emNet

CPU independent TCP/IP stack
for embedded applications

User Guide & Reference Manual

Document: UMO0O7001
Software Version: 3.62.5
Revision: 0
Date: September 11, 2025

\\—
/ SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

https://www.segger.com/emnet
https://www.segger.com
https://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2025 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.
Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0

Fax. +49 2173-99312-28

E-mail: ti cket _emet @egger. com"

Internet: VWWV. Segger. com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: September 11, 2025

Software | Revision| Date By Description

Chapter “Core functions” updated.

¢ Added new function | P_ARP_SendG at ui t ousARP()
Chapter "DNS Server (Add-on)” updated.

e Added new function | P_DNS_Set DNSPor t ()
Chapter "SNTP client (Add-on)” updated.

¢ Added new function | P_SNTPC_Set Port ()
Chapter “NTP client (Add-on)” updated.

e Added new function | P_NTP_Set Port ()

3.62.5 0 250911 YR

3.62.4 0 250702 YR | Update to latest software version.

3.62.3 0 250602 YR | Update to latest software version.

3.62.2 0 250506 YR | Update to latest software version.

Chapter “Core functions” updated.
¢ Added new function | P_RenoveLi nkChangeHook()
Chapter “WiFi support” updated.
¢ Added new function | P_W FI _RenpveAssoci at eChangeHook()
¢ Added new function | P_W FI _Renpved i ent Noti fi cati onHook()
¢ Added new function | P_W FI _RenpveSi gnal ChangeHook()

3.62.1 0 250429 YR

3.62.0 0 250416 YR | Added diagrams for TCP and UDP sockets.

Chapter “Knowledge Base” added.

e Added information about “Window Scaling”.
Chapter "DHCP Client” updated.

e | P_DHCPC Rel ease() added.

3.60.1 0 250113 Ju

3.60.0 0 241120 YR | Update to latest software version.

3.58.1 0 241025 YR | Update to latest software version.

Chapter “VLAN” updated.

e | P_VLAN_Enabl e8021adSupport () added.
Chapter “Socket interface” updated.

e SO _BI NDTODEVI CE added.

3.58.0 0 241016 | YR

3.56.1 240819 YR | Update to latest software version.

3.56.0 240429 YR | Update to latest software version.

3.54.1 231211 YR | Update to latest software version.

3.54.0 231204 | YR | Chapter “File system abstraction layer” updated.

oOjo|o|oOo| O

3.52.0 230928 YR | Update to latest software version.

Chapter “UPnP (Add-on)” updated.

3.50.5 1 230706 | OO e Removed link to old resource and replaced it with plain text.

Chapter “Address Collision Detection (ACD)” updated.
¢ Added information regarding EtherNet/IP usage on page 514.
e | P_ACD_EndAnnounce() added.
e | P_ACD_Updat eBackgr oundPeri od() added.
3.50.5 0 230627 | OO e New member | ni t St at e added to structure | P_ACD_EX_CONFI G.
Chapter “Internet Protocol version 6 (IPv6) (Add-on)” updated.
e | P_| PV6_Resol veHost () added.
Chapter "emFTP server (Add-on)” updated.
e | P_FTPS_UseRenaneToFul | Pat h() added.

Fixed some images.
Chapter “Socket interface” updated.

e | P_ERR_NO MEMremoved from possible error codes as it is replaced
with the existing | P_ERR_NOVEM.

3.50.3 0 230602 | OO

Chapter “Socket interface” updated.
e sogetopt() SO ERROR error code | P_ERR USER ABORT added.
e | P_SOCKET_Abort Read() added.
e Description for sel ect () updated.

3.50.2 0 230327 | OO

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

3.50.0

1

230217

(0]}

Chapter “Performance & resource usage” updated.
e Corrected RAM footprint for Cortex-M3.

3.50.0

230215

00

Chapter “0S integration” updated.
e Renamed/updated | P_OS_Wi t Net Event () to
| P_OS_ Wit Net Event Ti ned() .
e Renamed/updated | P_OS_Wii t RxEvent () to
| P_OS Wit RxEvent Ti ned() .
e | P OS Wiitlten() removed.
e | P_OS _Signal DTaskEvent () added.
e | P_OS Wit DTaskEvent Ti ned() added.
Chapter “Core functions” updated.
e Description for | P_Task() updated.
e Description for | P_RxTask() updated.
e | P_TASK Init() added.
e | P_TASK Exec() added.
e | P_TASK Wit For Event () added.
e | P_RXTASK I nit() added.
e | P_RXTASK Exec() added.
e | P_RXTASK Wi t For Event () added.
e | P_PHY_ ReadReg() added.
e | P_PHY WiteReg() added.
e New PHY mode flag | P_PHY_MODE_NO AUTONEG added.
e Description for | P_Set Support edDupl exMbdes() updated.
e Description for | P_PHY_Confi gSupport edMbdes() updated.
e Description for | P_TCP_Di sabl eRxChecksun{) updated.
e Description for | P_TCP_Enabl eRxChecksun{) updated.
Chapter “WiFi support” updated.
e Description for | P_DTASK Task() updated.
e Description for | P_DTASK Exec() updated.
e | P_DTASK | nit() added.
e | P_DTASK ExecAl | () added.
e | P_DTASK Wit For Event () added.
e | P_DTASK Confi gTi neout () renamed to | P_DTASK_Set Ti neout () .
e | P_DTASK Get Ti neout () added.

3.42.10

221212

00/
MH

Chapter “Socket interface” updated.
e Updated available socket options for get sockopt () /set sockopt () .

3.42.7

221014

(0]}

Chapter “Core functions” updated.

e | P_Get MenPool | nf o() added.

e Description for | P_Set MTU() updated (can now also increase the value
after the configuration phase).

o Description for | P_DNS_Get Ser ver () return value updated (return
value is actually in host endianness).

o Description for | P_DNS_Get Ser ver Ex() return-parameter “pAddr ”
updated (added endianness information).

e | P_I GWP_Confi gV2Al waysReport () added.

e | P_I GW_Joi nG oup_Aut oRej 0i n() added.

o Descriptions for | P_I GW_Joi nGroup() and | P_I GWP_LeaveG oup()
updated.
Chapter "DHCP Client” updated.

e | P_DHCPC_Conf i gRequest LeaseTi me() added.
Chapter “PTP Ordinary Clock (Add-on)” updated.

e | P_PTP_MASTER Confi g() added along with its used structures.
Chapter "SNMP agent (Add-on)” updated.

e Added API, structures and information for SNMPv3 support.
Chapter “Socket interface” updated.

e | P_SOCKET_Confi gSel ect Mul tiplicator() added.

o | P_SOCKET_Get NunRxByt es() added.

e | P_SOCKET_Set Def aul t Opti ons() added.

o | P_SOCKET_Set Limi t () added.

e | P_SOCKET_Set Li nger () added.

e | P_SOCKET_Set RxTi neout () added.

3.42.5

220419

(0]}

Chapter “Core functions” updated.
e | P_Shut down() added.

3.42.4

220401

00

Chapter “Core functions” updated.
e | P_| CMP_AddRxHook() added along with its used structures.
e | P_| CMP_RenpveRxHook() added.
Chapter “Internet Protocol version 6 (IPv6) (Add-on)” updated.
e | P_I PV6_GCet | PPacket I nfo() added.
e | P_I CMPV6_AddRxHook() added along with its used structures.
e | P_| CMPV6_RenpveRxHook() added.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

3.42.3

220324

00

Chapter “PHY drivers” updated.

e | P_PHY_M CREL_SW TCH_Confi gUsel nt er nal Rmi i Cl ock() added.
Chapter “Socket interface” updated.

* Non-blocking return value in additional information for recv() and
recvfronm() corrected.

3.42.0

211123

00/
YR

Use of new version number scheme.
Chapter “Core functions” updated.
e | P_Confi gDoNot AddLowievel Checks_ARP() added.
e | P_Confi gDoNot AddLowievel Checks_UDP() added.
e | P_ARP_Confi gAnnounceSt ati cl P() added.
e | P_RenpveEt her TypeHook() added.
e Corrected wrong default TTL value in | P_Set Local McTTL()
description.
Chapter “Address Collision Detection (ACD)” updated.
e | P_ACD Hal t () added (previously forgotten).
e | P_ACD Activat eEx() added along with its used structures.
Chapter "DHCP Client” updated.
e | P_DHCPC Assi gnCurrent Confi g() added.
e | P_DHCPC Confi gAssi gnConfi gManual | y() added.
e | P_DHCPC Confi gDi sabl eARPCheck() added.
e | P_DHCPC SendDecl i neAndHal t () added.
e | P_DHCPC SendDecl i neAndReset | P() added.
Chapter "MQTT client (Add-on)” updated.
e Added MQTT 5 support.
Chapter “emFTP client (Add-on)” updated.
e Added support for APPE(nd) command.
e | P_FTPC ExecCndEx() added.
e Structure | P_FTPC_CMD_CONFI G added.
e FTPC_CMD_LI ST sPara can now be used to specify a path to list.
Chapter “CoAP client/server (Add-on)” updated.
e Configuration switches explanation for | P_COAP_ACK_TI MEQUT .
e Configuration switches define | P_COAP_OBS_FORCE_CON_TI MEQUT
added.
Chapter “NTP client (Add-on)” updated.
e | P_NTP_CLI ENT_Reset Al | () added.
Chapter “PPP / PPPoE (Add-on)” updated.
e | P_MODEM Set Uart Confi g() added.
e | P_PPP_CHAP_AddW t hMD5() added.
Chapter “PTP Ordinary Clock (Add-on)” updated.
e Information regarding PTP master added.
e New API for master and slave added.
Chapter “"UDP zero-copy interface” updated.
e Previously forgotten | P_UDP_Al | ocEx() added.

3.40e

210826

00

Chapter “Core functions” updated.
e | P_PHY_Confi gAft er Reset Del ay() added.
e | P_Set Onl FaceSel ect Cal | back() added.
e Structure | P_ON_| FACE_SELECT_I NFO added.
e Callback | P_ON_| FACE_SELECT_FUNC added.
Chapter “Configuring emNet” updated.
o Define | P_PHY_AFTER_RESET_DELAY added.
Chapter “"CoAP client/server (Add-on)” updated.
e | P_COAP_SERVER Confi gC ear () was mistakenly listed as
| P_COAP_SERVER_Confi gUnset () and was empty.
Chapter “TCP Zero-Copy” updated.
e Some old defines such as ESHUTDOWN instead of | P_ERR_SHUTDOMN
were listed.
Chapter "SNTP client (Add-on)” updated.
e | P_SNTPC Conf i gAccept NoSyncSour ce() added.

3.40a

200629

emNet User Guide & Reference Manual

00

Chapter "DHCP server (Add-on)” updated.

e | P_DHCPC _Set Vendor Opt i onsCal | back() renamed to
| P_DHCPS_Set Vendor Opt i onsCal | back() as it has been wrongly given the
DHCP client prefix.

Chapter “"emFTP server (Add-on)” updated.

e Structure FTPS_SEND_SI GN_ON_MSG_FUNC added.

e | P_FTPS_Set Si gnOnMsgCal | back() added.

e | P_FTPS_SendFormattedString() added.

e | P_FTPS_SendMen() added.

e | P_FTPS_SendString() added.

e | P_FTPS_SendUnsi gned() added.

Chapter "SNMP agent (Add-on)” updated.

© 2010-2025 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

e Updated SNMP agent requirements on page with information
about how to transform your decimal PEN into byte BER format.

e Added | P_SNMP_GENERI C_TRAP_O D_ENTERPRI SE_SPECI FI C OID trap
define to | P_SNMP_AGENT_Pr epar eTr apl nf or n() description.
Chapter “Socket interface” updated.

e | P_SOCK recvfrom.info() added.

3.40

200402

00

Manual.

e Product name changed from embOS/IP to emNet.

e Chapter emWeb server removed from emNet User Guide & Reference
Manual. All emWeb related information can be found in the ‘'emWeb User
Guide & Reference Manual’.

Chapter “Configuring emNet” updated.

e Information for | P_TCP_Set ConnKeepal i veOpt () parameters updated.

e Information for | P_TCP_Set Ret r ansDel ayRange() parameters
updated.

e Configuration switches regarding TCP retransmits and keepalives
added.

Chapter “Core functions” updated.

e | P_Set NanosecondsCal | back() added.

e | P_MDNS_Resol veHost Si ngl el P() added.

e | P_NI _ConfigUseProm scuousMbde() added.

e | P_NI _PauseRx() added.

Chapter "DHCP server (Add-on)” updated.

e | P_DHCPS_Set Vendor Opt i onsCal | back() added.
Chapter “FTP server (Add-on)” updated.

e New FTPS_BUFFER_SI ZES structure member
NumBytesInBufBeforeFlush added.

Chapter “PTP Ordinary Clock (Add-on)” updated.

e | P_PTP_OC Set I nfoCal | back() added.

e Structure | P_PTP_| NFO added.

e Structure | P_PTP_CORRECTI ON_I NFO added.

e Structure | P_PTP_OFFSET_| NFO added.

e Structure | P_PTP_MASTER | NFO added.

Chapter "WebSocket (Add-on)” updated.

e Added more additional information to | P_WEBSOCKET_Recv() regarding
CLOSE frames and their optional application data.

Chapter “"WiFi support” updated.

e Extended the additional information of | P_W FI _Scan() to cover scan
during connect.

Chapter “"WiFi drivers” updated.
e | P_NI _W FI _REDPI NE_RS9113_Set Updat eCal | back() added.

3.30c

190110

00

Chapter “Configuring emNet” updated.
* Additional information for TCP window size configuration added.
e Configuration switch | P_SUPPORT_TCP_DELAYED ACK added.

3.30b

181026

(0]0)

Chapter “Core functions” updated.
o Additional information for | P_SendEt her Packet () updated.
Chapter “PHY drivers” updated.
e Information for Microchip/Micrel KSZ8863 added.
Chapter “PTP Ordinary Clock (Add-on)” updated.
e Information about TAI time representation added.
Chapter "RAW zero-copy interface” updated.
¢ | P_RAW ReducePayl oadLen() added.
Chapter “"UDP zero-copy interface” updated.
e | P_UDP_ReducePayl oadLen() added.
Chapter “Web server (Add-on)” updated.
® Progress status WEBS_PROGRESS_STATUS_METHOD_URI _VER_PARSED
added to structure WEBS_PROGRESS | NFO .
e Added missing “paVFi | es” member to WEBS_APPLI CATI ON structure.
Chapter “"WebSocket (Add-on)” updated.
e Link to | P_WEBS_WEBSOCKET_AddHook() added for better explanation
of samples.
Chapter “WiFi support” updated.
o | P_WFI_SECURI TY_WPA WPA2_M XED added to
| P_W FI _CONNECT_PARAMS description.

3.30

180709

(0]0)

Chapter “Internet Protocol version 6 (IPv6) (Add-on)” updated.
e | P_| PV6_Get | Pv6Addr () added.

3.30

emNet User Guide & Reference Manual

180704

00

Chapter “Core functions” updated.
e | P_Di sabl el Pv4() added.
e Additional information for | P_AddEt her I nterface() added.
e Default values for | P_ARP_Confi g*() added/corrected.
Chapter "DHCP Client” updated.

© 2010-2025 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

e | P_DHCPC_Confi gUni BcSt art Mode() added.
Chapter "DHCP server (Add-on)” updated.
e | P_DHCPS_Set Reser vedAddr esses() added.
Chapter “Internet Protocol version 6 (IPv6) (Add-on)” updated.
e | P_| CVMPV6_NDP_Set DNSSLCal | back() added.
e | P_| PV6_Set Gat eway() added.
Chapter *"mDNS Server (Add-on)” updated.
e Added “Flags” member to | P_DNS_SERVER SD_CONFI G structure.
Chapter "MQTT client (Add-on)” updated.
e Added information for publisher and subscriber using the same
connection.
e | P_MJTT_CLI ENT_Exec() added.
e | P_MJTT_CLI ENT_I sd i ent Connect ed() added.
e | P_MJTT_CLI ENT_Par sePubl i sh() added.
Chapter “"WiFi support” updated.
e |P_WFI_Addd ientNotificationHook() added.
Chapter “Web server (Add-on)” updated.
e | P_WEBS_Set Error PageCal | back() added.
e | P_WEBS_AddPr ogr essHook() added.
e | P_WEBS HEADER AddFi el dHook() added.
e | P_WEBS HEADER CopyDat a() added.
e | P_WEBS HEADER Get Fi ndToken() added.
e | P_WEBS HEADER Set Cust onFi el ds() added.
Chapter “"WebSocket (Add-on)” updated.
e | P WEBSOCKET I nitdient () added.

3.22a

170801

00

Chapter “Core functions” updated.

e | P_NI _PauseRxI nt () added.
Chapter “Discovery Add-on” updated.

e Added information to structures | P_DNS_SERVER_A
and | P_DNS_SERVER_AAAA when using IP address 0.

3.22

170728

00

Chapter “Core functions” updated.

e | P_DNS_Resol veHost Ex() added.

e | P_DNS_SendDynUpdat e() added.

e | P_DNS_Set TSI GCont ext () added.

e | P_MDNS_Resol veHost () added.

e |P_N _AddPTPDri ver () added.

e | P_SendPi ngCheckRepl y() added.

e | P_Set M crosecondsCal | back() added.

e | P_Set RandCal | back() added.
Chapter "RAW Zero-Copy” updated.

e Corrected | P_RAW SendAndFr ee() packet free behavior.
Chapter “"DHCP client” updated.

e | P_DHCPC_AddSt at eChangeHook() added.
Chapter “FTP client (Add-on)” updated.

e SSL/TLS security information added.

e | P_FTPC I ni t Ex() added.
Chapter “FTP server (Add-on)” updated.

e SSL/TLS security information added.

e | P_FTPS_Al | owOnl ySecur ed() added.

e | P_FTPS_I sDat aSecur ed() added.

e | P_FTPS_Set I nplicitMde() added.
Chapter "SMTP client (Add-on)” updated.

e UTF-8 information added.
Chapter “Socket interface” updated.

e | P_SOCK recvfromts() added.

e Corrected shut down() parameters.
Chapter “NTP client (Add-on)” added.
Chapter “PTP Ordinary Clock (Add-on)” added.
Chapter “VLAN"” updated.

e Added some more information to | P_VLAN_AddI nterface() about
VLAN Id bits.

e Corrected shut down() parameters.

3.20

170622

emNet User Guide & Reference Manual

(0]0)

Chapter “Core functions” updated.

e | P_FRAGMENT_Confi gRx() added.

e | P_FRAGMVENT_Enabl e() added.

e | P_I PV6_FRAGVENT Confi gRx() added.

e | P_I PV6_FRAGVENT Enabl e() added.
Chapter “Configuring emNet” updated.

e Define | P_SUPPORT_PRCFI LE_FI FO added.

¢ Define | P_SUPPORT_PROFI LE_PACKET added.
Chapter “Socket interface” updated.

e | P_RAW AddPacket ToSocket () added.

© 2010-2025 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

e | P_TCP_Accept () added.
Chapter *"mDNS Server (Add-on)” added.
Chapter "DNS Server (Add-on)” added.
Chapter “CoAP client/server (Add-on)” added.
Chapter “Web server (Add-on)” updated.
e Minor changes.
Chapter “WiFi drivers” updated.
e | P_NI_WFI_REDPI NE_RS9113_Confi gAnt enna() added.
e |P_NI_WFI_REDPI NE_RS9113_Confi gRegi on() added.
Chapter “Profiling with SystemView” updated.

170410

00

Images in document are missing. Fixed.

170323

00

Chapter “Core functions” updated.

e | P_Set d obal McTTL() added.

e | P_SetLocal McTTL() added.
Chapter “"DHCP client” updated.

e | P_DHCPC_Confi gDNSManual | y() added.
Chapter “FTP server (Add-on)” updated.

e | P_FTPS_Confi gBuf Si zes() added.

e | P_FTPS_Count Requi redMen() added.

e |P_FTPS I nit() added.

e | P_FTPS_ProcessEx() added.

e | P_FTPS_Set Si gnOnMsg() added.
Chapter “Web server (Add-on)” updated.

e | P_VEBS_Confi gFi nd&Zi pFi | es() added.

161223

(0]0)

Chapter “"MQTT client (Add-on)” added.
Chapter “WebSocket (Add-on)” added.
Chapter “Socket interface” updated.
e Typo in example of accept () corrected.
e Typo in example of get peer name() corrected.
Chapter “Web server (Add-on)” updated.
o NumBytesFullUriBuf added to | P_WEBS_Conf i gBuf Si zes()
WEBS_BUFFER_SI ZES sample updated.
| P_WEBS_Process[Last][Ex]().
o | P_WEBS WEBSOCKET AddHook() added.
e Structure | P_WEBS WEBSOCKET_API| added.
Chapter "SMTP client (Add-on)” updated.
e Updated information for sending mails with attachments (multipart
messages).
e Corrected ROM/RAM usage.

161010

00

Chapter “Core functions” updated.

e | P_NI _drBPressure() added.

e | P_NI _Set BPressure() added.

e | P_PHY_Confi gG gabi t Support () added.
Chapter “PHY drivers” updated.

e Marvell 88E1111 Fiber driver added.
Chapter "SMTP client (Add-on)” updated.

e SSL/TLS support added (I P_SMIPC_MIA/I P_SMIPC_API).
Chapter “Web server (Add-on)” updated.

e Digest authentication support added.

e | P_WEBS_Get Prot ect edPat h() added.

e | P_VWEBS UseAut hDi gest () added.

e | P_WEBS_AUTH DI GEST_Cal cHA1() added.

e | P_WEBS _AUTH DI GEST_Get URI () added.

160912

00

Chapter “Core functions” updated.

e | P_AddLi nkChangeHook() added.

e | P_IsAll Zero() added.

e | P_NI _ConfigLi nkCheckMul tiplier() added.

e | P_Set OnPacket FreeCal | back() added.
Chapter “FTP client (Add-on)” updated.

e | P_FTPC ExecCnd() added FTPC_CMD_PROT and FTPC_CMD_PBSZ
added.
Chapter “Web server (Add-on)” updated.

e | P_VEBS_AddPr eCont ent Qut put Hook() updated.

e | P_VEBS_SendFormattedString() added.
Chapter “"WiFi support” added.
Chapter “WiFi drivers” added.

3.08a

emNet User Guide & Reference Manual

160712

00

Chapter “Core functions” updated.

e | P_Get Current Li nkSpeed() updated.

e | P_Get Current Li nkSpeedEx() updated.
Chapter “Web server (Add-on)” updated.

© 2010-2025 SEGGER Microcontroller GmbH

Software | Revision | Date By Description

e | P_VWEBS_Count Requi redMen() added.

e | P_VWEBS_Set Upl oadFi | eSyst emAPI () added.
e | P_VEBS_Set Upl oadMaxFi | eSi ze() added.

e Updated structure | P_VWEBS_FI LE_| NFO.

Chapter “Core functions” updated.
e | P_AddEt her TypeHook() added.
e | P_AddOnPacket Fr eeHook() added.
e | P_Al | ocEt her Packet () added.
e | P_Al |l ocEx() added.
e | P_BSP_Set API () added.
e | P_FreePacket () added.
e | P_Get| PAddr () updated.
e | P_PHY_Di sabl eCheck() updated.
e | P_PHY_Di sabl eCheckEx() updated.
e | P_SendEt her Packet () added.
3.08 0 160630 00 e | P_SYSVIEW I nit() added.
Chapter “Socket interface” updated.
e sel ect () updated.
Chapter “Internet Protocol version 6 (IPv6) (Add-on)” updated.
e | P_I PV6_Add() updated.
Chapter “"Web server (Add-on)” updated.
e | P_VEBS_AddPr eCont ent Qut put Hook() added.
e | P_VEBS_Conf i gUpl oadRoot Pat h() added.
e | P_VEBS_I nit() description in API table updated.
e | P_VEBS_SendLocat i onHeader () added.
e | P_VEBS_Set Header CacheControl () added.
Chapter “Profiling with SystemView"” added.

Chapter “Core functions” updated.
e | P_NI _Get TxQueuelLen() added.
e | P_STATS module added.
Chapter "SNMP agent (Add-on)” added.

3.06 0 160511 | OO

Chapter “Core functions” updated.
e | P_Fi ndl FaceByl P() added.
e | P_NI _Get Admi nSt at e() added.
e | P_NI _Get| FaceType() added.
e | P_NI _Get State() added.
e | P_NI _Set Admi nSt at e() added.

3.04a 0 160419 | OO

Chapter “Configuring emNet” updated.

e | P_SUPPORT_TRACE added to compile time switches.
Chapter “Core functions” updated.

e | P_PHY_Di sabl eCheck() updated.

e | P_PHY_Di sabl eCheckEx() updated.

e | P_TCP_Set ConnKeepal i veOpt () updated.
Chapter “Web server (Add-on)” updated.

e | P_WEBS_AddRequest Not i f yHook() added.

3.04 0 160316 | OO

Chapter “Core functions” updated.
e | P_Get FreePacket Cnt () added.
e | P_Get | FaceHeader Si ze() added.
e | P_PHY_Confi gAl t Addr () added.
e | P_PHY_ConfigUseStaticFilters() added.
e | P_PHY_Relnit() added.
Chapter “PHY drivers” updated.
e | P_PHY_M CREL_SW TCH_Conf i gLear nDi sabl e() added.
e | P_PHY_M CREL_SW TCH_Conf i gRxEnabl e() added.
e | P_PHY_M CREL_SW TCH_Confi gTxEnabl e() added.

3.02b 0 151223 | OO

Chapter “Introduction to emNet” updated.

e Minor changes.
Chapter “Core functions” updated.

e | P_ARP_O eanCache() added.

e | P_ARP_O eanCacheByl nt erface() added.

e | P_Confi gMax| Faces() added.

e | P_Conf i gNunLi nkUpPr obes() added.
3.02 0 151125 00 e | P_PHY_AddDri ver () added.

e | P_PHY_Confi gAddr () added.

e | P_PHY_Support edMbdes() added.

e | P_PHY_Di sabl eCheckEx() added.
Chapter “Web server (Add-on)” updated.

e | P_VEBS_UseRawEncodi ng() added.

e | P_VEBS_Get Connect | nf o() added.
Chapter “PHY drivers” added.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

10

emNet User Guide & Reference Manual

Software

Revision

Date

By

Description

Chapter “Tail Tagging (Add-on)” added.

3.00a

151007

00

Chapter “Introduction to emNet” updated.

e Updated guidelines for task priorities.
Chapter "Running emNet on target hardware” updated.

e Added information regarding IP\ASM folder.
Chapter "DHCP client” updated.

e Minor changes.
Chapter “Core functions” updated.

e | P_Conf i gNunLi nkUpPr obes() added.
Chapter “Socket interface” updated.

e Added sample to accept () .

e Added sample to get peer nane() .

o | P_SOCKET_Get Addr Fan() added.

e | P_SOCKET_Get Local Port () added.

