT_CLIENT_SetUserPass()

Description

Configures the username and password to be used to connect to a broker.

Prototype

int IP_MQTT_CLIENT_SetUserPass(      IP_MQTT_CLIENT_CONTEXT * pClient,
                               const char                   * sUser,
                               const char                   * sPass);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.
sUser Username to use.
sPass Password to use.

Return value

0 O.K.
-1 Error, could not set user/pass (currently connected ?).

Additional information

This function is optional. Username and password are only required if the broker needs
them for for authentication.

This function needs to be called before connect as the username and password
is given to the broker during connect. sUser and sPass need to remain
valid until IP_MQTT_CLIENT_ConnectEx() is done and for every further calls to
IP_MQTT_CLIENT_ConnectEx().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1172 CHAPTER 35 API functions

35.6.4    IP_MQTT_CLIENT_SetKeepAlive()

Description

Sets the KeepAlive period to be given to the broker when connecting to it.

Prototype

int IP_MQTT_CLIENT_SetKeepAlive(IP_MQTT_CLIENT_CONTEXT * pClient,
                                U16                      KeepAlive);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.
KeepAlive KeepAlive period [s] told to the broker.

Return value

0 O.K.
-1 Error, could not set timeout (currently connected ?).

Additional information

The KeepAlive is a time interval measured in seconds. Expressed as a 16-bit word, it is the
maximum time interval that is permitted to elapse between the point at which the client
finishes transmitting one control packet and the point it starts sending the next.

If the KeepAlive value is non-zero and the broker does not receive a control packet from
the client within one and a half times the KeepAlive time period, it MUST disconnect the
network connection to the client as if the network had failed.

This function is optional. By default the KeepAlive value is set to zero, since TCP layer can
ensure the stability by using TCP KEEPALIVE packets. If you configure a non-zero value
you need to call the MQTT timer function on a regular basis. For further information please
refer to IP_MQTT_CLIENT_Timer().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1173 CHAPTER 35 API functions

35.6.5    IP_MQTT_CLIENT_ConnectEx()

Description

Connects a client to an MQTT broker. Establishes a TCP connection and handles the MQTT
connect.

Prototype

int IP_MQTT_CLIENT_ConnectEx(      IP_MQTT_CLIENT_CONTEXT * pClient,
                             const IP_MQTT_CONNECT_PARAM  * pConnectPara,
                                   U8                     * pReasonCode);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.
pConnectPara Pointer to IP_MQTT_CONNECT_PARAM structure.

pReasonCode
Pointer to an U8 to store the received Reason Code (MQTT 5)
or return code (MQTT 3.1.1). Can be NULL.

Return value

0 O.K.
-1 Error on transport layer or session negotiation error.

Additional information

One IP_MQTT_CLIENT_CONTEXT supports only one connection at the same time, if you
need to connect to multiple servers simultaneously you need to initialize a separate
IP_MQTT_CLIENT_CONTEXT with IP_MQTT_CLIENT_Init().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1174 CHAPTER 35 API functions

35.6.6    IP_MQTT_CLIENT_Disconnect()

Description

Disconnects a client from an MQTT broker.

Prototype

int IP_MQTT_CLIENT_Disconnect(IP_MQTT_CLIENT_CONTEXT * pClient);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.

Return value

> 0 O.K., client disconnected.
= -1 Error, already disconnected ?

Additional information

Disconnecting means that the MQTT client, sends a MQTT disconnect packet and closes the
transport layer connection.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1175 CHAPTER 35 API functions

35.6.7    IP_MQTT_CLIENT_Publish()

Description

Publishes a message.

Prototype

int IP_MQTT_CLIENT_Publish(IP_MQTT_CLIENT_CONTEXT * pClient,
                           IP_MQTT_CLIENT_MESSAGE * pPublish);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.
pPublish Pointer to an IP_MQTT_CLIENT_MESSAGE structure.

Return value

> 0 Keep message.
= 0 O.K., PUBLISH message sent.
= -1 Error, could not send PUBLISH message.

Additional information

The IP_MQTT_CLIENT_MESSAGE structure should be allocated via the same alloc function
which has been registered with IP_MQTT_CLIENT_Init() inside IP_MQTT_CLIENT_APP_API.
If QoS 0 is used the user is responsible for freeing the IP_MQTT_CLIENT_MESSAGE structure.
If QoS 1 is used the MQTT client will call the free callback when PUBACK is received. If QoS
2 is used the MQTT client will call the free callback when PUBCOMP is received. In case of
an error (return -1) the user must free (or re-use) the IP_MQTT_CLIENT_MESSAGE structure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1176 CHAPTER 35 API functions

35.6.8    IP_MQTT_CLIENT_Subscribe()

Description

Subscribes to one or more topics with a broker.

Prototype

int IP_MQTT_CLIENT_Subscribe(IP_MQTT_CLIENT_CONTEXT   * pClient,
                             IP_MQTT_CLIENT_SUBSCRIBE * pSubscribe);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.
pSubscribe Pointer to IP_MQTT_CLIENT_SUBSCRIBE structure.

Return value

> 0 O.K.
= -1 Error, could not subscribe.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1177 CHAPTER 35 API functions

35.6.9    IP_MQTT_CLIENT_Unsubscribe()

Description

Unsubscribes from one or more topics registered with a broker.

Prototype

int IP_MQTT_CLIENT_Unsubscribe(IP_MQTT_CLIENT_CONTEXT   * pClient,
                               IP_MQTT_CLIENT_SUBSCRIBE * pUnsubscribe);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.
pUnsubscribe Pointer to IP_MQTT_CLIENT_SUBSCRIBE structure.

Return value

0 O.K.
-1 Error, could not unsubscribe.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1178 CHAPTER 35 API functions

35.6.10    IP_MQTT_CLIENT_WaitForNextMessage()

Description

Waits for the next message ready to be received.

Prototype

int IP_MQTT_CLIENT_WaitForNextMessage(IP_MQTT_CLIENT_CONTEXT * pClient,
                                      U32                    * pType,
                                      U32                    * pNumBytesRecv,
                                      char                   * pBuffer,
                                      U32                      BufferSize);

Parameters

Parameter Description

pClient Pointer to an MQTT client structure.
pType Pointer to an U32 to store the packet type.

pNumBytesRecv
Pointer to an U32 to store how much data can be received
using IP_MQTT_CLIENT_Recv().

pBuffer
Pointer to the buffer to store the topic of the received
message. Can be NULL.

BufferSize Size of the buffer at pBuffer.

Return value

> 0 Length of the message topic received.
= 0 Connection has been gracefully closed by the broker.
< 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1179 CHAPTER 35 API functions

35.6.11    IP_MQTT_CLIENT_Recv()

Description

Reads the payload of an MQTT message received.

Prototype

int IP_MQTT_CLIENT_Recv(IP_MQTT_CLIENT_CONTEXT * pClient,
                        char                   * pBuffer,
                        U32                      BufferSize);

Parameters

Parameter Description

pClient Pointer to an MQTT client structure.
pBuffer Pointer to buffer to store data from message.
BufferSize Size of buffer at pBuffer.

Return value

> 0 O.K., number of bytes received.
= 0 Connection has been gracefully closed by the broker.
< 0 Error.

Additional information

Can be called multiple times with a small buffer to read the payload in chunks.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1180 CHAPTER 35 API functions

35.6.12    IP_MQTT_CLIENT_Timer()

Description

Timer function to send MQTT ping packets.

Prototype

void IP_MQTT_CLIENT_Timer(void);

Additional information

In case IP_MQTT_CLIENT_SetKeepAlive() is used, the timer has to be called
on a regular basis to satisfy your own configuration that has been set using
IP_MQTT_CLIENT_SetKeepAlive().

When KeepAlives are enabled MQTT brokers usually disconnect clients when they have not
received a keepalive within 1.5 KeepAlive times.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1181 CHAPTER 35 API functions

35.6.13    IP_MQTT_CLIENT_CheckMessageTimeouts()

Description

Function which is used to check whether we have queued outgoing messages which did
not receive a reply yet.

Prototype

int IP_MQTT_CLIENT_CheckMessageTimeouts(IP_MQTT_CLIENT_CONTEXT * pClient);

Return value

0 : Ok. -1: Error, pfOnCheckTimeout is not set.

Additional information

This function works in combination with IP_MQTT_CLIENT_APP_API->pfOnCheckTimeout.
The callback will be called for any queued messages and the callback should
decided whether the message has timed out. If the message has timed out
IP_MQTT_CLIENT_APP_API->pfFree will be called.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1182 CHAPTER 35 API functions

35.6.14    IP_MQTT_CLIENT_Exec()

Description

Maintenance and house keeping.

Prototype

int IP_MQTT_CLIENT_Exec(IP_MQTT_CLIENT_CONTEXT * pClient);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.

Return value

> 0 O.K.
= 0 Connection gracefully closed by peer.
< 0 Error.

Additional information

This function is required, if the MQTT client will be called from several tasks. Please refer
to the sample application IP_MQTT_CLIENT_PublisherSubscriber_2Tasks.c for detailed
information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1183 CHAPTER 35 API functions

35.6.15    IP_MQTT_CLIENT_ParsePublishEx()

Description

Parses a given PUBLISH message. The message must be completely available inside the
given buffer. For QoS1 and QoS2 this function must be called to ensure that the PacketID
of the message is set correctly in the IP_MQTT_CLIENT_MESSAGE structure for further QoS
processing.

Prototype

int IP_MQTT_CLIENT_ParsePublishEx
                             (const IP_MQTT_CLIENT_CONTEXT  * pClient,
                                    IP_MQTT_CLIENT_MESSAGE  * pPublish,
                                    char                    * pBuffer,
                                    int                       NumBytes,
                                    char                   ** ppTopic,
                                    int                     * pNumBytesTopic,
                                    char                   ** ppPayload,
                                    int                     * pNumBytesPayload,
                                    char                   ** ppProperties,
                                    int                     * pNumBytesProperties);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.
pPublish Pointer to a IP_MQTT_CLIENT_MESSAGE structure.
pBuffer Pointer to the start of the publish message.
NumBytes Number of bytes stored in the buffer.
ppTopic Pointer to the topic of the publish message. Can be NULL.
pNumBytesTopic Pointer to an int store the length of the topic. Can be NULL.
ppPayload Pointer to the payload of the publish message. Can be NULL.

pNumBytesPayload
Pointer to an int to store the length of the payload. Can be
NULL.

ppProperties Pointer to the start of the properties. Can be NULL.

pNumBytesProperties
Pointer to an int to store the length of the properties. Can be
NULL.

Return value

= 0 O.K.
< 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1184 CHAPTER 35 API functions

35.6.16    IP_MQTT_CLIENT_IsClientConnected()

Description

Checks if the client is connected to a broker.

Prototype

int IP_MQTT_CLIENT_IsClientConnected(const IP_MQTT_CLIENT_CONTEXT * pClient);

Parameters

Parameter Description

pClient Pointer to an MQTT client structure.

Return value

> 0 Connected
= 0 Not connected

Additional information

This function is only required, if the MQTT client will be called from several tasks. Please refer
to the sample application IP_MQTT_CLIENT_PublisherSubscriber_2Tasks.c for detailed
information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1185 CHAPTER 35 API functions

35.6.17    IP_MQTT_Property2String()

Description

Converts the Property ID into a string.

Prototype

char *IP_MQTT_Property2String(U8 x);

Parameters

Parameter Description

x Property ID to convert.

Return value

Pointer to a string which contains the property in text form.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1186 CHAPTER 35 API functions

35.6.18    IP_MQTT_ReasonCode2String()

Description

Converts the Reason Code into a string.

Prototype

char *IP_MQTT_ReasonCode2String(U8 x);

Parameters

Parameter Description

x Reason Code to convert.

Return value

Pointer to a string which contains the Reason Code in text form.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1187 CHAPTER 35 API functions

35.6.19    IP_MQTT_CLIENT_Connect()

Description

Deprecated, use IP_MQTT_CLIENT_ConnectEx(). Connects a client to an MQTT broker.
Establishes a TCP connection and handles the MQTT connect.

Prototype

int IP_MQTT_CLIENT_Connect(      IP_MQTT_CLIENT_CONTEXT * pClient,
                           const char                   * sAddr,
                                 U16                      Port,
                                 U8                       CleanSession);

Parameters

Parameter Description

pClient Pointer to IP_MQTT_CLIENT_CONTEXT structure.
sAddr String with address of the broker.
Port Listening port of the broker.

CleanSession
• 0: Reuse old session data to continue.
• 1: Start with a clean session.

Return value

0 O.K., client connected.
-1 Error.

Additional information

One IP_MQTT_CLIENT_CONTEXT supports only one connection at the same time, if you
need to connect to multiple servers simultaneously you need to initialize a separate
IP_MQTT_CLIENT_CONTEXT with IP_MQTT_CLIENT_Init().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1188 CHAPTER 35 API functions

35.6.20    IP_MQTT_CLIENT_ParsePublish()

Description

Deprecated please use IP_MQTT_CLIENT_ParsePublishEx(). Parses a given PUBLISH
message. The message must be completely available inside the given buffer.

Prototype

int IP_MQTT_CLIENT_ParsePublish(IP_MQTT_CLIENT_MESSAGE  * pPublish,
                                char                    * pBuffer,
                                int                       NumBytes,
                                char                   ** ppTopic,
                                int                     * pNumBytesTopic,
                                char                   ** ppPayload,
                                int                     * pNumBytesPayload);

Parameters

Parameter Description

pPublish Pointer to a IP_MQTT_CLIENT_MESSAGE structure.
pBuffer Pointer to the start of the publish message.
NumBytes Number of bytes stored in the buffer.
ppTopic Pointer to the topic of the publish message. Can be NULL.
pNumBytesTopic Pointer to an int store the length of the topic. Can be NULL.
ppPayload Pointer to the payload of the publish message.
pNumBytesPayload Pointer to an int to store the length of the payload.

Return value

= 0 O.K.
< 0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1189 CHAPTER 35 Data structures

35.7    Data structures
Structure Description

IP_MQTT_CLIENT_TRANSPORT_API
Structure with pointers to the required
socket interface functions.

IP_MQTT_CLIENT_APP_API
Structure with pointers to the required
functions.

IP_MQTT_CLIENT_MESSAGE Message maintenance structure.

IP_MQTT_CLIENT_TOPIC_FILTER
Structure used to subscribe to a particular
topic.

IP_MQTT_CLIENT_SUBSCRIBE
Structure used by the
IP_MQTT_CLIENT_Subscribe() function to
subscribe to many topics at once.

IP_MQTT_PROPERTY Structure describing a MQTT 5 Property.

IP_MQTT_CONNECT_PARAM
Structure containing parameters required
for a new connection to a MQTT broker.

IP_MQTT_STR_PAIR_DATA
Structure describing a MQTT 5 String Pair
Property.

IP_MQTT_STR_DATA
Structure describing a MQTT 5 String
Property.

IP_MQTT_BIN_DATA
Structure describing a MQTT 5 Binary
Property.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1190 CHAPTER 35 Data structures

35.7.1    IP_MQTT_CLIENT_TRANSPORT_API

Description

Structure with pointers to the required socket interface functions.

Type definition

typedef struct {
  IP_MQTT_CLIENT_CONNECT    * pfConnect;
  IP_MQTT_CLIENT_DISCONNECT * pfDisconnect;
  IP_MQTT_CLIENT_RECEIVE    * pfReceive;
  IP_MQTT_CLIENT_SEND       * pfSend;
} IP_MQTT_CLIENT_TRANSPORT_API;

Structure members

Member Description

pfConnect Pointer to the connect function (for example, connect()).

pfDisconnect
Pointer to the disconnect function (for example,
closesocket()).

pfReceive Pointer to a callback function (for example, recv()).
pfSend Pointer to a callback function (for example, send()).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1191 CHAPTER 35 Data structures

35.7.2    IP_MQTT_CLIENT_APP_API

Description

Structure with pointers to the required functions.

Type definition

typedef struct {
  IP_MQTT_CLIENT_GEN_RANDOM            * pfGenRandom;
  IP_MQTT_CLIENT_ALLOC                 * pfAlloc;
  IP_MQTT_CLIENT_FREE                  * pfFree;
  IP_MQTT_CLIENT_LOCK                  * pfLock;
  IP_MQTT_CLIENT_UNLOCK                * pfUnlock;
  IP_MQTT_CLIENT_RECV_MESSAGE          * pfRecvMessage;
  IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM    * pfOnMessageConfirm;
  IP_MQTT_CLIENT_HANDLE_ERROR          * pfHandleError;
  IP_MQTT_CLIENT_HANDLE_DISCONNECT     * pfHandleDisconnect;
  IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM_EX * pfOnMessageConfirmEx;
  IP_MQTT_CLIENT_RECV_MESSAGE_EX       * pfRecvMessageEx;
  IP_MQTT_CLIENT_ON_PROPERTY           * pfOnProperty;
  IP_MQTT_CLIENT_CHECK_TIMEOUT_CB      * pfOnCheckTimeout;
} IP_MQTT_CLIENT_APP_API;

Structure members

Member Description

pfGenRandom
Pointer to a function which returns a random unsigned short
value.

pfAlloc Pointer to a alloc function.
pfFree Pointer to a free function.
pfLock Pointer to a function which acquires a lock.

pfUnlock
Pointer to a function which releases a previously acquired
lock.

pfRecvMessage Deprecated, use IP_MQTT_CLIENT_RECV_MESSAGE_EX
pfOnMessageConfirm Deprecated, use IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM_EX
pfHandleError Pointer to a callback which is called in case of an error.

pfHandleDisconnect
[MQTT 5 only] Pointer to an optional callback when the
server sends a Disconnect Request.

pfOnMessageConfirmEx
Pointer to a callback when all QoS related messages are
processed.

pfRecvMessageEx Pointer to a callback when a PUBLISH message is received.

pfOnProperty
[MQTT 5 only] Pointer to an optional callback for non-
PUBLISH message properties.

pfOnCheckTimeout
Pointer to a callback which checks if an outgoing message
timed out.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1192 CHAPTER 35 Data structures

35.7.3    IP_MQTT_CLIENT_MESSAGE

Description

Message maintenance structure.

Type definition

typedef struct {
  IP_MQTT_DLIST_ITEM         Link;
  const char               * sTopic;
  const char               * pData;
  U32                        DataLen;
  U16                        PacketId;
  U8                         QoS;
  U8                         Retain;
  U8                         Duplicate;
  U8                         CheckUserTimeout;
  int                        UserTimeout;
  const IP_MQTT_PROPERTY **  paProperties;
  U8                         NumProperties;
} IP_MQTT_CLIENT_MESSAGE;

Structure members

Member Description

Link Internal link.
sTopic Pointer to the topic string.
pData Pointer to the payload which should be published.
DataLen Number of payload bytes.
PacketId Packet ID. (Will be filled by the MQTT client module)
QoS QoS flag.
Retain Retain flag.
Duplicate Duplicate flag. (Will be filled by the MQTT client module)

CheckUserTimeout
(Optional) Set this to 1 to use the UserTimeout. Otherwise
UserTimeout is ignored.

UserTimeout
(Optional) This value can be set by the user and evaluated
inside the IP_MQTT_CLIENT_CHECK_TIMEOUT_CB callback.

paProperties
[MQTT 5 only] Array containing pointers to
IP_MQTT_PROPERTY structures. Can be NULL.

NumProperties [MQTT 5 only] Number of elements inside paProperties.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1193 CHAPTER 35 Data structures

35.7.4    IP_MQTT_CLIENT_TOPIC_FILTER

Description

Structure used to subscribe to a particular topic.

Type definition

typedef struct {
  const char * sTopicFilter;
  U16          Length;
  U8           QoS;
} IP_MQTT_CLIENT_TOPIC_FILTER;

Structure members

Member Description

sTopicFilter Pointer to the topic filter string (zero-terminated).

Length
This field is deprecated! It may be removed in future
versions. Make sure sTopicFilter is zero-terminated.

QoS Quality of service flag.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1194 CHAPTER 35 Data structures

35.7.5    IP_MQTT_CLIENT_SUBSCRIBE

Description

Structure used by the IP_MQTT_CLIENT_Subscribe() function to subscribe to many topics
at once. The topics are described in an array of IP_MQTT_CLIENT_TOPIC_FILTER.

Type definition

typedef struct {
  IP_MQTT_DLIST_ITEM            Link;
  IP_MQTT_CLIENT_TOPIC_FILTER * pTopicFilter;
  int                           TopicCnt;
  U16                           PacketId;
  U8                            ReturnCode;
  U8                          * paReasonCodes;
} IP_MQTT_CLIENT_SUBSCRIBE;

Structure members

Member Description

Link Internal link.
pTopicFilter Pointer to the first topic filter structure.
TopicCnt Number of added topics.
PacketId Packet ID. (Will be filled by the MQTT client module.)
ReturnCode Return code. (Will be filled by the MQTT client module.)

paReasonCodes

[MQTT 5 only] Pointer to an array to store the received
Reason Codes. Can be NULL. In case the application
subscribes to multiple topics at once this buffer will be
filled with the reason codes for each topic. Reason codes
will appear in the same order as the subscribed topics,
e.g. For a subscription with two topics t1 (QoS1) and t2
(QoS2) you will receive IP_MQTT_REASON_GRANTED_QOS_1,
IP_MQTT_REASON_GRANTED_QOS_2 in the buffer. If the pointer
is not NULL the size of this buffer MUST be the same as
TopicCnt. When using pfRecvMessageEx care must be taken
because the buffer is filled with valid values only after the
pfRecvMessageEx callback is called with PacketType SUBACK
and the correct Packet ID.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1195 CHAPTER 35 Data structures

35.7.6    IP_MQTT_PROPERTY

Description

Structure describing a MQTT 5 Property.

Type definition

typedef struct {
  U8  PropType;
} IP_MQTT_PROPERTY;

Structure members

Member Description

PropType Type of the property.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1196 CHAPTER 35 Data structures

35.7.7    IP_MQTT_CONNECT_PARAM

Description

Structure containing parameters required for a new connection to a MQTT broker.

Type definition

typedef struct {
  const char               * sAddr;
  U16                        Port;
  U8                         CleanSession;
  U8                         Version;
  const IP_MQTT_PROPERTY **  paProperties;
  U8                         NumProperties;
} IP_MQTT_CONNECT_PARAM;

Structure members

Member Description

sAddr String with address of the broker.
Port Listening port of the broker.

CleanSession
• 0: Reuse old session data to continue.
• 1: Start with a clean session.

Version
Following values are allowed:
• 4 - use MQTT 3.1.1
• 5 - use MQTT 5

paProperties
[MQTT 5 only] Array containing pointers to
IP_MQTT_PROPERTY structures. Can be NULL.

NumProperties [MQTT 5 only] Number of elements inside paProperties.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1197 CHAPTER 35 Data structures

35.7.8    IP_MQTT_STR_PAIR_DATA

Description

Structure describing a MQTT 5 String Pair Property. This is exclusivly used by
IP_MQTT_PROP_TYPE_USER_PROPERTY.

Type definition

typedef struct {
  U16          Len1;
  U16          Len2;
  const char * pData1;
  const char * pData2;
} IP_MQTT_STR_PAIR_DATA;

Structure members

Member Description

Len1 Length of the first string.
Len2 Length of the second string.
pData1 Pointer to a buffer containing the first string.
pData2 Pointer to a buffer containing the second string.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1198 CHAPTER 35 Data structures

35.7.9    IP_MQTT_STR_DATA

Description

Structure describing a MQTT 5 String Property. Strings should not be terminated with .

Type definition

typedef struct {
  U16          Len;
  const char * pData;
} IP_MQTT_STR_DATA;

Structure members

Member Description

Len Length of the string.
pData Pointer to a buffer containing the string.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1199 CHAPTER 35 Data structures

35.7.10    IP_MQTT_BIN_DATA

Description

Structure describing a MQTT 5 Binary Property.

Type definition

typedef struct {
  U16        Len;
  const U8 * pData;
} IP_MQTT_BIN_DATA;

Structure members

Member Description

Len Number of bytes inside the buffer pointed to by pData.
pData Pointer to a buffer containing the data.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1200 CHAPTER 35 IP_MQTT_CLIENT_TRANSPORT_API in detail

35.8    IP_MQTT_CLIENT_TRANSPORT_API in detail

35.8.0.1    IP_MQTT_CLIENT_CONNECT

Description

Connects to the specified server address and port.

Type definition

typedef void * (IP_MQTT_CLIENT_CONNECT)(const char   * sSrvAddr,
                                              unsigned SrvPort);

Parameters

Parameter Description

sSrvAddr Server address as a string.
SrvPort Server port as an unsigned integer.

Return value

≠ NULL The connected socket cast to IP_MQTT_CLIENT_SOCKET.
= NULL Connect failed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1201 CHAPTER 35 IP_MQTT_CLIENT_TRANSPORT_API in detail

35.8.0.2    IP_MQTT_CLIENT_DISCONNECT

Description

Disconnects the specified socket.

Type definition

typedef void (IP_MQTT_CLIENT_DISCONNECT)(void * pSocket);

Parameters

Parameter Description

pSocket Pointer to the socket to disconnect.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1202 CHAPTER 35 IP_MQTT_CLIENT_TRANSPORT_API in detail

35.8.0.3    IP_MQTT_CLIENT_RECEIVE

Description

Receives data from the specified socket.

Type definition

typedef int (IP_MQTT_CLIENT_RECEIVE)(void * pSocket,
                                     char * pData,
                                     int    Len);

Parameters

Parameter Description

pSocket Pointer to the socket to receive data from.
pData Pointer to the data buffer.
Len Length of the data buffer.

Return value

> 0 O.K., number of bytes received.
= 0 Connection has been gracefully closed by the broker.
= -1 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1203 CHAPTER 35 IP_MQTT_CLIENT_TRANSPORT_API in detail

35.8.0.4    IP_MQTT_CLIENT_SEND

Description

Sends data to the specified socket.

Type definition

typedef int (IP_MQTT_CLIENT_SEND)(      void * pSocket,
                                  const char * pData,
                                        int    Len);

Parameters

Parameter Description

pSocket Pointer to the socket to send data to.
pData Pointer to the data buffer.
Len Length of the data buffer.

Return value

> 0 O.K., number of bytes sent.
= 0 Connection has been gracefully closed by the broker.
= -1 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1204 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9    IP_MQTT_CLIENT_APP_API in detail

35.9.0.1    IP_MQTT_CLIENT_GEN_RANDOM

Description

Generates a random unsigned short value.

Type definition

typedef U16 (IP_MQTT_CLIENT_GEN_RANDOM)(void);

Return value

Random unsigned short value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1205 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.2    IP_MQTT_CLIENT_ALLOC

Description

Allocates a specified number of bytes.

Type definition

typedef void * (IP_MQTT_CLIENT_ALLOC)(U32 NumBytesReq);

Parameters

Parameter Description

NumBytesReq Number of bytes to allocate.

Return value

≠ NULL Pointer to the allocated memory.
= NULL Alloc failed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1206 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.3    IP_MQTT_CLIENT_FREE

Description

Frees the allocated memory.

Type definition

typedef void (IP_MQTT_CLIENT_FREE)(void * p);

Parameters

Parameter Description

p Pointer to the memory to free.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1207 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.4    IP_MQTT_CLIENT_LOCK

Description

Acquires a lock to ensure thread safety.

Type definition

typedef void (IP_MQTT_CLIENT_LOCK)(void);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1208 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.5    IP_MQTT_CLIENT_UNLOCK

Description

Releases a previously acquired lock.

Type definition

typedef void (IP_MQTT_CLIENT_UNLOCK)(void);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1209 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.6    IP_MQTT_CLIENT_RECV_MESSAGE

Description

Deprecated, use IP_MQTT_CLIENT_RECV_MESSAGE_EX

Type definition

typedef int (IP_MQTT_CLIENT_RECV_MESSAGE)(void * pMQTTClient,
                                          void * pPublish,
                                          int    NumBytesRem);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1210 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.7    IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM

Description

Deprecated, use IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM_EX

Type definition

typedef int (IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM)(void * pMQTTClient,
                                                U8     Type,
                                                U16    PacketId);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1211 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.8    IP_MQTT_CLIENT_HANDLE_ERROR

Description

Callback which is called in case of errors on the transport layer.

Type definition

typedef int (IP_MQTT_CLIENT_HANDLE_ERROR)(void * pMQTTClient);

Parameters

Parameter Description

pMQTTClient Valid pointer to an MQTT client instance.

Return value

Not used in this version. Should be set to 0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1212 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.9    IP_MQTT_CLIENT_HANDLE_DISCONNECT

Description

Called in case of a disconnect from the server. Only available if MQTT 5 is used. With MQTT
3.1.1 there is no option for the server to send a disconnect.

Type definition

typedef void (IP_MQTT_CLIENT_HANDLE_DISCONNECT)(void * pMQTTClient,
                                                U8     ReasonCode);

Parameters

Parameter Description

pMQTTClient Valid pointer to an MQTT client instance.
ReasonCode MQTT reason code for disconnection.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1213 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.10    IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM_EX

Description

Callback which is called when all QoS related messages are processed.

Type definition

typedef int (IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM_EX)(void * pMQTTClient,
                                                   U8     Type,
                                                   U16    PacketId,
                                                   U8     ReasonCode);

Parameters

Parameter Description

pMQTTClient Valid pointer to an MQTT client instance.
Type Type of the message.
PacketId ID of the packet.
ReasonCode MQTT reason code for confirmation.

Return value

= 1 Confirmation was handled. IP_MQTT_CLIENT_FREE will be called.
≠ 1 Confirmation not handled, message will not be freed.

Additional information

The application has to store the message with QoS > 0 until it gets/has sent an
acknowledgement.
• Target sends PUBLISH with QoS 0 to broker -> Message can be directly discarded after

message has been sent.
• Target sends PUBLISH with QoS 1 to broker -> Message can be discarded after PUBACK

has been received from the broker.
• Target sends PUBLISH with QoS 2 to broker -> Message can be discarded after PUBCOMP

has been received.
• Broker sends PUBLISH with QoS 0 to target -> Message can be directly processed.
• Broker sends PUBLISH with QoS 1 to target -> Message can be processed after PUBACK

has been sent to the broker.
• Broker sends PUBLISH with QoS 2 to target -> Message can be processed after

PUBCOMP has been received from the broker.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1214 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.11    IP_MQTT_CLIENT_RECV_MESSAGE_EX

Description

Receives a MQTT PUBLISH message.

Type definition

typedef int (IP_MQTT_CLIENT_RECV_MESSAGE_EX)(void * pMQTTClient,
                                             void * pPublish,
                                             int    NumBytesRem,
                                             U8   * pReasonCode);

Parameters

Parameter Description

pMQTTClient Valid pointer to an MQTT client instance.
pPublish Valid pointer to the publish structure.
NumBytesRem Number of remaining bytes.

pReasonCode

 out  (QoS 1 and 2 only) pointer to a U8 where the callback
must store the MQTT reason code which will be sent to the
server.

Return value

> 0 O.K.
= 0 Connection has been gracefully closed by the broker.
< 0 Error

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1215 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.12    IP_MQTT_CLIENT_ON_PROPERTY

Description

Handles properties in non-PUBLISH MQTT messages.

Type definition

typedef void (IP_MQTT_CLIENT_ON_PROPERTY)(void             * pMQTTClient,
                                          U16                PacketId,
                                          U8                 PacketType,
                                          IP_MQTT_PROPERTY * pProp);

Parameters

Parameter Description

pMQTTClient Valid pointer to an MQTT client instance.
PacketId ID of the packet.
PacketType Type of the packet.
pProp Pointer to the property.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1216 CHAPTER 35 IP_MQTT_CLIENT_APP_API in detail

35.9.0.13    IP_MQTT_CLIENT_CHECK_TIMEOUT_CB

Description

Allows the application to time out messages which are not receiving a reply from the server.

This callback is called in the context of IP_MQTT_CLIENT_CheckMessageTimeouts(). The
function IP_MQTT_CLIENT_CheckMessageTimeouts() must be called by the application
periodically in order for this callback to work.

Type definition

typedef int (IP_MQTT_CLIENT_CHECK_TIMEOUT_CB)(void                   * pMQTTClient,
                                              IP_MQTT_CLIENT_MESSAGE * pMessage);

Parameters

Parameter Description

pClient Valid pointer to a IP_MQTT_CLIENT_CONTEXT instance.

pMessage
Valid pointer to a IP_MQTT_CLIENT_MESSAGE structure for a
MQTT message which has not received a reply yet. (QoS 1
and QoS 2 only)

Return value

0 pMessage not timed out yet.
1 pMessage timed out. The emMQTT code will call the IP_MQTT_CLIENT_APP_API-

>pfFree callback.

Additional information

Only messages with IP_MQTT_CLIENT_MESSAGE->CheckUserTimeout set to 1 are checked.
Before sending a message the application should set the IP_MQTT_CLIENT_MESSAGE-
>UserTimeout to a value which the application can compare against. Normally it will be the
current time + the timeout value, but it can also be as simple as a counter variable.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1217 CHAPTER 35 Resource usage

35.10    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the MQTT client presented in the tables below have been
measured on a Cortex-M4 system. Details about the further configuration can be found in
the sections of the specific example.

35.10.1    Resource usage on a Cortex-M4 system
The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio, size optimized.

35.10.1.1    ROM usage

Addon ROM

emMQTT client approximately 2.5 kBytes

35.10.1.2    RAM usage

Addon RAM

emMQTT client context w/o task stack approximately 60 Bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 36
 
WebSocket (Add-on)

The emNet WebSocket IoT (Internet of Things) protocol is an optional extension to emNet.
The WebSocket add-on can be used with emNet or with a different TCP/IP stack that uses
a socket API. All functions that are required to add WebSocket support to your application
are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1219 CHAPTER 36 emNet WebSocket support

36.1    emNet WebSocket support
The emNet WebSocket add-on is an optional extension which adds WebSocket functionality
to your application. It has been implemented with the limitations of an embedded system
in mind while still providing a flexible but powerful API paired with a small memory
footprint. The RAM usage has been kept to a minimum by smart handling of the protocols
characteristics.

The WebSocket add-on implements the relevant parts of the following Request For
Comments (RFC).

RFC# Description

[RFC 6455] The WebSocket Protocol
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc6455.txt

The following table shows the contents of the emNet WebSocket package root directory:

Directory Content

.\Application\
Contains the example applications to run
a WebSocket printf() server/client with
emNet.

.\IP\
Contains the WebSocket sources
IP_WEBSOCKET.c and IP_WEBSOCKET.h.

.\Windows\IP
\WebSocket_printf_Server\

Contains the source, the project files
and an executable to run the emNet
WebSocket add-on (server side) on a
Microsoft Windows host. Refer to Using
the WebSocket samples on page 1228 for
detailed information.

.\Windows\IP
\WebSocket_printf_Client\

Contains the source, the project files
and an executable to run the emNet
WebSocket add-on (client side) on a
Microsoft Windows host. Refer to Using
the WebSocket samples on page 1228 for
detailed information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1220 CHAPTER 36 Feature list

36.2    Feature list
• Converts a synchronous HTTP connection into an asynchronous data connection.
• Can traverse firewalls using the well known HTTP port.
• Can be used with or without web server.
• Seamless integration with the emNet web server add-on.
• Low memory footprint.
• Optimized API for embedded systems.
• Independent of the TCP/IP stack: any stack with sockets can be used.
• Project for executable on PC for Microsoft Visual Studio included.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1221 CHAPTER 36 Requirements

36.3    Requirements
TCP/IP stack

The emNet WebSocket add-on requires a TCP/IP stack. It is optimized for emNet, but any
RFC-compliant TCP/IP stack that has a socket API can be used. The shipment includes a
Win32 simulation, which uses the standard Winsock API as well as an implementation which
uses the socket API of emNet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1222 CHAPTER 36 Backgrounds

36.4    Backgrounds
The WebSocket protocol is an IoT (Internet of Things) protocol that allows to upgrade
a regular synchronous HTTP connection into an asynchronous bidirectional data tunnel. It
allows to establish a regular HTTP connection with a webserver, checking if both sides,
client and server, understand the WebSocket protocol depending on the answer sent back
by the webserver.

The non intrusive test for checking the WebSocket protocol being supported is compatible
with the HTTP/1.1 standard and will return a page with an error code in worst case if the
protocol is not supported by the webserver. The webserver service for serving regular pages
remains fully operational while coexisting with the WebSocket protocol.

The WebSocket protocol is using the TCP/IP protocol for data, using the HTTP/1.1 protocol
only to initially establish a WebSocket connection.

An advantage of the WebSocket protocol is that it establishes a connection through the
HTTP protocol. This allows an easier handling in terms of firewalls as typically the standard
port TCP 80 is allowed for outgoing connections, allowing WebSocket clients to work without
problems. For a WebSocket server, offering webpages and WebSocket tunneled protocols
only a single port is required to be opened in the firewall or allowed to be forwarded by a
router from the Internet to your local network.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1223 CHAPTER 36 Backgrounds

36.4.1    Establishing a WebSocket connection
Before application data can be transferred, a connection handshake needs to be done. The
handshake is done sending a regular HTTP/1.1 protocol request to a webserver that contains
WebSocket specific extension fields in the HTTP header as well as a list of WebSocket
subprotocols that the client is able to use.

GET /printf HTTP/1.1
Host: 192.168.11.158
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: ew+1nlIjRf4c+zVtzqIZ2g==
Sec-WebSocket-Protocol: debug

The sample above shows the minimum HTTP header that is sent by a WebSocket client
to a webserver to establish a WebSocket connection. The following header fields are used
in the request:

Header field Explanation

Request

The very first line expected contains the METHOD used for
access (for WebSocket this is always “GET”), the resource
that is accessed (in this sample “/printf”) and the HTTP
protocol version used (“HTTP/1.1”).

Host The host name to access. For webservers that host multiple
domains the “Host:” field specifies the domain to use.

Connection
Extra actions requested for the HTTP connection. In the
sample above a connection “Upgrade” is requested. The type
of upgrade is then specified by the “Upgrade:” field.

Upgrade
The type of connection upgrade requested. In the sample
above the connection shall be upgraded to the “websocket”
protocol.

Sec-WebSocket-Version The highest WebSocket protocol version supported by the
client. 13 is the first final WebSocket protocol version.

Sec-WebSocket-Key Key value that is used to verify that the webserver is really
understanding the WebSocket protocol.

Sec-WebSocket-Protocol WebSocket subprotocols supported by the client. In the
sample above we use the sample subprotocol “debug”.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1224 CHAPTER 36 Backgrounds

36.4.2    Accepting a WebSocket connection
To accept a WebSocket connection the webserver needs to send back a HTTP header to the
client confirming the protocol upgrade. In case the webserver is not aware of the WebSocket
protocol or the resource requested is not available, the webserver can send back its regular
HTTP error code and content.