3.00

150813

00

Chapter “Core functions” updated.
o | P_Get MaxAvai | Packet Si ze() added.
e | P_Get MTU() added.
e | P_I GVP_AddEx() added.
Chapter “Internet Protocol version 6 (IPv6) (Add-on)” added.
Chapter “TCP zero-copy interface” updated.
e | P_TCP_Al | ocEx() added.
Chapter “Web server (Add-on)” updated.
e | P_VEBS_AddUpl oad() added.
e | P_VEBS_Confi gBuf Si zes() added.
e | P_VEBS_Confi gRoot Pat h() added.
e | P_VEBS Fl ush() added.
e | P_VEBS | nit() added.
e | P_VEBS_ProcessEx() added.
e | P_VEBS_ProcesslLast Ex() added.
e | P_VEBS_SendHeader Ex() added.

2.20h

150616

(0]0)

Chapter “Core functions” updated.

e | P_Set Packet ToS() added.
Chapter “Socket interface” updated.

e Description and prototype of get socknanme() updated.
Chapter “"DHCP client” updated.

e | P_DHCPC_Confi gAl waysStartlnit() added.

2.20g

141223

00

Chapter “Core functions” updated.

e | P_AddVirt Et hernet I nterface() added.
Chapter “TFTP client/server” updated.

e Corrected API table.

2.20f

141124

00

Chapter “"UDP zero-copy interface” updated.

e Information regarding endianness of parameters updated.
Chapter "SMTP client (Add-on)” updated.

e Corrected supported authentication from AUTH to LOGIN.

2.20e

141031

00

Chapter “Core functions” updated.

o Information for | P_Get Addr Mask() corrected.

e Information for | P_Resol veHost () updated.

e Information for | P_TCP_Set ConnKeepal i veOpt () updated.
Chapter “Socket interface” updated.

e Information for connect () updated.

2.20b

141002

(0]0)

Chapter “Core functions” updated.

e | P_AddMenory() added.

e | P_CACHE_Set Confi g() added.

e | P_PHY_AddReset Hook() added.

e | P_PHY_Di sabl eCheck() added.

e | P_PHY_Set WiTi meout () added.

e | P_UDP_AddEchoServer () added.
Chapter "DHCP client” updated.

e | P_DHCPC Setd ientld() added.
Chapter “UDP zero-copy interface” updated.

¢ Additional information for | P_UDP_Send() updated.

2.20

140430

(0]0)

Chapter “Core functions” updated.
e | P_Confi gO f Cached2Uncached() added.
e | P_AddLoopbackl nterface() added.
e | P_AddSt at eChangeHook() added.
e | P_Alloc() added.
e | P_ARP_Confi gMaxPendi ng() added.
e | P_Connect () added.
e | P_Di sabl el PRxChecksun() added.

© 2010-2025 SEGGER Microcontroller GmbH

11

Software

Revision

Date

By

Description

e | P_Di sconnect () added.

e | P_DNS_Set Server Ex() added.

e | P_Enabl el PRxChecksun() added.

e | P_Err2Str() added.

e | P_Free() added.

e | P_GetPrimaryl Face() added.

e | P_| sExpired() added.

e | P_Resol veHost () added.

e | P_Set | FaceConnect Hook() added.

e | P_Set | FaceDi sconnect Hook() added.

e | P_SetPrinmaryl Face() added.

e | P_SOCKET_Confi gSel ect Mul tiplicator() added.

e | P_| CVP_Di sabl eRxChecksun() added.

e | P_| CMP_Enabl eRxChecksun() added.

e | P_TCP_Di sabl eRxChecksun{) added.

e | P_TCP_Enabl eRxChecksun{) added.

e | P_UDP_Di sabl eRxChecksun{) added.

e | P_UDP_Enabl eRxChecksun{) added.

e | P_Conf TCPSpace() renamed to | P_Confi gTCPSpace()
Chapter “Socket interface” updated.

e gethostbaname() parameter changed to “const char *” for standard
BSD socket compatibility.
Chapter “"UDP zero-copy interface” updated.

e | P_UDP_Get Dest Addr () added.

e | P_UDP_GCet | FI ndex() added.

e | P_UDP_Get SrcAddr () added.
Chapter "RAW zero-copy interface” updated.

e | P_RAW Get Dat aSi ze() added.

e | P_RAW Get Dest Addr () added.

e | P_RAW Get | FI ndex() added.
Chapter “"DHCP client” updated.

e | P_DHCPC Confi gOnActi vat e() added.

e | P_DHCPC Confi gOnFail () added.

e | P_DHCPC Conf i gOnLi nkDown() added.

e | P_DHCPC Renew() added.
Chapter “PPP / PPPoE (Add-on)” updated.

e | P_PPP_OnTxChar () return value changed.
Chapter “Appendix A - File system application layer” updated.

e pf | sFol der added to | P_FS_API structure.

e pf Move added to | P_FS_API structure.
Chapter “"DHCP server (Add-on)” added.
Chapter “Performance & resource usage” updated.

* Values for ROM & RAM usage updated.
Minor changes.

2.12g

131216

00

Chapter “Core functions” updated.
e | P_Confi gO f Cached2Uncached() added.

2.12f

130909

00

Chapter “Core functions” updated.
e | P_AddAf t er | ni t Hook() added.
Chapter “UDP zero-copy interface” updated.
e | P_UDP_Get Dat aSi ze() added.

2.12c

130515

(0]0)

Chapter “Introduction to emNet” updated.

¢ Added information regarding task priorities.
Chapter “Core functions” updated.

¢ Added extended information to | P_Del ni t () description.
Chapter “Web server (Add-on)” updated.

e | P_WEBS Get URI () added.

e | P_VEBS_Reset () added.

2.12b

130419

(0]0)

Chapter “FTP client (Add-on)” updated.
e DELE command added for | P_FTPC_ExecCnd() .

emNet User Guide & Reference Manual

130312

00

Minor updates and corrections.
Chapter “Core functions” updated.

e | P_PHY_Di sabl eCheck() added.

e | P_RAW Add() added.

e | P_DNS_GCet Server () added.

e | P_DNS_GCet Server Ex() added.
Chapter “Socket interface” updated.

e Information regarding usage of RAW sockets added.
Chapter “Web server (Add-on)” updated.

e | P_VEBS_AddVFi | eHook() updated.

e | P_VEBS_Redirect () added.

e | P_VEBS_St or eUser Cont ext () added.

© 2010-2025 SEGGER Microcontroller GmbH

12

Software

Revision

Date

By

Description

e | P_VEBS_RetrieveUser Cont ext () added.
e | P_VEBS_Get DecodedSt rLen() added.
e | P_WEBS_METHOD * API added.
Chapter "RAW zero-copy interface” added.
Chapter "SNTP client” added.

120913

00

Minor updates and corrections.
Chapter “"UPnP (Add-on)” added.
Chapter “VLAN” added.
Chapter “Core functions” updated.
e | P_NI _ForceCaps() added.
e | P_ARP_Confi gAgeout () added.
e | P_ARP_Confi gAgeout NoRepl y() added.
e | P_ARP_Confi gAgeout Sni f f () added.
e | P_ARP_Confi gAl | owGr at ui t ousARP() added.
e | P_ARP_Confi gMaxRetries() added.
e | P_ARP_Confi gNunEntries() added.
e | P_| Facel sReadyEx() added.
e | P_| GW_Add() added.
e | P_I GW_Joi nG oup() added.
e | P_| GW_LeaveG oup() added.
Chapter “"UDP zero-copy interface” updated.
e | P_UDP_GetFPort () added.
Chapter “Web server (Add-on)” updated.
e Information regarding file uploads added.
e More detailed description about multiple connections added.
e | P_VEBS_AddFi | eTypeHook() added.
e | P_VEBS_AddVFi | eHook() added.
e | P_VEBS_Confi gSendVFi | eHeader () added.
e | P_VEBS_Confi gSendVFi | eHookHeader () added.
e | P_VEBS_Get Par aVal uePtr () added.
e | P_VEBS_SendHeader () added.
Chapter “PPP/PPPoE (Add-on)” updated.
e | P_MODEM Connect () added.
e | P_MODEM Di sconnect () added.
e | P_MODEM Get Response() added.
e | P_MODEM SendString() added.
e | P_MODEM SendSt ri ngEx() added.
e | P_MODEM Set Aut hl nf o() added.
e | P_MODEM Set Connect Ti meout () added.
e | P_MODEM Set | ni t Cal | back() added.
e | P_MODEM Set I nitString() added.
e | P_MODEM Set Swi t chToCndDel ay() added.

2.02c

120706

(0]}

Minor updates and corrections.

2.02a

120514

(0]0)

Chapter “AutoIP” added.
Chapter “Address Collision Detection (ACD)"” added.

2.02

120507

00

Documentation updated for emNet V2 stack.
Chapter “API functions” updated.
* | P_Get RawPacket | nf o() ” added.
e “| P_I CVP_Add() " added.
e “| P_TCP_Add() ” added.
e | P_UDP_Add() ” added.
Chapter “PPP” added.
Chapter “"NetBIOS” added.

1.60

100324

SK

Chapter “API functions” updated.

e | P_Set Suppor t edDupl exMbdes() ” added.
Chapter “FTP client” added.
Minor updates and corrections.

1.58

100204

SK

Chapter “"SMTP client” updated.
Chapter “Configuration” updated.

e Section “Required buffers” updated.
Minor updates and corrections.

1.56

090710

SK

Chapter “API functions” updated.
e | P_DNSC Set MaxTLL() " added.
Chapter “Configuring emNet” updated.
e Macro "I P_TCP_ACCEPT_CHECKSUM FFFF"” added.

1.54b

090603

SK

Chapter “Web server (Add-on)” updated.
* | P_WEBS Process() " updated.
e | P_WEBS ProcesslLast ()" added.
e | P_WEBS_OnConnecti onLi mt ()" updated.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

13

Software

Revision

Date

By

Description

1.54a

090520

SK

Chapter “API functions” updated.
e | P_Get Addr Mask() updated.
e | P_Get GWhsk() updated.
e | P_Get | PMask() updated.
Chapter “Web server (Add-on)” updated.
e Section “Changing the file system type” added.
e Section "I P_WEBS_Set Fi | el nf oCal | back” updated.

1.54a

090508

SK

Chapter “Web server (Add-on)” updated.
e | P_WEBS Get NunPar as() added.
e | P WEBS_ Get Par aval ue() added.
e | P WEBS DecodeAndCopyStr () added.
e | P WEBS DecodeString() added.
e | P VWEBS Set Fi | el nfoCal | back() added.
e | P_WEBS_ Conpar eFi | enaneExt () added.
e Section “"Dynamic content” added
e Section "Common Gateway interface” moved into section “Dynamic
content”.
Chapter “Socket interface”
e get peer nane() corrected.
Chapter “Network interface drivers” updated.

1.54

090504

SK

Chapter “UDP zero-copy” updated.

1.52

090402

SK

Chapter "SMTP client” added.

1.52

090223

SK

Chapter “API functions”:
e | P_Set TxBuf fer Si ze() added.
e | P_Get | PAddr () updated.
e | P_Printl|PAddr() updated.

1.50

081210

SK

Chapter “API functions”:
e | P_| CMP_Set RxHook() added.
e | P_Set RxHook() added.
e | P_SOCKET_Set Def aul t Opti ons() added.
e | P_SOCKET _SetLimit() added.

1.42

080821

SK

Chapter “Web server (Add-on)”:

e List of valid values for CGI parameter and values added.
Chapter “FTP Server (Add-on)”:

e Section “FTP server system time” added.

e pf Get Ti neDat e() added.

1.40

080731

SK

Chapter “API functions”:
e | P_TCP_Set ConnKeepal i veOpt () added.
e | P_TCP_Set Ret ransDel ayRange() added.
e | P_SendPacket () added.

Chapter “Socket interface”:
e get sockopt () updated.
e set sockopt () updated.

Chapter “"OS integration”:
e | P_OS Wiitltentimed() added.

1.30

080610

SK

Chapter “FTP server (Add-on)” section “Resource usage” added
Chapter “Web server (Add-on)” section “Resource usage” added

1.30

080423

SK

Chapter “FTP server (Add-on)” added.
Chapter “Web server (Add-on)” updated.

1.24

080320

SK

Chapter “Socket interface”:
e getpeername added.
e getsockname added.

1.24

080222

SK

Chapter “Device Driver”:
e NXP LPC23xx/24xx driver added.

1.24

080124

SK

Chapter “HTTP server (Add-on)” updated.
Chapter “API functions”:

e | P_UTI L_EncodeBase64() added.

e | P_UTI L_DecodeBase64() added.

1.24

080124

SK

Chapter “HTTP server (Add-on)” added:
Chapter “API functions”:
e | P_Al | owBackPressure() added.
e | P_Get | PAddr () added.
e | P_SendPi ng() added.
e | P_Set Defaul t TTL() added.

1.22

emNet User Guide & Reference Manual

071213

SK

Chapter “Introduction”:
e Section "Components of an Ethernet system” added.

© 2010-2025 SEGGER Microcontroller GmbH

14

emNet User Guide & Reference Manual

Software

Revision

Date

By

Description

Chapter “API functions”:
e | P_I sl FaceReady() added.
e | P_NI_Confi gPHYAddr () added.
e | P_NI _Confi gPHYMode() added.
e | P_NI _ConfigBasePtr () added.
Chapter “Socket interface”:
¢ All functions: parameter description enhanced.

Chapter “Device drivers” renamed to “"Network interface drivers”.

Chapter “Network interface drivers”:
e Section "ATMEL AT91SAM7X"” added.
e Section "ATMEL AT91SAM9260"added.
e Section “Davicom DM9000”added.
e Section ST STR912"added.

1.22

071126

SK

Chapter “OS Integration”:
e | P_OS_Sl eep() removed.
e | P_OS_Wakeup() removed.
e | P_OS Witlten() added.
e | P_OS _Signal ltem) added.
Chapter “Running emNet on target hardware” updated.

1.22

071123

SK

Chapter “Socket interface”:

e get host bynane() added.

e Structure host ent added.
Chapter “Core functions”:

e | P_Printl|PAddr() added.

e | P_DNS_Set Server () added.

1.22

071122

SK

Chapter “"DHCP":

e | P_DHCPC Activat e() updated.
Chapter “Debugging”:

e Section “Testing stability” added.
Chapter “Socket interface”:

e Section “Error codes” added.

1.22

071114

SK

Chapter “Introduction”:

¢ "Request for comments” enhanced.
Chapter “API functions”:

e | P_AddLogFi |l ter() added.

e | P_AddWarnFi |l ter () added.

e | P_Get Current Li nkSpeed() added.

e | P_TCP_Set 2MSLDel ay() added.

e sel ect () added.

e Various function descriptions enhanced.
Chapter “API functions” renamed to “core functions”.
Socket functions removed from chapter “API functions”
Chapter “Socket interface” added.

Chapter "DHCP” added.

Chapter “UDP zero copy” added.
Chapter “TCP zero copy” added.
Chapter “Glossary” added.
Chapter “Index” updated.

1.00

071017

SK

Chapter “Introduction”:
e Section “Features” enhanced.
e Section “Basic concepts” added.
e Section “Task and interrupt usage” added.
e Section “Further readings” added.
Chapter “Running emNet” enhanced.
Chapter “API functions”:
e | P_Init() added.
e | P_Task() added.
e | P_RxTask() added.
e | P_Get Versi on() added.
e | P_SetLogFilter() added.
e | P_SetWarnFilter() added.
e | P_Pani c() removed.
e Structure sockaddr added.
e Structure sockaddr _i n added.
e Structure i n_addr added.
Chapter “Device driver”.
¢ General information updated.
e Section “Writing your own driver” added.
Chapter “"Debugging” added.
Chapter “Performance and resource usage” added.

© 2010-2025 SEGGER Microcontroller GmbH

15

Software

Revision

Date

By

Description

Chapter “0OS integration” updated.

1.00

071002

SK

Product name changed to "emNet”:

Chapter “API functions”:
e | P_X Prepare() renamed to | P_X _Config().
e | P_AddBuf f er s() added.
e | P_Conf TCPSpace() added.

1.00

070927

SK

Initial version.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

16

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

17

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

If you feel that your knowledge of C is not sufficient, we recommend The C Programming
Language by Kernighan and Ritchie (ISBN 0--13--1103628), which describes the standard in C

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

The target processor.

DOS command line.

programming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have

a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other

Reference

documents.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

18

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

19

Table of contents

INtroduction t0 EMINEL ... e 43
1.1 What IS @mMINE oo e 44
B <= Y 81 == 45
B T = T 1= ol ol] Tl] 46
1.3.1 emNEel StrUCTUNE .o e e e nes 46

1.3.2 ENCAPSUIAtiON .ot 47

1.4 Tasks and iNLermUPL USAgE ..oiiiriiiiiiiii i i e e e et aaes 48
1.5 Background informationcooiiiiiii i e 53
1.5.1 Components of an Ethernet system ..o 53
1.5.1.1 MII / RMII / GMII / RGMII: Interface between MAC and PHY 54

3 I ¥ o o o T=T ol == o | o o [R 56
1.6.1 Request for Comments (RFC) ..iiiiiiiiiiiiiii i i v 56

1.6.2 Related DOOKS ...uiiiiiiiiii s e 57

1.7 Development environment (COMPIlEr) ..oiiiiiiiii i e 58
Running emNet on target Nardwareeeeeeieiiiiiiiiiieie e 59
2.1 Step 1: Open an embOS start projectccvvviiiiiiiii e 60
2.2 Step 2: Adding emNet to the start projectccooieiiiii i 61
2.3 Step 3: Build the project and test itcciiriiiiiiii 65
Example appliCatiONSoiiiiiiiiiiiie e 66
I A O 1V =T Y= 1P 67
3.1.1 emNet DNS client (IP_DNSCIlient.C) .iiiiiiiiiiiiiiii i i 67
3.1.2 emNet non-blocking connect (IP_NonBlockingConnect.C)cccvvvvvvinnnnns 67

3.1.3 emNet ping (IP_PiNG.C) «iiiiiiiiiiii i i i e 68
3.1.4 emNet simple server (IP_SimpleServer.C) ...ccoiiiiiiiiiiiiiiiiiiii e 68

3.1.5 emNet speed client (IP_SpeedClient_TCP.C) ...civiiiiiiiiiiiiiiiiiiiiiiciiee e 68
3.1.5.1 Running the emNet speed clientc.cciiiiiiiiiiiiiiii e 68

3.1.6 emNet start (IP_Start.C) ..cciiiiiiiii i i e i e e e 69
3.1.7 emNet UDP discover (IP_UDPDiscover.c / IP_UDPDiscover_ZeroCopy.c) 69

O @] (=T V1 o 1 R 70
2 R AN = B {8 o Vo o = P 71
4.2 Configuration fUNCLIONS ... et ae e anens 80
4.2.1 IP_AddBUFEIS() tueiieiiriiiiiitiii i i re s it a e e a e e naas 81
4.2.2 IP_AddEtherInterface() ..civviiiiiiiiii i i neaneas 82
4.2.3 IP_AddVirtEtherInterface() ..vvieiiiiiiiiiiii i e e e 83
4.2.4 IP_AddLoopbackInNterfaCe() ..iieeiverieiiieiiiiie i i i e ae e aneaaeas 84
4.2.5 TP _AdAMEMOIY () teiiriiriiitiitiie it s it ae st e e 85

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

20

4.2.6 IP_AllOWBACKPIreSSUIrE() tivviriireiieiieiieiieeieinesanesesaeesnernesasssnerneannsrneannss 86
L N A N o =11 To | o] (=T 0 o] o VZ () P 87
4.2.8 IP_ARP_CONfIGAGEOUL() trriuriiriiiiitiii i sseiies e s e sane e sanssnesneannsnnens 88
4.2.9 IP_ARP_ConfigAgeoUtNOREPIY() «eivriiriiiiiiiiii i i e reannenneas 89
4.2.10 IP_ARP_ConfigAgeoutSNiff() ..ivviiiieiiii i i isae e s rnesnnennenneans 90
4.2.11 IP_ARP_ConfigAHowGratuitoUSARP() ..oivviiriiiiiiii i nae e 91
4.2.12 IP_ARP_ConfigAnnounceStatiCIP() ..ocivviiiiii i se e s nnenneneaas 92
4.2.13 IP_ARP_ConfigMaxPending()ivoviieiieiineriiienineiinsineseinesanssesnnannennenns 93
4.2.14 IP_ARP_ConfigMaxRetriES() +uuveieeiireiiriineiiiierineiieiaeenneinesnnssernnsnnerneanes 94
4.2.15 IP_ARP_ConfigNUMENTHES() +eivviiriiiiiniiniiieiineieiaesanerernnesnernesnnsnneannnns 95
4.2.16 IP_ARP_SendGratUitoUSARP() .iiiiiiiiiii i i e e 96
4.2.17 IP_BSP _SEEAPI() tiiviitiiiiiitii i ati e a i 97
4.2.18 IP_ConfigDoNotAddLowLevelChecks_ARP() ..ivviiiiiiiiiiiiiiiii i neneaas 98
4.2.19 IP_ConfigDoNotAddLowLevelChecks_UDP() ...ccviiviiriiiiiiiiiiiieeinecennens 99
4.2.20 IP_CoNfigMaXIFACeS() uvvrrererueranenneiinranereineesnesnesanssesnnesnssnesnnsaneenens 100
4.2.21 IP_ConfigNumLIiNKDOWNPIobES() .vvvvviiiiieiiiiiiii i s viesanenennnenneenes 101
4.2.22 IP_ConfigNumLIiNKUPProbes() ..vvviiiiieiiiiii i iiie i s e ennenneaaea 102
4.2.23 IP_ConfigOffCached2Uncached()ccoviriiriiiiiiiii i neneeneaaes 103
4.2.24 IP_ConfigReportSameMacONNEet() ...ccvvriiiiiiiiiiiii i nnennens 104
4.2.25 IP_CONfiIgTCPSPACE() ttvrrrrrrnneiierisereraneanesnnsansrnesasssnernesansresnnennssnenns 105
4.2.26 IP_DisableIPRXCheCKSUM() .iivrririiiiieii i iiesnne e snnennesnesnnsnnennnss 106
4.2.27 IP_DiSableIPVA() .iireiieiiiiiii i 107
4.2.28 IP_CACHE_SetConfig() +eieereeerreiierineiieinserneinnsanernesanssesnesnnssernnsnneenes 108
4.2.29 TP _DNS _GeESEIVEAIN() tiitiiiiii ittt i i e e et e 109
4.2.30 IP_DNS _GetSErVEIEX() teveiiiiiiiiiiiii it e et e e e i 110
4.2.31 IP_DNS_ReSOIVEHOSEEX() uvviiiiiiiiiiiiiii i e e 111
4.2.32 IP_DNS_SendDynUpdate() ..ivveviiiiiriieiiiieseiiesnse e inesnnesesnnsnnennens 112
4.2.33 IP_DNS_SetTSIGCONTEXE() +ivvrirrrrrririinerinranesnerinranerernnensernernneneaneanes 113
4.2.34 IP_DNS_SetMAXTTL() tterrerirrrnereranerneransanernnsanssernessnsrnesnnsrnernnsnnsrnens 114
4.2.35 TP _DNS SetSIVAIN() tiitiiiiii ittt i i e e e e 115
4.2.36 IP_DNS _SetSearvarEX() toriiiiiiiiiii ittt it e i 116
4.2.37 IP_MDNS_RESOIVEHOSE() uiviiiiiiiiiiii i e e aeas 117
4.2.38 IP_MDNS_ResolveHOStSINGIEIP() .vvvviiriiiiiiiii i i nne e e 118
4.2.39 IP_EnableIPRXCheCKSUM() +iiiiiriiiiiiiiiii i ne e neesnesnennnennens 119
4.2.40 IP_GetMaxAVvailPacketSize() ..vvvvriiiii i 120
4.2.41 IP_GetMemPOOIINfO() tivviiriiiiiii i e e e ane s 121
4.2.42 TP_GEEMTU() ttiireitiineintineeaneierasesesaeaaneresanssnesneeansreaasssnesneanneanesnes 122
4.2.43 IP_GetPrimaryIFace() .ovvreieeiireiieiieeieinneaneinesane e innsane e 123
4.2.44 TP_ICMP_AdA() trerrireiiniineieiaesaneinesanssesnnsanesnesanssnssnssnnssernnsanseneenns 124
4.2.45 IP_ICMP_DisableRXChecksum() . ccciiiiiiiiiiiii i i i 125
4.2.46 IP_ICMP_EnableRXChecksum() ...cciiiiiiiiiiiiiiii i e 126
4.2.47 IP_IGMP_AdA() +iiriiiiiriie it iitsae e s s e sasese s e e s ane s 127
4.2.48 IP_IGMP_AdAEX() ttvireiriiniineiieiiseiiesassanesansanssnesansanssnesanssnsrnesnnerneenes 128
4.2.49 IP_IGMP_ConfigV2AIWaysReport() ...ccvveiiiiiiiiiiiiiesi i iiesnesnennnannens 129
4.2.50 IP_IGMP_JOINGIOUP() trevuerirerumrnnenneransassrnesnnssnesnesanssesnnesnssnesnnsmnernns 130
4.2.51 IP_IGMP_JoinGroup_AUtOREJOIN() +iivriiriiiiiiii i viee s e e nneas 131
4.2.52 IP_IGMP_LEaVEGIOUP() +errerrrinereraneanernesanssnesansansrnesnnssnesnesnnssnesnnennes 132
4.2.53 IP_RAW_AdA() +iiriiriiitiitineiitiase i raesssssaesans e sassanssnesnnssnesneannsaneannnns 133
4.2.54 IP_SetAddrMask() .iieieeiieiiiieiieiiiaeeae s 134
4.2.55 IP_SetAddrMasKEX() .eiieiierieiineiieiinereraesaneiesasssnernesanssernesnnssnesnnennes 135
4.2.56 IP_SetGWAAAI() tiviiiriieiiiiitii i e s s e aeenne e aaneanernanneanes 136
4.2.57 IP_SetHWAAAIr() tveiiriiriiiiieiiiiesie s saeeasesaesaes s sesan s e annesnerneanneanens 137
4.2.58 IP_SetHWAAIrEX() +ioeiiriiiiiiiiiie s i ase e saes s e sesanesnesesnneanenneas 138
4.2.59 IP_SEEMTU() ttiiriiitiiniiiiiieei it sanesesaeeans e sasssne e sanssernnsaneaneanes 139
4.2.60 IP_SetRandCallback() ..iveeireiiriiiiiiiie i iei i re s ane s e s aneaneannans 140
4.2.61 IP_SetOnIFaceSelectCallback() ..oovivrviriiiiiiii i e e 141
4.2.62 IP_SetPrimaryIFace() .ioeieriereiiiieiieiieiieseiaeeane e 143
4.2.63 IP_SetSupportedDupleXModes() ..viveviriiiiieii i 144
N G S | = Y = o I (T 145
4.2.65 IP_SetGlobalMCTTL() trevirririieiieiineiieraseaneraesanesnranesnernnaansreennannernenns 146