The client expects a HTTP 101 “Switching Protocols” response in case the webserver
supports the WebSocket protocol. Any other HTTP code returned by the webserver means
that the WebSocket protocol, the resource or the selected subprotocol is not supported.

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Protocol: debug
Sec-WebSocket-Accept: fwgzotwyvIXhoZ/o77F3O8wc8Pc=

The sample above is the minimum HTTP response header sent back by a webserver to
accept the WebSocket connection upgrade. The following header fields are different in the
response:

Header field Explanation

Response

The response code “101” confirms that a protocol switch has
been done. The explanation “Switching Protocols” is typically
added but should only serve as additional text that might
differ.

Sec-WebSocket-Protocol WebSocket subprotocols supported by the client. In the
sample above we use the sample subprotocol “debug”.

Sec-WebSocket-Accept

This value is calculated based on the value of the Sec-
WebSocket-Key field from the request and is an additional
indicator that the WebSocket protocol is fully understood by
the webserver.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1225 CHAPTER 36 Backgrounds

36.4.3    Closing a WebSocket connection
Closing a WebSocket connection is basically very easy. As the underlying protocol is TCP,
a close of the TCP socket means closing the WebSocket connection as well. While this will
always work it is suggested to first close the WebSocket connection itself before closing the
TCP socket. This allows sending the other side a reason why the connection is closed. This
can be done using the function IP_WEBSOCKET_Close().

36.4.4    WebSocket data framing
The WebSocket protocol combines the following properties of TCP and UDP:

TCP properties
• Lost data is retransmitted.
• Data is received in the correct order.
• The connection status can be checked by using TCP KEEPALIVES.

UDP properties
• Data can be sent in small frames (while being part of a larger message).
• The length of the frame is known (the complete message length is not).
• Control frames (UDP: other data) can be sent between data frames.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1226 CHAPTER 36 Backgrounds

Principle of operation

Application data sent using the WebSocket protocol can be described as UDP like framing
of data within a TCP data stream. While this might sound complex at first, the protocol
itself is not.

The main purpose of the WebSocket protocol is to allow a device with limited resources
sending one big block of data in chunks (called a frames in the WebSocket protocol)
whenever data is ready/generated instead of collecting the data before sending. At the
same time control commands should be able to be processed anytime between frames. At
the same time the TCP protocol ensures that data is not lost and frames will be sent and
received in the correct order.

The WebSocket protocol achieves these goals by sending all data in frames that have a
header upfront. The encapsulation of the protocol is shown below:

The WebSocket header size is between 2 and 14 bytes and contains information about the
position of the frame in context to the complete data to send (first, one of the middle, last
frame of a message) as well as the length of the application data in this single frame.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1227 CHAPTER 36 Backgrounds

36.4.5    WebSocket frame types
WebSocket frames contain a frame type in their header. The following types are available
for WebSocket protocol version 13:

Frame type ID Description

IP_WEBSOCKET_FRAME_TYPE_CONTINUE 0x00
The data in this frame is
continuation of the last frame
with an ID other than 0x00.

IP_WEBSOCKET_FRAME_TYPE_TEXT 0x01
Used for sending an unterminated
textual string.

IP_WEBSOCKET_FRAME_TYPE_BINARY 0x02 Used to send any type of data.

IP_WEBSOCKET_FRAME_TYPE_CLOSE 0x08
Used to close the message with
a close code and an optional
message.

IP_WEBSOCKET_FRAME_TYPE_PING 0x09 PING request.
IP_WEBSOCKET_FRAME_TYPE_PONG 0x0A PING response.

Typically there are only two frame types that are relevant for the application. These are
IP_WEBSOCKET_FRAME_TYPE_TEXT and IP_WEBSOCKET_FRAME_TYPE_BINARY. They specify
the type of a received message. However if the application uses a custom protocol
and does not need to distinguish between text and binary data the frame type
IP_WEBSOCKET_FRAME_TYPE_BINARY can always be used.

All other frame types are control frame types. Control frames can be sent in between
message frames to allow an immediate processing instead of having to wait for all
frames of a message to be transferred. Controls frames are handled by the WebSocket
protocol in the background. The only exception to this is a frame of the type
IP_WEBSOCKET_FRAME_TYPE_CLOSE as this allows the application to close the WebSocket
connection gracefully sending a close code itself and an optional message.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1228 CHAPTER 36 Using the WebSocket samples

36.5    Using the WebSocket samples
Ready to use examples for Microsoft Windows and emNet are supplied. If you use another
TCP/IP stack, the samples have to be adapted.

The supplied sample application IP_WEBSOCKET_printf_Server.c and
GUI_VNC_X_StartServer.c show different approaches for implementing the WebSocket
protocol. While both accept a WebSocket connection their implementation and handling of
the connection is completely different.

36.5.1    IP_WEBSOCKET_printf_Server.c
This sample accepts a WebSocket connection and awaits messages of the frame type
IP_WEBSOCKET_FRAME_TYPE_TEXT. It tries to copy received text messages into a local buffer
to string terminate them and then outputs them to the standard output using printf().

The WebSocket connection handshake is done without a web server by parsing the
request HTTP header for the “Sec-WebSocket-Key:” header field value and sending back
its counterpart in a HTTP response.

The message handling of the established WebSocket connection is handled by the same
task that accepts the connection, blocking it for accepting further WebSocket connections
while one connection is ongoing.

Testing the sample

To test the sample, a WebSocket client is necessary. One of these clients is the “Dark
WebSocket terminal” (DWST) that is available as extension for the Chrome browser.

  

Connect

To connect to the WebSocket printf() server enter the following command:

/connect ws://<IP addr. of server>/printf debug

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1229 CHAPTER 36 Using the WebSocket samples

This will open a connection to the server using the resource “/printf” and suggesting the
subprotocol “debug”.

Send a text that the target will printf()

Once the WebSocket connection is established, text can be send to the server that will the
be printf() processed. A “Hello World!” can be send using the following command:

/send Hello World!

Some characters need to be escaped using a backslash. In the above sample the whitespace
needs to be written as “  ” (backslash followed by a space) as the whitespace is a separator
character in case commands can have parameters.

Disconnect

To disconnect from the server the following line can be executed:

/disconnect

This will send a frame of type IP_WEBSOCKET_FRAME_TYPE_CLOSE to the server. The server
should then simply close the TCP connection. However in a good manner the server might
send its own frame of type IP_WEBSOCKET_FRAME_TYPE_CLOSE back for a graceful close of
the WebSocket connection before closing the TCP connection.

Sample output

The following is a screenshot of the commands described above:

  

The output of a terminal on the server side should show the following lines:

WebSocket client connected.
Client: Hello World!
WebSocket client disconnected.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1230 CHAPTER 36 Using the WebSocket samples

36.5.2    GUI_VNC_X_StartServer.c
This sample consists of a part of the emWin VNC Server setup. The file
GUI_VNC_X_StartServer.c contains the TCP/IP abstraction between emWin and a TCP/IP
stack. It can be found in the folder “\Shared\GUI\Sample\”. The sample adds a resource
hook to the web server that allows using the emWin VNC server with the noVNC client, written
entirely in HTML5.

The latest version of the noVNC client can be downloaded from the following location:
https://github.com/kanaka/noVNC/releases

noVNC works best when used with the Chrome browser. Inconsistent HTML5
implementations in different browsers result in problems running noVNC.

Precautions

The following precautions need to be met for connecting with noVNC:
• The emNet web server add-on has been added to a target running the emWin VNC server.
• The define GUI_VNC_SUPPORT_WEBSOCKET_SERVER has been set to “1” in the project

settings or the file itself to enable the WebSocket implementation.
• The WebSocket resource hooked into the web server is configured for the path “/

websockify” and the subprotocol “binary”. Both values are the defaults for noVNC.

By registering the WebSocket resource with the web server using
IP_WEBS_WEBSOCKET_AddHook(), the web server remains able to serve its regular webpages
while at the same time allowing to accept WebSocket connections under the registered
resource path “/websockify” and executing the WebSocket handshake with a client.

An accepted WebSocket connection can be handled by the web server in two ways:
• Executing the WebSocket message handling from the same task context, blocking the

web server resource (web server child task) from being reused until the WebSocket
connection is closed.

• Dispatching the connection handle to another context, freeing the web server resource
for another request.

For this sample the latter is used, dispatching the connection handle used by the web server
to the VNC server task for further processing. Dispatching another WebSocket connection
is disabled and further WebSocket connections will be discarded until the noVNC client gets
disconnected.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://github.com/kanaka/noVNC/releases


1231 CHAPTER 36 Using the WebSocket samples

Testing the sample

To test the noVNC client with the emWin VNC server with WebSocket support please make
sure the precautions described above are met. Start the noVNC client by opening the file
“vnc.html” from the noVNC package in your browser. The only thing to do is to enter the IP
address or host name of your WebSocket/VNC server and the port the web server listens
on as shown in the screenshot below:

  

By pressing the “Connect” button noVNC establishes a WebSocket connection with the web
server. The established connection is then dispatched to the VNC server task as described
before.

While it is possible to connect to the VNC server with a regular VNC client and noVNC, it is
not possible at the same time due to the limitations of the sample.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1232 CHAPTER 36 Using the WebSocket samples

36.5.3    Using the Windows sample
If you have MS Visual C++ 6.00 or any later version available, you will be able to work
with a Windows sample project using the emNet WebSocket add-on. If you do not have
the Microsoft compiler, a precompiled executable of the “WebSocket printf Server” is also
supplied.

Building the sample program

Open the workspace WebSocket_printf.dsw with MS Visual Studio (for example, double-
clicking it). There is no further configuration necessary. You should be able to build the
application without any error or warning message.

Testing the sample program

The server uses the IP address of the host PC on which it runs. Unlike the emNet sample,
the Windows sample does not use port 80 but instead uses port 8181. This is due to port
80 being used by Windows by default from Windows 8 onwards.

The sample can be tested the same way as its emNet counterpart using a WebSocket client
like Dark WebSocket Terminal (DWST). The sample shows some tests commands as online
help during startup as shown below.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1233 CHAPTER 36 Configuration

36.6    Configuration
The emNet WebSocket add-on can be used without changing any of the compile time flags.
All compile time configuration flags are preconfigured with valid values, which match the
requirements of most applications.

The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the source code in place of a numerical constant.
A typical example is the configuration of the sector size of a storage medium.

Alias "A"

A macro which operates like a simple text substitute. An example would be the define U8,
which the preprocessor would replace with unsigned char.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations apply, as a
macro is still put into the source code as simple text replacement. Function replacements are
mainly used to add specific functionality to a module which is highly hardware-dependent.
This type of macro is always declared using brackets (and optional parameters).

Compile time configuration switches

Type Symbolic name Default Description

N IP_WEBSOCKET_MAX_DATA_SIZE 16384

Maximum amount of bytes that can
be transferred in one WebSocket
frame. The payload length of a
WebSocket frame is an U64 value,
however underlying transport layers
like the BSD socket API typically do
not support a payload that big.
For the moment, data chunks that
exceed this limit result in returning
an error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1234 CHAPTER 36 API functions

36.7    API functions
Function Description

IP_WEBSOCKET_Close()
Sends a WebSocket CLOSE frame to the
peer.

IP_WEBSOCKET_DiscardMessage()
Discards all frames that belong to the
currently processed message.

IP_WEBSOCKET_GenerateAcceptKey()
Generates the value to send back for
the Sec-WebSocket-Accept field when
accepting the connection.

IP_WEBSOCKET_InitClient() Initializes a client side WebSocket context.

IP_WEBSOCKET_InitServer()
Initializes a server side WebSocket
context.

IP_WEBSOCKET_Recv()
Receives application data until the end
(FIN flagged) frame of a message has
been used up (all data read).

IP_WEBSOCKET_Send() Sends application data.
IP_WEBSOCKET_WaitForNextMessage() Waits until the next message is received.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1235 CHAPTER 36 API functions

36.7.1    IP_WEBSOCKET_Close()

Description

Sends a WebSocket CLOSE frame to the peer.

Prototype

int IP_WEBSOCKET_Close(IP_WEBSOCKET_CONTEXT * pContext,
                       char                 * sReason,
                       U16                    CloseCode);

Parameters

Parameter Description

pContext WebSocket connection context.

sReason

Reason for the close. Can be NULL.
• For a client context this needs to point to RAM
as the data will be encoded at its source location before it is
sent.

CloseCode IP_WEBSOCKET_CLOSE_CODE_* .

Return value

> 0 All data sent.
= 0 No data sent (typically with non-blocking sockets).

Can indicate an unexpected/early close from the
peer. Do the same call again. If it really was a close
from peer a second call should return with an error.
This return value depends on how the TCP/IP stack
treats this case.

= IP_WEBSOCKET_ERR_AGAIN No data (payload) sent, do the same call again.
< 0 Error.

Additional information

Return values 0 and IP_WEBSOCKET_ERR_AGAIN are typically only returned when the socket
interface is used in non-blocking mode.

A close message is the last message received from a peer. It is unlikely and even wrong if
the peer would send us any message after a close message.

Once a close message has been received from the peer, a close message shall be sent if
not done before and then the network connection shall be closed.

For a server side the WebSocket close message shall be sent and then the network
connection shall be closed without waiting for a close message from the peer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1236 CHAPTER 36 API functions

36.7.2    IP_WEBSOCKET_DiscardMessage()

Description

Discards all frames that belong to the currently processed message.

Prototype

int IP_WEBSOCKET_DiscardMessage(IP_WEBSOCKET_CONTEXT * pContext);

Parameters

Parameter Description

pContext WebSocket connection context.

Return value

> 0 O.K., message discarded.
= 0 Connection closed.
< 0 Error.

Additional information

There are two types of WebSocket messages that can be received by the application
(text and binary). Only a text or binary message that has been previously identified by
IP_WEBSOCKET_WaitForNextMessage() will be discarded.

After discarding a message, the next message needs to be identified by calling
IP_WEBSOCKET_WaitForNextMessage().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1237 CHAPTER 36 API functions

36.7.3    IP_WEBSOCKET_GenerateAcceptKey()

Description

Generates the value to send back for the Sec-WebSocket-Accept field when accepting the
connection.

Prototype

int IP_WEBSOCKET_GenerateAcceptKey(void * pSecWebSocketKey,
                                   int    SecWebSocketKeyLen,
                                   void * pBuffer,
                                   int    BufferSize);

Parameters

Parameter Description

pSecWebSocketKey
Pointer to a buffer containing the string of the Sec-
WebSocket-Key from the HTTP request.

SecWebSocketKeyLen
Number of characters of the Sec-WebSocket-Key (without
string termination).

pBuffer Buffer where to store the accept key.
BufferSize Size of buffer where to store the accept key.

Return value

> 0 Length of accept key.
= 0 Error, buffer not big enough.

Additional information

The calculation of the accept key is done by the following steps:

- Adding the Base64 encoded Sec-WebSocket-Key to a new SHA-1 hash.

- Adding the string “258EAFA5-E914-47DA-95CA-C5AB0DC85B11” to the SHA-1 hash.

- Base64 encode the resulting SHA-1 hash. This is the accept key to send back with the
Sec-WebSocket-Accept field.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1238 CHAPTER 36 API functions

36.7.4    IP_WEBSOCKET_InitClient()

Description

Initializes a client side WebSocket context.

Prototype

void IP_WEBSOCKET_InitClient(      IP_WEBSOCKET_CONTEXT       * pContext,
                             const IP_WEBSOCKET_TRANSPORT_API * pAPI,
                                   IP_WEBSOCKET_CONNECTION    * pConnection);

Parameters

Parameter Description

pContext WebSocket connection context.
pAPI Application API to use for WebSocket communication.
pConnection Transport connection handle.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1239 CHAPTER 36 API functions

36.7.5    IP_WEBSOCKET_InitServer()

Description

Initializes a server side WebSocket context.

Prototype

void IP_WEBSOCKET_InitServer(      IP_WEBSOCKET_CONTEXT       * pContext,
                             const IP_WEBSOCKET_TRANSPORT_API * pAPI,
                                   IP_WEBSOCKET_CONNECTION    * pConnection);

Parameters

Parameter Description

pContext WebSocket connection context.
pAPI Application API to use for WebSocket communication.
pConnection Transport connection handle.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1240 CHAPTER 36 API functions

36.7.6    IP_WEBSOCKET_Recv()

Description

Receives application data until the end (FIN flagged) frame of a message has been used
up (all data read).

Prototype

int IP_WEBSOCKET_Recv(IP_WEBSOCKET_CONTEXT * pContext,
                      void                 * pData,
                      int                    NumBytes);

Parameters

Parameter Description

pContext WebSocket connection context.
pData Where to store the received data.
NumBytes Maximum amount of data to receive.

Return value

> 0 Amount of data received.
= 0 Connection closed.
< 0 Error. IP_WEBSOCKET_ERR_AGAIN : Repeat the call (typically with non-blocking

sockets). IP_WEBSOCKET_ERR_ALL_DATA_READ: All data of the current message
has been read. Call IP_WEBSOCKET_WaitForNextMessage() to check for another
message.

Additional information

The WebSocket receive function follows the concept of a blocking socket recv call. Once
called it will block until either at least one byte of application data from the current message
is available or the peer of the WebSocket connection sends a CLOSE frame or an error
occurs.

This function is able to receive continuous data from multiple WebSocket frames
of the same message. In case this function is called with no more data left in
the current frame and the frame was the last of the current message (FIN flag
set), the error code IP_WEBSOCKET_ERR_ALL_DATA_READ is returned. In this case
IP_WEBSOCKET_WaitForNextMessage() needs to be called before further recv calls.

Application data for a CLOSE frame (IP_WEBSOCKET_FRAME_TYPE_CLOSE) always starts with
a U16 (network/big endian) CloseCode if application data is present at all. If more than
these 2 bytes are available to be read as application data, the rest of the data is of an
unknown type but is typically a textual reason for the close and can therefore be treated
like receiving a TEXT frame of type IP_WEBSOCKET_FRAME_TYPE_TEXT .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1241 CHAPTER 36 API functions

36.7.7    IP_WEBSOCKET_Send()

Description

Sends application data.

Prototype

int IP_WEBSOCKET_Send(IP_WEBSOCKET_CONTEXT * pContext,
                      void                 * pData,
                      int                    NumBytes,
                      U8                     MessageType,
                      U8                     SendMore);

Parameters

Parameter Description

pContext WebSocket connection context.

pData

Data to send.
• For a client context this needs to point to RAM
as the data will be encoded at its source location before it is
sent.

NumBytes Amount of data to send.

MessageType
IP_WEBSOCKET_FRAME_TYPE_TEXT or
IP_WEBSOCKET_FRAME_TYPE_BINARY .

SendMore

• 0: Send a single frame/part message or the last
frame/part of a message sent in multiple calls.
• 1: Send a message in multiple frames/parts. This is
not the last frame/part of the message.

Return value

= NumBytes All data sent.
= 0 No data sent (typically with non-blocking sockets).
= IP_WEBSOCKET_ERR_AGAIN No data (payload) sent, do the same call again.
< 0 Error.

Additional information

Return values 0 and IP_WEBSOCKET_ERR_AGAIN are typically only returned when the socket
interface is used in non-blocking mode.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1242 CHAPTER 36 API functions

36.7.8    IP_WEBSOCKET_WaitForNextMessage()

Description

Waits until the next message is received.

Prototype

int IP_WEBSOCKET_WaitForNextMessage(IP_WEBSOCKET_CONTEXT * pContext,
                                    U8                   * pMessageType);

Parameters

Parameter Description

pContext WebSocket connection context.
pMessageType Where to store the read message type. Can be NULL.

Return value

> 0 O.K., next message received.
= 0 Connection closed.
= IP_WEBSOCKET_ERR_AGAIN Repeat the call (typically with non-blocking sockets).
< 0 Error.

Additional information

The return value IP_WEBSOCKET_ERR_AGAIN is typically only returned when the socket
interface is used in non-blocking mode.

O.K. is returned for all message types received but the application has to handle only what
it is interested in (text, binary or close messages).

All other message types that are effective control frames are handled internal. Messages
of type text or binary that are not handled by the application will be discarded on the next
call of this function.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1243 CHAPTER 36 Data structures

36.8    Data structures

36.8.1    Structure IP_WEBSOCKET_TRANSPORT_API

Description

Used to provide an interface to external TCP/IP transport functions.

Prototype

typedef struct IP_WEBSOCKET_TRANSPORT_API_STRUCT IP_WEBSOCKET_TRANSPORT_API;

struct IP_WEBSOCKET_TRANSPORT_API_STRUCT {
  int (*pfRecv)( IP_WEBSOCKET_CONTEXT*    pContext,
                 IP_WEBSOCKET_CONNECTION* pConnection,
                 void*                    pData,
                 unsigned                 NumBytes);
  int (*pfSend)(       IP_WEBSOCKET_CONTEXT* pContext,
                       IP_WEBSOCKET_CONNECTION* pConnection,
                 const void* pData,
                       unsigned NumBytes);
  U32 (*pfGenMaskKey)(void);
};

Member Description

pfRecv Callback used to receive data via a TCP/IP stack.
- pContext WebSocket connection context.

- pConnection Connection handle of the TCP/IP stack. Typically a socket handle
or SSL session handle.

- pData Where to store the received data.
- NumBytes Maximum amount of data to receive.
pfSend Callback used to send data via a TCP/IP stack.
- pContext WebSocket connection context.

- pConnection Connection handle of the TCP/IP stack. Typically a socket handle
is used.

- pData Data to send.
- NumBytes Amount of data to send.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1244 CHAPTER 36 Resource usage

36.9    Resource usage
The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the WebSocket add-on presented in the tables below have
been measured on a Cortex-M4 system. Details about the further configuration can be
found in the sections of the specific example.

36.9.1    ROM usage on a Cortex-M4 system
The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio V3.10e, size optimization.

Addon ROM

emNet WebSocket protocol approximately 1.7 kBytes

36.9.2    RAM usage
While the WebSocket add-on itself does not require any RAM at all, a context element per
connection is required.

Addon RAM

emNet WebSocket context approximately 30 Bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 37
 
Profiling with SystemView

This chapter describes how to configure and enable profiling of emNet using SystemView.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1246 CHAPTER 37 Profiling overview

37.1    Profiling overview
emNet is instrumented to generate profiling information of API functions and driver-level
functions.

These profiling information expose the run-time behavior of emNet in an application,
recording which API functions have been called, how long the execution took, and revealing
which driver-level functions have been called by API functions or events like interrupts.

The profiling information is recorded using SystemView.

SystemView is a real-time recording and visualization tool for profiling data. It exposes
the true run-time behavior of a system, going far deeper than the insight provided by
debuggers. This is particularly effective when developing and working with complex systems
comprising an OS with multiple threads and interrupts, and one or more middleware
components.

SystemView can ensure a system performs as designed, can track down inefficiencies, and
show unintended interactions and resource conflicts.

The recording of profiling information with SystemView is minimally intrusive to the system
and can be done on virtually any system. With SEGGER’s Real Time Technology (RTT) and
a J-Link, SystemView can record data in real-time and analyze the data live, while the
system is running.

The emNet profiling instrumentation can be easily configured and set up.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1247 CHAPTER 37 Additional files for profiling

37.2    Additional files for profiling
Additional files are required on target and PC side for full functionality of SystemView.

37.2.1    Additional files on target side
The SystemView module needs to be added to the application to enable profiling. If
not already part of the project, download the sources from https://www.segger.com/
systemview.html and add them to the project.

Also make sure that IP_SYSVIEW.c from the /IP/ directory is included in the project.

37.2.2    Additional files on PC side
For fully functional and readable outputs in the SystemView PC application, a description
file for the corresponding middleware is required. This description file extends the values
sent from the target to fully readable text outputs.

While SystemView already comes with the most recent description files at the time the
SystemView release has been built, these files might not be the latest available. The latest
SystemView description files can be found in the emNet shipment in the folder /Shared/
SystemView/Description/. You can copy these files over to the Description folder that
comes with the SystemView package.

The version at the end of the SystemView description file does not have to match the exact
version of the middleware it is used with. They are valid from this version onwards until a
description file for a newer version is required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com/systemview.html
https://www.segger.com/systemview.html


1248 CHAPTER 37 Enable profiling

37.3    Enable profiling
Profiling can be included or excluded at compile-time and enabled at run-time. When
profiling is excluded, no additional overhead in performance or memory usage is generated.
Even when profiling is enabled the overhead is minimal, due to the efficient implementation
of SystemView.

To include profiling, define IP_SUPPORT_PROFILE as 1 in the emNet configuration
(IP_Conf.h) or in the project preprocessor defines.

Per default profiling is included when the global define SUPPORT_PROFILE is set.

Profiling the end of function calls may be enabled or disabled separately with the define
IP_SUPPORT_PROFILE_END_CALL. When profiling is enabled it may be defined as 0 to disable
recording end of function calls and therefore save bandwidth.

#if defined(SUPPORT_PROFILE) && (SUPPORT_PROFILE)
  #ifndef   IP_SUPPORT_PROFILE
    #define IP_SUPPORT_PROFILE           1
  #endif
#endif

#if defined(IP_SUPPORT_PROFILE)
  #ifndef   IP_SUPPORT_PROFILE_END_CALL
    #define IP_SUPPORT_PROFILE_END_CALL  IP_SUPPORT_PROFILE
  #endif
#else
  #ifndef   IP_SUPPORT_PROFILE_END_CALL
    #define IP_SUPPORT_PROFILE_END_CALL  0
  #endif
#endif

To enable profiling at run-time, IP_SYSVIEW_Init() needs to be called. Profiling can be
enabled at any time, it is recommended to do this in the user-provided configuration
IP_X_Config():

/*********************************************************************
*
*       IP_X_Config()
*/
void IP_X_Config(void) {
  ...
#if IP_SUPPORT_PROFILE
  IP_SYSVIEW_Init();
#endif
  ...
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1249 CHAPTER 37 Recording and analyzing profiling information

37.4    Recording and analyzing profiling information
When profiling is included and enabled emNet generates profiling events. On a system
which supports RTT (i.e. ARM Cortex-M and Renesas RX) the data can be read and analyzed
with SystemView and a J-Link. Connect the J-Link to the target system using the default
debug interface and start the SystemView host application. If the system does not support
RTT, SystemView can be configured for single-shot or postmortem mode. Please refer to
the SystemView User Manual for more information.

  

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 38
 
Debugging

emNet comes with various debugging options. These includes optional warning and log
outputs, as well as other run-time options which perform checks at run time as well as
options to drop incoming or outgoing packets to test stability of the implementation on the
target system.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1251 CHAPTER 38 Message output

38.1    Message output
The debug builds of emNet include a fine grained debug system which helps to analyze the
correct implementation of the stack in your application. All modules of the TCP/IP stack
can output logging and warning messages via terminal I/O, if the specific message type
identifier is added to the log and/or warn filter mask. This approach provides the opportunity
to get and interpret only the logging and warning messages which are relevant for the part
of the stack that you want to debug.

By default, all warning messages are activated in all emNet sample configuration files. All
logging messages are disabled except for the messages from the initialization and the DHCP
setup phase.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1252 CHAPTER 38 Testing stability

38.2    Testing stability
emNet allows to define drop-rates for both receiver and transmitter. This feature can
be used to simulate packet loss. Packet loss means that one or more packets fail to
reach their destination. Packet loss can be caused by a number of factors (for example,
signal degradation over the network medium, faulty networking hardware, error in network
applications, etc.).

Two variables, IP_TxDropRate and IP_RxDropRate, are implemented to define the drop-
rate while the target is running. There is no need to recompile the stack. The default value
of these variables is 0, which means that no packets should be dropped from the stack.
Any other value of n (for example, n = 2,3, …) will drop every n-th packet. This allows
testing the reliability of communication and performance drop. A good value to test the
stability is typically around 50.

To change the value of IP_TxDropRate and/or IP_RxDropRate the following steps are
required:
1. Download your emNet application into the target.
2. Start your debugger.
3. Open the Watch window and add one or both drop-rate variables.
4. Assign the transmit and/or receive drop-rate and start your application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1253 CHAPTER 38 API functions

38.3    API functions
Function Description

IP_Log()
This function is called by the stack in
debug builds with log output.

IP_Warn()
This function is called by the stack in
debug builds with warning output.

IP_Logf_Application()
Outputs a formatted log message of type
IP_MTYPE_APPLICATION if the filter allows
it.

IP_Warnf_Application()
Outputs a formatted warn message of type
IP_MTYPE_APPLICATION if the filter allows
it.

Filter functions

IP_AddLogFilter()
Adds an additional filter condition to the
mask which specifies the logging messages
that should be displayed.

IP_RemoveLogFilter()
Removes a filter condition from the mask
which specifies the logging messages that
should be displayed.

IP_AddWarnFilter()
Adds an additional filter condition to
the mask which specifies the warning
messages that should be displayed.

IP_RemoveWarnFilter()
Removes a filter condition from the mask
which specifies the warning messages that
should be displayed.

IP_SetLogFilter()
Sets a mask that defines which logging
message should be logged.

IP_SetWarnFilter()
Sets a mask that defines which warning
messages should be logged.

IP_PrintStatus()
Prints some stats that can be used in post
mortem analysis if the stack gets locked
up for any reason.

General debug functions/macros

IP_PANIC()
Called if the stack encounters a critical
situation.

IP_Panic()
This function is called if the stack
encounters a critical situation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1254 CHAPTER 38 API functions

38.3.1    IP_Log()

Description

This function is called by the stack in debug builds with log output. In a release build, this
function may not be linked in.

Prototype

void IP_Log(const char * s);

Parameters

Parameter Description

s String to output.

Additional information

Interrupts and task switches printf() has a re-entrance problem on a lot of systems if
interrupts are not disabled. Strings to output would be scrambled if during an output from a
task an output from an interrupt would take place. In order to avoid this problem, interrupts
are disabled.

In debug builds it is possible for this function to be called from an ISR context.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1255 CHAPTER 38 API functions

38.3.2    IP_Warn()

Description

This function is called by the stack in debug builds with warning output. In a release build,
this function may not be linked in.

Prototype

void IP_Warn(const char * s);

Parameters

Parameter Description

s String to output.

Additional information

Interrupts and task switches printf() has a re-entrance problem on a lot of systems if
interrupts are not disabled. Strings to output would be scrambled if during an output from a
task an output from an interrupt would take place. In order to avoid this problem, interrupts
are disabled.

In debug builds it is possible for this function to be called from an ISR context.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1256 CHAPTER 38 API functions

38.3.3    IP_Logf_Application()

Description

Outputs a formatted log message of type IP_MTYPE_APPLICATION if the filter allows it.

Prototype

void IP_Logf_Application(const char * sFormat,
                                      ...);

Parameters

Parameter Description

sFormat String to output that might contain placeholders.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1257 CHAPTER 38 API functions

38.3.4    IP_Warnf_Application()

Description

Outputs a formatted warn message of type IP_MTYPE_APPLICATION if the filter allows it.

Prototype

void IP_Warnf_Application(const char * sFormat,
                                       ...);

Parameters

Parameter Description

sFormat String to output that might contain placeholders.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1258 CHAPTER 38 API functions

38.3.5    IP_AddLogFilter()

Description

Adds an additional filter condition to the mask which specifies the logging messages that
should be displayed.

Prototype

void IP_AddLogFilter(U32 TypeMask);

Parameters

Parameter Description

TypeMask Bitwise-OR’ed message type(s) like IP_MTYPE_INIT.

Example

IP_AddLogFilter(IP_MTYPE_DRIVER); // Activate driver logging messages

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1259 CHAPTER 38 API functions

38.3.6    IP_RemoveLogFilter()

Description

Removes a filter condition from the mask which specifies the logging messages that should
be displayed.

Prototype

void IP_RemoveLogFilter(U32 TypeMask);

Parameters

Parameter Description

TypeMask Bitwise-OR’ed message type(s) like IP_MTYPE_INIT.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1260 CHAPTER 38 API functions

38.3.7    IP_AddWarnFilter()

Description

Adds an additional filter condition to the mask which specifies the warning messages that
should be displayed.

Prototype

void IP_AddWarnFilter(U32 TypeMask);

Parameters

Parameter Description

TypeMask Bitwise-OR’d message type(s) like IP_MTYPE_INIT.

Example

IP_AddWarnFilter(IP_MTYPE_DRIVER); // Activate driver warning messages

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1261 CHAPTER 38 API functions

38.3.8    IP_RemoveWarnFilter()

Description

Removes a filter condition from the mask which specifies the warning messages that should
be displayed.

Prototype

void IP_RemoveWarnFilter(U32 TypeMask);

Parameters

Parameter Description

TypeMask Bitwise-OR’d message type(s) like IP_MTYPE_INIT.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1262 CHAPTER 38 API functions

38.3.9    IP_SetLogFilter()

Description

Sets a mask that defines which logging message should be logged. Logging messages are
only available in debug builds of the stack.

Prototype

void IP_SetLogFilter(U32 TypeMask);

Parameters

Parameter Description

TypeMask Bitwise-OR’d message type(s) like IP_MTYPE_INIT.

Additional information

This function should be called from IP_X_Config(). By default, the filter condition
IP_MTYPE_INIT, IP_MTYPE_DHCP and IP_MTYPE_LINK_CHANGE are set.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1263 CHAPTER 38 API functions

38.3.10    IP_SetWarnFilter()

Description

Sets a mask that defines which warning messages should be logged. Warning messages
are only available in debug builds of the stack.

Prototype

void IP_SetWarnFilter(U32 TypeMask);

Parameters

Parameter Description

TypeMask Bitwise-OR’d message type(s) like IP_MTYPE_INIT.

Additional information

This function should be called from IP_X_Config(). By default, all filter conditions are set.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1264 CHAPTER 38 API functions

38.3.11    IP_PrintStatus()

Description

Prints some stats that can be used in post mortem analysis if the stack gets locked up for
any reason. A typical case is a packet loss in the system. To make it easier for customers
to create a report about the status once this happens, they can call this function to output
some counters that we would typically ask them about.

Prototype

void IP_PrintStatus(void);
   

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1265 CHAPTER 38 API functions

38.3.12    IP_PANIC()

Description

This macro is called by the stack code when it detects a situation that should not be
occurring and the stack can not continue. The intention for the IP_PANIC() macro is to
invoke whatever debugger may be in use by the programmer. In this way, it acts like an
embedded breakpoint.

Prototype

IP_PANIC ( const char * sError );

Additional information

This macro maps to a function in debug builds only. If IP_DEBUG > 0, the macro maps
to the stack internal function void IP_Panic ( const char * sError ). IP_Panic()
disables all interrupts to avoid further task switches, outputs sError via terminal I/O and
loops forever. When using an emulator, you should set a breakpoint at the beginning of
this routine or simply stop the program after a failure. The error code is passed to the
function as parameter.

In a release build, this macro is defined empty, so that no additional code will be included
by the linker.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1266 CHAPTER 38 API functions

38.3.13    IP_Panic()

Description

This function is called if the stack encounters a critical situation. In a release build, this
function may not be linked in.

Prototype

void IP_Panic(const char * s);

Parameters

Parameter Description

s String to output.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1267 CHAPTER 38 Message types

38.4    Message types
The same message types are used for log and warning messages. Separate filters can
be used for both log and warnings. For details, refer to IP_SetLogFilter on page 1262
and IP_SetWarnFilter on page 1263 as wells as IP_AddLogFilter on page 1258 and
IP_AddLogFilter on page 1258 for more information about using the message types.

Symbolic name Description

IP_MTYPE_INIT
Activates output of messages from the initialization of the
stack that should be logged.

IP_MTYPE_CORE
Activates output of messages from the core of the stack that
should be logged.

IP_MTYPE_ALLOC
Activates output of messages from the memory allocating
module of the stack that should be logged.

IP_MTYPE_DRIVER
Activates output of messages from the driver that should be
logged.

IP_MTYPE_ARP
Activates output of messages from ARP module that should
be logged.

IP_MTYPE_IP
Activates output of messages from IP module that should be
logged.

IP_MTYPE_TCP_CLOSE
Activates output of messages from TCP module that should
be logged when a TCP connection gets closed.

IP_MTYPE_TCP_OPEN
Activates output of messages from TCP module that should
be logged when a TCP connection gets opened.

IP_MTYPE_TCP_IN
Activates output of messages from TCP module that should
be logged if a TCP packet is received.

IP_MTYPE_TCP_OUT
Activates output of messages from TCP module that should
be logged if a TCP packet is sent.

IP_MTYPE_TCP_RTT
Activates output of messages from TCP module regarding
TCP roundtrip time.

IP_MTYPE_TCP_RXWIN
Activates output of messages from TCP module regarding
peer TCP Rx window size.

IP_MTYPE_TCP
Activates output of messages from TCP that module should
be logged.

IP_MTYPE_UDP_IN
Activates output of messages from UDP module that should
be logged when a UDP packet is received.

IP_MTYPE_UDP_OUT
Activates output of messages from UDP module that should
be logged if a UDP packet is sent.

IP_MTYPE_UDP
Activates output of messages from UDP module that should
be logged if a UDP packet is sent or received.

IP_MTYPE_LINK_CHANGE
Activates output of messages regarding to the link change
process.

IP_MTYPE_AUTOIP
Activates output of from the AutoIP module that should be
logged.

IP_MTYPE_DHCP
Activates output of messages from DHCP client module that
should be logged.

IP_MTYPE_DHCP_EXT
Activates output of optional messages from DHCP client
module that should be logged.

IP_MTYPE_APPLICATION
Activates output of messages from user application related
modules that should be logged.

IP_MTYPE_ICMP
Activates output of messages from the ICMP module that
should be logged.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1268 CHAPTER 38 Message types

Symbolic name Description

IP_MTYPE_NET_IN
Activates output of messages from NET_IN module that
should be logged.

IP_MTYPE_NET_OUT
Activates output of messages from NET_OUT module that
should be logged.

IP_MTYPE_PPP
Activates output of messages from PPP modules that should
be logged.

IP_MTYPE_SOCKET_STATE
Activates output of messages from socket module that
should be logged when state has been changed.

IP_MTYPE_SOCKET_READ
Activates output of messages from socket module that
should be logged if a socket is used to read data.

IP_MTYPE_SOCKET_WRITE
Activates output of messages from socket module that
should be logged if a socket is used to write data

IP_MTYPE_SOCKET Activates all socket related output messages.

IP_MTYPE_DNSC
Activates output of messages from DNS client module that
should be logged.

IP_MTYPE_ACD
Activates output of messages from address conflict module
that should be logged.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1269 CHAPTER 38 Using a network sniffer to analyze communication
problems

38.5    Using a network sniffer to analyze
communication problems

Using a network sniffer to analyze your local network traffic may give you a deeper
understanding of the data that is being sent in your network. For this purpose you can
use several network sniffers. Some of them are available for free such as Wireshark. An
example of a network sniff using Wireshark is shown in the screenshot below:

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 39
 
OS integration

emNet is designed to be used in a multitasking environment. The interface to the operating
system is encapsulated in a single file, the IP/OS interface. For embOS, all functions
required for this IP/OS interface are implemented in a single file which comes with emNet.