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

21

emNet User Guide & Reference Manual

4.3

4.4

4.5

4.6

4.2.66 IP_SetLOCAIMCTTL() trvvrrieernerneennerneransrnernsasnernesanssnesnnsnnernernnsaneennsnns 147
4.2.67 IP_SetUSERXTASK() tvvrerurrirereiinenseiansanssesasssnesnesasssesnnsansrnesnnssnesnnnns 148
4.2.68 IP_SOCKET_ConfigSelectMultiplicator()cvvevvviieiieiiiiiiie i iiennnennenns 149
4.2.69 IP_SOCKET_SetDefaultOptions() ..iocvvriiiiiiiiiii i neenneeaeas 150
4.2.70 IP_SOCKET_SetLimit() vuvrerreiiriieiiiiiiieiiesasesierseennernesanssneenesnnsaneannss 151
4.2.71 IP_SYSVIEW_INI() tireiieiiriiiiiiiiiiraeessesiesasesnesansnnssesnnsanesneannsnneanens 152
4.2.72 IP_TCP_AdA() treieiiriii it saee st sae e sae e s e e sanssnesaneanesneanneaneannans 153
4.2.73 IP_TCP_DisableRXChecksum() ...cccviiiiiiiiiiii i e 154
4.2.74 IP_TCP_EnableRXChecksum() ..ccciiiiiiiiiiiiiiii i e 155
4.2.75 IP_TCP_Set2MSLDElay() +iioeveeiireiiriineiiiinraseiierasennesnesnssseennsnnsaneannans 156
4.2.76 IP_TCP_SetConnKeepaliveOP() «iirviiriiiiiiieiieiiiiesie i rneenesnesnnannenns 157
4.2.77 IP_TCP_SetRetransDelayRange() ...ccvviviiiiiiiiiiiiii i nneennenneanees 158
4.2.78 IP_UDP_AAA() tevrirerniiitiineiieiaeeneiassansiesassssesnesanssnesnnsssssnssnnsnnernnsnnes 159
4.2.79 IP_UDP_AddEChOSEIVEI() iiiiiiiiiiii i i e e i e e eaes 160
4.2.80 IP_UDP_DisableRXChecksum() ...ccoiiiiiiiiiiii i i i 161
4.2.81 IP_UDP_EnableRXChecksum() ...ccciiiiiiiiiiiii i e 162
Configuration functions (IP fragmentation)c.cooiiiiii e 163
4.3.1 IP_FRAGMENT_CONfIGRX() +evreririineierineineiinenneiiernsesnesiesnnsnnesnssnnsaneanns 164
4.3.2 IP_FRAGMENT_ENabIe() .ceiiriiriiiiiiii i ne s e e e n e 165
4.3.3 IP_IPV6_FRAGMENT_CONfIGRX() vvirerurririineiinrineneinesnneiiesnnsnnesneannesnenns 166
4.3.4 IP_IPV6_FRAGMENT_ENAbLIE() +iiviiriiiiiieiiii it rieene s e nesennneene e 167
Management fUNCLIONS ... e e e e 168
T i 1= 1 oV o (PR 169
R ¥ 1 o T (PP 170
G B N - 1= () P 171
N N ==l () T PP 173
T N AN S 1 o 1 () I P 174
4.4.6 IP_TASK EXEC() ttrirerutriniineiiniineieiassaneinesanssesnneanssesnnssnesnesnnesesnnennes 176
4.4.7 IP_TASK_WaitFOrEVENt() .ivvviiiiiriii i i e e e n e eeans 177
o S T N 2 =11 () T PP 178
4.4.9 IP_RXTASK INIE() terreiiriireieiiniieiitranesnesansanesnesanssnesnesanssnesnnsansaeannenes 179
4.4.10 IP_RXTASK_EXEC() tirerrrrnerurrnnerneinnasneresanssnernessnssssnssnnssnnsnnssnesnnsnnes 181
4.4.11 IP_RXTASK_WaitFOrEVENt() cuviiiiiiiiiiii i e e aea 182
2 A | = Y £ 1) e (o)7 o T () PP 183
Network interface configuration and handling functionscooiiiiini. 184
4.5.1 IP_NI_AdAPTPDIIVEI() eiiriiteiitiieiieianeaneiaesasesesaneanesnesnnssnernesnnsaneannanes 185
4.5.2 IP_NI_CIrBPrESSUIE() teiiettiiteiiit ittt tae it aee it aiee et e sateaaneeraaeanns 186
LG T = VI S @Y T | = 1 () 187
I S N e VO N o o= T@t=] o] () I P 188
4.5.5 IP_NI_SeIBPIreSSUIE() tiiiitiiiiit ittt ittt et it e e it ane e it aeeaaaeaas 189
4.5.6 IP_NI_SetTXBUfErSize() .ioviiiiiiii i e e e e e 190
PHY configuration fUNCLIONS ..o e 191
L S A = VO A @Y T | =d o 7Y [[o PP 192
4.6.2 IP_NI_ConfigPHYMOAE() tiiriiiriiriiiiieiie i s ransane e ennennesnesnnsnneaneanes 193
4.6.3 IP_PHY _AdADrIVEN() tiiiiiiiiiiii i i i et e 194
4.6.4 IP_PHY_AddRESEIHOOK() uiiiiriiiiiiiii it e e v it e aaea s 196
4.6.5 IP_PHY_CoONfigAdAr() ueiveieeiiiiieiii i eieene e sasssesnnsnnssnesnnsnneannanes 198
4.6.6 IP_PHY_ConfigAfterResetDelay() ..icovviriiiiiiiiiiiii i i nnenenneees 199
4.6.7 IP_PHY_ConfigAILAdAr() .ovveiieiiiiiii i i nae e e s a e s e e nneaneeneas 200
4.6.8 IP_PHY_ConfigGigabitSuUpport() ..ooeeiiriiiiiiiiii i i ane e e 201
4.6.9 IP_PHY_ConfigSupportedModes() ...viveiiriiriiiiiininiienine i nnnenneinennnenneenes 202
4.6.10 IP_PHY_ConfigUseStaticFilters() ...c.ooviiiiiiiiiiiiii i e 203
4.6.11 IP_PHY_DisableCheCK() .uuiiiiiiiiii i i it e i e eaaeaas 204
4.6.12 IP_PHY_DisableCheCkEX() .iivtiiiiiiiiiiiii i it i e i eia e raeeeaeas 205
4.6.13 IP_PHY_REAAREG() +iirvireiiriireieiiteineiinsisesesanesnssnesanssnesnnsansrneannsnneenes 206
4.6.14 IP_AddLIinKChangeHOOK() +iovuiriiiriiiiieiiee i iieese e ease s sieannenesnnsnnennens 207
4.6.15 IP_AddOnPacketFreeHOOK() .vivriiriiiiiiiii i veennenne e 208
4.6.16 IP_AddStateChangeHOOK() .iivviiriiiiiriii e sne e eneenseresnneanennens 209
4.6.17 IP_PHY_REINIT() tieeeiriiierineiieiineneiiesise e siessnesesanssnesnesnnsseanneanernnanns 210
4.6.18 IP_PHY_SetWdTimeEOUL() ..eiiiiiiiiiiiiiiie i it i ri it ra v e e iaeenneeas 211

© 2010-2025 SEGGER Microcontroller GmbH

22

4.6.19 IP_PHY_WHEEREG() tirvirririiiiitiie i i s e rnes s e s s ser e e nneeneanes 212
4.7 Stalistics fUNCLIONS .iiiiiii i e e as 213
4.7.1 IP_STATS_EnableIFaceCounters() .cooiiiiiiiiiiii i i 214
4.7.2 IP_STATS_GetIFaceCoUNTArS() .uviiiiiiiiiieiiii i ai i ie e aeeaaes 215
4.7.3 IP_STATS_GetLastLinkStateChange()ccvviiiiiiiiiiiii i 216
4.7.4 IP_STATS_GetRXBYtESCNE() tiiviiriiiriiiiiiiriie i i s e eneaneanes 217
4.7.5 IP_STATS_GetRXDiscardCnt() ..ccciiiiiiiiiiii i i i e e e 218
4.7.6 IP_STATS_GetRXEIMCNE() toviiiiiiiiiiii i e e aaeeas 219
4.7.7 IP_STATS_GetRxNotUnicastCnt() ..covviiiiiiiiiiiii e 220
4.7.8 IP_STATS_GetRXUNICasStCNE() ..vviriiiiiiiiiiiiii i e ci e naeeas 221
4.7.9 IP_STATS_GetRxUnknownProtoCnt() ...ccoviiiiiiiiiiiiiii i e 222
4.7.10 IP_STATS_GetTXBYLteSCNL() tovviriiieiieiiiiiniineiieranenneriesnnennerneannenneaneanes 223
4.7.11 IP_STATS_GetTxDiscardCnt() .ccciiiiiiiiiiii i i i i e i e eaee s 224
4.7.12 IP_STATS_GEetTXEICNE() uviiriiiiiiiiie i i i e i e v e e iaeaaneeas 225
4.7.13 IP_STATS_GetTXNotUnIicastCnt() ...voviiiiiiiiiiii i i e aaes 226
4.7.14 IP_STATS_GetTXUNIcastCnt() ..icoeiiiiiiiiiiiiiiii i i s e e e 227
4.8 Other IP Stack fUNCLIONS .iiiviiiiiii i e e e e e aeanes 228
4.8.1 IP_AddAFterINitHOOK() t.viiriiiiiiii i s e e e aeaas 229
4.8.2 IP_AddEtherTypeHOOK() .iiiiiiriiiiiiii i e s e e ane s e e e e nneeneas 230
4.8.3 IP_AddInterfaceErrorHOOK() .ovviieiiriiiiiieii i ase e e s e nnneaneenes 232
4.8.4 IP_AddLINKChangeHOOK() .viiriiriiieiii i e eie e e s eenneenes 233
4.8.5 IP_AddONnPacketFre@HOOK() .iiviiriiriiiiiieiieiierie s iaesnne e enesnernnsnnennens 234
4.8.6 IP_AddStateChangeHOOK() ...viieiiriiriiiiiii i rernaenneenens 235
L S A N | o o () I PP 236
4.8.8 IP_AlOCELhErPacKet() .uvveieeiiriiiiiiie i i e e s s e e nnerenanenneaneas 237
L S T T | Fo Yo =5t () PP 238
4.8.10 IP_ARP_CleanCache() tioiiiiiiiiiii i i 239
4.8.11 IP_ARP_CleanCacheByInterface() ...ccviiviriiiiieiiniiiiiiine e iieannenenneannes 240
L S T 72 | = @ o o =T f () I P 241
2 S 0 0 T § = 0 1 [=To o] [=T o o () I PP 242
L S S o = o 7]l (P 243
4.8.15 IP_FiNdIFACeBYIP() .iviiiriiiiiiiiiie i e s e e e s e s e e e e an e aneaneas 244
S T = == T () I PP 245
4.8.17 IP_FreePacket() .cciiiiiiiiiii i e i 246
4.8.18 IP_GetAddrMasK() «iveeieiieiireieiieeiiiesane e raeesne e sans e earerneaaneaneaneas 247
4.8.19 IP_GetCurrentLinkSPeed() .vivvverriiriiriiiiiniineiiieene i ense s sneannaaneannans 248
4.8.20 IP_GetCurrentLinkSpeedEX() ..viieiiriiiiiiii i raeneaes 249
4.8.21 IP_GetFreePacketCnt() .ivvviiiieii i i 250
4.8.22 IP_GetIFaceHeaderSize() ..vvvrvvreiierineriiineaseiieianeseinesansserneaaneaeannanes 251
4.8.23 IP_GEetGWAAAIN() tovvireiieiineiieiieenneiaesansserasesne e sanssnesnnsansseanrsaneennanns 252
4.8.24 IP_GEetHWAAI() viireiiriiiiiiiieiiiesas et saee s sieaaassnesesanesnernnsnneaneannans 253
LS T S | o 1= o =7V [| o () T 254
4.8.26 IP_GetIPPacketINfo() .iviviieiiriiiiiiieiie i s sase e eneennesesnneaneeneanens 255
4.8.27 IP_GetRawPacketINfo() «ivvirriieiie i iee s e nee s e s esanenneaneas 256
LS T T | o 1= V=T o1 To T () P 257
4.8.29 IP_ICMP_AdARXHOOK() eiirirriiiniiriiieiineieiieenneinesanssnesnesnnssnesnnsnnernnanes 258
4.8.30 IP_ICMP_SetRXHOOK() tuviiriiriiiiiiiiiiiieiie i s e enne e rneennerennnenneenes 260
4.8.31 IP_ICMP_RemMOVERXHOOK() ueiiiriiiiiiii it i et naee s 262
4.8.32 IP_IFAceISREAAY() +ivrriuriirerniiineineiieiase s ense e sanesnesneaanssnesnnaaneaneannss 263
4.8.33 IP_IFAceISREAAYEX() vvvrerirririiniiiniineresanesnernesnnssnesnnsnnssesnnsanesnesnnenns 264
4.8.34 IP_IPVA_ParseIPVAAAAr() .iveivriieiiiiieeie i s risense e snnesnesnesnnenneannans 265
L S NG LT o K= | 7= oo () I PR 266
4.8.36 IP_ISEXPIred() «iovviriieiieiii i iiiie it saee s e s aae e sne s e e s e nne e 267
4.8.37 IP_NI_ConfigLinkCheckMultiplier()cciviviiiiiiiiiii i nneeaeas 268
4.8.38 IP_NI_ConfigUsePromiscuousMode()ooevveririiimiiniiniiienineneinesnnennennens 269
4.8.39 IP_NI_GetAdminSTate() ..ovvvririiiiiieiie i r i e eeraneaneanes 270
4.8.40 IP_NI_GetIFACETYPE() trvvrrrrrrnernranerneransaneinesanssnernnssnernesnnssernnennsenens 271
4.8.41 IP_NI_GetState() cviieiiriiiiiiiii s i ane e aane e aaeas 272
4.8.42 IP_NI_SetAdminState() «iocvvrriiriiiiiiii i i sne e e e 273
4.8.43 IP_NI_GetTXQUEUELEN() tiriiiriiriiiiieiineiieeine s raneane s snneanesnesaneaneannanes 274

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

23

4.8.44 IP_INI_PAUSERX() teririirererinerneraneanernsansrnesansansrnesanssesnnsnnsrernnssernes 275
4.8.45 IP_NI_PauSeRXINT() .iiiiriiiiiiii i i i e e e e e 276
T S T C T N = o T ool 1 7V o [o (P 277
4.8.47 IP_ReSOIVEHOSE() .viiviiriiiniii i it e s s e e e rr e e e e aneaaeas 278
4.8.48 IP_RemoveEtherTypeHOOK() .ovviveiiriiiiiiiii i neeea e naeas 279
4.8.49 IP_RemoveLinkChangeHOOK() ..ivviriiiiiiiii i i naeeaea 280
4.8.50 IP_SendEtherPacket() ..iveeiiriiiiiiiiii i i e enneeeanans 281
4.8.51 IP_SendPacKet() ..oeieiiriieiitiiiiiieianesieraneae e 282
4.8.52 IP_SendPing() toeieeeireiieiieiiieii i 283
4.8.53 IP_SendPingCheckRepIY() .vvvreiiriieiii i ie i nen e e 284
4.8.54 IP_SendPingEX() .ioiiiiiiiiiiiii i e e 285
4.8.55 IP_SetIFaceConneCtHOOK() tvvirviiiiriiiiiii i rea e nneenens 286
4.8.56 IP_SetIFaceDisconneCtHOOK() .vvieiieiiriiieiii i se e s aneenenneenes 287
4.8.57 IP_SetOnPacketFreeCallback() ..vvvvirviiiiiii i ea e 288
4.8.58 IP_SetPacketTOS() tovviriieiiriireiieiinernraeeaneinesasereraseanernesasernerneannsrnens 289
4.8.59 IP_SetRXHOOK() tiiriiueiitiiteiitiite it iaesasesinsasesnesaesanssesnesansrnernnsaneaneanns 290
4.8.60 IP_SetTXHOOK() .eiiriiriiiniiriieiiteieriesaessnesansasssesanesneresanssneennanneaneenes 291
4.8.61 IP_SetMicrosecondsCallback() .vvveviriiiiiiiiiiiiii i e 292
4.8.62 IP_SetNanosecondsCallback()ovvieiiriiiiinii i vieennenaeeaes 293
4.9 Stack internal functions, variables and data-structurescooiiiiiiiiiinn 294
4.9.1 Structure BSP_IP_INSTALL_ISR_PARA ...ttt i ve e e 295
4.9.2 SErUCEUIE BSP I P AP .ottt e e e e e e e e s e e rreeeeerrann 296
4.9.3 Structure SEGGER_CACHE_CONFIGciiiiieiiiiiiiie i e eieennennennaans 297
4.9.4 TP _STATS _IFACE ..ttt i i e e s e a e e e s s e e e raneaneeneas 298
4.9.5 IP_HOOK_ON_IF_ERROR ...iiitiiiiiiiiiieiiiiieenneinesane e snnessesesnnssnesnnannennes 299
4.9.6 IP_ON_IFACE_SELECT_INFO .itiiiiiiiiiiiiiieiie i s e snnssnesnesnnannennnans 300
4.9.7 IP_ON_IFACE_SELECT_FUNC .iiiiiiiiiiii i i e seennesesnnenneneans 301
4.9.8 IP_ON_ICMPVA_FUNC ..ttt es i rie s e s e saas e snesanssesnnsnnenneanes 302
4.9.9 IP_MEM_POOL_INFO .iiitiiiiiiniiiiiiteiiiesaeiiesane s sanssnesnnennesnesnnsaneanens 303
IS Yo To 2= A [) (=T =T = O POP 304
5.1 UDP S0OCKEL Calls oiiiiiiiiiiii i i it e et e e e 305
5.2 TCP SOCKEE Calls vttt i e e e e e et 306
5.3 AP fUNCHIONS ettt e 307
S IC T R - T o= o) o () 309
LG 70 o 1 T I () P 311
5.3.3 CloSESOCKEE() 1uviriiiii i s 312
S TNC T S oo o ¥ =T ot o) PP 314
5.3.5 gethostbyname() ..oooiiiiii 316
5.3.6 getpeerName() cioviiiiiiiii i 318
5.3.7 getSOCKNAME() tiiiieiiiiiiii i 319
5.3.8 getSOCKOPL() tiuviiiiiiiiii i s 320
oI T T 1= o= o () 324
LG 70 0 R o=V () T 325
INC T I A o =T o1V o] o () TR PP 326
5.3.12 SEIECE() eiuriiiiiiit i i 327
LG T8 G T T o T [() T 330
5.3.14 SeNALO() wiiriiiiiiiiii i s 331
5.3.15 SetSOCKOPE() .iiuriieiiiiiii i 332
5.3.16 ShUEAOWN() wiiriiiiiii i e 333
5.3.17 SOCKEE() triiniiiiiii i e 334
5.3.18 IP_RAW_AddPacketToSOCKet() ...oooiiiiiriiiiiiiiiii e 336
5.3.19 IP_SOCKET_ADOrREad() .ieiitiiiiiiiiii i e e ee e 337
5.3.20 IP_SOCKET_AddGetSetOptHOOK() «ivviriiriiiiiiiii i eienaeneeenaans 338
5.3.21 IP_SOCKET _ClOSEAI() tutiitiiiiiiiii it i i i e e eae e 341
5.3.22 IP_SOCKET_ConfigSelectMultiplicator()ccvovieiiiiriiiiiiiiiiiiiennaeenens 342
5.3.23 IP_SOCKET_GetAddrFami() «ivoiiieiiiiiii it naeee e 343
5.3.24 IP_SOCKET_GetErrorCode() «iuueviiiiiiueiiiiiiii i enie e eneenaeeieanens 344
5.3.25 IP_SOCKET_GetLocalPort() .ivoeiiiiiiiiiiiiii i i e 345

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

24

emNet User Guide & Reference Manual

5.3.26 IP_SOCKET_GetNUMRXBYLES() +ivvviiriiriiiiineineiieiineiesissnnesnesnnenneennenes 346
5.3.27 IP_SOCKET_SetDefaultOptionS() ..vivvvirviieiiriineiiniieeneiiesnneiesnnanneaneanes 347
5.3.28 IP_SOCKET_SetLimit() +ioevirerieiiriiniiieiineirraneanernesanssernnsnnssnesnnssneannnns 348
5.3.29 IP_SOCKET_SetLiNGEr() evvreiierirereiinsineiiesanssernesssssesnnsanssnesnnsanesnnnns 349
5.3.30 IP_SOCKET_SetRXTIMEOUL() ..oucrureieiiiniieie e e e e e e eeeneeenes 350
5.3.31 IP_SOCK_recVirom_iNfo() .iiiiieiiiiiiii i e e e e aaeas 351
5.3.32 IP_SOCK _recVirom_ES() «iiiiiiiiii it it i e i e 352
LSTC TG 1C T = N = AN ol o f () I P 353
TG TG 7 S = o o T I 2 () TP 354
N TG 1 T e o] = I () TP 355
5.3.36 IP_FD _ISSET () tueiueiuieiii ittt ettt e et e e e e e e e e 356
o B T 1 o= = o U ot o | = 357
L2 S R =T Yol ¢ Vo [| PP 357
Lo 0 o Yoo <= T [| o T o T 358
Lo 3 T | o Y- T s | 359
5.4.4 hOSEENE i s 360
5.4.5 IP_SOCK_HOOK_ON_GETSETOPT_FUNC ..ottt e eeeas 361
5.4. IP_SOCK_RECVFROM_INFO ..iitiiitiiiiiieiiniineiiniasensesansanssnssnnssnesnesnnssnenns 362
o T = o] gl ol Yo [P 363
TCP Zero-COPY INLEITACEccoce e e e e e e e e e e e 364
L T R O 2= o LT oo o) 365
6.1.1 Allocating, freeing and sending TCP packet buffersccccovvviviiinnnnnnn. 365
6.1.2 Callback function for TCP ZEro-COPY ...vvriitiieiriiiiieitentiieiesneanaieaeneaneans 365
6.2 Sending data with the TCP zero-copy API ... e re s 366
6.2.1 Allocating a packet buffer for TCP Zero-Copyccvcvvviiiiiiiiiiiiiiiniieinnenne. 366
6.2.2 Filling the allocated buffer with data for TCP zero-copyceevvvvivinnnns 366
6.2.3 Sending the TCP zero-copy Packetciciiiiiiiiiiiiiiir e reeens 366
6.3 Receiving data with the TCP zero-copy API ...t e 367
6.3.1 Writing a callback function for TCP ZE€ro-Copyccvviriiiiiineiieiiinneiennennns 367
6.3.2 Registering the TCP zero-copy callback functionccoooviiiiiiiiiinnnnn. 367
LT S 1N o N W o Vo o 1= 368
LT R 1 = ! = 1Y | Yo () T 369
(ST A | N o Y | oYl =T () I P 370
B.4.3 TP T CP _FrE() ttiitiiitiiti ittt 371
6.4.4 TP _TCP_SENA() tiutiittitiii ittt i e et 372
6.4.5 IP_TCP_SendANdFree() .oeiieiiiiiiiiiii it ne e aee e 373
UDP ZEro-COPY INTEITACE ...ttt e e e e e 374
2% R U 1 T =<1 o R ol] o) 375
7.1.1 Allocating, freeing and sending UDP packet bufferscccooiiiiiennnns 375
7.1.2 Callback function for UDP ZE€ro-COPY ..iiriiiriirerneiiniineiieinneineinesnnssneennsnes 375
7.2 Sending data with the UDP zero-copy API ..o ee s 376
7.2.1 Allocating a packet buffer for UDP Z€ro-COPYccvvvviriiriiieiineineiiennnennennss 376
7.2.2 Filling the allocated buffer with data for UDP zero-copyc.covvvvvnvinnnns 376
7.2.3 Sending the UDP zero-copy Packetciccviiiiiriiiiiiiiiiiernneieineannennens 376
7.3 Receiving data with the UDP zero-copy APIccoiiiiiiiiiiii e 377
7.3.1 Writing a callback function for UDP Zero-Copyciveviiiiiriiniiieiinnnneinennns 377
7.3.2 Registering the UDP zero-copy callback functioncooiiiiinniis 377
/28 S A = I U Tt oo o = PP 378
20 3 R = U1 = 2N | T Yol () 379
7.4.2 IP_UDP_AIOCEX() ttiireitiitenneiansanesiniaseaneinnsanssnesnnssnssnesnnssnesnnssnssesnnans 380
7.4.3 IP_UDP_CIOSE() ttiirtitiineitianeaneiansaneriesasssnesnssanssesanssnssnesnnssnernnennernes 381
7.4.4 IP_UDP_FIiNAFreePort() .ucviiiiiiiiii it e 382
A T | o U o o =TT () P 383
7.4.6 IP_UDP_GetDataSize() «cueviiiiiiiiii it 384
7.4.7 IP_UDP_GetDataPtr() ..civeiiriiiiiiniii ittt iissse s snesnssnnesesnnsaneannanes 385
7.4.8 IP_UDP_GetDeStAAAIr() toriiiiiiiiiiiiiii it e i 386
7.4.9 IP_UDP_GEEFPOI() teiieiiriineiininseiaeiaseseiansaseinesanesesnsssnesnesansrernnenneenes 387

© 2010-2025 SEGGER Microcontroller GmbH

25

7.4.10 IP_UDP_GEtIFINAEX() -eureueinernenaneaneaneae et e aeaaeeeeneaeeeeneaaeeeneanennanens 388
7.4.11 IP_UDP_GEeLPOIT() euenineieiiie et et e e e e e e e e 389
7.4.12 IP_UDP_GetSrCAdAr() eeeeieineeiie e et e e e e e e e e e aeaas 390
2 3 N T £ U 15 1 = © oY= o [() I 391
7.4.14 IP_UDP_OPENEX() terirrerierinerneianennerinsanesnerassasssnesnsssnssnnsnnssnesnnsseenenns 392
7.4.15 IP_UDP_S@NA() tttuetueiniieae it ettt e e e e e e e e e e e e e e 393
7.4.16 IP_UDP_SendANdFree() «iiiiiiiiiiiiii i e et 394
7.4.17 IP_UDP_ReducePayloadLen() ...couieiieiieiiiiiiiie s enne e enesnnennennes 395

8 RAW Zero-Copy INEIACEcoevviiiiiiiie e 396
8.1 RAW ZEI0 COPY tiuttutrntaneitatesneaataanetansanesastaraanssanaanssstansansrnraaneanssneeanssnesnes 397
8.1.1 Allocating, freeing and sending packet buffers for RAW Zero-Copy 397

8.1.2 Callback function for RAW Zero-COPY ..icciieeiiiiieiiniiininniiiianasesieaanaanens 397

8.2 Sending data with the RAW zero-copy API ..o e 398
8.2.1 Allocating a packet buffer for RAW Zero-COopY ..cvvevrviirieieiiiieiieinnnennenn 398
8.2.2 Filling the allocated buffer with data for RAW Zero-Copycocevvivvnninnnns 398
8.2.3 Sending the packet ... 398

8.3 Receiving data with the RAW zero-copy API ... 400
8.3.1 Writing a callback fUNCLIONiiviiiii e 400
8.3.2 Registering the callback function for RAW Zero-Copyccvvvvvvieiieinnnnnnnns 400

8.4 AP fUNCHIONS 1ttt i e e e e 401
8.4.1 IP_RAW _AIOC() teuenintitinitit it itaae et staae et saaeeaeseaeeaesneaeeaeaneaseneannanans 402
8.4.2 IP_RAW_CIOSE() ttruerrtntrnernertaatetetaanaerneasaaessssensaesssnsaaneeasenneneanennnns 403
8.4.3 IP_RAW _FrEE() eirtirititinititiiitst et ataae e staaeeaesteasaanseneeanreananeaneanes 404
8.4.4 IP_RAW_GetDataPtr() .ovvoeiriiriieiiiiiit et ner e e rea e e aaneaaens 405
8.4.5 IP_RAW_GetDAtaSiZe() .evvvverurrniieieiiitiat it iieaeeaeieaeeaeeenneneseaneneaneanes 406
8.4.6 IP_RAW_GetDEStAAAN() .eiriirieiiiteiiieent et ae e s e e e e aeaeens 407
8.4.7 IP_RAW_GEtIFINAEX() tterrieiniiniititiniiteat it iteneeaestsneaaeseanenesneanennaneanens 408
8.4.8 IP_RAW _GetSrCAdAr() tovieeiriitiei ittt e e r e e e e aanaaaens 409
8.4.9 IP_RAW _OPEN() tttutittititinentatiesteateessaaeaessaneaeseasaaeanearaaeansasennannns 410
8.4.10 IP_RAW_SENA() teurruerntrtitieitiatatitateaeaaeasenssareeaseanaersnnaneansaannanens 411
8.4.11 IP_RAW_SeNdANAFIEE() .ivviueiriitiiiiiieit it ieaeeaeseaseaeeenneaeeeaneneaneanes 412
8.4.12 IP_RAW_ReducePayloadLen() ...iccvviiiiiiiiiiiiiii i riee e e s e e 413

S B B] o [o] 1= o | U 414
1= T R BT (@ o F=Tol (e | /o 18 o Uo = P 415
1S T AN = N 1] oVt o o 1= PP 416
9.2.1 IP_BOOTPC_ACHVAtE() t.viiiriiiiiiii i i et e e aes 418
9.2.2 IP_DHCPC _ACHIVAtE() tiiiriiiii i 419
9.2.3 IP_DHCPC_AddStateChangeHOOK() ...cvvriiriiiiiniiiiiiesie i viennnenne s 421
9.2.4 IP_DHCPC_AssignCurrentConfig() ..evveeiiriiriiiiieiineiieiieennesieiiesnneneannenns 422
9.2.5 IP_DHCPC_ConfigAlwaysStartInit() ...ccoveviiiiiiiii i i enee e 423
9.2.6 IP_DHCPC_ConfigAssignConfigManually()c.ccoiiiiiiiiiiiiii e 424
9.2.7 IP_DHCPC_ConfigDisableARPCheCK() ..cviiriiriiiiiiii i ne e 425
9.2.8 IP_DHCPC_ConfigDNSManually() .ccevieiiriiiiiiii i snns e nneenneenes 426
9.2.9 IP_DHCPC_ConfigRequestLeaseTime() ..uivvvririiieiinrieiiennneieinnannennennnss 427
9.2.10 IP_DHCPC_ConfigONACEIVAte() .iovviririeiiriiii it i iene e i e ennennens 428
9.2.11 IP_DHCPC_ConfigONFail() «.ciueieieieieiie i e e e 429
9.2.12 IP_DHCPC_ConfigONLINKDOWN() ueviviiriieiineineiieenneinesnnsnnesnesnnsnneannenns 430
9.2.13 IP_DHCPC_ConfigUniBcStartMode() ...cvvviiiiriineiiiieni i eneennennens 431
9.2.14 IP_DHCPC_GetState() .ovoeieiieii i e e 432
9.2.15 IP_DHCPC_GetOptionRequestLiST() ..vvrviiriirririiiriieie i inennnennennens 433
9.2.16 IP_DHCPC_HaalIt() tuerneeieie it ettt et et e e e e e e aneaens 434
9.2.17 IP_DHCPC _RENEW() titttiiitiiiie it e i et ae e et e it aeeeaneaaaes 435
9.2.18 IP_DHCPC_SendDeclineAndHalt() ...covviiiiiiiiiiiiii i e 436
9.2.19 IP_DHCPC_SendDeclineAndRESELIP() ..ciiiiiiiiiiiii i i i i eaee s 437
9.2.20 IP_DHCPC_SetCallback() .eeevueieieie i e e e 438
9.2.21 IP_DHCPC_SetClentId() ..oeveeeuiieeieieieeie e ee e e e e e e neeeeenes 439
9.2.22 IP_DHCPC_SetOnOptionCallback() ...vvvvieiiriieiiiiieeii i eiesnnenneenes 440

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

26

9.2.23 IP_DHCPC_SetOptionRequestLiSt() ..cvvvviieiieiiiiiiiiie i ennennenneans 442
9.2.24 IP_DHCPC_SetTimeOUL() uviiiriiiiiiiii i i i e e e eaaeas 443
9.2.25 IP_DHCPC_REIEASE() tirtiiitiiiiiiii ittt e i e eas 444

1S G B B T) = =3 o o L {1 = 445
9.3.1 IP_DHCPC_ON_OPTION_INFO ..cuiiiiiiiiiiiiie e e e e e e eaeee e 445
9.3.2 IP_DHCPC_ON_OPTION_FUNC ...ttt e e e e e 446

10 DHCP Server (AAd-0N)ouuuuuiiiiiiiieee e s e e e e e e e e e e e e e e e e e eaaeaaees 447
10.1 DHCP BacCKgrOUNGS ...vieiiiiiiiiiitiiteieiaeraeesesae s aaesansaassassaesans e sansanerneannsaneenes 448
10.2 AP fUNCHIONS .ttt i i e e e e 449
10.2.1 IP_DHCPS_ConfigDNSAAAIr() «ovieeiriiriieiiiiiiinie s eaesenaeneneees 450
10.2.2 IP_DHCPS_ConfigGWAAAI() .evviiriieiiiiieiie e itaaeiieeeaeeiesenaenesneseanennens 451
10.2.3 IP_DHCPS_ConfigMaXxLeaseTime() ...ovveiieirririeiineiiiiineineiiernneserneaaneanes 452
10.2.4 IP_DHCPS_COoNfigP0OO0I() +iueiriiriitiiiiiitiee it nee e naeneaeaaans 453
10.2.5 TP _DHCPS_Halt() torieiniiiieiii it ettt e e e ae e ee e e e e aennes 454
10.2.6 IP_DHCPS_TNIE() tireirieiiiriitie ittt steat e seaeeaeseaaeaeaneassneaneanennanens 455
10.2.7 IP_DHCPS_SetReservedAddresses() «ioviirvieiriiiiiiiiiiiiennnesesneenneineanes 456
10.2.8 IP_DHCPS_SetVendorOptionsCallback()ccovoviiiiiiiiiiiiiiiiiiiiie e 457
10.2.9 IP_DHCPS_STArt() teevrvoeruerniiereiiitaie et iseneraesseaesaeeeasenereanennaneeennanes 458

O TR T B T 1= B o o Lo o B == 459
10.3.1 IP_DHCPS_RESERVE_ADDR ...uiiiiitiitiiiitiit it eenesneeenasaesnennannanens 459
10.3.2 IP_DHCPS_GET_VENDOR_OPTION_INFO ...cciiiiiiiiieiieiiiienieiieneeneenennans 460
10.3.3 IP_DHCPS_GET_VENDOR_OPTION_FUNC ...ciitiiiiiiiiiieieienieneieneees 461

10.4 RESOUIMCE USAGE .euurirneiutiesrnernaanesanaaesseaansanssanaasesttansanssneaanesnssnesnnssnesnnsnns 462
10.4.1 ROM usage on an ARM7 SYSEEM ..ocviiiiiiiiiiiiiiii i e 462
10.4.2 ROM usage on a Cortex-M3 systemccooiiiiiiiiiiiiiii e 462
10.4.3 RAM USBGE .tiiiiiuiiiiiniiitiata sttt saraase st raraassraraaneaneraeaansreaaeaansrness 462

11 MDNS Server (AQU-0N)oueiiieiiiiiiiiiiie e e e e e e e e e e e e e e 463
11,1 emNet MDNS o e 464
11,2 Feature st .o e e e e 465
3 G B =T [1= 1=] o= 466
11.4 Multicast DNS backgroundccoiiiiiiiiii e e e 467
11.4.1 Hostname reSolUtioN ..o 467
11.4.2 Service discovery (MDNS-SD) ..iciiiiiiiiiiiiii i eneanes 468

3 T Y o A 4 U Tt oo = PP 469
11.5.1 IP_MDNS_SERVER_STart() ...ccoeieiiiiiii e e e 470
11.5.2 IP_MDNS_SERVER_STOP() eiueruenieiiieieiae e e e e e e ee e 471

8 G B 1=) = =] g [o | =P 472
11.6.1 Structure IP_DNS_SERVER_CONFIG ...ttt i srnnnnnnnnnes 472
11.6.2 Structure IP_DNS_SERVER_SD_CONFIG ..cciiviiiiiiiiiiee e ennnniinnnneneens 473
11.6.3 Structure IP_DNS_SERVER A ..ttt r s er e ennnnaaeneeeeees 474
11.6.4 Structure IP_DNS_SERVER_AAAA ... 475
11.6.5 Structure IP_DNS_SERVER_PTR ..ciiiiiiiiiiiiiiiiii i e e e rvennnnnnnes 476
11.6.6 Structure IP_DNS_SERVER _SRV .. .iiiiiiiittiiiiiiiiiieeeesssrnannnnnsneeees 477
11.6.7 Structure IP_DNS_SERVER _TXT .iiiiiiiiiiiiiiteeererrrrinnnnnseseeeesrrrmnnnnnnes 478

11.7 RESOUIMCE USATE .tuutirniintinterutitasertisssaesassasssasaass st sttt sassassaesatsresnesnns 479
11.7.1 ROM usage on a Cortex-M4 systemccoviiiiiiiiiiiiiiiii e 479
T A L A I F7- o 1= 479

12 DNS Server (AAA-0N)oouuuuiiiiiiie e e e e e e e e e e e e et e e e e e e e eaaaeeeees 480
A R <1 o oY AL A 1 R Y= T oY =T PP 481
12,2 Feature St o e e e s 482
B T 2T LU 1 =] o 1< o o= P 483
12.4 Implementation ..o e 484
12,5 AP fUNCHIONS ittt i e e 485
12.5.1 IP_DNS_SERVER _SEart() «ievevieiieiiiiiie it seenesnesnenesneenansanens 486
12.5.2 IP_DNS_SERVER _SEOP() tiuttrttititiinitiintaitiieanenesnesnsnssaeanenssneanennannns 487

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

27

13

14

15

16

12.5.3 IP_DNS_SetDNSPOIT() .eiuieieiniieiie it e e e e e e e e eeeaes 488

12.6 RESOUIMCE USATE .iiutitiiutitsiutitisertisssae s e aass st sttt saasatssiesatsssrnesnns 489
AUTOIP e 490
13.1 emNet AUtoIP backgroundscoiiiiiiiiiiii e 491
3G 207 1Y B 9] o Vol (o o [PR 492
13.2.1 IP_AULOIP_ACHIVALE() triiiiiiiii i e 493

G 2 o VU 1 o) £ o o T L o () T PP 494
13.2.3 IP_AutoIP_SetUserCallback()cveeviriiiiiiiii i ne s 495
13.2.4 IP_AUEOIP_SetSTartIP() ..civeiriieiiiiiiii i e e e e e naaaens 496

13.3 RESOUIMCE USAGE .euutiniiutiternertaaneranaaessaetanaasssanaass st aanaans st aansanssnesanssnssnnsnns 497
13.3.1 ROM usage on an ARM7 SYSEEM ..ocviiiiiiiiiiiiiii i e 497
13.3.2 ROM usage on a Cortex-M3 systemccoooiiiiiiiiiiiii e 497

B T T T T AN A I F7- o 1= P 497
Address Collision Detection (ACD)cooiiiiiiiiiiiiiiiei e 498
14.1 emNet ACD MOAUIE ...t e et e e e e e e eenes 499
I AN o R {8 o U o o =P 500
14.2.1 IP_ACD _ACHVAtE() tiriiiiiiii i i e e e e e e 501
14.2.2 IP_ACD _ACHVAtEEX() .iviiriiiiii i i i e e e i e i aee s 502
14.2.3 IP_ACD_CONFIG() «tutueineiutinaeie et e et e e e e e e e e e aaeanens 503
14.2.4 TP_ACD _ENAANNOUNCE() uttiittiiitiiie it eae e rit it et sane e saneaanaeaaneans 504
14.2.5 IP_ACD_HaIE() teiueiriieie i et et e e e 505
14.2.6 IP_ACD_UpdateBackgroundPeriod()cevvieiirrereiieiieenneiiernnsrneinnannennenns 506

I T I T 1= o L o1 = 507
14.3.1 Structure ACD _FUNC .. e s v e e e s e e e e e e s s nnnaaereeeeens 507
14.3.2 IP_ACD_EX_CONFIG ..ttt et e e e e e e e e e eaeneens 508
14.3.3 IP_ACD_ANNOUNCE_INFO ...cieiiiiii it et e e e e e 509
14.3.4 IP_ACD_COLLISION_INFO ...iuuiitiiiiiiie et e e e e e eenaens 510
14.3.5 IP_ACD_WAIT_INFO .ottt e e e e e e eee e 511
14.3.6 IP_ACD_INFO .euuiieiiiiii ittt et e e e e e e e e e eeenens 512
14.3.7 IP_ACD_ON_INFO_FUNC ...ttt ittt et e e e e aenaeaens 513

14.4 EtherNet/IP US@g0@ .viiiiiiiiiiiiiiiiiieiiiteane s s saesarsanesrsaseane e sanssneennanneaneans 514
14.4.1 EtherNet/IP QUICKCONNECE ..iiiriiiii i e 515
14.4.2 EtherNet/IP SEMIACLIVEPIODE .viiiiiiiii i i i e aaes 517

14.5 RESOUIMCE USATE .tutiuiiutitiiutititertisssesassass e aass sttt saasats e satssesnesnns 520
14.5.1 ROM usage on an ARM7 SYSEEM ...cciiiiiiiiiiiiiiiiiiii i 520
14.5.2 ROM usage on a Cortex-M3 systemccoceviiiiiiiiiiiiiii e 520
14.5.3 RAM USBGE ittt ittt e s e a e 520

(O] o1 (7AYo o o] o USSR 521
15.1 emNeEt UPNP s 522
15.2 Feature st .o s 523
BT T ST LU 1 =] o g 1< o o= P 524
R S = ¥ Vol o | o 18 o o £ P 525
15.4.1 Using UPnP to advertise your service in the networkccooiiniat. 525

15.5 API fUNCHIONS ittt ettt e e 533
15.5.1 IP_UPNP_ACHVALE() toviriiriitiii it et et e e e e e e e aeeas 534

15.6 RESOUIMCE USAGE .tuutiiniititeintiataaneranaaessassanaanssanaass st aansans st aansanssnesanssnesnnsnnss 535
15.6.1 ROM usage on an ARM7 SYSEEM ..ocviiiiiiiiiiiiiii i e 535
15.6.2 ROM usage on a Cortex-M3 systemccooviiiiiiiiiiiiii e 535
15.6.3 RAM USBGE .iiiiiiniiiiiiii it ittt sarsate st rarsaasraraane st raeaansrneaanaanerness 535
I L PPN 536
16.1 @MINEE VAN Lo ettt e e 537
16.2 Feature ISt .o e 538
3 CIC B = ¥ Tl e | o] U o o [539
G A o R {0 o U o (o = 540

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

28

emNet User Guide & Reference Manual

17

18

16.4.1 IP_VLAN_AddINTErface() .viviiiiiiiiii i it it e et rae e iae e naeeas 541
16.4.2 IP_VLAN_Add8021adInterface() ..iiveeiiieriiiiiiiiiii i iiiee it snieeeaneannaens 542
16.4.3 Data StrUCTUIES .oriiiiiii i e s rn e r e nnens 543
16.4.3.1 IP_VLAN _INIT _DATA ottt i raneaneeneans 543

16.5 RESOUIMCE USATE .iiutiitiiutitiiniitie ittt sae st rae sttt saas st st satsanesaesness 544
16.5.1 ROM usage on an ARM7 SYStEMcoiiiiiiiiiiiiiiiiii e 544
16.5.2 ROM usage on a Cortex-M3 systemccoceviiiiiiiiiiiiiiii e 544
16.5.3 RAM USBGE ittt st e e s 544

BIE= V1 = Vo To [T o T 7AYo [0 o] o) T U SUPPPPUPPPPR 545
17.1 emNet Tail Tagging SUPPOIT ...uiiiiii i e e aeraeans 546
17.2 FEAtUIE LISt triiiiii i i it et e e et 547
N B U =T < o 111 PR 548
B S <o [81 =T =]] P 549
17.4.1 Software reqUIremMENTS ...cciieiiiiii i eaaeaaens 549
17.4.2 Hardware reqUIr€MENTS ...iiuiiiiiieiiiiriie e rarsaas e raeeane e aaneaneeness 549

T = ¥ T o | o 18 o o £ PP 551
17.6 Optimal MTU and bUffer SiZ€Soivviiiiiiiiii i e naaaees 552
20 Y = N 1 o Y oY o 1= 553
17.7.1 IP_MICREL_TAIL TAGGING_AddInterface() ...ccoooviriiiiiiiiiiiiiiiiiininennen 554

17.8 RESOUIMCE USAGE .tuurirniititeineitaaneranaaeesaesanaanssanaass st ranaans e aansanssnesanssnesnnsnnss 562
17.8.1 ROM usage on a Cortex-M4 systemccoooviiiiiiiiiiii e 562
S T A L A A U F=7- o 1= P 562

WIFT SUPPOIT .ttt ettt ettt eneebeeeees 563
18.1 emNet WIiFi SUP PO oo e e r e s s an e s aneennes 564
18.2 Feature st .o e e 565
RS TG N =T [T =T 0 1=] (=P 566
18.4 Background informationccoiiiiiii e 567
18.4.1 Definition of @ WIiFi Modulec.cviiiiiiii i 567
18.4.2 Benefits of using WiFi modules ... 567
18.4.3 Module internal vs. external TCP/IP stackccovvviiiiiiiiiiiiiiiiiii e 567
18.4.4 Supported WiFi Mmodulesciveiiiiiiiii i i e 568

RS T T Y = O ¥ o o oY o 569
18.5.1 IP_WIFI_AddAssociateChangeHOOK()ivviriiiiiiiiiiiiini i eea s 570
18.5.2 IP_WIFI_RemoveAssociateChangeHOooK() ...coovviiiiiniiiiiiiiiiie e 571
18.5.3 IP_WIFI_AddClientNotificationHOOK() ..coivviiiiiiiiiiiii i i 572
18.5.4 IP_WIFI_RemoveClientNotificationHOOK() ...cceviiiiiiiiiiiiii i 573
18.5.5 IP_WIFI_AddINterface() .ucieieiiiiiiiiii i it ri e et ae e e eaneeas 574
18.5.6 IP_DTASK_AddEXecDoNeHOOK() .iiiiiiiiiiiiiii i it eiaea s 575
18.5.7 IP_WIFI_AddSignalChangeHOOK() ..iiiviiiiiriiiiiii i vieenneneneaas 576
18.5.8 IP_WIFI_RemoveSignalChangeHOooK()ccvviviiiiiiiiiiiiiii s eeaas 577
18.5.9 IP_WIFI_ConfigAllowedChannels()cciiiiiiiiiiii i i nneeenneans 578
18.5.10 IP_DTASK_ConfigAlwaysSignaled()ccvieiiriiiiiiiiii i inennnennens 579
18.5.11 IP_DTASK_GetTimeoUL() tveiiiiiiiiiiiii i i i e v v e riaeaaas 580
18.5.12 IP_DTASK_SetTimeoUL() .ovviriiriieiiiiinereiinsinerneranesnesnesnnsreennanneanens 581
18.5.13 IP_WIFI_CONNECE() tiiiiiiiiii ittt it e et e e caae s 582
18.5.14 IP_WIFI_DiSCONNECE() turiiiiiiitiiiiie it e i i r e i ae e raeeaaneeas 583
18.5.15 IP_DTASK_TaSK() teriiririeiiniineiitiineiitrasesneiaesasssesnsesnesnesnnsseennannsenens 584
18.5.16 IP_DTASK_INIT() toviiriineiiniireriesineaneiinsanssnesaesanssnesanssnernnsansrneannenneenes 585
18.5.17 IP_DTASK_EXEC() tiutrrerntitrineieinnesneinesasssnesnssanssnesnnssnesnnsnnsrernnsnnes 587
18.5.18 IP_DTASK_EXECAII() teririiriiitiieiitiieineiatsass s snesane e snsssnesneannsanernnans 588
18.5.19 IP_DTASK_WaitFOrEVENt() cuviiiiiiiiiiii i e e 589
18.5.20 IP_WIFI_SCAN() teiuerirernerinannernnsansrnesaneanesnnsanssnesnnssnssnesnnssneennssnsenens 590
18.5.21 IP_WIFI_Security2String() «.eieeieeiieiiriineierieianernesnsssnesnesansineennanneanes 591
18.5.22 IP_DTASK_Signal() trevieiiriieiiiiieiieiaeisneinesanssesansansrnesnnssnesneanneaneenes 592

RS T G B T) = =] g [oL | = 593
18.6.1 Structure IP_WIFI_CONNECT_PARAMS ...t e naee e 594

© 2010-2025 SEGGER Microcontroller GmbH

29

19

20

21

22

Network INterface AriVEIScoociiiii e e e e 595
19.1 Network interface drivers general informationcciiiiiiiiiiiiiiiic i 596
19.1.1 MAC address filtering ...ccviiiiiiii i 596
19.1.2 Checksum computation in hardwareccooiiiiiiiiiiiiiiii 596
19.1.3 Ethernet CRC computationccoiiiiiiiiiiiiiiii i i i 596

19.2 Available network interface drivVerscciiieiiiiiiiiii i 597
19.2.1 Configuring the driver ..o 597
19.2.2 BSP configuration ..oiiiiiiiiiii i i i e 597
19.2.3 Driver configuration example ..o 597

19.3 Device driver specifics and limitationsccciviiiiiiiiiiiiiii 598
LS T T N = 1 I P 599

19.4 Writing YOUI OWN AIiVEE ittt it et a et a e aaeeanes 600
19.4.1 Network interface driver structurecccoviiiiiiiiiii s 600
19.4.2 Device driver fUNCLIONS ..iivviiiiiiii i s ananes 601
19.4.3 Driver temMPlate .o e 601

o o 0 [T PP 602
20.1 PHY drivers general informationcooiiiiiii e 603
20.1.1 When is a specific PHY driver required?coooiiiiiiiiiiiiiiiinenenaens 603

20.2 Available PHY driVers oo it i e e e 604
DA O T R 1= o V=T o Tl e [/A7 =] ol 604
20.2.1.1 Generic PHY driver API functionsccccviiiiiiiiiiiiiiiiciee e 604

20.2.1.2 IP_PHY_GENERIC_ReMAaPACCESS() tervrrrrrinerrinerinenrineinnernnesnnes 605

20.2.2 Micrel SWItch PHY driVer .ooiiiiiiiiio i i i i i e e naas 606
20.2.2.1 Micrel Switch PHY driver API functionsccooiiiiiiiiiiiiininnnnns 606

20.2.2.2 IP_PHY_MICREL_SWITCH_AssignPortNumber()c.ccvvinennnn. 607

20.2.2.3 IP_PHY_MICREL_SWITCH_ConfigLearnDisable()c.ccvvvvenenns 608

20.2.2.4 IP_PHY_MICREL_SWITCH_ConfigRxEnable()cccovviiiiiiiniinnnns 609

20.2.2.5 IP_PHY_MICREL_SWITCH_ConfigTailTagging() ...c.cvvveereerenennene. 610

20.2.2.6 IP_PHY_MICREL_SWITCH_ConfigTxEnable()ccoeevvviiiiiininnns 611

20.2.2.7 IP_PHY_MICREL_SWITCH_ConfigUselnternalRmiiClock() 612

20.2.3 Marvell 88E1111 Fiber PHY driVer ...ocvviiiiiiii i s e nee s 613

A AT I o Y= £ RSP 614
21.1 WIiFi drivers general informationcoiiiiiiiiiiiii i e 615
21.1.1 Network Interface WIiFi driVersccioiviiiiiiiiini i ne e enaeneaneas 615
21.1.2 WIFi PHY Dridges ...oiiiiiii it rne e e v e e e re s e e e nneenes 615

21.2 List of special WiFi driVErs ..iciiiiiiiiiiii i i e e 616
21.2.1 ConNECtONE IW oo 617
21.2.1.1 Hardware access abstractionc.cooiiiiiiiiiiiiii e 617