This chapter provides descriptions of the functions required to fully support emNet in
multitasking environments.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1271 CHAPTER 39 OS integration general information

39.1    OS integration general information
The complexity of the IP/OS Interface depends on the task model selected. Refer to Tasks
and interrupt usage on page 48 for detailed informations about the different task models.
All OS interface functions for embOS are implemented in IP_OS_embOS.c which can be
found in the sample folder of the shipment.

The IP/OS interface and its functions are not meant to be used in an application. Their
purpose is to provide an OS interface for emNet and calling them from an application might
confuse the internal mechanics of emNet.

To adapt emNet to a new RTOS one only has to map the functions listed below to the native
OS functions. SEGGER took great care when designing this abstraction layer, to make it
easy to under- stand and to adapt to different operating systems. The target RTOS should
at least have the following features:
• Events (Create, Delete, Set, Signal, Wait-for, Wait-for-with-timeout, Reset)
• Recursive (= reentrant) Mutex (Create, Delete, Use, Unuse)
• Timebase with millisecond precision
• Critical sections
• Task priorities and preemptive multitasking
• Disable/Enable interrupt functions, “IsInInterrupt” function

Function Description

General macros

IP_OS_Delay() Blocks the calling task for a given time.

IP_OS_DisableInterrupt()
Disables interrupts to lock against calls from
interrupt routines.

IP_OS_EnableInterrupt()
Enables interrupts that have previously been
disabled.

IP_OS_GetTime32()
Return the current system time in ms; The value
will wrap around after approximately 49.7 days;
This is taken into account by the stack.

IP_OS_Init()
Initialize (create) all objects required for task
synchronization.

IP_OS_Lock()
The stack requires a single lock, typically a resource
semaphore or mutex.

IP_OS_Unlock()
Unlocks the single lock, locked by a previous call
to IP_OS_Lock() and signals the IP_Task() if a
packet has been freed.

IP_Task synchronization

IP_OS_SignalNetEvent()
Wakes the IP_Task if it is waiting for
a NET-event or timeout in the function
IP_OS_WaitNetEventTimed().

IP_OS_WaitNetEventTimed()
Called from IP_Task() only or alternatively
IP_TASK_WaitForEvent().

IP_RxTask synchronization

IP_OS_SignalRxEvent()

IP_OS_WaitRxEventTimed()
Called whenever the RxTask handling is idle (no
more packets in the In-FIFO).

IP DriverTask (DTask) synchronization

IP_OS_SignalDTaskEvent()
Called by an interrupt from an external module to
signal that an events needs to be handled by the
DTask.

IP_OS_WaitDTaskEventTimed()
Called whenever the DTask handling is idle (no
more events to handle).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1272 CHAPTER 39 OS integration general information

Function Description

Application task synchronization

IP_OS_WaitItemTimed()
Suspend a task which needs to wait for a object;
This object is identified by a pointer to it and can be
of any type, for example a socket.

IP_OS_SignalItem()
Sets an object to signaled state, or resumes tasks
which are waiting at the event object.

39.1.1    Examples

OS interface routine for embOS

All OS interface routines are implemented in IP_OS_embOS.c which is located in the Sample
\IP\OS\ folder of the IP stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1273 CHAPTER 39 OS integration general information

39.1.2    IP_OS_Delay()

Description

Blocks the calling task for a given time.

Prototype

void IP_OS_Delay(unsigned ms);

Parameters

Parameter Description

ms Time to block in system ticks (typically 1ms).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1274 CHAPTER 39 OS integration general information

39.1.3    IP_OS_DisableInterrupt()

Description

Disables interrupts to lock against calls from interrupt routines.

Prototype

void IP_OS_DisableInterrupt(void);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1275 CHAPTER 39 OS integration general information

39.1.4    IP_OS_EnableInterrupt()

Description

Enables interrupts that have previously been disabled.

Prototype

void IP_OS_EnableInterrupt(void);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1276 CHAPTER 39 OS integration general information

39.1.5    IP_OS_GetTime32()

Description

Return the current system time in ms; The value will wrap around after approximately 49.7
days; This is taken into account by the stack.

Prototype

U32 IP_OS_GetTime32(void);

Return value

U32 timestamp in system ticks (typically 1ms).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1277 CHAPTER 39 OS integration general information

39.1.6    IP_OS_Init()

Description

Initialize (create) all objects required for task synchronization. These are 3 events (for
IP_Task, IP_RxTask and DriverTask) and one semaphore for protection of critical code
which may not be executed from multiple tasks at the same time.

Prototype

IP_OS_API *IP_OS_Init(void);

Return value

Pointer to the IP_OS API table.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1278 CHAPTER 39 OS integration general information

39.1.7    IP_OS_Lock()

Description

The stack requires a single lock, typically a resource semaphore or mutex. This function
locks this object, guarding sections of the stack code against other threads.

Prototype

void IP_OS_Lock(void);

Additional information

If the entire stack executes from a single task (super loop), no functionality is required here.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1279 CHAPTER 39 OS integration general information

39.1.8    IP_OS_Unlock()

Description

Unlocks the single lock, locked by a previous call to IP_OS_Lock() and signals the
IP_Task() if a packet has been freed.

Prototype

void IP_OS_Unlock(void);

Additional information

If the entire stack executes from a single task (super loop), no functionality is required here.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1280 CHAPTER 39 OS integration general information

39.1.9    IP_OS_SignalNetEvent()

Description

Wakes the IP_Task if it is waiting for a NET-event or timeout in the function
IP_OS_WaitNetEventTimed().

Prototype

void IP_OS_SignalNetEvent(void);

Additional information

If the entire stack executes from a single task (super loop), no functionality is required here.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1281 CHAPTER 39 OS integration general information

39.1.10    IP_OS_WaitNetEventTimed()

Description

Called from IP_Task() only or alternatively IP_TASK_WaitForEvent() . Blocks until the
timeout expires or a NET-event occurs, meaning IP_OS_SignalNetEvent() is called from
an other task or ISR.

Prototype

unsigned IP_OS_WaitNetEventTimed(unsigned Timeout);

Parameters

Parameter Description

Timeout
Time [ms] to wait for an event to be signaled. 0 means
infinite wait.

Return value

= 0 An event was signaled.
≠ 0 Timeout.

Additional information

If the entire stack executes from a single task (super loop), no functionality is required here.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1282 CHAPTER 39 OS integration general information

39.1.11    IP_OS_SignalRxEvent()

Prototype

void IP_OS_SignalRxEvent(void);

Additional information

If the entire stack executes from a single task (super loop), no functionality is required here.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1283 CHAPTER 39 OS integration general information

39.1.12    IP_OS_WaitDTaskEventTimed()

Description

Called whenever the DTask handling is idle (no more events to handle).

Prototype

unsigned IP_OS_WaitDTaskEventTimed(unsigned Timeout);

Parameters

Parameter Description

Timeout
Time [ms] to wait for an event to be signaled. 0 means
infinite wait.

Return value

= 0 An event was signaled.
≠ 0 Timeout.

Additional information

If the entire stack executes from a single task (super loop), no functionality is required here.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1284 CHAPTER 39 OS integration general information

39.1.13    IP_OS_SignalDTaskEvent()

Description

Called by an interrupt from an external module to signal that an events needs to be handled
by the DTask.

Prototype

void IP_OS_SignalDTaskEvent(void);

Additional information

If the entire stack executes from a single task (super loop), no functionality is required here.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1285 CHAPTER 39 OS integration general information

39.1.14    IP_OS_WaitRxEventTimed()

Description

Called whenever the RxTask handling is idle (no more packets in the In-FIFO).

Prototype

unsigned IP_OS_WaitRxEventTimed(unsigned Timeout);

Parameters

Parameter Description

Timeout
Time [ms] to wait for an event to be signaled. 0 means
infinite wait.

Return value

= 0 An event was signaled.
≠ 0 Timeout.

Additional information

If the entire stack executes from a single task (super loop), no functionality is required here.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1286 CHAPTER 39 OS integration general information

39.1.15    IP_OS_WaitItemTimed()

Description

Suspend a task which needs to wait for a object; This object is identified by a pointer to
it and can be of any type, for example a socket.

Prototype

unsigned IP_OS_WaitItemTimed(void     * pWaitItem,
                             unsigned   Timeout);

Parameters

Parameter Description

pWaitItem Item to wait for.

Timeout
Time [ms] to wait for an event to be signaled. 0 means
infinite wait.

Return value

= 0 An event was signaled.
≠ 0 Timeout.

Additional information

Function is called from an application task and is locked in every case.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1287 CHAPTER 39 OS integration general information

39.1.16    IP_OS_SignalItem()

Description

Sets an object to signaled state, or resumes tasks which are waiting at the event object.

Prototype

void IP_OS_SignalItem(void * pWaitItem);

Parameters

Parameter Description

pWaitItem Item to signal.

Additional information

Function is called from a task, not an ISR and is locked in every case.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 40
 
Knowledge Base

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1289 CHAPTER 40 Window Scaling

40.1    Window Scaling
The emNet Stack supports TCP Window Scaling. Window Scaling is an option used to
increase the maximum window size from 65535 Bytes to 1 Gigabyte. It is very useful to
improve network performance, especially in high-latency networks.

In TCP terms, this means that not every packet has to be ACKed anymore, but instead
there can be one ACK for multiple packets at once.

When IP_ConfigTCPSpace() is called with a RecvSpace > 64k, TCP will make use of the
Window Scaling Factor in the TCP Header to be able to work with large TCP Windows.

In short, it is possible to convey a 30bit window size value with the 16bit window
size field in the TCP Header and an additional TCP Option. The RecvSpace value from
IP_ConfigTCPSpace() will be right-shifted to fit the 16bit Receive Window field, with the
shift value being used as the Window Scaling Factor. This way, if the other side also supports
TCP Window Scaling, it can restore the Window Size and can adapt accordingly.

It needs to be noted that increasing the window size requires a larger stack size and thus
more memory.

The following table shows how Window Scaling can increase the throughput in non-
optimal conditions. The tests were done with a typical payload of 1460 Bytes. The delay
simulates network latency and would be comparable to the Round-trip time in a network.
The throughput collapses quickly with a rising delay, but can be improved drastically by
increasing the Receive Window Size.

window size delay = 0ms delay = 100 ms delay = 200ms delay = 400 ms

3 * 1460 4670 kB/s 29 kB/s 17 kB/s -
10 * 1460 11500 kB/s 422 kB/s 212 kB/s 35 kB/s
50 * 1460 11500 kB/s 699 kB/s 351 kB/s 174 kB/s
100 * 1460 11500 kB/s 1386 kB/s 699 kB/s 467 kB/s
400 * 1460 11500 kB/s 2670 kB/s 1351 kB/s 904 kB/s

* Measured with the IP_SpeedClient_TCP.c Sample on an i.MX RT1052 and the
SpeedTestServer.exe on a Windows PC.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 41
 
Performance & resource usage

This chapter covers the performance and resource usage of emNet. It contains information
about the memory requirements in typical systems which can be used to obtain sufficient
estimates for most target systems.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1291 CHAPTER 41 emNet Memory footprint

41.1    emNet Memory footprint
emNet is designed to fit many kinds of embedded design requirements. Several features
can be excluded from a build to get a minimal system. Note that the values are only valid
for the given configurations.

41.1.1    emNet on ARM7 system
The following table shows the hardware and the toolchain details of the project:

Detail Description

CPU ARM7
Tool chain IAR Embedded Workbench for ARM V6.30.6
Model ARM7, Thumb instructions; no interwork;
Compiler
options Highest size optimization;

41.1.1.1    ROM usage ARM7
The following table shows the ROM requirement of emNet:

Description ROM

emNet - complete stack approximately 19.0 kBytes

41.1.1.2    RAM usage ARM7
The following table shows the RAM requirement of emNet:

Description RAM

emNet - complete stack w/o buffers approximately 1.5 kBytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1292 CHAPTER 41 emNet Memory footprint

41.1.2    emNet on Cortex-M3 system
The following table shows the hardware and the toolchain details of the project:

Detail Description

CPU Cortex-M3
Tool chain IAR Embedded Workbench for ARM V6.30.6
Model Cortex-M3
Compiler
options Highest size optimization;

41.1.2.1    ROM usage Cortex-M3
The following table shows the ROM requirement of emNet:

Description ROM

emNet - complete stack approximately 19.0 kBytes

The memory requirements of a interface driver is about 1.5 - 2.0Kbytes.

41.1.2.2    RAM usage Cortex-M3
The following table shows the RAM requirement of emNet:

Description RAM

emNet - complete stack w/o buffers approximately 1.5 kBytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1293 CHAPTER 41 emNet performance

41.2    emNet performance

41.2.1    Performance on ARM7 system

Detail Description

CPU ARM7 with integrated MAC running with 48Mhz
Tool chain IAR Embedded Workbench for ARM V6.30.6
Model ARM7, Thumb instructions; no interwork;
Compiler
options Highest speed optimization;

Memory configuration

#define ALLOC_SIZE  0xD000
IP_AddBuffers(12, 256);
IP_AddBuffers(18, mtu + 16);
IP_ConfTCPSpace(8 * (mtu-40), 8 * (mtu-40));

Driver configuration

#define NUM_RX_BUFFERS   (2 * 12 + 1)

Measurements

The following table shows the send and receive speed of emNet:

Description
Speed [Mbytes

per second]

TCP - socket interface

Send speed approximately 9.0
Receive speed approximately 7.5

TCP - zero-copy interface

Send speed approximately 9.0
Receive speed approximately 11.7

The performance of any network will depend on several considerations, including the length
of the cabling, the size of packets, and the amount of traffic.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1294 CHAPTER 41 emNet performance

41.2.2    Performance on Cortex-M3 system

Detail Description

CPU Cortex-M3 with integrated MAC running with 96Mhz
Tool chain IAR Embedded Workbench for ARM V6.30.6
Model Cortex-M3
Compiler
options Highest speed optimization;

Memory configuration

#define ALLOC_SIZE  0x10000
IP_AddBuffers(12, 256);
IP_AddBuffers(12, mtu + 16);
IP_ConfTCPSpace(9 * (mtu-40), 9 * (mtu-40));

Driver configuration

#define NUM_RX_BUFFERS      (36)
#define BUFFER_SIZE         (256)

Measurements

The following table shows the send and receive speed of emNet:

Description
Speed [MBytes

per second]

TCP - socket interface

Send speed approximately 9.4
Receive speed approximately 11.7

TCP - zero-copy interface

Send speed approximately 9.4
Receive speed approximately 11.8

The performance of any network will depend on several considerations, including the length
of the cabling, the size of packets, and the amount of traffic.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 42
 
Appendix A - File system
abstraction layer

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1296 CHAPTER 42 File system abstraction layer

42.1    File system abstraction layer
This section provides a description of the file system abstraction layer used by emNet
applications which require access to a data storage medium. The file system abstraction
layer is supplied with the emNet web server and the emNet FTP server.

Three file system abstraction layer implementations are available:

File name Description

IP_FS_emFile.c
Mapping of the emNet file system
abstraction layer functions to emFile
functions.

IP_FS_ReadOnly.c
Implementation of a read-only file system.
Typically used in a web server application.

IP_FS_Linux.c
Mapping of the emNet file system
abstraction layer functions to Linux file I/O
functions.

IP_FS_Win32.c
Mapping of the emNet file system
abstraction layer functions to Windows file
I/O functions.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1297 CHAPTER 42 File system abstraction layer function table

42.2    File system abstraction layer function table
emNet uses a function table to call the appropriate file system function.

Data structure

typedef struct {
  //
  // Read only file operations. These have to be present on ANY file system,
  // even the simplest one.
  //
  void * (*pfOpenFile)   ( const char * sFilename,
                           const char * sOpenFlags );
  int    (*pfCloseFile)  (       void * hFile );
  int    (*pfReadAt)     (       void * hFile,
                                 void * pBuffer,
                                 U32    Pos,
                                 U32    NumBytes );
  long   (*pfGetLen)     (       void * hFile );
  //
  // Directory query operations.
  //
  void   (*pfForEachDirEntry)       (       void * pContext,
                                      const char * sDir,
                                            void (*pf) (void * pContext,
                                                        void * pFileEntry));
  void   (*pfGetDirEntryFileName)   (       void * pFileEntry,
                                            char * sFileName,
                                            U32    SizeOfBuffer );
  U32    (*pfGetDirEntryFileSize)   (       void * pFileEntry,
                                            U32  * pFileSizeHigh );
  int    (*pfGetDirEntryFileTime)   (       void * pFileEntry );
  U32    (*pfGetDirEntryAttributes) (       void * pFileEntry );
  //
  // Write file operations.
  //
  void * (*pfCreate)     ( const char * sFileName );
  void * (*pfDeleteFile) ( const char * sFilename );
  int    (*pfRenameFile) ( const char * sOldFilename,
                           const char * sNewFilename );
  int    (*pfWriteAt)    ( void       * hFile,
                           void       * pBuffer,
                           U32          Pos,
                           U32          NumBytes );
  //
  // Additional directory operations
  //
  int    (*pfMKDir)      (const char * sDirName);
  int    (*pfRMDir)      (const char * sDirName);
  //
  // Additional operations
  //
  int    (*pfIsFolder)   (const char * sPath);
  int    (*pfMove)       (const char * sOldFilename,
                          const char * sNewFilename);
  int    (*pfForEachDirEntryEx)     (       void * pContext,
                                      const char * sDir,
                                            void (*pf) (void * pContext,
                                                        void * pFileEntry));
} IP_FS_API;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1298 CHAPTER 42 File system abstraction layer function table

Elements of IP_FS_API

Function Description

Read only file system functions (required)

pfOpenFile
Pointer to a function that creates/opens a
file and returns the handle of these file.

pfCloseFile Pointer to a function that closes a file.
pfReadAt Pointer to a function that reads a file.

pfGetLen
Pointer to a function that returns the
length of a file.

Directory query operations

pfForEachDirEntry
Pointer to a function which is called
for each directory entry. Obsolete. Use
pfForEachDirEntryEx instead.

pfGetDirEntryFileName
Pointer to a function that returns the name
of a file entry.

pfGetDirEntryFileSize
Pointer to a function that returns the size
of a file.

pfGetDirEntryFileTime
Pointer to a function that returns the
timestamp of a file.

pfGetDirEntryAttributes
Pointer to a function that returns the
attributes of a directory entry.

Write file operations

pfCreate Pointer to a function that creates a file.
pfDeleteFile Pointer to a function that deletes a file.
pfRenameFile Pointer to a function that renames a file.
pfWriteAt Pointer to a function that writes a file.

Additional directory operations (optional)

pfMKDir
Pointer to a function that creates a
directory.

pfRMDir
Pointer to a function that deletes a
directory.

Additional operations (optional)

pfIsFolder
Pointer to a function that checks if a path
is a folder.

pfMove
Pointer to a function that moves a file or
directory.

pfForEachDirEntryEx
Pointer to a function which is called for
each directory entry.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1299 CHAPTER 42 File system abstraction layer function table

42.2.1    emFile interface
The emNet web server and FTP server are shipped with an interface to emFile, SEGGER’s
file system for embedded applications. It is a good example how to use a real file system
with the emNet web server / FTP server.