21.2.1.2 ConnectOne IW driver API functionsccoviiviiiiiniineiienneanns 617

21.2.1.3 IP_PHY_WIFI_CONNECTONE_IW_ConfigSPI() ..coiivvirrirrrnernnnnnnn 618

21.2.2 Redpine Signals RS91 13 .ttt i e 619
21.2.2.1 Redpine Signals RS9113 driver API functionsc.ccovvivenne. 619

21.2.2.2 IP_NI_WIFI_REDPINE_RS9113_ConfigAntenna()covevvuevnnnns 620

21.2.2.3 IP_NI_WIFI_REDPINE_RS9113_ConfigRegion()c..covvvvievrnennn. 621

21.2.2.4 IP_NI_WIFI_REDPINE_RS9113_SetAccessPointParameters() 622

21.2.2.5 IP_NI_WIFI_REDPINE_RS9113_SetSpiSpeedChangeCallback() ..623

21.2.2.6 IP_NI_WIFI_REDPINE_RS9113_SetUpdateCallback() 624
ConfiguriNg €MNELooiiie e e e e aaaa s 625
22.1 Runtime configurationooeiiiiiiii s 626
2720 N R | G o o i e | () PP 627
22.1.2 Driver handling ..o 631
22.1.3 Memory and buffer assignmentcoociiiiiiiiii s 631
22.1.3.1 RAM fOr TCP WINAOW ..utiiiiiiiitiiiie it it raneeaeeraneeanaeanneens 631

22.1.3.2 Required bUffersocoiiiii e 631

22.2 Compile-time configurationoieiiiiiii e 634

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

30

23

24

22.2.1 Compile-time configuration switchescoooiiiiiiiiiii e 634
22.2.2 DebUg leVEl ... e 637
Internet Protocol version 6 (IPV6) (Add-0N)oovviiviiiiiiiiiiieeeeeceeeeeeeev e 638
B2 T R =T o] L= A = 639
23.2 FEAtUME ISt e e 640
P22 TG BN (VL R o = Tof (e | o] U [P 641
23.3.1 Internet Protocol header compariSONccovviiiiiiiiiiiii e ea s 642
23.3.2 IPVE address LYPeS vt 643
23.3.2.1 Link-local unicast addressesccvvviriiiiiiiiiiiiiii e 643
23.3.2.2 Global unicast addressesocoiiiiiiiiiiiii e 643
23.3.3 Further reading for IPVOcciiiiiiiiii i as 644
23.3.3.1 IPv6 Request for Comments (RFC) ...c.ocviiiiiiiiiiiiiiiiiiie e, 644
23.3.3.2 Related books fOr IPVEcviiiiiiiiiiiiiiii i e ee e 645
23.4 Include IPv6 to your emNet start projectc.cooiiiiiiiiiiiiiii 646
23.4.1 Open an emNet project and compile itcooviiiiiiiiiii i 646
23.4.2 Add the emNet IPv6 add-on to the start projectccovvviiiiiiininnnn. 646
23.4.2.1 Enable IPVO SUPPOIt ..oiieiiiiiiiii it e e ee e seans 646
23.4.2.2 Configure the MTU and the Tx/Rx window sizes 646
23.4.2.3 Enable terminal output for IPv6 messagescocvvvviviniinnnennnn 647
23.4.2.4 Select the start applicationccoooiiiiiiiiii 647
23.4.3 Build the project and test itcoooeiiiiiiii 647
23.5 CONfIGUIATION et 649
23.5.1 IPv6 Compile time configurationcooiiiiiiiiiiiii e 649
23.5.2 IPv6 Compile time configuration switchesccoviiiiiiiiiiiiceeee 649
23.5.3 IPv6 Runtime configurationc.cooiiiiiiiiiiiiii i e e 649
23.6 IPVO API fUNCHIONS .ottt ittt et et e et e st e e e e s e e e e e e e ennaeanans 650
23.6.1 IP_IPVE_AdA() tirieineiniieit i ieat ettt s et s e s et e e e e e e e e e 651
23.6.2 IP_IPV6_AddUNICaStAAAr() .ovveeireiriieiieitiit it s eeieeneeesaaneeneseenennens 653
23.6.3 IP_IPV6_ChangeDefaultConfig() ..ccveeiririieieiiiieiieiiiieiieriiiennesnennanennens 654
23.6.4 IP_IPV6E_GetIPVOAAAI() +iveiriiritiiiiitie et itaae e eteneeaeseneeneanenneneaneanens 655
23.6.5 IP_IPV6_GetIPPacketInfo() ..ccvveiiriiiiiiiiii i e re e 656
23.6.6 IP_IPV6_ParseIPVOAAAI() .vveveeiriiiieiieitiie et st seneenesenaanesnesnannanens 657
23.6.7 IP_IPV6_SetDefHOPLIMIE() tiiiriiiiiiiiiiii i r e eeneaeas 658
23.6.8 IP_IPV6_SetGateWay() «iieereeerorrarirniiininnsirinneaeraeaansserneesnsrneanesaneanes 659
23.6.9 IP_IPV6_SetLinkLocalUnicastAddr()cocovveiiiiiiiiiiiiiii e 660
23.6.10 IP_IPV6_INFO_GetConnectionINfo() ..civiviiiiiiiiiiiiiiiiiii i eieaens 661
23.6.11 IP_ICMPVG6_AdARXHOOK() ueiriiritineiiiieieieaeeieseneeieseneenesenneneaneanans 662
23.6.12 IP_ICMPV6_RemMOVERXHOOK() tiuiiieiiriiiiiiiii i siee e esee s e neeees 664
23.6.13 IP_ICMPV6_MLD_AddMulticastAddr() ...c.ocvivvriieiiiiiieiiiiiinienieneaeenes 665
23.6.14 IP_ICMPV6_MLD_RemoveMulticastAddr()ccovviiiiiiiiiiiiiiiii i 666
23.6.15 IP_ICMPV6_NDP_SetDNSSLCallback() ..cvverriiiiiiiiiiiiiiie e eeneeenn 667
23.6.16 IP_IPV6_RESOIVEHOSE() urviriiriiiiiiiii it ae e 668
23.7 IPv6 internal functions, variables and data-structuresccooiiiiiiiiiiiiiiinnn, 669
23.7.1 IP_ON_ICMPVE_FUNC ...ttt st et e e e ae e e e ae e as 670
23.8 IPVv6 Socket API eXtENSIONS ...viiiiiiiiiiiiiiie i ae e r s s e reaaeeanens 671
23.8.1 Structure socKaddr_iNGiiiiiiiiiiii i i i e 671
23.9 Porting an IPv4 application t0 IPVEOcoiiiiiiiiiiiiiii i e 672
23.9.1 Porting an IPv4 server application to IPV6c.ccoiiiiiiiiiiiiiiiiiieea 672
23.9.1.1 TCP/IPv4 server sample COdeccoviiiiiiiiiiiiiiii e neeeaas 673

23.9.1.2 Required changes to port the TCP/IPv4 server sample code to TCP/
TPV D et e 674
23.9.1.3 Dual stack TCP server sample codecoooviiiiiiiiiiiiiiiininennns 676
23.10 RESOUIMCE USAGE .iuutinntiutinnerunrnaantsanaanssansasssneaaneansteaaeesnssneaasssesnnsaernnsnnens 680
23.10.1 IPVO ROM USAQGE ..uviuiiiiiniiitiate it ianaanssaesaessesaesnns e saneanssneannsaneaness 680
23.10.2 RAM USAQGE .tiiuiitiiniiitiite it iateatesataataansransansstranaarsraraanesnsrneaansanerness 680
SMTP Client (Add-0N) ..coooiiiiiiiie et e e e 681
24.1 emNet SMTP Client ..o e e e 682

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

31

24.2 Feature St ..o e 683
B T S U=To U1 = o = 1o 684
24.4 SMTP DaCKGIrOUNGAS ...euueii ittt et e e e e e e e e e eeenes 685
P T Y=ol U] S oo] o] 1< ot o] 1= 687
24.6 ALAChMENES .o 688
24.7 SMTP client configuration ..o e 689
24.7.1 SMTP client compile time configuration switchesccoooieiiiiiins 689

222 3 < TR X o A 0] Tt f T o 690
24.8.1 IP_SMTPC_SENA() trturiuineeie et et e e e e e e e e e e aneens 691

24.9 Data SLrUCTUIES ..uieiiiiiii i s s aeeas 692
24.9.1 Structure TP _SM T P C AP it i it r e s e e e s reaannnnnees 693
24.9.2 Structure IP_SMTPC_APPLICATION ..ot e e e eeees 695
24.9.3 Structure IP_SMTPC_MAIL_ADDR ..iiiiiiiiiiiiiiiiiiiii e rsniiiaseeeeeeseennnns 696
24.9.4 Structure IP_SMTPC_MULTIPART_API ... e 698
24.9.5 Structure IP_SMTPC_MULTIPART_ITEMcciiiiiiiiii i e 699
24.9.6 Structure IP_SMTPC_MESSAGEiiiiiiiiiiiiiii i i e nniaaes 700
24.9.7 StruCtUre TP _SM T P C M A ettt e ransasereeeessraannnnnes 701
24.10 RESOUIMCE USAGE .tuutiuutiutinnsruniussst it saessssstrssass st sassatstieaatssetassaesnesanins 702
24.10.1 ROM usage on a Cortex-M4 Systemccccvviiiiiiiiiiiiiiiiieeaes 702
24.10.2 RAM USBGE .ttt ittt s st s 702

25 eMFTP Server (AAd-0N)oouuiiiiiiiiiie e e e e e e e e e e e e as 703
B T R =T o | ol I =Y =T T P 704
25.2 FeatUre ISt e s 705
B2 TG B £ U= To | U T o/=T o =T L= 706
25,4 FTP DaSICS ittt e e 707
25.4.1 AcCtiVEe MOde FTP e e e 708
25.4.2 PassiVe MOde FTP ...uiiiiiiiiiiiii e e e e e e s e s ane e e 709
25.4.3 FTP reply COUES ittt e e e e s e e e eeaneas 710
25.4.4 Supported FTP COMMANAS ...viiiiiiiiiiiiitiie s riesaae e raeeseresnneanens 711

25.5 Using the emFTP server sample ..o e e e 712
25.5.1 Using the emFTP server Windows sampleccoooviiiiiiiiiiiiiineiieinenns 712
25.5.2 Running the emFTP server example on target hardware 712

25.6 ACCESS CONEIOl ettt e s r e s e e e e an e e rneans 713
25.6.1 PIFINAUSEI() tviniiiiiiiiii et e 713
25.6.2 PFCHECKPASS() tviutiiiitiiiii it e e 714
25.6.3 PFGEEDIFINTO() teireiritiiiiit st e e e e e e e e e e neneaeanes 715
25.6.4 PFGELFIEINFO() tivirieii ittt e e 717

25.7 CONfIGUIATION oottt n 719
25.7.1 emFTP server compile time configuration switchescociivinnen. 719
25.7.2 emFTP server runtime configurationcccoviviiiiiiiiiii e 720
25.7.3 emFTP server system timecooiiiiiiiii e 721
25.7.3.1 pfGetTimeDate() .ccvvvriieiiiiiiiii i 722

25.8 API fUNCHIONS 1ttt ettt ettt 723
25.8.1 IP_FTPS_CoONfigBUfSIZES() +evrrueieiitiieiieiiitiie it eieiee e e saenennenaaneaaens 724
25.8.2 IP_FTPS_CountRequiredMem() ...ccviriiiiiiiiiiiiiine e e neereaee e 725
25.8.3 IP_FTPS_INIE() erretieieiitiitieee it et re et e et et e e s e s ae e ennaneaneanen 726
25.8.4 IP_FTPS_PrOCESS() tiueerueirianerniaeaantianaansreaanesnernnaanssnerasssnssnesanssnesnes 727
25.8.5 IP_FTPS_PrOCESSEX() .evuriueiatiinereinnenneianaanssnesansansrnesnnssnerneeanssnesnnses 728
25.8.6 IP_FTPS_OnConnectionLimit() ...ovoeiiriieiiiiiiii i e sieenneenens 729
25.8.7 IP_FTPS_SetSignNONMSQG() evveeieeiieiiiniieiiniianianesinsaneanernneaessernesansanens 730
25.8.8 IP_FTPS_ISDataSeCurEd() ..ieeeeereerieeririieeineiiniansreineensesernnsnneaneanesnns 731
25.8.9 IP_FTPS_AHOWONIYSECUrEA() «iuvirereiieiiniiinraeeririneeanesnesneesnesneannssneenes 732
25.8.10 IP_FTPS_SetImplicitMOde() «.ovvieiiiiiiiiiiiiiii i s ae e 733
25.8.11 IP_FTPS_UseRenameToFullPath()cccoviiiiiiiii e 734
25.8.12 IP_FTPS_SendFormattedString() «.ccvvviiiiiiiiiiiii i e ee s 735
25.8.13 IP_FTPS_SendMem() tcieiiriieiiiiiitiie it ienee et stene e e ana e eeanaeas 736
25.8.14 IP_FTPS_SendString() «ivveeieriiiieiieiiiniitiiiaenesae et rerraaeeesneaeenees 737
25.8.15 IP_FTPS_SendUnsigned() ...cioviiiiiiiiieiiiiiine e sneennesesnesnneenes 738

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

32

26

27

25.8.16 IP_FTPS_SetSignOnMsgCallback() ..vvvviiriiriiiiiiiiii i i ee e 739
25.8.17 IP_FTPS_SetOnServerOperationCallback()covvvviriiiiiiiiiiiiiieinens 740
25.8.18 IP_FTPS_SetOperationResultCallback()covvveviriiiiiiiiiiiiineiienneanns 741

25.9 Data StrUCTUIES ..uiiiiiiiii i s aaeas 742
25,91 TP TP S AP e 742
25.9.2 FTPS_ACCESS_CONTROL ..ucuuiiiiieie it e et et e e e e e e e e e enees 743

25 9.3 FTPS_BUFFER_SIZES ...t et e e e e 744

5.0.4 FTP S SY S AP i e 745

25 9.5 FTPS_APPLICATION . .tiiiiiiitiie et et et et et et e e e e e e e e e nee e 746
25.9.6 FTPS_CB_INFO ..ttt et ettt e e e e aaenens 748
25.9.7 FTPS_OPERATION_TYPE ... et e eee e 749
25.9.8 FTPS_SEND_SIGN_ON_MSG_FUNC ..ottt e 751
25.9.9 FTPS_ON_SERVER_OPERATION_FUNC ...ciiiiiiii it ee 752
25.9.10 FTPS_OPERATION_RESULT_FUNC ..ottt e ees 753
25.10 RESOUIMCE USAGE .tuutiuutiutinssiutiusasttsassstssssst sttt sassatssaesassaesassassnesnnins 754
25.10.1 ROM usage on a Cortex-M4 SyStemciccvviiiiiiiiiiiiiii e, 754
25.10.2 RAM USBGE tiiuiiitiiiiiiiii it itits it aas st a s st s et rae 754
EMFTP Client (Ad-0N) ..o e e e e e e e e e e e e eeaeaaanee 755
26.1 @MFTP ClieNt i e e 756
26.2 Feature liSt v 757
B S INC B £ U= To [WY1 o/=T o U= 758
26.4 FTP DaSICS turiiiiiiiii i s 759
26.4.1 AcCtiVEe MO FTP .t e e e e 760
26.4.2 Passive mode FTP for the clientccovieiiiiiiii e 761
26.4.3 CONNECLION SECUNLY .iviiieiiiiiiiiiiii i e s e e e e e s nneaneanens 761
26.4.3.1 FTP impliCit MOde ..o 761

26.4.3.2 FTP explicit MOdeceiiriiiiiii i e 761

26.4.4 Supported FTP client commandsccoiiiiiiiiiiiiiii e 762

26.5 CONfIGUIATION .ottt a 763
26.5.1 FTP client compile time configuration switchescooiiiiiiiiinn, 763

26.6 API fUNCHIONS 1.ttt e e e e et et a e et e e e 764
26.6.1 IP_FTPC_CONNECL() tiutiriiuiiitiineiitiatentransanesarranssnssnesanssnesneaansaneannanes 765
26.6.2 IP_FTPC_DiSCONNECE() tiureruritiniiiniaeestianraneraesaeeserneaanssnesanannsaneannans 766
26.6.3 IP_FTPC_EXECCMA() trrerieinentieieitiitieaneneaesestaaessrtensanernennenernennss 767
26.6.4 IP_FTPC_EXECCMAEX() triiriuiiriitiiiiitaat et iteaeeaesentenesesssnnaneeneneaneanens 770
26.6.5 IP_FTPC_INIT() ttvuerrereieinenneatiennentre et aeaaesesseaeaestennanerennenerneanennanes 771
26.6.6 IP_FTPC_INIEEX() trvvrreiniieiiiieitiit st reae et nese s e enesenneneannanans 772

26.7 Data StrUCKUIES .ot e e e e aneas 773
26.7.1 Structure IP_FTPC _API ..t 773
26.7.2 Structure IP_FTPC_APPLICATION ..ttt eieeeieeeeenenaennenaanens 774
26.7.3 IP_FTPC_CMD_CONFIG .iiitiiitiititiiiteit it sentsaeseanenesesssnnsaeenennaneanens 775

26.8 RESOUICE USAGE t.utiutintitinesutianeantsansansresaesanttansasssesansasssneaasssnssnnennssnnsnnens 776
26.8.1 ROM usage on an ARM7 SYSEEM ...ciiiiiiiiiiiiii i ae e 776
26.8.2 ROM usage on a Cortex-M3 sysStemocvviiiiiiiiiiii e 776
26.8.3 RAM USAGE .iuviiiiiiiiii ittt r e s e 776
TETP CHENI/SEIVET ...t e e e e e e e ettt s e e e e e e e e e eeeeeeeeenennnnes 777
27.1 MmNl TR P o e 778
27.2 FeatUre St oo 779
27.3 TFTP DaASICS oueiiiiii i e 780
27.4 Using the TFTP Samples ... e e aaens 781
27.4.1 Running the TFTP server example on target hardware 781

27.5 API fUNCHIONS oot et 782
27.5.1 IP_TFTP_INItCONTEXE() tueiiiiiiiii it i i e e e aes 783
27.5.2 IP_TFTP_RECVFIE() .eeieii i et e e 784
27.5.3 IP_TFTP_SendFile() .ciueieieiie i et e e aes 785
27.5.4 IP_TFTP _ServerTask() .ueiiiieiiiiii i i et aae e aes 786

27.6 RESOUICE USAGE .utiutinstiutissrunissstratass e sassstsraesass st sassatstiesassassaesatssnesnnans 787

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

33

27.6.1 ROM usage on an ARM7 SYSEEMiciiiiiiiiiiiiiiiiii i 787
27.6.2 ROM usage on a Cortex-M3 SyStemicviiiiiiiiiiiiii e 787
27.6.3 RAM USAQE vttt s 787

28 PPP / PPPOE (AdO-0N) ..coiiiiiiiiiiiiii ettt e e e a e e e e e e e 788
28.1 €MNEL PP P/ PP POE ..ottt i i e 789
28.2 Feature ISt e e 790
P NG B £ U= To | WY1 o/=T o U= = 791
P2 S o] o S o =T | o T8 | o =P 792
28.5 API fUNCHIONS 1ttt ettt e e e 793
B T S o o o] = 1] o Tt o [o = PR 795
28.6.1 IP_PPPOE_AddAINterface() ..cveevieeririieiiiiiniieeiie i snessnesnesnnsanesneanes 796
28.6.2 IP_PPPOE_CONfiIgRELIES() tviueiriitiieiiiiiiiii it e e e e naeeas 797
28.6.3 IP_PPPOE_RESEL() teutiutitiitiitiiriitit ittt et eeateaeseaseaeaeaneneaaeaeaaaens 798
28.6.4 IP_PPPOE_SetAUthINfO() vvveiiiiiiiiiiiiii e e ae e e 799
28.6.5 IP_PPPOE_SetUserCallback() ...icoviiiiiiiiiiiiiiiiii i sesiennaennens 800

28.7 PPP fUNCHIONS ettt e e 801
28.7.1 IP_PPP_AddINterfaCe() ...veeierriieiiiiie it e e e 802
28.7.2 IP_PPP_CHAP_AdAWIthMD5() .eiiiiiiiii i aa e 803
28.7.3 IP_PPP_ONRX() tttrtuttuttuinnantnneinentaaeenensanneesssansaeesssaaeanereneeanaeanannns 804
28.7.4 IP_PPP_ONRXCRAI() toviieiriitiiiiiiiiitiieee it eier e e n s e e e e e rnaneeees 805
28.7.5 IP_PPP_ONTXCRAI() tiueititieiniitatit et reaseaeseasenesaeeneneaaeeneanennanees 806
28.7.6 IP_PPP_SetUserCallback() ...ccveoviiiiiiiiiiiiii i a e e s 807

P2 TR T U (oY (=T o o W ¥ oot o] o F= PP 808
28.8.1 IP_MODEM_CONNECL() tiriiutitirneiininieriniaeestraesansseraeeansrneaaesanssneannenns 809
28.8.2 IP_MODEM_DIiSCONNECE() tiuviureirieirneiininnerinraeesneransansrnesanesnesneannsaneans 810
28.8.3 IP_MODEM_GEtRESPONSE() tuviurrrurieirniiininnerinraeeseiaeaanssneraeannsaeaneannss 811
28.8.4 IP_MODEM_SendStriNg() eeeeeeeierierniitnieiitiisae e rtianeaerensanerneaneneaneanens 812
28.8.5 IP_MODEM_SendStriNgEX() uveeiirriieiieiiitiie it enenesnesneeeenannens 813
28.8.6 IP_MODEM_SetAUthINFO() tiviieiiitiieiiiiiiii e ae e e neeas 815
28.8.7 IP_MODEM_SetConnectTimeOoUL() ...ioeviriiriiiiiiiiiiieine e rneenenanenns 816
28.8.8 IP_MODEM_SetInitCallback() ...ioeieriiiiiiiiii i e 817
28.8.9 IP_MODEM_SetInitString() «ovveeieeiriieiieiiitiie it enearene e eeennanens 818
28.8.10 IP_MODEM_SetUartConfig() «ueeeerereerireineieieaneiierianeenerensenerneansnennes 819
28.8.11 IP_MODEM_SetSwitchToCmdDelay() ..ccvvviiiiiiiiiiiiiii i eienens 820

28.9 Data StrUCTUIES .ot e e e e e aneaas 821
28.9.1 Structure IP_PPP_CONTEXT .iitiitiiitiitiieiiitrieeiesene e etene e e senneneanennes 822
28.9.2 Structure RESEND_INFO ..ottt e e s nenaeanenenaeenens 825
28.9.3 Structure IP_PPP_LINE_DRIVERcciiiiiiiiiiiii i naa e 826
28.10 PPPOE Ir€SOUMCE USAQGE ..uviueiiuiitiineinsanssnnsanaanssansassseransasssnesanssnssnesanssnesnns 827
28.10.1 ROM usage on an ARM7 SYystemcciiiiiiiiiiiiii i e 827
28.10.2 ROM usage on a Cortex-M3 Systemcccviiiiiiiiiiiiiii e 827
28.10.3 RAM USAGE tiiuiiiiiniiitiits it iateatestaataansraraaes st taraarsraraaneanerneaansanerness 827
28.11 PPP rESOUICE USAQTE .uiiutinnernrineesutineanssesasesneseaasssesasssnesnesasssneransmnssnnsnnens 828
28.11.1 ROM usage on an ARM7 Systemcoviiiiiiiiiiii i e 828
28.11.2 RAM USAQGE tiiuiitiiniitiite it iataatesataataansransaessrraraarsraraaneansaneaansanernes 828

29 NEtBIOS (AU-0N) ooiiiiiiiiiiiiiie ettt e e e e e e e e e r e e e e eeee s 829
29.1 emNet NetBIOS ... aaaas 830
29.2 FeatUure St ..o e 831
B2 G T £ U=To U1 = o g U= 1o 832
29.4 NetBIOS backgrOUNAScoeiieiiiiiiii et e e e e e eas 833
29.5 API fUNCHIONS oot ettt e 834
29.5.1 IP_NETBIOS_TNIt() «eeeueieineieie it e e et e e e e e e e nenaeaens 835
29.5.2 IP_NETBIOS_Start() ceueoeiieieiiieiie e et e e e e e e e aaeeeas 836
29.5.3 IP_INETBIOS_StOP() «erueiueeieieiae et e e et e eae e e raeaae e e eaneens 837
29.5.4 Structure IP_NETBIOS NAME ...ttt iiiiiiiii s reresnnnnsserreeseeeenns 838

29.6 RESOUICE USAGE .uiiutinntiutinssiutissastraesss e tasssss e sass st sas st tiesasssesaesasssnesnnsns 839
29.6.1 ROM usage on an ARM7 SYSEEM ...civiiiiiiiiiiiiiiiii i 839

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

34

29.6.2 ROM usage on a Cortex-M3 SyStemcivviiiiiiiiiiiiiiiii e 839
29.6.3 RAM USAQE vttt s 839

30 SNTP clieNt (AdA-0N) ...coooiiiiiiiiiiie e e e e e e 840
30.1 emNet SNTP ClHENT o s r e aeeeanes 841
30.2 FEalUIe ISt oot e 842
G0 G R S U= To [BT o/=T o =T 843
30.4 SNTP bacKgrOUNASoiueiiiiiiiiii it e s e e e e rnesaeeanereaness 844
30.4.1 The NTP timestamp oo e e e e e rnenns 844
30.4.2 The epoch problem (year 2036 problem)cociiiiiiiiiiiii 845

30.5 API fUNCHIONS .ttt i e e 846
30.5.1 IP_SNTPC_ConfigAcceptNOSYNCSOUICE() tuvvviiriieiiiieiiiriinneieniennenenneanens 847
30.5.2 IP_SNTPC_ConfigTimeEOUL() +uueieerriitieiniieiieiiiteneiiesteneraeeeananeeennanens 848
30.5.3 IP_SNTPC_GetTimeStampFromServer() ...ccvoviiriiiiiiiiiiieiieiieennennens 849
30.5.4 IP_SNTPC_SetPOrt() .ivviiriieiriitiiiiiiii it e s aaae e naanens 850
30.5.5 Structure IP_NTP_TIMESTAMP ..ttt e e e 851

30.6 RESOUICE USAGE .utiutinntitinerntraeeantsanaansretaseassaaeaasstesassssssneaasssnsrnnennssnnsnnens 852
30.6.1 ROM usage on an ARM7 SYSEEM ...ciiiiiiiiiiiii i e naeas 852
30.6.2 ROM usage on a Cortex-M3 sysStemooviiiiiiiiiiii e 852
30.6.3 RAM USAGE .iiuiiiiiiiii ittt ar s e s n e e 852

31 PTP Ordinary CloCK (Add-0N) ...coooiiiiiiiiiiiiiiiie et 853
30 T = 0 A= o = I = L PP 854
31.2 emNet PTP OC Slave ..ot ettt e e e e e e e e e aeanens 855
31.3 emNet PTP OC MaSter .oiuuiiiiiiiiiiiiiiiiiii it as e as e e 856
31.4 Hardware timestamp SUPPOIT ..o.iiiiiii i ane s 857
31.5 FeatUre ISt oo e 858
0 A T S =T LU = o U= Lo 859
G20 2 S I o= Tl (e o] | o o O 860
31.7.1 Time representationcoiiviiiiiiiii i e 861
31.7.2 Hardware SUPPOIT .oiveiiiiiii e i s e 861