/* Excerpt from IP_FS_FS.c */

const IP_FS_API IP_FS_FS = {
  //
  // Read only file operations.
  //
  _FS_Open,
  _Close,
  _ReadAt,
  _GetLen,
  //
  // Simple directory operations.
  //
  _ForEachDirEntry_Obsolete
  _GetDirEntryFileName,
  _GetDirEntryFileSize,
  _GetDirEntryFileTime,
  _GetDirEntryAttributes,
  //
  // Simple write type file operations.
  //
  _Create,
  _DeleteFile,
  _RenameFile,
  _WriteAt,
  //
  // Additional directory operations
  //
  _MKDir,
  _RMDir,
  //
  // Additional operations
  //
  _IsFolder,
  _Move,
  _ForEachDirEntry
};

The emFile interface is used in all SEGGER Eval Packages.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1300 CHAPTER 42 File system abstraction layer function table

42.2.2    Read-only file system
The emNet web server and FTP server are shipped with a very basic implementation of
a read-only file system. It is a good solution if you use emNet without a real file system
like emFile.

/* Excerpt from FS_RO.c */

const IP_WEBS_FS_API IP_FS_ReadOnly = {
  //
  // Read only file operations.
  //
  _FS_RO_FS_Open,
  _FS_RO_Close,
  _FS_RO_ReadAt,
  _FS_RO_GetLen,
  //
  // Simple directory operations.
  //
  NULL,
  NULL,
  NULL,
  NULL,
  NULL,
  //
  // Simple write type file operations.
  //
  NULL,
  NULL,
  NULL,
  NULL,
  //
  // Additional directory operations
  //
  NULL,
  NULL,
  //
  // Additional operations
  //
  NULL,
  NULL,
  NULL
};

The read-only file system can be used in the example applications. It is sufficient, if the
server should only deliver predefined files which are hardcoded in the sources of your
application. It is used by default with the emNet Web server example application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1301 CHAPTER 42 File system abstraction layer function table

42.2.3    Using the read-only file system
The read-only file system relies on an array of directory entries. A directory entry consists
of a file name, a pointer to the data and an entry for the file size in bytes. This array of
directory entries will be searched if a client requests a page.

/* Excerpt from IP_FS.h */
typedef struct {
  const          char* sPath;
  const unsigned char* pData;
  unsigned int   FileSize;
} IP_FS_READ_ONLY_FILE_ENTRY;

/* Excerpt from IP_FS_ReadOnly.c */

#include "BGround.h"                  
  // png page, required for every sample page
#include "favicon.h"                  
  // ico file, required for every sample page
#include "Error404.h"                   // HTML page
<...>

static const IP_FS_READ_ONLY_FILE_ENTRY _aFile[] = {
  /* file name      file array     current size  */
  /* ---------      ----------     ------------  */
  { "/Error404.htm",error404_file, ERROR404_SIZE },
  { "/favicon.ico", favicon_file,  FAVICON_SIZE  },
  { "/BGround.png", bground_file,  BGROUND_SIZE  },
  <...>
};

The example source files can easily be replaced. To build new contents for the readonly file
system the following steps are required:
1. Copy the file which should be included in the read-only file system into the folder: IP

\IP_FS\FS_RO\html\
2. Run GenFiles.py. The new files are created in the folder:

    IP_FS_RO

4. Add the new source code file (for example, example.c) into your project. To add
the new file to your read-only file system, you have to add the new file to the
IP_FS_READ_ONLY_FILE_ENTRY array _aFile[] and include the generated header file
(for example, example.h) in IP_FS_ReadOnly.c.
The expanded definition of _aFile[] should look like:

    #include "BGround.h"    // png page, required for every sample page
    #include "favicon.h"    // ico file, required for every sample page
    #include "Error404.h"   // HTML page
    #include "example.h"    /* NEW HTML page */

    static const IP_FS_READ_ONLY_FILE_ENTRY _aFile[] = {
      /* file name      file array     current size  */
      /* ---------      ----------     ------------  */
      { "/Error404.htm",error404_file, ERROR404_SIZE },
      { "/favicon.ico", favicon_file,  FAVICON_SIZE  },
      { "/BGround.png", bground_file,  BGROUND_SIZE  },
      { "/example.htm", example_file, EXAMPLE_SIZE },
      <...>
    };

5. Recompile your application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1302 CHAPTER 42 File system abstraction layer function table

42.2.4    Windows file system interface
The emNet web server and FTP server is shipped with an implementation.

const IP_FS_API IP_FS_Win32 = {
  //
  // Read only file operations.
  //
  _IP_FS_WIN32_Open,
  _IP_FS_WIN32_Close,
  _IP_FS_WIN32_ReadAt,
  _IP_FS_WIN32_GetLen,
  //
  // Simple directory operations.
  //
  NULL,
  _IP_FS_WIN32_GetDirEntryFileName,
  _IP_FS_WIN32_GetDirEntryFileSize,
  _IP_FS_WIN32_GetDirEntryFileTime,
  _IP_FS_WIN32_GetDirEntryAttributes,
  //
  // Simple write type file operations.
  //
  _IP_FS_WIN32_Create,
  _IP_FS_WIN32_DeleteFile,
  _IP_FS_WIN32_RenameFile,
  _IP_FS_WIN32_WriteAt,
  //
  // Additional directory operations
  //
  _IP_FS_WIN32_MakeDir,
  _IP_FS_WIN32_RemoveDir
  //
  // Additional operations
  //
  _IP_FS_WIN32_IsFolder,
  _IP_FS_WIN32_Move,
  _IP_FS_WIN32_ForEachDirEntry
};

The Windows file system interface is supplied with the FTP and the Web server add-on
packages. It is used by default with the emNet FTP server application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



Chapter 43
 
Support

This chapter should help if any problem occurs, e.g. with the hardware or the use of the
emNet functions, and describes how to contact the emNet support.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1304 CHAPTER 43 Contacting support

43.1    Contacting support
If you are a registered emNet user and you need to contact the emNet support, please send
the following information via email to ticket_emnet@segger.com:
• The emNet version.
• Your emNet registration number.
• If you are unsure about the above information, you may also use the name of the emNet

ZIP-file (which contains the above information).
• The configuration files IP_Config_*.c and IP_Conf.h
• A detailed description of the problem.
• Optionally, a project with which we can reproduce the problem.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

mailto:ticket_emnet@segger.com


Chapter 44
 
Glossary

Term Definition

ARP Address Resolution Protocol.

CPU Central Processing Unit. The “brain” of a microcontroller; the part
of a processor that carries out instructions.

DHCP Dynamic Host Configuration Protocol.
DNS Domain Name System.
EOT End Of Transmission.
FIFO First-In, First-Out.
FTP File Transfer Protocol.
HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol.
ICMP Internet Control Message Protocol.
IP Internet Protocol.

ISR
Interrupt Service Routine. The routine is called automatically by
the processor when an interrupt is acknowledged. ISRs must
preserve the entire context of a task (all registers).

LAN Local Area Network.
MAC Media Access Control.
NIC Network Interface Card.
PPP Point-to-Point Protocol.
RFC Request For Comments.
RIP Routing Information Protocol.
RTOS Real-time Operating System.

Scheduler
The program section of an RTOS that selects the active task,
based on which tasks are ready to run, their relative priorities,
and the scheduling system being used.

SLIP Serial Line Internet Protocol.
SMTP Simple Mail Transfer Protocol.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH



1306 CHAPTER 44

Term Definition

Stack

An area of memory with LIFO storage of parameters, automatic
variables, return addresses, and other information that needs
to be maintained across function calls. In multitasking systems,
each task normally has its own stack.

Superloop A program that runs in an infinite loop and uses no real-time
kernel. ISRs are used for real-time parts of the software.

Task A program running on a processor. A multitasking system allows
multiple tasks to execute independently from one another.

TCP Transmission Control Protocol.
TFTP Trivial File Transfer Protocol.
Tick The OS timer interrupt. Usually equals 1 ms.
UDP User Datagram Protocol.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH


	About this document
	Table of contents
	Introduction to emNet
	What is emNet
	Features
	Basic concepts
	emNet structure
	Encapsulation

	Tasks and interrupt usage
	Background information
	Components of an Ethernet system
	MII / RMII / GMII / RGMII: Interface between MAC and PHY


	Further reading
	Request for Comments (RFC)
	Related books

	Development environment (compiler)

	Running emNet on target hardware
	Step 1: Open an embOS start project
	Step 2: Adding emNet to the start project
	Step 3: Build the project and test it

	Example applications
	Overview
	emNet DNS client (IP_DNSClient.c)
	emNet non-blocking connect (IP_NonBlockingConnect.c)
	emNet ping (IP_Ping.c)
	emNet simple server (IP_SimpleServer.c)
	emNet speed client (IP_SpeedClient_TCP.c)
	Running the emNet speed client

	emNet start (IP_Start.c)
	emNet UDP discover (IP_UDPDiscover.c / IP_UDPDiscover_ZeroCopy.c)


	Core functions
	API functions
	Configuration functions
	IP_AddBuffers()
	IP_AddEtherInterface()
	IP_AddVirtEtherInterface()
	IP_AddLoopbackInterface()
	IP_AddMemory()
	IP_AllowBackPressure()
	IP_AssignMemory()
	IP_ARP_ConfigAgeout()
	IP_ARP_ConfigAgeoutNoReply()
	IP_ARP_ConfigAgeoutSniff()
	IP_ARP_ConfigAllowGratuitousARP()
	IP_ARP_ConfigAnnounceStaticIP()
	IP_ARP_ConfigMaxPending()
	IP_ARP_ConfigMaxRetries()
	IP_ARP_ConfigNumEntries()
	IP_ARP_SendGratuitousARP()
	IP_BSP_SetAPI()
	IP_ConfigDoNotAddLowLevelChecks_ARP()
	IP_ConfigDoNotAddLowLevelChecks_UDP()
	IP_ConfigMaxIFaces()
	IP_ConfigNumLinkDownProbes()
	IP_ConfigNumLinkUpProbes()
	IP_ConfigOffCached2Uncached()
	IP_ConfigReportSameMacOnNet()
	IP_ConfigTCPSpace()
	IP_DisableIPRxChecksum()
	IP_DisableIPv4()
	IP_CACHE_SetConfig()
	IP_DNS_GetServer()
	IP_DNS_GetServerEx()
	IP_DNS_ResolveHostEx()
	IP_DNS_SendDynUpdate()
	IP_DNS_SetTSIGContext()
	IP_DNS_SetMaxTTL()
	IP_DNS_SetServer()
	IP_DNS_SetServerEx()
	IP_MDNS_ResolveHost()
	IP_MDNS_ResolveHostSingleIP()
	IP_EnableIPRxChecksum()
	IP_GetMaxAvailPacketSize()
	IP_GetMemPoolInfo()
	IP_GetMTU()
	IP_GetPrimaryIFace()
	IP_ICMP_Add()
	IP_ICMP_DisableRxChecksum()
	IP_ICMP_EnableRxChecksum()
	IP_IGMP_Add()
	IP_IGMP_AddEx()
	IP_IGMP_ConfigV2AlwaysReport()
	IP_IGMP_JoinGroup()
	IP_IGMP_JoinGroup_AutoRejoin()
	IP_IGMP_LeaveGroup()
	IP_RAW_Add()
	IP_SetAddrMask()
	IP_SetAddrMaskEx()
	IP_SetGWAddr()
	IP_SetHWAddr()
	IP_SetHWAddrEx()
	IP_SetMTU()
	IP_SetRandCallback()
	IP_SetOnIFaceSelectCallback()
	IP_SetPrimaryIFace()
	IP_SetSupportedDuplexModes()
	IP_SetTTL()
	IP_SetGlobalMcTTL()
	IP_SetLocalMcTTL()
	IP_SetUseRxTask()
	IP_SOCKET_ConfigSelectMultiplicator()
	IP_SOCKET_SetDefaultOptions()
	IP_SOCKET_SetLimit()
	IP_SYSVIEW_Init()
	IP_TCP_Add()
	IP_TCP_DisableRxChecksum()
	IP_TCP_EnableRxChecksum()
	IP_TCP_Set2MSLDelay()
	IP_TCP_SetConnKeepaliveOpt()
	IP_TCP_SetRetransDelayRange()
	IP_UDP_Add()
	IP_UDP_AddEchoServer()
	IP_UDP_DisableRxChecksum()
	IP_UDP_EnableRxChecksum()

	Configuration functions (IP fragmentation)
	IP_FRAGMENT_ConfigRx()
	IP_FRAGMENT_Enable()
	IP_IPV6_FRAGMENT_ConfigRx()
	IP_IPV6_FRAGMENT_Enable()

	Management functions
	IP_DeInit()
	IP_Init()
	IP_Task()
	IP_Exec()
	IP_TASK_Init()
	IP_TASK_Exec()
	IP_TASK_WaitForEvent()
	IP_RxTask()
	IP_RXTASK_Init()
	IP_RXTASK_Exec()
	IP_RXTASK_WaitForEvent()
	IP_Shutdown()

	Network interface configuration and handling functions
	IP_NI_AddPTPDriver()
	IP_NI_ClrBPressure()
	IP_NI_ConfigPoll()
	IP_NI_ForceCaps()
	IP_NI_SetBPressure()
	IP_NI_SetTxBufferSize()

	PHY configuration functions
	IP_NI_ConfigPHYAddr()
	IP_NI_ConfigPHYMode()
	IP_PHY_AddDriver()
	IP_PHY_AddResetHook()
	IP_PHY_ConfigAddr()
	IP_PHY_ConfigAfterResetDelay()
	IP_PHY_ConfigAltAddr()
	IP_PHY_ConfigGigabitSupport()
	IP_PHY_ConfigSupportedModes()
	IP_PHY_ConfigUseStaticFilters()
	IP_PHY_DisableCheck()
	IP_PHY_DisableCheckEx()
	IP_PHY_ReadReg()
	IP_AddLinkChangeHook()
	IP_AddOnPacketFreeHook()
	IP_AddStateChangeHook()
	IP_PHY_ReInit()
	IP_PHY_SetWdTimeout()
	IP_PHY_WriteReg()

	Statistics functions
	IP_STATS_EnableIFaceCounters()
	IP_STATS_GetIFaceCounters()
	IP_STATS_GetLastLinkStateChange()
	IP_STATS_GetRxBytesCnt()
	IP_STATS_GetRxDiscardCnt()
	IP_STATS_GetRxErrCnt()
	IP_STATS_GetRxNotUnicastCnt()
	IP_STATS_GetRxUnicastCnt()
	IP_STATS_GetRxUnknownProtoCnt()
	IP_STATS_GetTxBytesCnt()
	IP_STATS_GetTxDiscardCnt()
	IP_STATS_GetTxErrCnt()
	IP_STATS_GetTxNotUnicastCnt()
	IP_STATS_GetTxUnicastCnt()

	Other IP Stack functions
	IP_AddAfterInitHook()
	IP_AddEtherTypeHook()
	IP_AddInterfaceErrorHook()
	IP_AddLinkChangeHook()
	IP_AddOnPacketFreeHook()
	IP_AddStateChangeHook()
	IP_Alloc()
	IP_AllocEtherPacket()
	IP_AllocEx()
	IP_ARP_CleanCache()
	IP_ARP_CleanCacheByInterface()
	IP_Connect()
	IP_Disconnect()
	IP_Err2Str()
	IP_FindIFaceByIP()
	IP_Free()
	IP_FreePacket()
	IP_GetAddrMask()
	IP_GetCurrentLinkSpeed()
	IP_GetCurrentLinkSpeedEx()
	IP_GetFreePacketCnt()
	IP_GetIFaceHeaderSize()
	IP_GetGWAddr()
	IP_GetHWAddr()
	IP_GetIPAddr()
	IP_GetIPPacketInfo()
	IP_GetRawPacketInfo()
	IP_GetVersion()
	IP_ICMP_AddRxHook()
	IP_ICMP_SetRxHook()
	IP_ICMP_RemoveRxHook()
	IP_IFaceIsReady()
	IP_IFaceIsReadyEx()
	IP_IPV4_ParseIPv4Addr()
	IP_IsAllZero()
	IP_IsExpired()
	IP_NI_ConfigLinkCheckMultiplier()
	IP_NI_ConfigUsePromiscuousMode()
	IP_NI_GetAdminState()
	IP_NI_GetIFaceType()
	IP_NI_GetState()
	IP_NI_SetAdminState()
	IP_NI_GetTxQueueLen()
	IP_NI_PauseRx()
	IP_NI_PauseRxInt()
	IP_PrintIPAddr()
	IP_ResolveHost()
	IP_RemoveEtherTypeHook()
	IP_RemoveLinkChangeHook()
	IP_SendEtherPacket()
	IP_SendPacket()
	IP_SendPing()
	IP_SendPingCheckReply()
	IP_SendPingEx()
	IP_SetIFaceConnectHook()
	IP_SetIFaceDisconnectHook()
	IP_SetOnPacketFreeCallback()
	IP_SetPacketToS()
	IP_SetRxHook()
	IP_SetTxHook()
	IP_SetMicrosecondsCallback()
	IP_SetNanosecondsCallback()

	Stack internal functions, variables and data-structures
	Structure BSP_IP_INSTALL_ISR_PARA
	Structure BSP_IP_API
	Structure SEGGER_CACHE_CONFIG
	IP_STATS_IFACE
	IP_HOOK_ON_IF_ERROR
	IP_ON_IFACE_SELECT_INFO
	IP_ON_IFACE_SELECT_FUNC
	IP_ON_ICMPV4_FUNC
	IP_MEM_POOL_INFO


	Socket interface
	UDP Socket Calls
	TCP Socket Calls
	API functions
	accept()
	bind()
	closesocket()
	connect()
	gethostbyname()
	getpeername()
	getsockname()
	getsockopt()
	listen()
	recv()
	recvfrom()
	select()
	send()
	sendto()
	setsockopt()
	shutdown()
	socket()
	IP_RAW_AddPacketToSocket()
	IP_SOCKET_AbortRead()
	IP_SOCKET_AddGetSetOptHook()
	IP_SOCKET_CloseAll()
	IP_SOCKET_ConfigSelectMultiplicator()
	IP_SOCKET_GetAddrFam()
	IP_SOCKET_GetErrorCode()
	IP_SOCKET_GetLocalPort()
	IP_SOCKET_GetNumRxBytes()
	IP_SOCKET_SetDefaultOptions()
	IP_SOCKET_SetLimit()
	IP_SOCKET_SetLinger()
	IP_SOCKET_SetRxTimeout()
	IP_SOCK_recvfrom_info()
	IP_SOCK_recvfrom_ts()
	IP_TCP_Accept()
	IP_FD_CLR()
	IP_FD_SET()
	IP_FD_ISSET()

	Data structures
	sockaddr
	sockaddr_in
	in_addr
	hostent
	IP_SOCK_HOOK_ON_GETSETOPT_FUNC
	IP_SOCK_RECVFROM_INFO

	Error codes

	TCP zero-copy interface
	TCP zero-copy
	Allocating, freeing and sending TCP packet buffers
	Callback function for TCP zero-copy

	Sending data with the TCP zero-copy API
	Allocating a packet buffer for TCP zero-copy
	Filling the allocated buffer with data for TCP zero-copy
	Sending the TCP zero-copy packet

	Receiving data with the TCP zero-copy API
	Writing a callback function for TCP zero-copy
	Registering the TCP zero-copy callback function

	API functions
	IP_TCP_Alloc()
	IP_TCP_AllocEx()
	IP_TCP_Free()
	IP_TCP_Send()
	IP_TCP_SendAndFree()


	UDP zero-copy interface
	UDP zero-copy
	Allocating, freeing and sending UDP packet buffers
	Callback function for UDP zero-copy

	Sending data with the UDP zero-copy API
	Allocating a packet buffer for UDP zero-copy
	Filling the allocated buffer with data for UDP zero-copy
	Sending the UDP zero-copy packet

	Receiving data with the UDP zero-copy API
	Writing a callback function for UDP zero-copy
	Registering the UDP zero-copy callback function

	API functions
	IP_UDP_Alloc()
	IP_UDP_AllocEx()
	IP_UDP_Close()
	IP_UDP_FindFreePort()
	IP_UDP_Free()
	IP_UDP_GetDataSize()
	IP_UDP_GetDataPtr()
	IP_UDP_GetDestAddr()
	IP_UDP_GetFPort()
	IP_UDP_GetIFIndex()
	IP_UDP_GetLPort()
	IP_UDP_GetSrcAddr()
	IP_UDP_Open()
	IP_UDP_OpenEx()
	IP_UDP_Send()
	IP_UDP_SendAndFree()
	IP_UDP_ReducePayloadLen()


	RAW zero-copy interface
	RAW zero-copy
	Allocating, freeing and sending packet buffers for RAW Zero-Copy
	Callback function for RAW Zero-Copy

	Sending data with the RAW zero-copy API
	Allocating a packet buffer for RAW Zero-Copy
	Filling the allocated buffer with data for RAW Zero-Copy
	Sending the packet

	Receiving data with the RAW zero-copy API
	Writing a callback function
	Registering the callback function for RAW Zero-Copy

	API functions
	IP_RAW_Alloc()
	IP_RAW_Close()
	IP_RAW_Free()
	IP_RAW_GetDataPtr()
	IP_RAW_GetDataSize()
	IP_RAW_GetDestAddr()
	IP_RAW_GetIFIndex()
	IP_RAW_GetSrcAddr()
	IP_RAW_Open()
	IP_RAW_Send()
	IP_RAW_SendAndFree()
	IP_RAW_ReducePayloadLen()


	DHCP client
	DHCP backgrounds
	API functions
	IP_BOOTPC_Activate()
	IP_DHCPC_Activate()
	IP_DHCPC_AddStateChangeHook()
	IP_DHCPC_AssignCurrentConfig()
	IP_DHCPC_ConfigAlwaysStartInit()
	IP_DHCPC_ConfigAssignConfigManually()
	IP_DHCPC_ConfigDisableARPCheck()
	IP_DHCPC_ConfigDNSManually()
	IP_DHCPC_ConfigRequestLeaseTime()
	IP_DHCPC_ConfigOnActivate()
	IP_DHCPC_ConfigOnFail()
	IP_DHCPC_ConfigOnLinkDown()
	IP_DHCPC_ConfigUniBcStartMode()
	IP_DHCPC_GetState()
	IP_DHCPC_GetOptionRequestList()
	IP_DHCPC_Halt()
	IP_DHCPC_Renew()
	IP_DHCPC_SendDeclineAndHalt()
	IP_DHCPC_SendDeclineAndResetIP()
	IP_DHCPC_SetCallback()
	IP_DHCPC_SetClientId()
	IP_DHCPC_SetOnOptionCallback()
	IP_DHCPC_SetOptionRequestList()
	IP_DHCPC_SetTimeout()
	IP_DHCPC_Release()

	Data structures
	IP_DHCPC_ON_OPTION_INFO
	IP_DHCPC_ON_OPTION_FUNC


	DHCP server (Add-on)
	DHCP Backgrounds
	API functions
	IP_DHCPS_ConfigDNSAddr()
	IP_DHCPS_ConfigGWAddr()
	IP_DHCPS_ConfigMaxLeaseTime()
	IP_DHCPS_ConfigPool()
	IP_DHCPS_Halt()
	IP_DHCPS_Init()
	IP_DHCPS_SetReservedAddresses()
	IP_DHCPS_SetVendorOptionsCallback()
	IP_DHCPS_Start()

	Data structures
	IP_DHCPS_RESERVE_ADDR
	IP_DHCPS_GET_VENDOR_OPTION_INFO
	IP_DHCPS_GET_VENDOR_OPTION_FUNC

	Resource usage
	ROM usage on an ARM7 system
	ROM usage on a Cortex-M3 system
	RAM usage


	mDNS Server (Add-on)
	emNet mDNS
	Feature list
	Requirements
	Multicast DNS background
	Hostname resolution
	Service discovery (mDNS-SD)

	API functions
	IP_MDNS_SERVER_Start()
	IP_MDNS_SERVER_Stop()

	Data structures
	Structure IP_DNS_SERVER_CONFIG
	Structure IP_DNS_SERVER_SD_CONFIG
	Structure IP_DNS_SERVER_A
	Structure IP_DNS_SERVER_AAAA
	Structure IP_DNS_SERVER_PTR
	Structure IP_DNS_SERVER_SRV
	Structure IP_DNS_SERVER_TXT

	Resource usage
	ROM usage on a Cortex-M4 system
	RAM usage


	DNS Server (Add-on)
	emNet DNS server
	Feature list
	Requirements
	Implementation
	API functions
	IP_DNS_SERVER_Start()
	IP_DNS_SERVER_Stop()
	IP_DNS_SetDNSPort()

	Resource usage

	AutoIP
	emNet AutoIP backgrounds
	API functions
	IP_AutoIP_Activate()
	IP_AutoIP_Halt()
	IP_AutoIP_SetUserCallback()
	IP_AutoIP_SetStartIP()

	Resource usage
	ROM usage on an ARM7 system
	ROM usage on a Cortex-M3 system
	RAM usage


	Address Collision Detection (ACD)
	emNet ACD module
	API functions
	IP_ACD_Activate()
	IP_ACD_ActivateEx()
	IP_ACD_Config()
	IP_ACD_EndAnnounce()
	IP_ACD_Halt()
	IP_ACD_UpdateBackgroundPeriod()

	Data structures
	Structure ACD_FUNC
	IP_ACD_EX_CONFIG
	IP_ACD_ANNOUNCE_INFO
	IP_ACD_COLLISION_INFO
	IP_ACD_WAIT_INFO
	IP_ACD_INFO
	IP_ACD_ON_INFO_FUNC

	EtherNet/IP usage
	EtherNet/IP QuickConnect
	EtherNet/IP SemiActiveProbe

	Resource usage
	ROM usage on an ARM7 system
	ROM usage on a Cortex-M3 system
	RAM usage


	UPnP (Add-on)
	emNet UPnP
	Feature list
	Requirements
	Backgrounds
	Using UPnP to advertise your service in the network

	API functions
	IP_UPNP_Activate()

	Resource usage
	ROM usage on an ARM7 system
	ROM usage on a Cortex-M3 system
	RAM usage


	VLAN
	emNet VLAN
	Feature list
	Backgrounds
	API functions
	IP_VLAN_AddInterface()
	IP_VLAN_Add8021adInterface()
	Data structures
	IP_VLAN_INIT_DATA


	Resource usage
	ROM usage on an ARM7 system
	ROM usage on a Cortex-M3 system
	RAM usage


	Tail Tagging (Add-on)
	emNet Tail Tagging support
	Feature list
	Use cases
	Requirements
	Software requirements
	Hardware requirements

	Backgrounds
	Optimal MTU and buffer sizes
	API functions
	IP_MICREL_TAIL_TAGGING_AddInterface()

	Resource usage
	ROM usage on a Cortex-M4 system
	RAM usage


	WiFi support
	emNet WiFi support
	Feature list
	Requirements
	Background information
	Definition of a WiFi module
	Benefits of using WiFi modules
	Module internal vs. external TCP/IP stack
	Supported WiFi modules

	API functions
	IP_WIFI_AddAssociateChangeHook()
	IP_WIFI_RemoveAssociateChangeHook()
	IP_WIFI_AddClientNotificationHook()
	IP_WIFI_RemoveClientNotificationHook()
	IP_WIFI_AddInterface()
	IP_DTASK_AddExecDoneHook()
	IP_WIFI_AddSignalChangeHook()
	IP_WIFI_RemoveSignalChangeHook()
	IP_WIFI_ConfigAllowedChannels()
	IP_DTASK_ConfigAlwaysSignaled()
	IP_DTASK_GetTimeout()
	IP_DTASK_SetTimeout()
	IP_WIFI_Connect()
	IP_WIFI_Disconnect()
	IP_DTASK_Task()
	IP_DTASK_Init()
	IP_DTASK_Exec()
	IP_DTASK_ExecAll()
	IP_DTASK_WaitForEvent()
	IP_WIFI_Scan()
	IP_WIFI_Security2String()
	IP_DTASK_Signal()

	Data structures
	Structure IP_WIFI_CONNECT_PARAMS


	Network interface drivers
	Network interface drivers general information
	MAC address filtering
	Checksum computation in hardware
	Ethernet CRC computation

	Available network interface drivers
	Configuring the driver
	BSP configuration
	Driver configuration example

	Device driver specifics and limitations
	ENETC

	Writing your own driver
	Network interface driver structure
	Device driver functions
	Driver template


	PHY drivers
	PHY drivers general information
	When is a specific PHY driver required?

	Available PHY drivers
	Generic driver
	Generic PHY driver API functions
	IP_PHY_GENERIC_RemapAccess()

	Micrel Switch PHY driver
	Micrel Switch PHY driver API functions
	IP_PHY_MICREL_SWITCH_AssignPortNumber()
	IP_PHY_MICREL_SWITCH_ConfigLearnDisable()
	IP_PHY_MICREL_SWITCH_ConfigRxEnable()
	IP_PHY_MICREL_SWITCH_ConfigTailTagging()
	IP_PHY_MICREL_SWITCH_ConfigTxEnable()
	IP_PHY_MICREL_SWITCH_ConfigUseInternalRmiiClock()

	Marvell 88E1111 Fiber PHY driver


	WiFi drivers
	WiFi drivers general information
	Network Interface WiFi drivers
	WiFi PHY bridges

	List of special WiFi drivers
	ConnectOne IW
	Hardware access abstraction
	ConnectOne IW driver API functions
	IP_PHY_WIFI_CONNECTONE_IW_ConfigSPI()

	Redpine Signals RS9113
	Redpine Signals RS9113 driver API functions
	IP_NI_WIFI_REDPINE_RS9113_ConfigAntenna()
	IP_NI_WIFI_REDPINE_RS9113_ConfigRegion()
	IP_NI_WIFI_REDPINE_RS9113_SetAccessPointParameters()
	IP_NI_WIFI_REDPINE_RS9113_SetSpiSpeedChangeCallback()
	IP_NI_WIFI_REDPINE_RS9113_SetUpdateCallback()



	Configuring emNet
	Runtime configuration
	IP_X_Config()
	Driver handling
	Memory and buffer assignment
	RAM for TCP window
	Required buffers


	Compile-time configuration
	Compile-time configuration switches
	Debug level


	Internet Protocol version 6 (IPv6) (Add-on)
	emNet IPv6
	Feature list
	IPv6 backgrounds
	Internet Protocol header comparison
	IPv6 address types
	Link-local unicast addresses
	Global unicast addresses

	Further reading for IPv6
	IPv6 Request for Comments (RFC)
	Related books for IPv6


	Include IPv6 to your emNet start project
	Open an emNet project and compile it
	Add the emNet IPv6 add-on to the start project
	Enable IPv6 support
	Configure the MTU and the Tx/Rx window sizes
	Enable terminal output for IPv6 messages
	Select the start application

	Build the project and test it

	Configuration
	IPv6 Compile time configuration
	IPv6 Compile time configuration switches
	IPv6 Runtime configuration

	IPv6 API functions
	IP_IPV6_Add()
	IP_IPV6_AddUnicastAddr()
	IP_IPV6_ChangeDefaultConfig()
	IP_IPV6_GetIPv6Addr()
	IP_IPV6_GetIPPacketInfo()
	IP_IPV6_ParseIPv6Addr()
	IP_IPV6_SetDefHopLimit()
	IP_IPV6_SetGateway()
	IP_IPV6_SetLinkLocalUnicastAddr()
	IP_IPV6_INFO_GetConnectionInfo()
	IP_ICMPV6_AddRxHook()
	IP_ICMPV6_RemoveRxHook()
	IP_ICMPV6_MLD_AddMulticastAddr()
	IP_ICMPV6_MLD_RemoveMulticastAddr()
	IP_ICMPV6_NDP_SetDNSSLCallback()
	IP_IPV6_ResolveHost()

	IPv6 internal functions, variables and data-structures
	IP_ON_ICMPV6_FUNC

	IPv6 Socket API extensions
	Structure sockaddr_in6

	Porting an IPv4 application to IPv6
	Porting an IPv4 server application to IPv6
	TCP/IPv4 server sample code
	Required changes to port the TCP/IPv4 server sample code to TCP/IPv6
	Dual stack TCP server sample code


	Resource usage
	IPv6 ROM usage
	RAM usage


	SMTP client (Add-on)
	emNet SMTP client
	Feature list
	Requirements
	SMTP backgrounds
	Secure connections
	Attachments
	SMTP client configuration
	SMTP client compile time configuration switches

	API functions
	IP_SMTPC_Send()

	Data structures
	Structure IP_SMTPC_API
	Structure IP_SMTPC_APPLICATION
	Structure IP_SMTPC_MAIL_ADDR
	Structure IP_SMTPC_MULTIPART_API
	Structure IP_SMTPC_MULTIPART_ITEM
	Structure IP_SMTPC_MESSAGE
	Structure IP_SMTPC_MTA

	Resource usage
	ROM usage on a Cortex-M4 system
	RAM usage


	emFTP server (Add-on)
	emFTP server
	Feature list
	Requirements
	FTP basics
	Active mode FTP
	Passive mode FTP
	FTP reply codes
	Supported FTP commands

	Using the emFTP server sample
	Using the emFTP server Windows sample
	Running the emFTP server example on target hardware

	Access control
	pfFindUser()
	pfCheckPass()
	pfGetDirInfo()
	pfGetFileInfo()

	Configuration
	emFTP server compile time configuration switches
	emFTP server runtime configuration
	emFTP server system time
	pfGetTimeDate()


	API functions
	IP_FTPS_ConfigBufSizes()
	IP_FTPS_CountRequiredMem()
	IP_FTPS_Init()
	IP_FTPS_Process()
	IP_FTPS_ProcessEx()
	IP_FTPS_OnConnectionLimit()
	IP_FTPS_SetSignOnMsg()
	IP_FTPS_IsDataSecured()
	IP_FTPS_AllowOnlySecured()
	IP_FTPS_SetImplicitMode()
	IP_FTPS_UseRenameToFullPath()
	IP_FTPS_SendFormattedString()
	IP_FTPS_SendMem()
	IP_FTPS_SendString()
	IP_FTPS_SendUnsigned()
	IP_FTPS_SetSignOnMsgCallback()
	IP_FTPS_SetOnServerOperationCallback()
	IP_FTPS_SetOperationResultCallback()

	Data structures
	IP_FTPS_API
	FTPS_ACCESS_CONTROL
	FTPS_BUFFER_SIZES
	FTPS_SYS_API
	FTPS_APPLICATION
	FTPS_CB_INFO
	FTPS_OPERATION_TYPE
	FTPS_SEND_SIGN_ON_MSG_FUNC
	FTPS_ON_SERVER_OPERATION_FUNC
	FTPS_OPERATION_RESULT_FUNC

	Resource usage
	ROM usage on a Cortex-M4 system
	RAM usage


	emFTP client (Add-on)
	emFTP client
	Feature list
	Requirements
	FTP basics
	Active mode FTP
	Passive mode FTP for the client
	Connection security
	FTP implicit mode
	FTP explicit mode

	Supported FTP client commands

	Configuration
	FTP client compile time configuration switches

	API functions
	IP_FTPC_Connect()
	IP_FTPC_Disconnect()
	IP_FTPC_ExecCmd()
	IP_FTPC_ExecCmdEx()
	IP_FTPC_Init()
	IP_FTPC_InitEx()

	Data structures
	Structure IP_FTPC_API
	Structure IP_FTPC_APPLICATION
	IP_FTPC_CMD_CONFIG

	Resource usage
	ROM usage on an ARM7 system
	ROM usage on a Cortex-M3 system
	RAM usage


	TFTP client/server
	emNet TFTP
	Feature list
	TFTP basics
	Using the TFTP samples
	Running the TFTP server example on target hardware

	API functions
	IP_TFTP_InitContext()
	IP_TFTP_RecvFile()
	IP_TFTP_SendFile()
	IP_TFTP_ServerTask()

	Resource usage
	ROM usage on an ARM7 system
	ROM usage on a Cortex-M3 system
	RAM usage


	PPP / PPPoE (Add-on)
	emNet PPP/PPPoE
	Feature list
	Requirements
	PPP backgrounds
	API functions
	PPPoE functions
	IP_PPPOE_AddInterface()
	IP_PPPOE_ConfigRetries()
	IP_PPPOE_Reset()
	IP_PPPOE_SetAuthInfo()
	IP_PPPOE_SetUserCallback()

	PPP functions
	IP_PPP_AddInterface()
	IP_PPP_CHAP_AddWithMD5()
	IP_PPP_OnRx()
	IP_PPP_OnRxChar()
	IP_PPP_OnTxChar()
	IP_PPP_SetUserCallback()

	Modem functions
	IP_MODEM_Connect()
	IP_MODEM_Disconnect()
	IP_MODEM_GetResponse()
	IP_MODEM_SendString()
	IP_MODEM_SendStringEx()
	IP_MODEM_SetAuthInfo()
	IP_MODEM_SetConnectTimeout()
	IP_MODEM_SetInitCallback()
	IP_MODEM_SetInitString()
	IP_MODEM_SetUartConfig()
	IP_MODEM_SetSwitchToCmdDelay()

	Data structures
	Structure IP_PPP_CONTEXT
	Structure RESEND_INFO
	Structure IP_PPP_LINE_DRIVER

	PPPoE resource usage
	ROM usage on an ARM7 system
	ROM usage on a Cortex-M3 system
	RAM usage

	PPP resource usage
	ROM usage on an ARM7 system
	RAM usage


	NetBIOS (Add-on)
	emNet NetBIOS
	Feature list
	Requirements
	NetBIOS backgrounds
	API functions
	IP_NETBIOS_Init()
	IP_NETBIOS_Start()
	IP_NETBIOS_Stop()
	Structure IP_NETBIOS_NAME

	Resource usage
	ROM usage on an ARM7 system
	ROM usage on a Cortex-M3 system
	RAM usage


	SNTP client (Add-on)
	emNet SNTP client
	Feature list
	Requirements
	SNTP backgrounds
	The NTP timestamp
	The epoch problem (year 2036 problem)

	API functions
	IP_SNTPC_ConfigAcceptNoSyncSource()
	IP_SNTPC_ConfigTimeout()
	IP_SNTPC_GetTimeStampFromServer()
	IP_SNTPC_SetPort()
	Structure IP_NTP_TIMESTAMP

	Resource usage
	ROM usage on an ARM7 system
	ROM usage on a Cortex-M3 system
	RAM usage


	PTP Ordinary Clock (Add-on)
	emNet PTP OC
	emNet PTP OC slave
	emNet PTP OC master
	Hardware timestamp support
	Feature list
	Requirements
	PTP background
	Time representation
	Hardware support