31.8 PTP configurationcooieiiii i et 862
31.8.1 Configuration MacCro TYPES .iivviiiiiriireiiiieerierae i eare e raneareaneaanans 862
31.8.2 Configuration switches ... 862

G2 I Y AN =3 A 1 o Vo o =P 863
31.9.1 IP_PTP_GetDefaultDsClockIdentity()covvieviriiiiiiiiiii i iienieennennens 864
31.9.2 IP_PTP_GetTime() eeieieiniieiie ittt e e e e e e e e eeeaes 865
31.9.3 IP_PTP_HaAI() teeieieiiiii i ettt eaa 866
31.9.4 TP _PTP_INIt() tueiniieii i et e 867
31.9.5 IP_PTP_SetTime() teooeieiiiiie i e e e e e e e 868

G S T T I o I = - o o () TP 869
31.9.7 IP_PTP_OC_AddMasterFallbackLogiC() +.uivvirrireieiiniiniiieiineieiiennnennennens 870
31.9.8 IP_PTP_OC_AddSlaveFallbackLogic() ...ivvvriiiiieiiiii i iiesnneeenens 871
31.9.9 IP_PTP_MASTER _AdA() tiuririeiimiiie i et e e e e e e eennens 872
31.9.10 IP_PTP_MASTER_CONFIG() +turrurrnieieiiieiae e e e e eee e reeneeeaes 873
31.9.11 IP_PTP_MASTER_REMOVE() .eiuririeiiiiie it e e e e e e neeene 874
31.9.12 IP_PTP_SLAVE_AdA() -eiriieieiniieeie et e e e e e e e eeeaes 875
31.9.13 IP_NI_AdAPTPDIIVEI() «eueiueiniieae et e e e e e e e e e e e raee e enenes 876
31.9.14 IP_PTP_OC_SetInfoCallback() ...ccoiiiiiiiiiiiii i e 877
31.9.15 IP_PTP_OC_SetProductDescription()ciiieiiiiiiiiiiiiiiiiii it ciecieeeae 878
31.9.16 IP_PTP_OC_SetUserDescription() ..cccivieiiiiiiiiiiiie it i it i nieeeaes 879
31.9.17 IP_PTP_OC_SetReVvision() ..iciiiiiiiiiiiiiiiic i 880
31.9.18 IP_PTP_OC_Halt() «eueiueieieie i ettt e e 881
31.9.19 IP_PTP_OC_Start() «oeeoeiueieiieiie it e e e e e e e e e enennans 882
0 O B 7=) = =1 f g T o 1 = PP 883
31.10.1 IP_PTP_TIMESTAMP ... e e e e e e 883
31.10.2 IP_PTP_INFO ..ottt et et e e e e e e e e e 884
31.10.3 IP_PTP_CORRECTION_INFO ...uiiiiiiiiiiiiiie et e e e e eeeeaens 885
31.10.4 IP_PTP_OFFSET_INFO ..ot ettt e e aneneas 886

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

35

32

33

31.10.5 IP_PTP_PROT _TYPE .o e e 887
31.10.6 IP_PTP_MASTER_PARAMS ...t ae e 888
31.10.7 IP_PTP_MASTER_INFO ..ot et e s 889
31.11 RESOUIMCE USAGE .tuutinutiutinnsiuniusassressssssssssereaass st sassatstaeaassaesassassnesnnins 890
31.11.1 ROM usage on a Cortex-M4 Systemccvviiiiiiiiiiiiiiiiniiieaes 890
31.11.2 RAM USBGE ettt itite st saaas s s rar st sa s e e saas e e 890

NTP client (Add-0N)oeieiiiiieie e e e e e e aaaeeeens 891
32.1 emNet NTP Client ..o e e e e e e rne s 892
32.2 FEAtUME liSt e s 893
GG B £ U=To | U T o/=T o 1= L= 894
G A S VN I o o =Tl e | o U o = PP 895
32.4.1 The NTP timestamp oo s e e e aeraeans 895
32.4.2 The epoch problem (year 2036 problem)cocoviiiiiiiiii 896
32.4.3 Algorithm and MEMONY ..o e e reaaes 896
A VI I =T V=T ol T Yo | 896
A T T N [o U= 0 o ot o o o PP 896

32.5 NTP client configurationocveiiiiii e e e enans 897
32.5.1 Configuration Macro LYPES ..icviiiiiitiiiiiiiii e ae e as 897
32.5.2 Configuration sWitChesccciiiiiiii e 897

G272 ST Y o3 A {01 Tt T] o = PR 898
32.6.1 IP_INTP_CLIENT_Start() .cevveveiieiriieiieieiiiie e iraanreseneeaessnnenesnennanennes 899
32.6.2 IP_NTP_CLIENT_HalE() toriieiiiniitiiiiiiee st se e ee e e e s eaaeeeneeas 900
32.6.3 IP_NTP_CLIENT_RESEEAII() turruerriitiiiiititiieieat it rieaeeaesneanenesneanennanens 901
32.6.4 IP_INTP_CLIENT_RUN() tettttiutitiitneriitneiensanesneessnsaanssasennenesnennsneanes 902
32.6.5 IP_NTP_CLIENT_AddServerPoOl() ...ccoiiiiiiiiiiiiiii i nae e 903
32.6.6 IP_NTP_CLIENT_FavorLocalClock() ..ccviiiiiiiiiiii i e 904
32.6.7 IP_NTP_CLIENT_AddServerCloCK() ..ciivreiieiiieiie i nieneeiernennenennennans 905
32.6.8 IP_NTP_CLIENT_AddServerCIoCKIPVO() ..cciveiiiiiiiiiiiiiiie i e 906
32.6.9 IP_NTP_GetTimestamp() .oieeiieiiiiiniiiiiiiniae i raesane e sneeanesneanens 907
32.6.10 IP_NTP_GeTIiME() erreirieieitiitiieieateieiieaenesae e ssaae e areaeanereaeaneanes 908
32.6.11 IP_NTP_SetPOrt() tivieiiitiiiiii ittt e s e e aaaeenens 909

32.7 RESOUICE USAGE .utiutinntiuninesntraeaastsanaansresansssssaesanssesansasssnesasssnesnneanssnnennens 910
32.7.1 Full RFC configurationovieiiiiiiiii it e e e e 910
32.7.1.1 ROM usage on a Cortex-M4 system full RFCccocvvviennnnn. 910

32.7.1.2 RAM usage full RFC ..ottt re e e e as 910

32.7.2 Simpler configurationccoiieiiiiiii e 910
32.7.2.1 ROM usage on a Cortex-M4 system simpler version 910

32.7.2.2 RAM usage simpler VErSIONoccviiiiiiiiiiiii i sieiieeaeneenens 910

SNMP AQent (Add-0N) ..ooooiiiiiiiiiiiii e e e e e e 911
33.1 emNet SNMP AGENT ..iiriiiiiiii i e 912
33.2 FeatUre St e 913
33.3 SNMP Agent requiremMeENnts ..o e 914
33.4 SNMP backgrOoUNASeueieiiiiie ittt et e e e e e e anaaens 915
33.4.1 Data organization in SNMPcccoiiiiiiiii 916
33.4.2 OID value, address and iNAeXccociiiiiiiiiiiiiiiii i i aeas 917
33.4.3 SNMP data tYPeS viiriiiiiiiiii i e 918
33.4.3.1 Native data types cviiiiiiiiiii i e 918

33.4.3.2 Constructed and new data typesccovviiiiiiiiiiiiii e 919

33.4.4 Participants in an SNMP environmentc.ccoviiiiiiiiiiiiiirie e 920
33.4.5 Differences between SNMP Versionsccooiiiiiiiiiiiiiiii e 921
33.4.6 SNMPv3 specific informationcocviiiiiii i 923
33.4.7 SNMP communication basiCScciiiiiiiiiiiii e 925
33.4.8 SNMP Agent return COAES ... e e 926

33.5 Using the SNMP Agent Samplesccoiiniiiiiiii e e 928
33.5.1 IP_SNMP_AGENT _Start.C .cooieiiiiiiii et ee e 928
33.5.2 IP_SNMP_AGENT _Start_ZerOCOPY.C couiiiiiiiiiiiiiiiiiiineeiiiineesiiineessannness 928
33.5.3 Using the Windows SNMP Agent sampleccooiiiiiiiiiiiiiiiiieeeees 928

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

36

emNet User Guide & Reference Manual

33.5.4 Features of the SNMP Agent sample applicationc.ccvvviiiiiiiieninnnn. 929
33.5.5 SNMPV3 SamPIES vttt s 929
33.5.6 Testing the SNMP Agent sample applicationc.ccviiiiiiiiiiiiiiie e, 930

The MIB CallbDacK ..uuiiiiiiiiii it i s iaee s aa e e s aaae e s saaeesrnaeerrananereannnes 932

SNMP Agent configuration ... s 935
33.7.1 SNMP Agent configuration macro typesccoiviiiiiiiiiiiii e 935
33.7.2 SNMP Agent compile time configuration switchesccciiiiiinns 935

Y 2 I 81 T o oY 1 936
33.8.1 IP_SNMP_AGENT_AddCommunity() .ciooeiiiiiiiiiiiiii i i i e enaeens 940
33.8.2 IP_SNMP_AGENT_AAAMIB() ..iiiiriiiiiiiiii it enaeeaaeas 941
33.8.3 IP_SNMP_AGENT_AddInformResponseHOoOoK()ccovviiiiiiiiiiiiiiiiiiiennen, 942
33.8.4 IP_SNMP_AGENT_CancelInform() ..coociiiiiiiiiiiii i nee e 943
33.8.5 IP_SNMP_AGENT_CheckInformStatus()ccoviiiiiiiiiiiiiiiiiiciii i 944
33.8.6 IP_SNMP_AGENT_DeEINIT() teeririiiiiiiiiiiiiiii e e s rieecaaeeneeeaes 945
33.8.7 IP_SNMP_AGENT _EXEC() tttiirtiiitiiiiiiii et iie it eaie e saee e saeesaseannnens 946
33.8.8 IP_SNMP_AGENT_GetMessageTypPe() «.vivervrrrrriierineineiiniinerernnsnnesnennnss 947
33.8.9 IP_SNMP_AGENT_INIT() tiiirriiiiiiiiii i i e i e et i ee e 948
33.8.10 IP_SNMP_AGENT_PrepareTrapInform() ...ccoviiiiiiiiiiiiinieiinennennennens 949
33.8.11 IP_SNMP_AGENT_ProcessInformResponse() ...cccooeviiiiiiiiiiiiiiiniinnnnnn. 951
33.8.12 IP_SNMP_AGENT_ProcessMessage() ..iocverrerrrirranerneriernnsrernesnnemnennes 952
33.8.13 IP_SNMP_AGENT_SendTrapInform()ccoiieiiiiiiiiiiiiiiiicii i ciee e 953
33.8.14 IP_SNMP_AGENT_SetCommunityPerm()cccooiiiiiiiiiiiiiiiiii i cieeeae 954
33.8.15 IP_SNMP_AGENT_MPV3_Add() «iieieiiiiiiiiii i i e it rie e eaae e naeas 955
33.8.16 IP_SNMP_AGENT_SetInformReportCallback()cccoeviiiiiiiiiiiiiiinnnnn. 956
33.8.17 IP_SNMP_AGENT_SM_USM_Add() .iiiiiiiiiiiiiiiiii i i e e 957
33.8.18 IP_SNMP_AGENT_SM_USM_CalCKeY() «iiiitiiiiiiiiiiiiiiiii i i nieanaaens 958
33.8.19 IP_SNMP_AGENT_SM_USM_SetUserTable() ...cccoveviiiiiiiiiiiiiiiiieiee, 959
33.8.20 IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetletfMib2Interfaces() 960
33.8.21 IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetletfMib2System() 961
33.8.22 IP_SNMP_AGENT_AddMIB_IsoOrgDodInternetPrivateEnterprise() 962
33.8.23 IP_SNMP_AGENT_CloseVarbind() ...icoeiiiiiiiiiiiiiiii i i ciaeennens 963
33.8.24 IP_SNMP_AGENT_OpenVarbind() ...ccoviiiiiiiiiiiiiiiic i e 964
33.8.25 IP_SNMP_AGENT_StOreBitS() ..iiiieiiiiiiiiiiii i i et i vie i eieeaaes 965
33.8.26 IP_SNMP_AGENT_StoreCounter() .uiviieiiiiii i i e i nee s 966
33.8.27 IP_SNMP_AGENT_StoreCounter32() ciiieiiiiii i i i i nnaens 967
33.8.28 IP_SNMP_AGENT_StoreCounterb4() ..coviviiiiiiiiiiiiiiii i i i eiaens 968
33.8.29 IP_SNMP_AGENT_StoreCurrentMibOidAndIndex() ...ccccovviiiiiiiiinnnnnnnn. 969
33.8.30 IP_SNMP_AGENT_StoreDouble() ..ccooiiiiiiiii i 970
33.8.31 IP_SNMP_AGENT_StoreFIoat() ...icoiiiiiiiiiiiiiiic i aea 971
33.8.32 IP_SNMP_AGENT_StoreGauge() .ccieeerrrrierierrieiinenniriernnssnernesnnsnesnnans 972
33.8.33 IP_SNMP_AGENT_StoreGauge32() «eiievererrriierineieiinainsreinnennernennnenns 973
33.8.34 IP_SNMP_AGENT_StoreInstanCeNA() ccoiiiiiiiiiiiii i eee 974
33.8.35 IP_SNMP_AGENT_Storelnteger() ..iceevrriieiiiiiiiii i iineneriesnnsnnennnnns 975
33.8.36 IP_SNMP_AGENT_StoreInteger32() ..ioevviiiiiieiiniiiieiineieineannenneannans 976
33.8.37 IP_SNMP_AGENT_Storelntegert4() ...ccvvviiiieiiiiiiiieiineiieinnsnnenennnans 977
33.8.38 IP_SNMP_AGENT_StorelpAddress() «.ivoeiiiiiiiiiiiii i i cneeeaenn 978
33.8.39 IP_SNMP_AGENT_StoreOctetString() «.vvvvveviiiiiiiii i vae e 979
33.8.40 IP_SNMP_AGENT_StOre€OID() .uciiieeiiiiiiiiiii i i i eniee i enaaeeaneans 980
33.8.41 IP_SNMP_AGENT_StoreOpaque() «icevirrieriireiieiineieiierineiesnesnnsaneannans 981
33.8.42 IP_SNMP_AGENT_StoreTimeTicKS() «iviirriiiiiii it e ae 982
33.8.43 IP_SNMP_AGENT_StoreUnsigned32() ..ccvvvvriiieiiniiriiieinniieineannernennnns 983
33.8.44 IP_SNMP_AGENT_StoreUnsignedb4() ...cioevvriiieiiniiriiieinniieinesnnennennnss 984
33.8.45 IP_SNMP_AGENT_ParseBitS() ..ciiveiiiiiiiiiiii it i it e ieeenneaas 985
33.8.46 IP_SNMP_AGENT_ParseCounter() ..ciiieeiiiiiiiiiiiiiii i i i nieanaens 986
33.8.47 IP_SNMP_AGENT_ParseCounter32() «ccciiiiiiiiiiiiiiii i ininieeeaaeas 987
33.8.48 IP_SNMP_AGENT_ParseCounterb4() ...cvvieiiiiiiiiiiiiiiiiiiiiieiieenaaens o088
33.8.49 IP_SNMP_AGENT_ParseDouble() ...ccooiiiiiiiiiiiiiii i i 989
33.8.50 IP_SNMP_AGENT_ParseFloat() ..cciiiiiiiiiiiiiiii i e 990
33.8.51 IP_SNMP_AGENT_ParseGauge() ..cciverererrrrierinriierinerneriesnnsrnernnsnnernens 991
33.8.52 IP_SNMP_AGENT_ParseGauge32() .cvirerirrierrneinnrnneiernnsnnernesnnssesnnans 992

© 2010-2025 SEGGER Microcontroller GmbH

37

34

33.8.53 IP_SNMP_AGENT_ParseInteger()ccveeeririiriiiiiiineneiieennsiesnnannennens 993
33.8.54 IP_SNMP_AGENT_ParseInteger32() ...ooeiieiiriiiiiieiiniiieinnenneiiennnsnnennens 994
33.8.55 IP_SNMP_AGENT_ParseIntegerf64() ...ccvvereeiiiiieiiniiieiinsnnesiennnennennens 995
33.8.56 IP_SNMP_AGENT_ParselpAddress()ccviiiiiiiiiiiiii i i e ciae e 996
33.8.57 IP_SNMP_AGENT_ParseOctetString() «.ocvvirviriiiiiiiii i vieenneeaes 997
33.8.58 IP_SNMP_AGENT_Pars€OID() .eeiieiiitiiiieiiiiiiiie i iiaiieesineaaeeaanens 998
33.8.59 IP_SNMP_AGENT_ParseOpaque() ..iceeererierieereiiernneiernnennernernnsnneeness 999
33.8.60 IP_SNMP_AGENT_ParseTimeTicKS() .ciiiiiiiiiiiiiiiii i i v eiaeaeas 1000
33.8.61 IP_SNMP_AGENT_ParseUnsigned32() ..cciveverrrrrirmineriernnssnernnmnnsinenns 1001
33.8.62 IP_SNMP_AGENT_ParseUnsignedb4()ccvirviiiieiineiininnsnneinennnsnnenns 1002
33.8.63 IP_SNMP_AGENT_DecodeOIDValue() ...ccoeiiiiiiiiiiiii i e 1003
33.8.64 IP_SNMP_AGENT_EncodeOIDValue() ...cccviiiiiiiiiiiiiiiiiiiiiciieiieeeaaeas 1004
33.8.65 IP_SNMP_AGENT_TRAP_INFORM_SetIPv4AddrPort()ccovvvivviinnnnns 1005
33.8.66 IP_SNMP_AGENT_TRAP_INFORM_SetIPv6AddrPort()ccovvivviinnnnns 1006
33.8.67 IP_SNMP_AGENT_TRAP_INFORM_SetType() .cceiiiiiiiiiiiiiiiiiiiiiieens 1007
33.8.68 IP_SNMP_AGENT_TRAP_INFORM_SetCommunity()ccovvviiiiviinnnnnn. 1008
33.8.69 IP_SNMP_AGENT_TRAP_INFORM_SetUser()ccccoiiviiiiiiiiiiiiiiennnnn. 1009
33.8.70 IP_SNMP_AGENT_TRAP_INFORM_SetTimeoutRetries()cccvvuvennne. 1010
33.8.71 IP_SNMP_AGENT_TRAP_INFORM_SetMPFIags() ...civevvrvrreriniiniinennnnns 1011
33.8.72 IP_SNMP_SM_USM_USER_SetENgine() ..ccvvvvrviieriniiiiieinneieinnnnnennes 1012
33.8.73 IP_SNMP_SM_USM_USER_SetUsername() ...cccveviiiiiiiiiiiiiiiiiiennnnn, 1013
33.8.74 IP_SNMP_SM_USM_USER_SetPerm() ..ccciiiiiiiiiiiiiiiiiiiiiiieiiennaens 1014
33.8.75 IP_SNMP_SM_USM_USER_SetAuthParamsAndKey()c.ccoeviiiviinnnnnn. 1015
33.8.76 IP_SNMP_SM_USM_USER_SetPrivParamsAndKey()cccceviiiiiiinnnnnn. 1016

G2 T TR B T | = = f 1 ot o] o= 1017
33.9.1 Structure IP_SNMP_AGENT AP .. i v rrreeeee e e 1017
33.9.2 Structure IP_SNMP_AGENT _PERM ...ttt niaes 1018
33.9.3 Structure IP_SNMP_AGENT_MIB2_SYSTEM_APIcccoiiiiiiiiiiiiiienne, 1019
33.9.4 Structure IP_SNMP_AGENT_MIB2_INTERFACES_APIccvviviinnnnnnn. 1020
33.9.5 IP_SNMP_HASH_INIT_FUNC ..ttt i et i rieeeaaee s 1021
33.9.6 IP_SNMP_HASH_ADD_FUNC ...ttt e e e e 1022
33.9.7 IP_SNMP_HASH_FINAL_FUNC ..ot e 1023
33.9.8 IP_SNMP _HASH AP L.t e e 1024
33.9.9 IP_SNMP_SM_USM_AUTH_PARAMS ... ittt i e i 1025
33.9.10 IP_SNMP_SM_USM_PRIV_API_EXEC_FUNCc.ccoiiiiiiiiiiiiiiiie e iieeeans 1026
33.9.11 IP_SNMP_SM_USM PRIV _API ..ttt it iiite e iiasesrnanesrannns 1027
33.9.12 IP_SNMP_CIPHER_INIT _FUNC .. .titiiiiiiiiiiieieeiiinneeriinnesrrnnnrssinnnneenns 1028
33.9.13 IP_SNMP_CIPHER_EXEC_FUNC ..iiiiiiiiiiiiiieiriineeerrinessiissssrinnnesinnes 1029
33.9.14 IP_SNMP_CIPHER_FINAL _FUNC ...citiiiiiiiiiiiireriineeriineserinnnssrannnes 1030
33.9.15 IP_SNMP_CIPHER AP ..ttt it i iare s snars s saas e e sanaarerannnees 1031
33.9.16 IP_SNMP_SM_USM_PRIV_PARAMS ...ttt 1032
33.9.17 IP_SNMP_SM_USM_ENGINE_ENTRY ..ttt ieeieeeaae e 1033
33.9.18 IP_SNMP_AGENT_SM_USM_CONFIG ..ciiiiiiiiiiiiiiiiii i i niee e 1034
33.9.19 IP_SNMP_SM_USM_USER_TABLE_ENTRY ..ciiiiiiiiiiiiiiiiii i i 1035
33.9.20 IP_SNMP_USM_ENGINE_INFO ...ciiiiiiiiiiiii i i i naee s 1037
33.9.21 IP_SNMP_AGENT_MPV3_CONFIG ..iciiiiiiiiiiiiiiii i eiee e 1038
33.9.22 IP_SNMP_AGENT_ON_INFORM_REPORT_FUNCccoiiiiiiiiiiiiiiaenne, 1039
33.10 Resource usage (SNMPV2C) .viiriiiiiiiii i e e e e e s 1040
33.10.1 ROM usage on a Cortex-M4 SyStemccvviiiiiiiiiiiiiiiiiiiiieas 1040
33.10.2 RAM USGQE tiiutiiriiiiteintiansaseietaneserassans e raneanesneaansaesnneansrnesnnens 1040
33.11 Resource usage (SNMPV3 USM) .iiiiiiiiiiiiii i i e e e enneneanes 1041
33.11.1 ROM usage on a Cortex-M4 SyStemc.ccvviiiiiiiiiiiiiiiiiieieas 1041

G2 T 0 A ¥ A 1 I FY- o [PP 1041
COoAP client/server (Add-0N)uioiiiiieie e 1042
72 T < T 0 011] o 0 A = 1043
2 T 1 o1 1 o< 1 1044
G N S U= To [WY1/ =T o 1= 1045
S N (o Y2 ol o =T o | o 18 o U 1 1046

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

38

emNet User Guide & Reference Manual

34.5

34.6

34.7

34.4.1 ProtOCOl OVEIVIEW ..viiiiiiiiii it e s e e eeenneanens 1046
34.4.2 Message format ..o 1048
G 3G TN V=11 o Lo o Y= T oo Yo [P 1049
7 B S @0 AN = o] o) o i = 1050
34.4.5 Retry mechanism ..o e 1050
34.4.6 BloCK transfer .uiiiiii i e 1051
34.4.7 ODSOIVE ittt s 1052
34.4.8 Built-In resource diSCOVEIY ...iiiiiiiiiiiriiiiierineiierasesernesaeiierneaaneaneans 1053
34.4.9 Implementation ChoiCeS ...iciiiriiiii i e 1054
Using the COAP SamIPIES ... e e e 1055
34.5.1 Running the sample on target hardwarecoiiiiiiiiii s 1055
34.5.2 Using the WIindows samplesccoiiiiiiiiiiii e 1055
34.5.3 Sample CoAP server applicationcciviiiiiiiiiii i i eas 1055
34.5.4 Server callbacks descriptioncicoviiiiiiiiii i 1055
34.5.5 Testing the server ... 1056
34.5.6 Sample CoAP client applicationc.ccvviiiiiiiiiiiii e 1056
34.5.7 Client callbacks descriptionc.icciiiiiiiiii i i eeaas 1057
COAP coNfigUIratioNeoeie i e e 1058
34.6.1 CoAP configuration macro LYPES ...civeiirviiiiiiiii i aaeas 1058
34.6.2 Configuration switches ... 1058
F AN o I 18 Vo o o 1= PP 1060
N R Y < = 1063
34.7.1.1 IP_COAP_SERVER_INIt() +iereiriiiriieiiiiniiiieinneneiiesnnsnnennennes 1064
34.7.1.2 IP_COAP_SERVER_ProCeSS() «eevieiiiiiiiiiiiiiiiiiiiiieeiiseiniannnness 1066
34.7.1.3 IP_COAP_SERVER_GetMsgBuffer()ccoevviviiiiiiiiiiiiinnnnensn 1067
34.7.1.4 IP_COAP_SERVER_AddAData() ..icovvrviiiiniieiiiineneiieninennennens 1068
34.7.1.5 IP_COAP_SERVER_RemoveData()ccvvivirvrriiiniinniieiiennnnnnennss 1069
34.7.1.6 IP_COAP_SERVER_AddClientBuffer()ccovivvieiiiiieiieninnnnennn. 1070
34.7.1.7 IP_COAP_SERVER_AddObserverBuffer()cccoeeviiiiiiiiiinnnnnn. 1071
34.7.1.8 IP_COAP_SERVER_UpdateData()ccvvivirviiriiniiiiinninenennnnnns 1072
34.7.1.9 IP_COAP_SERVER_SetDefaultBlockSize()ccovviiiiiiiiiniinnnnnn. 1073
34.7.1.10 IP_COAP_SERVER_SetPOSTHandler()ccooivviviieviniinennnnsnn 1074
34.7.1.11 IP_COAP_SERVER_ConfigSet() ..iviviirririiiiiiiiiiiiiinnnneniennnans 1075
34.7.1.12 IP_COAP_SERVER_ConfigClear()ccvvivriiiieiineieiiennnennenness 1076
34.7.1.13 IP_COAP_SERVER_SetURIPOIt() .evvvvvrririiniieiieenneiiennnnnnennes 1077
34.7.1.14 IP_COAP_SERVER_SetHostName()ccvovviiiiiiiiiiiiiiennens 1078
34.7.1.15 IP_COAP_SERVER_SetErrorDescription()cccviiviiiiniinnnnnen. 1079
Iy 1 1= o | 1080
34.7.2.1 IP_COAP_CLIENT_INIE() vrvveerirrrnerinrnnernnrnnsrnernesnnsrernnsnnsenenns 1081
34.7.2.2 IP_COAP_CLIENT_ProCess() «ieeeeiiiiiiiiiiiieiiiiiiiaeiiieeeineaniaeannns 1082
34.7.2.3 IP_COAP_CLIENT_GetFreeRequestIdX() ..civivviieiiiiiiiiiniinnnnnn. 1083
34.7.2.4 IP_COAP_CLIENT_AbortRequestIdx() ...ccccoviiiiiiiiiiiiiiiiiniinnnns 1084
34.7.2.5 IP_COAP_CLIENT_SetServerAddress() ...ccvveviiiiiiiniiieiiiennnnn, 1085
34.7.2.6 IP_COAP_CLIENT_SetDefaultBlockSize()oovvrvirviieiinninnnnnnns 1086
34.7.2.7 IP_COAP_CLIENT_SetCommand() ..ccovivrirrineiiiiniineiieinnnnnennen 1087
34.7.2.8 IP_COAP_CLIENT_SetToken() ..ccvviiriiiiiiiiiiieiie i rieennennenns 1088
34.7.2.9 IP_COAP_CLIENT_SetPayloadHandler()cccvviviiiiiiiiiiinnnnnn. 1089
34.7.2.10 IP_COAP_CLIENT_SetReplyWaitTime() ...cccovvvviiiiieiinnineinnnnn, 1090
34.7.2.11 IP_COAP_CLIENT_BuildAndSend()coviviiviiriiiiiiiinnneninnnens 1091
34.7.2.12 IP_COAP_CLIENT_GetLastResult()ccvvviiiiiiiiiiiiiiineinens 1092
34.7.2.13 IP_COAP_CLIENT_GetMsgBuffer()ccovivviiiiiiiiiiiiniennnannns 1093
34.7.2.14 IP_COAP_CLIENT_GetLocationPath()cccoiviiiiiiiiiiinene, 1094
34.7.2.15 IP_COAP_CLIENT_GetLocationQuery() ..ccovevreiiernnerierinnnnennsn 1095
34.7.2.16 IP_COAP_CLIENT_SetOptionURIPath()ccoovviiiiiiiiiiinnns 1096
34.7.2.17 IP_COAP_CLIENT_SetOptionURIHOSE() +.cvvvvvvieiiniiiiiiinninenns 1097
34.7.2.18 IP_COAP_CLIENT_SetOptionURIPOIt() ..ocvvvvvieiiniiiiininneinenns 1098
34.7.2.19 IP_COAP_CLIENT_SetOptionURIQUErY() .covvverierrririennnnnnennens 1099
34.7.2.20 IP_COAP_CLIENT_SetOptionETag() «vioevvrvrrerirrinirerinnnneinnnnss 1100
34.7.2.21 IP_COAP_CLIENT_SetOptionBIock() ..ivvviieiiriiniiieiiniieiienens 1101
34.7.2.22 IP_COAP_CLIENT_SetOptionAccept() «.ovvvieririiieiieiininneninnnnns 1102

© 2010-2025 SEGGER Microcontroller GmbH

39

emNet User Guide & Reference Manual

34.7.2.23 IP_COAP_CLIENT_SetOptionContentFormat()c.coccevvieennns 1103
34.7.2.24 IP_COAP_CLIENT_SetOptionIfNoneMatch()cccevviiiinnen. 1104
34.7.2.25 IP_COAP_CLIENT_SetOptionLocationPath()c.ccccvvinnnnne. 1105
34.7.2.26 IP_COAP_CLIENT_SetOptionLocationQuery()ccooovvrvinernnnnn. 1106
34.7.2.27 IP_COAP_CLIENT_SetOptionProxyURI() ...ccovvvvinviiiiniinnnnenns, 1107
34.7.2.28 IP_COAP_CLIENT_SetOptionProxyScheme()ccvvvvvvvvnnnnnn. 1108
34.7.2.29 IP_COAP_CLIENT_SetOptionSizel() ..ccvvevvrviiiiieiiniiieriennnennen 1109
34.7.2.30 IP_COAP_CLIENT_SetOptionAddIFMatch()covvvvviivinennnnnn. 1110
34.7.2.31 IP_COAP_CLIENT_OBS_INIt() svvreviernrrrierinnrneiieenneriennnenneenes 1111
34.7.2.32 IP_COAP_CLIENT_OBS_ADBOIt() .cevrviieiiniiiiiiniineniennnsnnennnnnns 1112
34.7.2.33 IP_COAP_CLIENT_OBS_SetEndCallback()cvvvvviviiniineinnnnn. 1113

34.7.3 ULy oririii i e 1114
34.7.3.1 IP_COAP_CheckAcceptFormat() ...ccovvviiiiiiiiiiiii e 1115

34.7.3.2 IP_COAP_GetAcceptFormat() ...covvviiiiiiiiii i ee e 1116

34.7.3.3 IP_COAP_CheckContentFormat()cccooiiiiiiiiiiiiiiiiiiciiean 1117

34.7.3.4 IP_COAP_GetContentFormat()ccoviiiiiiiiiiiiiiiiiie e 1118

34.7.3.5 IP_COAP_ISLastBIOCK() .iiiriiiiiiiiiiiii it eea 1119

34.7.3.6 IP_COAP_GetURIHOSE() +iivviiriiniiiiiieiiiiiiie i cieene e nnnenneeneas 1120

34.7.3.7 IP_COAP_GetURIPAth() ..civeiiriiiiiiiiii i i e nae e 1121

34.7.3.8 IP_COAP_GEtURIPOIE() vvvrrririiniiieiineieiieenneiieennsnnesnesnnsnnennes 1122

34.7.3.9 IP_COAP_GetQUEIY() tivrriirririreiieenntiieiinennernesnsssnesnnannesneannss 1123
34.7.3.10 IP_COAP_GEtETag() tevveerrrrrirranernrrnesanerernnesneresnnssnesnnsnnenns 1124
34.7.3.11 IP_COAP_GEetMaXAGE() tervrrrrirririrniiineiniiiernnssnesnesnnsanerneannss 1125
34.7.3.12 IP_COAP_GetSIiZE1() +irrerirrirerimrinineiieraneiiesnssaneiesnnsnnerneanes 1126
34.7.3.13 IP_COAP_GEetSIiZE2() +ivrerirrireritraneineianransiernnsnnsinesnnsanernesnes 1127
34.7.3.14 IP_COAP_GetLocationPath()ccoviiiiiiiiiie 1128
34.7.3.15 IP_COAP_GetLocationQUEIY() «ivieivrrirrieiineineiierinererneannennes 1129

S T B T | = T o o B o B = 1130
34.8.1 IP_COAP_SERVER _CONTEXT .iitiiriiitiineiieiineineinesnnssnernnssnesnesnnsanesnnss 1131
34.8.2 IP_COAP_SERVER _DATA ittt it it se e s e sans e e anneaneenes 1133
34.8.3 PF_POST_HANDLER ..ottt it s saesane e sasennesesnnssnesnnennennens 1136
34.8.4 IP_COAP_PfGETPayload ...cccoviiiiiiiiiiiii i e 1138
34.8.5 IP_COAP_PfPUTPAYIOadoiiriiiiiiiiiiiiiii it et 1141
34.8.6 IP_COAP_PfDELHANAIEr .ot et e 1143
34.8.7 IP_COAP_CLIENT_CONTEXT .iiitiitiiitiieernerneeanernsnnssnernnsnnssneennannernens 1144
34.8.8 PF_OBS_END_TRANSFER ...citiiiiiiiiiiiiii i s siss s vesnnennennanes 1145
34.8.9 PF_CLIENT_PAYLOAD ..tiiiiiitiiit ittt ateaae e saaesse e s anesnesnsnneaneannanes 1146
34.8.10 TP _COAP AP .ottt 1148
34.8.11 IP_COAP_CALLBACK _PARAM ..iiitiiiiiiiii i itae i snevennnsnnennennnans 1149
34.8.12 IP_COAP_OPTIONS_INFO ..tiitiiiiiiriiiiiieiineinesasesneinesanssnesnesnnssneannans 1150
34.8.13 IP_COAP_IF_MATCH_INFO ...iiitiiiiiiii i eneenne e nneenne s 1152
34.8.14 IP_COAP_HEADER _INFO .tiiiiiiiiii i i se e s naeseennennennennans 1153
34.8.15 IP_COAP_BLOCK_INFO .iiitiitiiiiiieiie i iiesnnesesanssnesnesnnsnnesnnsnnss 1154
34.8.16 IP_COAP_CONN_INFO .tiiiiiiiiiii i st saee e sneenne e snnssnesneannsnnens 1155
34.8.17 IP_COAP _PfRECEIVE vttt it e et e e et e aaeaaas 1156
34.8.18 IP_COAP_PfSENA .iviiiiiii i s i re s e a e s e e anans 1157
34.8.19 IP_COAP_PfGetTimeEMS ..viiiiiiiii i e e e 1158
34.9 RESOUICE USAGE .uiiutinsiutiunintitisssnssssstrasaass ettt sassatstiesanssesnes 1159
34.9.1 Server ROM usage on a Cortex-M4 systemcocovviiiiiiiiiiiiiiiiiieinnns 1159
34.9.2 Client ROM usage on a Cortex-M4 systemccooiiiiiiiiiiiiciieianns 1159
34.9.3 Server RAM USAQgE. .iiiiiiiiiiiiiiiiiiiiiii ittt sas et sesnaaaesneaaeas 1159
34.9.4 Client RAM USAQE. ..uiiriiiiii ittt et e e e e e e e e e aneanenens 1159

35 MQTT client (Ad-0N) ..o e e s e e e e e e e e e e eeeeeasanane 1160
35.1 @MMOQTT CHENE ot e e e 1161
35.2 Feature ISt oo 1162
TG N S U= To [WY1/ =T o 1= 1163
35.4 MQTT bacKgrOUNdS ...oieiieiiiii i e e e e e e e e aneeeanes 1164
35.4.1 MQTT Quality Of SEIVICE .iiiriiiiiiiii i e 1165

© 2010-2025 SEGGER Microcontroller GmbH

40

35.5 emMQTT client configurationcoooiiiii i 1167
15T T Y 2 1 11 o Tt o o o T 1168
35.6.1 IP_MQTT_CLIENT _INIE() teeiiiiiii i i e et e ceae e 1169
35.6.2 IP_MQTT_CLIENT_SetLastWill() ..covvriiiiiiiiii i e e 1170
35.6.3 IP_MQTT_CLIENT _SetUSErPass() ..ccceiiiiiiiiiiiiiiiiiiieiiiiiieeeaeasiaeannes 1171
35.6.4 IP_MQTT_CLIENT_SetKeepAlive() ..cociiiiiiiiiiii i i 1172
35.6.5 IP_MQTT_CLIENT_CONNECLEX() tiirtiiiriiiiiiiiiiiiiii i i i e naeaaaeaes 1173
35.6.6 IP_MQTT_CLIENT_DisconNNECE() eviiriiiiiiiiii it i i caae e 1174
35.6.7 IP_MQTT_CLIENT_PUblish() .iceiiiiiiiii i 1175
35.6.8 IP_MQTT_CLIENT_Subscribe() .ccciiiiiiiiiiii i e 1176
35.6.9 IP_MQTT_CLIENT_UnNSubscribe() ..icoeiiiiiiiiiiii i e 1177
35.6.10 IP_MQTT_CLIENT_WaitForNextMessage() ...c.ccvvviiviiriiniiieiiniinenennens 1178
35.6.11 IP_MQTT_CLIENT _RECV() ttiiuttiitiiiiiiiitei ittt iae it eate it enieesaaeaaneeanns 1179
35.6.12 IP_MQTT_CLIENT _Timer() ueeiitiiiieiiiiii it ei st eaeeeiaeeaeeeaneeanes 1180
35.6.13 IP_MQTT_CLIENT_CheckMessageTimeouts() ..cvvvvrierirrinerernnninernennens 1181
35.6.14 IP_MQTT_CLIENT_EXEC() titttiittiiiiiitiiiite i iite i siteeneesaneaaaeannens 1182
35.6.15 IP_MQTT_CLIENT_ParsePublishEX() ..cccoiiiiiiiiiiiiiiii i 1183
35.6.16 IP_MQTT_CLIENT_IsClientConnected() ...ccovviviiiiiiiiiiiiiiiiiie i 1184
35.6.17 IP_MQTT_Property2String() .oevveeiieiineiieiiniineiieriessnernesanesesneanneanenns 1185
35.6.18 IP_MQTT_ReasonCode2StriNg() «iuevreiierireiieiinenneiierinernernesnnesnennnanes 1186
35.6.19 IP_MQTT_CLIENT_CONNECE() tiirtiiiiiiiiiiiii i eieecnaea e 1187
35.6.20 IP_MQTT_CLIENT_ParsePublish() ...ccooiiiiiiiiiii e 1188

1 T A B T | = I {1 ot o | = 1189
35.7.1 IP_MQTT_CLIENT _TRANSPORT _API ..ttt 1190
35.7.2 IP_MQTT _CLIENT _APP AP .ottt e e 1191
35.7.3 IP_MQTT_CLIENT _MESSAGE ...ciiiiiiiiiii i i e e 1192
35.7.4 IP_MQTT_CLIENT_TOPIC_FILTER ...ciiitiiiiiiiiiii it ri v nee e aaeas 1193
35.7.5 IP_MQTT_CLIENT_SUBSCRIBEccciiiiiiiiiii i i i 1194
35.7.6 IP_MQTT _PROPERTY ittt it e et et ae e raeeaaas 1195
35.7.7 IP_MQTT_CONNECT _PARAM ...ttt i i e e aee s 1196
35.7.8 IP_MQTT _STR _PAIR DA A i i e e i as 1197
35.7.9 IP _ MO T ST R D AT A ittt i e e et eas 1198
35.7.10 TP _MQ T _BIN _DAT A ittt it e et e it et it rieeaaneaas 1199

35.8 IP_MQTT_CLIENT_TRANSPORT_API in detailccvviniiiiiiiiiiiciic e 1200
35.8.0.1 IP_MQTT_CLIENT_CONNECT ..ttt e aes 1200

35.8.0.2 IP_MQTT_CLIENT_DISCONNECT ..ciiiiiiiiiiiii i i ciaeeaaeeas 1201

35.8.0.3 IP_MQTT_CLIENT_RECEIVE ..ccciiiiiiiiii i i i i eieea s 1202

35.8.0.4 IP_MQTT_CLIENT_SEND ..iiiiiiiiiiii i i v ees 1203

35.9 IP_MQTT_CLIENT_APP_API in detail ...ccoviriiiii i 1204
35.9.0.1 IP_MQTT_CLIENT_GEN_RANDOM ...iiiiiiiiiiiiiiiic i e 1204

35.9.0.2 IP_MQTT_CLIENT_ALLOC ...iiiiiiiiiiiiiii i e 1205

35.9.0.3 IP_MQTT_CLIENT_FREE ..ttt e 1206

35.9.0.4 IP_MQTT_CLIENT_LOCK .iiitiiiiiiiii ittt niee e ae e 1207

35.9.0.5 IP_MQTT_CLIENT_UNLOCK .iiiiiiiiiiiiii i e vee e 1208

35.9.0.6 IP_MQTT_CLIENT_RECV_MESSAGEccciiiiiiiiiiiiiiiiiciieien, 1209

35.9.0.7 IP_MQTT_CLIENT_ON_MESSAGE_CONFIRMcciviiiiiiiiinnnnnn. 1210

35.9.0.8 IP_MQTT_CLIENT_HANDLE_ERRORcccciiiiiiiiiiiiiiiii i 1211

35.9.0.9 IP_MQTT_CLIENT_HANDLE_DISCONNECT ...cciiiiiiiiiiiiiiiiiaeennen 1212

35.9.0.10 IP_MQTT_CLIENT_ON_MESSAGE_CONFIRM_EX ...cccicevviinennns 1213

35.9.0. 1 IP_MQTT_CLIENT_RECV_MESSAGE_EX ..cciiviiiiiiiiiiiiiiiieeas 1214

35.9.0.1 IP_MQTT_CLIENT_ON_PROPERTY ..iiiiiiiiiiiiii i i eeea 1215

35.9.0.13 IP_MQTT_CLIENT_CHECK_TIMEOUT_CB ...cicovviiiiiiiiiiieeeaeens 1216

35.10 RESOUIMCE USAGE .iuutiuutrutintineitissrsisssstsasaass ettt tiesassasrnesassiesnns 1217
35.10.1 Resource usage on a Cortex-M4 systemccoviiiiiiiiiiiiiiiiii 1217
35.10.1.1 ROM USGGE ..iiiiiiiiiiiiiiitiiii i aas e aaeas 1217

35.10.1.2 RAM USAGE ..ottt ittt raes 1217

36 WebS0OCKEt (AAA-0N) ..ooeieiiiiiiiiie e e e e e e e aaa s 1218
36.1 emNet WebS0oCKEet SUPPOITuiiiiiii i s 1219

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

41

37

38

39

36.2 FEATUME ISt tviiriiiiii i e e e 1220
1 S T 2 U=To [U1 = o o = 1o PP 1221
36.4 BacKgrOoUNAS ..o e 1222
36.4.1 Establishing a WebSocket connectioncooiiiiiii s 1223
36.4.2 Accepting a WebSocket connectionccoiieiiiiiiiiiiii 1224
36.4.3 Closing a WebSocket connectioncoiiiiiiiiiiiiii e 1225
36.4.4 WebSocket data framingccoooiiiiiii i 1225
36.4.5 WebSocKket frame tYPES ..ivviiriiiiiiii i 1227

36.5 Using the WebSocket samples ..o e 1228
36.5.1 IP_WEBSOCKET_printf_Server.C ...c.iiiiiiiiiii i i i 1228
36.5.2 GUI_VNC X _StartSerVaC viiiiiiiiiiiiiiiie ettt eissiitreeeeerreraaninnsneereees 1230
36.5.3 Using the WIindows sample ... e 1232

36.6 CoNfIGUIAtIONeieiii e 1233
TS 2 AN o3 A 1 o Vo o 1= P 1234
36.7.1 IP_WEBSOCKET_CIOSE() +utuuiueiuiineieae it ieeaeeeeeaeeeeeaeeaereaneneaeanens 1235
36.7.2 IP_WEBSOCKET_DiscardMessage() ..ocieevererrerirrsnrrernnssnernesnnssnernnennss 1236
36.7.3 IP_WEBSOCKET_GenerateAcceptKey() .oovviviiiiieiieiiiiniiiieiinennenenns 1237
36.7.4 IP_WEBSOCKET_INtClient() ...ooeiririieii e e e 1238
36.7.5 IP_WEBSOCKET _INIitSErver() .oociiiiiiiiiiiiiiii i i i i eiee e 1239
36.7.6 IP_WEBSOCKET_RECV() tuetueiuieieiiieeae it ieae et ee e e e e eae e e eaeeeaeaees 1240
36.7.7 IP_WEBSOCKET_SE@NA() tturruinieinianeeaae et eeeeaeeereaeeeeeaaeneenens 1241
36.7.8 IP_WEBSOCKET_WaitForNextMessage() ..oovvvvrriierieriniieiiennneinennnanns 1242

G SIS T I T | = T o o B o U = 1243
36.8.1 Structure IP_WEBSOCKET_TRANSPORT_API ... 1243

36.9 RESOUICE USAGE uuiiutintiintitintitissrnrssst ettt sass st sae sttt saasassiesarssnesnes 1244
36.9.1 ROM usage on a Cortex-M4 Systemcciviiiiiiiiiiiiiiiii s 1244
36.9.2 RAM USAQE ..uuiiuiiiiiiiiiiii ittt 1244
Profiling With SYStEMVIEWcooeiiiiiiiccce e e e e e e 1245
37.1 Profiling OVEIVIEW ...uieiiiiiiii et e e e e 1246
37.2 Additional files for profilingcooeiiiiiiii e 1247
37.2.1 Additional files on target Sidecocoviiiiiiiii 1247
37.2.2 Additional files 0n PC Side ...civiiiiiiiiiiiii i e 1247

37.3 Enable profiling .o 1248
37.4 Recording and analyzing profiling informationccoiviiiiiiiiiii 1249
(D721 o8 {o o] oo [PPSO O PSP O PO PPPPPPPPPPP 1250
38.1 MeSSage OULPUL .iiuiiiiii i e 1251
38.2 Testing Stability ...ocoinieii e 1252
G 20C T AN = A 1 o Vo o 1= P 1253
22 7 T R 1 = e T | () P 1254
G2 G 20 - T o o ¥ () P 1255
38.3.3 IP_Logf Application() .ccviieiieiiiiiii i e 1256
38.3.4 IP_Warnf_Application() .ioovviriiii i e 1257
38.3.5 IP_AddLOGFIIEEI() wivreiieiiriiiiiie i i e e e e e e 1258
C1 0C 2N ST S 20=T 0 [0)VZ=T o To | 1) =T ol () P 1259
38.3.7 IP_AddAWarnFilter() ..oiveiieiiiiiiieii i a e e ane e e e e 1260
38.3.8 IP_RemoveWarnFilter() ...ooovvriiiiiiii i e 1261
38.3.9 IP_SetLogRilter() couiiei i e 1262
38.3.10 IP_SetWarnFilter() .oivviieiiii i i e e 1263
38.3.11 IP_PrintStatus() cvviieiiiiiiiiiii i e 1264
38.3.12 IP_PANIC() teueiuieie ittt et et e e et e e e e aaens 1265
38.3.13 IP_PaNIC() eueieiiieiie i e 1266

1 S [T Y= Vo T Y 1= 1267
38.5 Using a network sniffer to analyze communication problemsoov.e. 1269
(@ 1S T] (= To = 11 [o 1270
39.1 OS integration general informationc.coviiiiiii 1271

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

42

40

41

42

43

44

39.1.1 EXAMIPIES .ttt e 1272
39.1.2 IP_OS_DeIAY() «euerueineeie e e e e 1273
39.1.3 IP_OS_DisableINterrup() ..ivvieriiieiieiiiie s irsaeiesnnennerneannsaneaneans 1274
39.1.4 IP_OS_EnableInterrupt() cioeeiiiiiiiiii i i e nneren e nnens 1275
39.1.5 IP_OS_GetTiME32() teiuerieieiteae et e e e e e e e e e eaeaeenes 1276
39.1.6 IP_OS _TNIE() «eueruenieieie ettt e 1277
39.1.7 IP_OS_LOCK() tuetineineitiie ettt e e 1278
39.1.8 IP_OS_UNIOCK() eruenieieiii i et e e e e e aaaas 1279
39.1.9 IP_OS_SignalNetEVeNnt() ..ovvieiiriiiiiriierieraeeaerinrass s rnesane e sneenneanens 1280
39.1.10 IP_OS_WaitNetEventTimed() ...ccooririimiiiii e 1281
39.1.11 IP_OS_SignalRXEVENT() t.viiviiriiiriineiiniieeseiiesans i snnennesesnnsnneaneannans 1282
39.1.12 IP_OS_WaitDTaskEventTimed() ..cccviiiiiiiiiiii i e 1283
39.1.13 IP_0OS_SignalDTaskEVENT() .cvvvrviiriiriiiiieiieiieiine e snnennenneanes 1284
39.1.14 IP_OS_WaitRXEventTimed() - .coioeiiiiie e 1285
39.1.15 IP_OS_WaitltemTimed() coueeeiieieiniieie et e e e eaeeeaens 1286
39.1.16 IP_OS_Signalltem() ocooeieiieiie i e 1287
KNOWIEAQE BASEeuiiiiiiii ettt e e e e e e e e e e e e e e e eeaeannanes 1288
40.1 WINAOW SCaliNg .oiriiiiiiiii i it et e 1289
Performance & reSOUICE USBJEccccuuuurrrriiiiiriiieiieeeteeaaaaaaaaaae s e s s s s s aaeieeeeeeneeeeeeees 1290
41.1 emNet Memory fOOtPriNT v e e 1291
41.1.1 emNet on ARM7 SYSEEM .iiiiiiiii i e e a e ranee e 1291
41.1.1.1 ROM usage ARM7 ...uiiriiiiiiiii i i 1291

41.1.1.2 RAM USage ARMY7 ... e 1291

41.1.2 emNet on Cortex-M3 SYStem ...oivviiiiiii e 1292
41.1.2.1 ROM usage CortexX-M3ccciiiiiiiiiiiii i s 1292

41.1.2.2 RAM usage CortexX-M3 ... 1292

41.2 emNel PerfOrmManCe ..ouiiiiiiiii i i e r e 1293
41.2.1 Performance on ARM7 SYSTEM ..icviiiiiiiiiiiii i i nnenneaeans 1293
41.2.2 Performance on CortexX-M3 SYStemM ...c.viiviieiiiiiiii i aneaens 1294
Appendix A - File system abstraction layerccccceeeiiiiiiiiiiiiiieceeee 1295
42.1 File system abstraction layerccoiiiiiiiii e 1296
42.2 File system abstraction layer function table ... 1297
42.2.1 emFile iNterface .oiviiiiii 1299
42.2.2 Read-only file SyStemM ..coiiiiiiiiii i 1300
42.2.3 Using the read-only file systemcocoiiiiiiiiiii s 1301
42.2.4 Windows file system interfacec.cooiiiiiiiiiii i 1302
YU o] oo] o AT P PP 1303
L3 T N @0 o} =Y o Vo [=1¥ 0] Yo] 1304
(€10 FT T 1305

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 1

Introduction to emNet

This chapter provides an introduction to using emNet. It explains the basic concepts behind
emNet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

44 CHAPTER 1 What is emNet

1.1 What is emNet

emNet is a CPU-independent TCP/IP stack.

emNet is a high-performance library that has been optimized for speed, versatility and
small memory footprint.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

45 CHAPTER 1 Features

1.2 Features

emNet is written in ANSI C and can be used on virtually any CPU.

Some features of emNet:

Standard socket interface.

High performance.

Small footprint.

No configuration required.

Runs “out-of-the-box".

Very simple network interface driver structure.

Works seamlessly with embOS in multitasking environment.
Zero data copy for ultra fast performance.

Non-blocking versions of all functions.

Connections limited only by memory availability.

Delayed ACKs.

Handling gratuitous ARP packets

Support for VLAN

BSD style “keep-alive” option.

Support for messages and warnings in debug build.
Drivers for most common Ethernet controllers available.
Support for driver side (hardware) checksum computation.
Royalty-free.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

46 CHAPTER 1 Basic concepts

1.3 Basic concepts

1.3.1 emNet structure

emNet is organized in different layers, as shown in the following illustration.