	PTP configuration
	Configuration macro types
	Configuration switches

	API functions
	IP_PTP_GetDefaultDsClockIdentity()
	IP_PTP_GetTime()
	IP_PTP_Halt()
	IP_PTP_Init()
	IP_PTP_SetTime()
	IP_PTP_Start()
	IP_PTP_OC_AddMasterFallbackLogic()
	IP_PTP_OC_AddSlaveFallbackLogic()
	IP_PTP_MASTER_Add()
	IP_PTP_MASTER_Config()
	IP_PTP_MASTER_Remove()
	IP_PTP_SLAVE_Add()
	IP_NI_AddPTPDriver()
	IP_PTP_OC_SetInfoCallback()
	IP_PTP_OC_SetProductDescription()
	IP_PTP_OC_SetUserDescription()
	IP_PTP_OC_SetRevision()
	IP_PTP_OC_Halt()
	IP_PTP_OC_Start()

	Data structures
	IP_PTP_TIMESTAMP
	IP_PTP_INFO
	IP_PTP_CORRECTION_INFO
	IP_PTP_OFFSET_INFO
	IP_PTP_PROT_TYPE
	IP_PTP_MASTER_PARAMS
	IP_PTP_MASTER_INFO

	Resource usage
	ROM usage on a Cortex-M4 system
	RAM usage


	NTP client (Add-on)
	emNet NTP client
	Feature list
	Requirements
	NTP backgrounds
	The NTP timestamp
	The epoch problem (year 2036 problem)
	Algorithm and memory
	NTP server pool
	Time function

	NTP client configuration
	Configuration macro types
	Configuration switches

	API functions
	IP_NTP_CLIENT_Start()
	IP_NTP_CLIENT_Halt()
	IP_NTP_CLIENT_ResetAll()
	IP_NTP_CLIENT_Run()
	IP_NTP_CLIENT_AddServerPool()
	IP_NTP_CLIENT_FavorLocalClock()
	IP_NTP_CLIENT_AddServerClock()
	IP_NTP_CLIENT_AddServerClockIPv6()
	IP_NTP_GetTimestamp()
	IP_NTP_GetTime()
	IP_NTP_SetPort()

	Resource usage
	Full RFC configuration
	ROM usage on a Cortex-M4 system full RFC
	RAM usage full RFC

	Simpler configuration
	ROM usage on a Cortex-M4 system simpler version
	RAM usage simpler version



	SNMP Agent (Add-on)
	emNet SNMP Agent
	Feature list
	SNMP Agent requirements
	SNMP backgrounds
	Data organization in SNMP
	OID value, address and index
	SNMP data types
	Native data types
	Constructed and new data types

	Participants in an SNMP environment
	Differences between SNMP versions
	SNMPv3 specific information
	SNMP communication basics
	SNMP Agent return codes

	Using the SNMP Agent samples
	IP_SNMP_AGENT_Start.c
	IP_SNMP_AGENT_Start_ZeroCopy.c
	Using the Windows SNMP Agent sample
	Features of the SNMP Agent sample application
	SNMPv3 samples
	Testing the SNMP Agent sample application

	The MIB callback
	SNMP Agent configuration
	SNMP Agent configuration macro types
	SNMP Agent compile time configuration switches

	API functions
	IP_SNMP_AGENT_AddCommunity()
	IP_SNMP_AGENT_AddMIB()
	IP_SNMP_AGENT_AddInformResponseHook()
	IP_SNMP_AGENT_CancelInform()
	IP_SNMP_AGENT_CheckInformStatus()
	IP_SNMP_AGENT_DeInit()
	IP_SNMP_AGENT_Exec()
	IP_SNMP_AGENT_GetMessageType()
	IP_SNMP_AGENT_Init()
	IP_SNMP_AGENT_PrepareTrapInform()
	IP_SNMP_AGENT_ProcessInformResponse()
	IP_SNMP_AGENT_ProcessMessage()
	IP_SNMP_AGENT_SendTrapInform()
	IP_SNMP_AGENT_SetCommunityPerm()
	IP_SNMP_AGENT_MPV3_Add()
	IP_SNMP_AGENT_SetInformReportCallback()
	IP_SNMP_AGENT_SM_USM_Add()
	IP_SNMP_AGENT_SM_USM_CalcKey()
	IP_SNMP_AGENT_SM_USM_SetUserTable()
	IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetIetfMib2Interfaces()
	IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetIetfMib2System()
	IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetPrivateEnterprise()
	IP_SNMP_AGENT_CloseVarbind()
	IP_SNMP_AGENT_OpenVarbind()
	IP_SNMP_AGENT_StoreBits()
	IP_SNMP_AGENT_StoreCounter()
	IP_SNMP_AGENT_StoreCounter32()
	IP_SNMP_AGENT_StoreCounter64()
	IP_SNMP_AGENT_StoreCurrentMibOidAndIndex()
	IP_SNMP_AGENT_StoreDouble()
	IP_SNMP_AGENT_StoreFloat()
	IP_SNMP_AGENT_StoreGauge()
	IP_SNMP_AGENT_StoreGauge32()
	IP_SNMP_AGENT_StoreInstanceNA()
	IP_SNMP_AGENT_StoreInteger()
	IP_SNMP_AGENT_StoreInteger32()
	IP_SNMP_AGENT_StoreInteger64()
	IP_SNMP_AGENT_StoreIpAddress()
	IP_SNMP_AGENT_StoreOctetString()
	IP_SNMP_AGENT_StoreOID()
	IP_SNMP_AGENT_StoreOpaque()
	IP_SNMP_AGENT_StoreTimeTicks()
	IP_SNMP_AGENT_StoreUnsigned32()
	IP_SNMP_AGENT_StoreUnsigned64()
	IP_SNMP_AGENT_ParseBits()
	IP_SNMP_AGENT_ParseCounter()
	IP_SNMP_AGENT_ParseCounter32()
	IP_SNMP_AGENT_ParseCounter64()
	IP_SNMP_AGENT_ParseDouble()
	IP_SNMP_AGENT_ParseFloat()
	IP_SNMP_AGENT_ParseGauge()
	IP_SNMP_AGENT_ParseGauge32()
	IP_SNMP_AGENT_ParseInteger()
	IP_SNMP_AGENT_ParseInteger32()
	IP_SNMP_AGENT_ParseInteger64()
	IP_SNMP_AGENT_ParseIpAddress()
	IP_SNMP_AGENT_ParseOctetString()
	IP_SNMP_AGENT_ParseOID()
	IP_SNMP_AGENT_ParseOpaque()
	IP_SNMP_AGENT_ParseTimeTicks()
	IP_SNMP_AGENT_ParseUnsigned32()
	IP_SNMP_AGENT_ParseUnsigned64()
	IP_SNMP_AGENT_DecodeOIDValue()
	IP_SNMP_AGENT_EncodeOIDValue()
	IP_SNMP_AGENT_TRAP_INFORM_SetIPv4AddrPort()
	IP_SNMP_AGENT_TRAP_INFORM_SetIPv6AddrPort()
	IP_SNMP_AGENT_TRAP_INFORM_SetType()
	IP_SNMP_AGENT_TRAP_INFORM_SetCommunity()
	IP_SNMP_AGENT_TRAP_INFORM_SetUser()
	IP_SNMP_AGENT_TRAP_INFORM_SetTimeoutRetries()
	IP_SNMP_AGENT_TRAP_INFORM_SetMPFlags()
	IP_SNMP_SM_USM_USER_SetEngine()
	IP_SNMP_SM_USM_USER_SetUsername()
	IP_SNMP_SM_USM_USER_SetPerm()
	IP_SNMP_SM_USM_USER_SetAuthParamsAndKey()
	IP_SNMP_SM_USM_USER_SetPrivParamsAndKey()

	Data structures
	Structure IP_SNMP_AGENT_API
	Structure IP_SNMP_AGENT_PERM
	Structure IP_SNMP_AGENT_MIB2_SYSTEM_API
	Structure IP_SNMP_AGENT_MIB2_INTERFACES_API
	IP_SNMP_HASH_INIT_FUNC
	IP_SNMP_HASH_ADD_FUNC
	IP_SNMP_HASH_FINAL_FUNC
	IP_SNMP_HASH_API
	IP_SNMP_SM_USM_AUTH_PARAMS
	IP_SNMP_SM_USM_PRIV_API_EXEC_FUNC
	IP_SNMP_SM_USM_PRIV_API
	IP_SNMP_CIPHER_INIT_FUNC
	IP_SNMP_CIPHER_EXEC_FUNC
	IP_SNMP_CIPHER_FINAL_FUNC
	IP_SNMP_CIPHER_API
	IP_SNMP_SM_USM_PRIV_PARAMS
	IP_SNMP_SM_USM_ENGINE_ENTRY
	IP_SNMP_AGENT_SM_USM_CONFIG
	IP_SNMP_SM_USM_USER_TABLE_ENTRY
	IP_SNMP_USM_ENGINE_INFO
	IP_SNMP_AGENT_MPV3_CONFIG
	IP_SNMP_AGENT_ON_INFORM_REPORT_FUNC

	Resource usage (SNMPv2c)
	ROM usage on a Cortex-M4 system
	RAM usage

	Resource usage (SNMPv3 USM)
	ROM usage on a Cortex-M4 system
	RAM usage


	CoAP client/server (Add-on)
	emNet CoAP
	Feature list
	Requirements
	CoAP background
	Protocol overview
	Message format
	Response code
	CoAP options
	Retry mechanism
	Block transfer
	Observe
	Built-In resource discovery
	Implementation choices

	Using the CoAP samples
	Running the sample on target hardware
	Using the Windows samples
	Sample CoAP server application
	Server callbacks description
	Testing the server
	Sample CoAP client application
	Client callbacks description

	CoAP configuration
	CoAP configuration macro types
	Configuration switches

	API functions
	Server
	IP_COAP_SERVER_Init()
	IP_COAP_SERVER_Process()
	IP_COAP_SERVER_GetMsgBuffer()
	IP_COAP_SERVER_AddData()
	IP_COAP_SERVER_RemoveData()
	IP_COAP_SERVER_AddClientBuffer()
	IP_COAP_SERVER_AddObserverBuffer()
	IP_COAP_SERVER_UpdateData()
	IP_COAP_SERVER_SetDefaultBlockSize()
	IP_COAP_SERVER_SetPOSTHandler()
	IP_COAP_SERVER_ConfigSet()
	IP_COAP_SERVER_ConfigClear()
	IP_COAP_SERVER_SetURIPort()
	IP_COAP_SERVER_SetHostName()
	IP_COAP_SERVER_SetErrorDescription()

	Client
	IP_COAP_CLIENT_Init()
	IP_COAP_CLIENT_Process()
	IP_COAP_CLIENT_GetFreeRequestIdx()
	IP_COAP_CLIENT_AbortRequestIdx()
	IP_COAP_CLIENT_SetServerAddress()
	IP_COAP_CLIENT_SetDefaultBlockSize()
	IP_COAP_CLIENT_SetCommand()
	IP_COAP_CLIENT_SetToken()
	IP_COAP_CLIENT_SetPayloadHandler()
	IP_COAP_CLIENT_SetReplyWaitTime()
	IP_COAP_CLIENT_BuildAndSend()
	IP_COAP_CLIENT_GetLastResult()
	IP_COAP_CLIENT_GetMsgBuffer()
	IP_COAP_CLIENT_GetLocationPath()
	IP_COAP_CLIENT_GetLocationQuery()
	IP_COAP_CLIENT_SetOptionURIPath()
	IP_COAP_CLIENT_SetOptionURIHost()
	IP_COAP_CLIENT_SetOptionURIPort()
	IP_COAP_CLIENT_SetOptionURIQuery()
	IP_COAP_CLIENT_SetOptionETag()
	IP_COAP_CLIENT_SetOptionBlock()
	IP_COAP_CLIENT_SetOptionAccept()
	IP_COAP_CLIENT_SetOptionContentFormat()
	IP_COAP_CLIENT_SetOptionIfNoneMatch()
	IP_COAP_CLIENT_SetOptionLocationPath()
	IP_COAP_CLIENT_SetOptionLocationQuery()
	IP_COAP_CLIENT_SetOptionProxyURI()
	IP_COAP_CLIENT_SetOptionProxyScheme()
	IP_COAP_CLIENT_SetOptionSize1()
	IP_COAP_CLIENT_SetOptionAddIFMatch()
	IP_COAP_CLIENT_OBS_Init()
	IP_COAP_CLIENT_OBS_Abort()
	IP_COAP_CLIENT_OBS_SetEndCallback()

	Utility
	IP_COAP_CheckAcceptFormat()
	IP_COAP_GetAcceptFormat()
	IP_COAP_CheckContentFormat()
	IP_COAP_GetContentFormat()
	IP_COAP_IsLastBlock()
	IP_COAP_GetURIHost()
	IP_COAP_GetURIPath()
	IP_COAP_GetURIPort()
	IP_COAP_GetQuery()
	IP_COAP_GetETag()
	IP_COAP_GetMaxAge()
	IP_COAP_GetSize1()
	IP_COAP_GetSize2()
	IP_COAP_GetLocationPath()
	IP_COAP_GetLocationQuery()


	Data structures
	IP_COAP_SERVER_CONTEXT
	IP_COAP_SERVER_DATA
	PF_POST_HANDLER
	IP_COAP_pfGETPayload
	IP_COAP_pfPUTPayload
	IP_COAP_pfDELHandler
	IP_COAP_CLIENT_CONTEXT
	PF_OBS_END_TRANSFER
	PF_CLIENT_PAYLOAD
	IP_COAP_API
	IP_COAP_CALLBACK_PARAM
	IP_COAP_OPTIONS_INFO
	IP_COAP_IF_MATCH_INFO
	IP_COAP_HEADER_INFO
	IP_COAP_BLOCK_INFO
	IP_COAP_CONN_INFO
	IP_COAP_pfReceive
	IP_COAP_pfSend
	IP_COAP_pfGetTimeMs

	Resource usage
	Server ROM usage on a Cortex-M4 system
	Client ROM usage on a Cortex-M4 system
	Server RAM usage.
	Client RAM usage.


	MQTT client (Add-on)
	emMQTT client
	Feature list
	Requirements
	MQTT backgrounds
	MQTT Quality of service

	emMQTT client configuration
	API functions
	IP_MQTT_CLIENT_Init()
	IP_MQTT_CLIENT_SetLastWill()
	IP_MQTT_CLIENT_SetUserPass()
	IP_MQTT_CLIENT_SetKeepAlive()
	IP_MQTT_CLIENT_ConnectEx()
	IP_MQTT_CLIENT_Disconnect()
	IP_MQTT_CLIENT_Publish()
	IP_MQTT_CLIENT_Subscribe()
	IP_MQTT_CLIENT_Unsubscribe()
	IP_MQTT_CLIENT_WaitForNextMessage()
	IP_MQTT_CLIENT_Recv()
	IP_MQTT_CLIENT_Timer()
	IP_MQTT_CLIENT_CheckMessageTimeouts()
	IP_MQTT_CLIENT_Exec()
	IP_MQTT_CLIENT_ParsePublishEx()
	IP_MQTT_CLIENT_IsClientConnected()
	IP_MQTT_Property2String()
	IP_MQTT_ReasonCode2String()
	IP_MQTT_CLIENT_Connect()
	IP_MQTT_CLIENT_ParsePublish()

	Data structures
	IP_MQTT_CLIENT_TRANSPORT_API
	IP_MQTT_CLIENT_APP_API
	IP_MQTT_CLIENT_MESSAGE
	IP_MQTT_CLIENT_TOPIC_FILTER
	IP_MQTT_CLIENT_SUBSCRIBE
	IP_MQTT_PROPERTY
	IP_MQTT_CONNECT_PARAM
	IP_MQTT_STR_PAIR_DATA
	IP_MQTT_STR_DATA
	IP_MQTT_BIN_DATA

	IP_MQTT_CLIENT_TRANSPORT_API in detail
	IP_MQTT_CLIENT_CONNECT
	IP_MQTT_CLIENT_DISCONNECT
	IP_MQTT_CLIENT_RECEIVE
	IP_MQTT_CLIENT_SEND

	IP_MQTT_CLIENT_APP_API in detail
	IP_MQTT_CLIENT_GEN_RANDOM
	IP_MQTT_CLIENT_ALLOC
	IP_MQTT_CLIENT_FREE
	IP_MQTT_CLIENT_LOCK
	IP_MQTT_CLIENT_UNLOCK
	IP_MQTT_CLIENT_RECV_MESSAGE
	IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM
	IP_MQTT_CLIENT_HANDLE_ERROR
	IP_MQTT_CLIENT_HANDLE_DISCONNECT
	IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM_EX
	IP_MQTT_CLIENT_RECV_MESSAGE_EX
	IP_MQTT_CLIENT_ON_PROPERTY
	IP_MQTT_CLIENT_CHECK_TIMEOUT_CB

	Resource usage
	Resource usage on a Cortex-M4 system
	ROM usage
	RAM usage



	WebSocket (Add-on)
	emNet WebSocket support
	Feature list
	Requirements
	Backgrounds
	Establishing a WebSocket connection
	Accepting a WebSocket connection
	Closing a WebSocket connection
	WebSocket data framing
	WebSocket frame types

	Using the WebSocket samples
	IP_WEBSOCKET_printf_Server.c
	GUI_VNC_X_StartServer.c
	Using the Windows sample

	Configuration
	API functions
	IP_WEBSOCKET_Close()
	IP_WEBSOCKET_DiscardMessage()
	IP_WEBSOCKET_GenerateAcceptKey()
	IP_WEBSOCKET_InitClient()
	IP_WEBSOCKET_InitServer()
	IP_WEBSOCKET_Recv()
	IP_WEBSOCKET_Send()
	IP_WEBSOCKET_WaitForNextMessage()

	Data structures
	Structure IP_WEBSOCKET_TRANSPORT_API

	Resource usage
	ROM usage on a Cortex-M4 system
	RAM usage


	Profiling with SystemView
	Profiling overview
	Additional files for profiling
	Additional files on target side
	Additional files on PC side

	Enable profiling
	Recording and analyzing profiling information

	Debugging
	Message output
	Testing stability
	API functions
	IP_Log()
	IP_Warn()
	IP_Logf_Application()
	IP_Warnf_Application()
	IP_AddLogFilter()
	IP_RemoveLogFilter()
	IP_AddWarnFilter()
	IP_RemoveWarnFilter()
	IP_SetLogFilter()
	IP_SetWarnFilter()
	IP_PrintStatus()
	IP_PANIC()
	IP_Panic()

	Message types
	Using a network sniffer to analyze communication problems

	OS integration
	OS integration general information
	Examples
	IP_OS_Delay()
	IP_OS_DisableInterrupt()
	IP_OS_EnableInterrupt()
	IP_OS_GetTime32()
	IP_OS_Init()
	IP_OS_Lock()
	IP_OS_Unlock()
	IP_OS_SignalNetEvent()
	IP_OS_WaitNetEventTimed()
	IP_OS_SignalRxEvent()
	IP_OS_WaitDTaskEventTimed()
	IP_OS_SignalDTaskEvent()
	IP_OS_WaitRxEventTimed()
	IP_OS_WaitItemTimed()
	IP_OS_SignalItem()


	Knowledge Base
	Window Scaling

	Performance & resource usage
	emNet Memory footprint
	emNet on ARM7 system
	ROM usage ARM7
	RAM usage ARM7

	emNet on Cortex-M3 system
	ROM usage Cortex-M3
	RAM usage Cortex-M3


	emNet performance
	Performance on ARM7 system
	Performance on Cortex-M3 system


	Appendix A - File system abstraction layer
	File system abstraction layer
	File system abstraction layer function table
	emFile interface
	Read-only file system
	Using the read-only file system
	Windows file system interface


	Support
	Contacting support

	Glossary