Applicaton layer | | OHCEDAS.ETE HITE, POPS
Transport layer TCP / UDP
Network layer IP, ICMP, IGMP, ARP, RARP, ...
Link layer Ethernet (IEEE 802.3), ...

A short description of each layer’s functionality follows below.

Application layer

The application layer is the interface between emNet and the user application. It uses the
emNet API to transmit data over an TCP/IP network. The emNet API provides functions in
BSD (Berkeley Software Distribution) socket style, such as connect (), bind(), li sten(),
etc.

Transport layer

The transport layer provides end-to-end communication services for applications. The two
relevant protocols of the Transport layer protocol are the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP). TCP is a reliable connection-oriented
transport service. It provides end-to-end reliability, resequencing, and flow control. UDP is
a connectionless transport service.

Internet layer

All protocols of the transport layer use the Internet Protocol (IP) to carry data from source
host to destination host. IP is a connectionless service, providing no end-to-end delivery
guarantees. IP datagrams may arrive at the destination host damaged, duplicated, out of
order, or not at all. The transport layer is responsible for reliable delivery of the datagrams
when it is required. The IP protocol includes provision for addressing, type-of-service
specification, fragmentation and reassembly, and security information.

Link layer

The link layer provides the implementation of the communication protocol used to interface
to the directly-connected network. A variety of communication protocols have been
developed and standardized. The most commonly used protocol is Ethernet (IEEE 802.3).
In this version of emNet only Ethernet is supported.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

a7 CHAPTER 1 Basic concepts

1.3.2 Encapsulation

The four layers structure is defined in [RFC 1122]. The data flow starts at the application
layer and goes over the transport layer, the network layer, and the link layer. Every protocol
adds a protocol-specific header and encapsulates the data and header from the layer above
as data. On the receiving side, the data will be extracted in the complementary direction.
The opposed protocols do not know which protocol on the above and below layers are used.

The following illustration shows the encapsulation of data within an UDP datagram within
an IP packet.

Application
Layer

UPD UPD Data Transport

header Layer

Network

IP Data
Layer

Frame Data

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

48 CHAPTER 1 Tasks and interrupt usage

1.4 Tasks and interrupt usage

emNet can be used in an application in three different ways.

e One task dedicated to the stack (I P_Task)
e Two tasks dedicated to the stack (I P_Task, | P_RxTask)
e Zero tasks dedicated to the stack (Super| oop)

The default task structure is one task dedicated to the stack. The priority of the management
task | P_Task should be higher then the priority of all application tasks that use the stack
to allow optimal performance. The | P_RxTask (if available) should run at the highest single
task priority of all IP related task as it is an interrupt moved into a task.

Task priorities

IP task priorities are independent from other (non IP) task priorities. However as soon as a
task calls an IP API it should follow these priority rules for the best performance of the stack:

1. The | P_RxTask (if used at all) should have the highest single priority of all tasks that
make use of the IP API, having a higher priority than the | P_Task .

2. The I P_Task should have a higher task priority than any other task that makes use of
the IP API. It should have a lower priority than the | P_RxTask (if used at all).

3. All tasks that make use of the IP API should use a task priority below the | P_Task to
allow optimal performance.

Task priorities for tasks not using the IP API can be freely chosen.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

49 CHAPTER 1 Tasks and interrupt usage

One task dedicated to the stack

Using one task dedicated to the stack is the simplest way to use the TCP/IP stack. It is
called | P_Task and handles housekeeping operations, resending and handling of incoming
packets. The “"Read packet” operation is performed from within the ISR. Because the “Read
packet” operation is called directly from the ISR, no additional task is required. The length
of the interrupt latency will be extended for the time period which is required to process
the “Read packet” operation. Refer to | P_Task on page 171 for more information and an
example about how to include the | P_Task into your project.

V Interrupt (ISR)
O Task

|:| Routine / Driver

. Application tasks l
. IP stack

D IP stack / Driver IP_OnRx()

emNet

IP_Exec()

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

50 CHAPTER 1 Tasks and interrupt usage

Two tasks dedicated to the stack

The first task is called the | P_Task and handles housekeeping operations, resends, and
handling of incoming packets. The second is called | P_RxTask and handles the “Read
packet” operation. | P_RxTask is woken up from the interrupt service routine if new packets
are available. The interrupt latency is not extended, because the “Read packet” operation
has been moved from the interrupt service routine to | P_RxTask. Refer to | P_Task on
page 171 and | P_RxTask on page 178 for more information. | P_RxTask should have a
higher priority than | P_Task as it is treated as interrupt in task form and should not be
interrupted by | P_Task or any other IP task.

V Interrupt (ISR) emNet

O Task

|:| Routine / Driver

. Application tasks

. IP stack
D IP stack / Driver

IP_Exec()

Note

Initializing the IP stack with two task concept from main()

Packets might receive as soon as Ethernet is initialized by | P_I ni t () and the (receive)
interrupt is enabled. The internal switch between the single task and two task concept
gets set automatically upon the first execution of | P_RxTask() . Initializing the stack
from main() typically means to initialize it before a task scheduler is active.

If a packet is received between | P_I ni t () and the first run of | P_RxTask() the packet
will be processed like in the single task concept. This should typically cause no problem
to the application and the mode is automatically switched to the two task concept as
soon as | P_RxTask() has run for the first time.

If it is desired to completely avoid this to happen, the following steps need to be taken
care of:

1. Calll P_Set UseRxTask() manually (best placed after calling | P_I ni t () and adding
the two tasks) to switch to the two task concept early.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

51 CHAPTER 1 Tasks and interrupt usage

2. The Ethernet interrupt enable (typically in BSP_I P. ¢) needs to be manually moved
to after calling IP_Init() and | P_Set UseRxTask() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

52

CHAPTER 1

Zero tasks dedicated to the stack (Superloop)

emNet can also be used without any additional task for the stack if an application task
calls | P_Exec() periodically. The “"Read packet” operation is performed from within the ISR.
Because the “Read packet” operation is called directly from the ISR, no additional task is
required. The length of the interrupt latency will be extended for the time period which is

required to process the “Read packet” operation.

V Interrupt (ISR)
O Task

|:| Routine / Driver

. Application tasks

. IP stack

D IP stack / Driver

emNet User Guide & Reference Manual

Tasks and interrupt usage

emNet

IP_OnRx()

© 2010-2025 SEGGER Microcontroller GmbH

53 CHAPTER 1 Background information

1.5 Background information

1.5.1 Components of an Ethernet system

Main parts of an Ethernet system are the Media Access Controller (MAC) and the Physical
device (PHY). The MAC handles generating and parsing physical frames and the PHY handles
how this data is actually moved to or from the wire.

MCUs with integrated MAC

Some modern MCUs (for example, the ATMEL SAM7X or the ST STR912) include the MAC
and use the internal RAM to store the Ethernet data. The following block diagram illustrates
such a configuration.

External Ethernet controllers with MAC and PHY

Chips without integrated MAC can use fully integrated single chip Ethernet MAC controller
with integrated PHY and a general processor interface. The following schematic illustrates
such a configuration.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

54 CHAPTER 1 Background information

1.5.1.1 Mil/RMII/ GMII /| RGMII: Interface between MAC and PHY

The MAC communicates with the PHY via the Media Independent Interface (MII) or the
Reduced Media Independent Interface (RMII).The MII is defined in IEEE 802.3u. The RMII
is a subset of the MII and is defined in the RMI specification. The MII/RMII can handle
control over the PHY which allows for selection of such transmission criteria as line speed,
duplex mode, etc.

Note

While the specification uses “MII” specifically for Fast Ethernet (100 Mbit/s), emNet
is not limited to just MII and RMII support, the higher speed interfaces are supported
as well (Gigabit Media Independent Interface (GMII), Reduced Gigabit Media
Independent Interface (RGMII), etc.). Mentioning all types of media-independent
interfaces goes beyond the scope of this documentation.

In theory, up to 32 PHYs can be connected to a single MAC. In praxis, this is never done;
only one PHY is connected. In order to allow multiple PHYs to be connected to a single
MAC, individual 5-bit addresses have to be assigned to the different PHYs. If only one PHY
is connected, the emNet driver automatically finds the address of it.

The standard defines 32 16-bit PHY registers. The first 6 are defined by the standard.

Register Description
BMCR Basic Mode Control Register
BSR Basic Mode Status Register
PHYSID1 PHYSID 1
PHYSID2 PHYS ID 2
ANAR Auto-Negotiation Advertisement Register
LPAR Link Partner Ability register

The drivers automatically recognize any PHY connected, no manual configuration of PHY
address is required.

The MII and RMII interface are capable of both 10Mb/s and 100Mb/s data rates as described
in the IEEE 802.3u standard.

TX_CLK
TX_EN .
TXD 0-1 [

TXD 2-3

PHYCLK R
CRS

. coL
MAC «__MDIO . PHY
MDC

. RX_CLK
RXD Q-1

S —
RXD 2-3

S —

RX_DV
RX_ER

The intent of the RMII is to provide a reduced pin count alternative to the IEEE 802.3u
MII. It uses 2 bits for transmit (TXDO and TXD1) and two bits for receive (RXD0O and RXD1).
There is a Transmit Enable (TX_EN), a Receive Error (RX_ER), a Carrier Sense (CRS), and
a 50 MHz Reference Clock (TX_CLK) for 100Mb/s data rate. The pins used by the MII and
RMII interfaces are described in the following table.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

55

CHAPTER 1 Background information
Signal Ml RMII
TX _CLK Transmit Clock (25 MHz) Reference Clock (50 MHz)
TX_EN Transmit Enable Transmit Enable
TXD[0:1] 4-bit Transmit Data 2-bit Transmit Data
TXD[2:3] 4-bit Transmit Data (cont’d) N/A
PHYCLK PHY Clock Output PHY Clock Output
CRS Carrier Sense N/A
coL Collision Detect N/A
MDI O Management data I/O Management data I/O
NDC Data Transfer Timing Reference Data Transfer Timing Reference
Clock Clock
RX CLK Receive Clock N/A
RXD[0:1] 4-bit Receive Data 2-bit Receive Data
RXD[2:3] 4-bit Receive Data (cont'd) N/A
RX_DV Data Valid Carrier Sense/Data Valid
RX_ER Receive Error Receive Error

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

56 CHAPTER 1 Further reading

1.6 Further reading

This guide explains the usage of the emNet protocol stack. It describes all functions which
are required to build a network application. For a deeper understanding about how the
protocols of the Internet protocol suite works use the following references.

The following Request for Comments (RFC) define the relevant protocols of the Internet
protocol suite and have been used to build the protocol stack. They contain all required
technical specifications. The listed books are simpler to read as the RFCs and give a general
survey about the interconnection of the different protocols.

1.6.1 Request for Comments (RFC)

RFC# Description

[RFC 768] UDP - User Datagram Protocol

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc768.txt
[RFC 791] IP_ - Internet Pro_toco! . .

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc791.txt
[RFC 792] ICMP - Internet Control Message Protocol

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc792.txt
[RFC 793] TCP - Transmission Control Protocol

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc793.txt
[RFC 821] SMTP - Simple Mail Transfer Protocol

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc826.txt
[RFC 826] ARP - Ethernet Address Resolution Protocol

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc826.txt
[RFC 951] BOOTP - Bootstrap Protocol

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc951.txt
[RFC 959] FTP - File Transfer Protocol

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc959.txt
[RFC 1034] DNS - Domain names - concepts and facilities

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1034.txt
[RFC 1035] DNS - Domain names - implementation and specification

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1035.txt
[RFC 1042] IE-EEE - Transmission of IP datagrams over IEEE 802 networks

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1042.txt
[RFC 1122] Requirements for Internet Hosts - Communication Layers

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1122.txt
[RFC 1123] Requirements for Internet Hosts - Application and Support

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1123.txt

PPP - Point-to-Point Protocol
[RFC 1661] Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1661.txt
[RFC 1939] POP3 - Post Office Protocol - Version 3

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc1939.txt
[RFC 2131] DHCP - Dynamic Host Configuration Protocol

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc2131.txt
[RFC 2616] HTTP - Hypertext Transfer Protocol -- HTTP/1.1

Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

57

1.6.2

CHAPTER 1 Further reading

Related books

[Comer] - Computer Networks and Internets, Douglas E Comer and Ralph E. Droms -
ISBN: 978-0131433519

[Tannenbaum] - Computer Networks, Andrew S. Tannenbaum ISBN: 978-0130661029
[StevensV1l] - TCP/IP Illustrated, Volume 1, W. Richard Stevens ISBN:
978-0201633467.

[StevensV2] - TCP/IP Illustrated, Volume 2, W. Richard Stevens and Gary R. Wright -
ISBN: 978-0201633542.

[StevensV3] - TCP/IP [Illustrated, Volume 3, W. Richard Stevens ISBN:
978-0201634952.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

58 CHAPTER 1 Development environment (compiler)

1.7 Development environment (compiler)

The CPU used is of no importance; only an ANSI-compliant C compiler complying with at
least one of the following international standard is required:

e ISO/IEC/ANSI 9899:1990 (C90) with support for C++ style comments (//)
e ISO/IEC 9899:1999 (C99)
e ISO/IEC 14882:1998 (C++)

If your compiler has some limitations, let us know and we will inform you if these will be
a problem when compiling the software. Any compiler for 16/32/64-bit CPUs or DSPs that
we know of can be used; most 8-bit compilers can be used as well.

A C++ compiler is not required, but can be used. The application program can therefore
also be programmed in C++ if desired.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 2

Running emNet on target
hardware

This chapter explains how to integrate and run emNet on your target hardware. It explains
this process step-by-step.

Integrating emNet

The emNet default configuration is preconfigured with valid values, which matches the
requirements of the most applications. emNet is designed to be used with embOS, SEGGER'’s
real-time operating system. We recommend to start with an embOS sample project and
include emNet into this project. We assume that you are familiar with the tools you have
selected for your project (compiler, project manager, linker, etc.). You should therefore be
able to add files, add directories to the include search path, and so on. In this document
the SEGGER Embedded Studio is used for all examples and screenshots, but every other
ANSI C toolchain can also be used. It is also possible to use make files; in this case, when
we say “add to the project”, this translates into “add to the make file”.

Procedure to follow

Integration of emNet is a relatively simple process, which consists of the following steps:

e Step 1: Open an embOS project and compile it.
e Step 2: Add emNet to the start project
e Step 3: Compile the project

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

60

CHAPTER 2 Step 1: Open an embOS start project

2.1 Step 1. Open an embOS start project

We recommend that you use one of the supplied embOS start projects for your target
system. Compile the project and run it on your target hardware.

File Edit

View Search Mavigate Project
Project Explorer @ x
[£2t Debug s s e REHC

Solution "Start_K&6"
4[] Project ‘Start_K66"
4 aAppli(ation

» || Excluded

&) O5_StartLEDBIink.c
> D DeviceSupport 2 files
 [C Lib 2fies
> D Setup 16files
> [system Files
ReadMe.bet

> k3l Output Files

15 files

14 files, modified options

1fie

4 [

emNet User Guide & Reference Manual

S Start_K66 - SEGGER Embedded Studio V3.10g (64-bit) - Mon-Commercial License
Build

05_StartlLEDBlink.c

(=[O =]

Debug Target Tools Window

Help

-
]

@ LED of the target hardware

END-OF -HEADER

»

#include
#include

"RTOS.h"
"BsP.h"

static oS_STACKPTR int StacksP[128], StackLP[128]; /* Tas
static 05_TASK TCBHP, TCBLP; /* Task-contro
static void HPTask(void) {
while (1) {
BSP_ToggleLED(2);
05_Delay(52);
}
}

static void LPTask(void) {
while (1} {
BSP_ToggleLED(1};
05_pelay(ze2);
1
}

int main(void} {
05_IncDI(};
0s_Initkern();
05_InitHe();
BSP_Init(); /
/* vou need to cregte gt Legst one tas 5 Lling os_start() */
0S_CREATETASK(&TCBHP, "HP Task", WPTask, 188, StackHP);
0S_CREATETASK(&TCBLP, "LP Task", LPTask, 58, StackLP);
o5_start(); f* start multitasking
return 2;

}

m

JHEEIEE Epd OF File #FEEEsssisssirsiisiiisssi sttt i a ek aa et nees)

3

(¥]

O Disconnected (J-Link) e Built OK INS R+W LnlColl

© 2010-2025 SEGGER Microcontroller GmbH

61 CHAPTER 2 Step 2: Adding emNet to the start project

2.2 Step 2: Adding emNet to the start project

emNet shipments can consist of an emNet BASE or PRO package, a Driver, an Add-On, or
an RTOS Layer.

The structure of the emNet BASE/PRO shipment looks like following:

Directory Content

Contains some PC Samples to test together with the

.\ W ndows\ Target Samples (e.g. running SpeedTestServer on PC and
| P_Speedd i ent TCP. c on the embedded Target).
.\ Shar ed\ Contains the File System API and Webserver Samples.
.\ SEGGER\ Contains some optimized MCU and/or compiler-specific files.
.\ Sampl e\ Contains the Driver Template and an RTOS Layer for embOS.
AR Contains the emNet source files.
.\ nc\ Contains some BSP includes.
Contains the emNet Documentation and Migration Guide which
.\ Doc\ shall be considered when migrating a project from a previous
version.
\ Confi g\ Contains the config files. These can be modified by the user

according to their needs.

Contains Sample Applications to test various emNet

-\ Appl i cati on\ functionalities out-of-the-box.

Add all the IP source files from the shipment to your project.

The Config folder includes all configuration files of emNet. The configuration files are pre-
configured with valid values, which match the requirements of most applications. Add the
hardware configuration | P_Confi g_<Tar get Nane>. ¢ supplied with the driver shipment.

emNet works best with an RTOS. In Sample\IP\OS, the shipment includes an RTOS Layer
for embQOS (I P_OS_enbCS. c). Besides embQS, several other RTOS Abstraction Layers are
available for emNet. If no RTOS is used, you may add | P_OS_None. ¢ to the project. For
more information regarding RTOS integration, please refer to the chapter OS integration
on page 1270.

The IP\ASM folder contains files for various CPUs and toolchains with routines optimized
in assembler code. Typically only one of these files needs to be added to your project
and the rest should be excluded (e.g. RX_I P_cksum | AR s for Renesas RX MCUs with IAR
Compiler). The optimized routines are used by overwriting a specific macro that typically
can be found in Confi g_Conf. h.

For emNet PRO (and some Add-Ons), the Shared\IP folder contains the File
System APIs and some Dynamic Content Samples for the Webserver. In Shared\IP
\IP_FS, there are File System Layers for emfFile, read-only use, etc. for all kinds
of use-cases. | P_FS enFile.c is needed when using emFile. | P_FS_ReadOnly.c and
| P_FS ReadOnly_2018. c are read-only versions that do not require a separate file system.

The Webserver Samples show how to use dynamic content in combination with the
Webserver Sample from Application. For more information, please refer to the emWeb
Documentation UM07002.

Note

If you have any personal modifications in your emNet files, please be careful to not
overwrite these modifications when updating your files with a new emNet version.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

62

CHAPTER 2 Step 2: Adding emNet to the start project

Keeping the project structure as similar as possible to the shipment makes it easier to
update emNet when a new version is released.

BSP support

IP drivers need hardware settings from the BSP file (like port settings for example). Some
older drivers are supplied with BSP. ¢ and BSP. h that need to replace the one supplied with
embOS shipment.

Newer and updated drivers have a separate BSP_I P. ¢ file instead. Depending on your case,
either replace BSP. ¢ and BSP. h of your embOS start project or add BSP_I P. c.

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases where
the included files (typically header files, .h) do not reside in the same directory as the C
file to compile, an include path needs to be set. In order to build the project with all added
files, you will need to add the following IP directories to your include path:

Shar ed
Config
I nc
SEGGER
I P

Drivers

For an emNet Driver, the shipments looks like the following:

Directory Content
AR Contains the driver source files.
.\ nc\ Contains some BSP includes.
Contains the BSP_I P and | P_Confi g for the supported boards.
.\ BSP\ Customers need to include the one for the board that is used by
them.

In IP, the driver itself is found. Please add the driver to your emNet source files.
Please replace the BSP_I P. h from your emNet shipment with the one from Inc.
For BSP, plrease refer to BSP support and the information from the previous paragraphs.

Some drivers (e.g. Synopsis or EtherC) include configs for multiple MCUs. Thus, please
use the according Setup files (BSP_I P.c, | P_Confi g_<Tar get Nane>. ¢) for the MCU you
are using.

Additional Modules

There are also several Add-Ons available for emNet. These include emFTP Server and Client,
emWeb, PPP, SNTP, SNMP, emMQTT and many more. Any Add-On can be added to your
project in the same way as a normal emNet shipment would.

For an Add-On, the shipment may look like the following (Not every Add-On contains all
of these folders):

Directory Content
.\ W ndows\ Contains PC Samples to test the Target with.
.\ Shar ed\ Contains the File System API.
.\ SEGGER\ Contains some SEGGER files.
AR Contains the Add-On source files.
.\ Doc\ Contains documentation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

63 CHAPTER 2 Step 2: Adding emNet to the start project

Directory Content

. Contains some config files. These can be modified by the user
.\ Confi g\ - .
according to their needs.

Contains Sample Applications to test various emNet

-\ Applicationl functionalities out-of-the-box.

The files in these folders can be added to the files from your emNet BASE/PRO shipment.

Note

Always make sure that you only have one version of each file!

Warning

It is frequently a major problem when updating to a new version of emNet, and you
have old files included and therefore mix different versions. If you keep emNet in the
directories as suggested (and only in these), this type of problem cannot occur. When
updating to a newer version, you should be able to keep your configuration files and
leave them unchanged. For safety reasons, we recommend backing up (or at least
renaming) the emNet directories before updating.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

64 CHAPTER 2 Step 2: Adding emNet to the start project

Select the start application

For quick and easy testing of your emNet integration, start with the code found in

the folder Application. Add one of the applications to your project (for example
| P_Si npl eServer. c).

> Start_K66 - SEGGER Embedded Studio V3.10g (64-bit) - Non-Commercial License [foli® | ==
File Edit View Search Navigate Project Build Debug Target Toaols Window Help
Project Explorer @ x OSs_IP_Start.c E =
(£33 Debug @@ RICIO) <
Solution ‘Start_Kg&' I END-OF -HEADER —- oo oomo oo -
2 [7] Project ‘Start_K66"
4 aAppli(ation 17 files #include "RTOS.h"
R — #include "BSP.h"
> [Excluded = 15 files, modified options #include "IP.h"
- &) Main.c
X E;J 05,17 Start.c) ,,,
» [(0 Config 2fies ConFiguration
> D DeviceSupport 3fles *
> [P 7afies
> [Lib 2 :
3 D SEGGER 3files #define USE_RX_TASK @ J// @: Packets are read in ISR, 1: Packets are read in o task of it
> D Setup 16files =
> [(J shared s0fies Task priorities.
> System Fil 1fie
[Z System Files enum {
ReadMe bt TASK_PRIO_IP TASK = 15@ // Priority must be high
> 3 Output Files #1f USE_RX_TASK
»TASK_PRIO_IP_RX_TASK A/ Must be the highest priority of all IP related tasks.
#endif
i
static IP_HOOK_ON_STATE_CHANGE _stateChangewook;
static int _IFaceld;
sk stacks and Task-Control-Blocks.
static 05_STACKPTR int _IPStack[TASK_STACK_SIZE_IP_TASK/sizeof(int}]; Stack of the I
static O5_TASK _IPTCB; Task-Contro |
#if USE_RX_TASK z
< [+
(C) Disconnected (-Link} @) Built 0K INS {No editor] (¥}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

65 CHAPTER 2 Step 3: Build the project and test it

2.3 Step 3: Build the project and test it

Build the project. It should compile without errors and warnings. If you encounter any
problem during the build process, check your include path and your project configuration
settings. To test the project, download the output into your target and start the application.

By default, ICMP is activated. This means that you could ping your target. Open the
command line interface of your operating system and enter pi ng <Target Addr ess>, to
check if the stack runs on your target. The target should answer all pings without any error.

YWINNT\spstem3I2hcmd. exe

Microsoft Windows 28008 [Uersion 5.88.2195]
(CY» Copyright 198528800 Microsoft Corp.

C:s>ping 192 _168.1.5
Pinging 192.168.1.5% with 32 bytes of data:

Reply from 192.168.1.5%: hytes=32 time<l1Bmz TIL=64
Reply from 192.168.1.5%: hytes=32 time<l1Bmz TIL=64
Reply from 192.168.1. hytes=32 time<l18mz TIL=64
Reply from 192.168.1.5%: hytes=32 time<l1Bmz TIL=64

Ping statistics for 192.168.1.5:
Packets: Sent = 4. Received = 4, Lost = @ (8x
Approximate round trip times in milli-seconds:
Minimum = Bns,. Maximum = Bms,. Average = Bmz

LR

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 3

Example applications

In this chapter, you will find a description of each emNet example application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

67

3.1 Overview

CHAPTER 3 Overview

Various example applications for emNet are supplied. These can be used for testing the
correct installation and proper function of the device running emNet.

The following start application files are provided:

File

Description

IP_DNSClient.c

Demonstrates the use of the integrated DNS client.

| P_NonBl ocki ngConnect . c

Demonstrates how to connect to a server using
non-blocking sockets.

| P_Ping.c

Demonstrates how to send ICMP echo requests and
how to process ICMP replies in application.

| P_Si npl eServer.c

Demonstrates setup of a simple server which
simply sends back the target system tick for every
character received.

| P_Speeddient TCP.c

Demonstrates the TCP send and receive
performance of the device running emNet.

IP_Start.c

Demonstrates use of the IP stack without any
server or client program. To ping the target, use
the command line: pi ng <target-ip> where

<t ar get - i p> represents the IP address of the
target, which depends on the configuration and is
usually 192. 168. 2. 252 if the DHCP client is not
enabled.

| P_UDPDi scover.c

Demonstrates setup of a simple UDP application
which replies to UDP broadcasts. The application
sends an answer for every received discover packet.
The related host application sends discover packets
as UDP broadcasts and waits for the feedback of the
targets which are available in the subnet.

| P_UDPDi scover _Zer oCopy. c

Demonstrates setup of a simple UDP application
which replies to UDP broadcasts. The application
uses the the emNet zero-copy interface. It sends
an answer for every received discover packet. The
related host application sends discover packets as
UDP broadcasts and waits for the feedback of the
targets which are available in the subnet.

The example applications for the target-side are supplied in source code in the Appl i cati on

directory.

3.1.1 emNet DNS client (IP_DNSClient.c)

The emNet DNS client resolves a hosthame (for example, segger.com) to an IP address
and outputs the resolved address via terminal I/0.

3.1.2 emNet non-blocking connect

(IP_NonBlockingConnect.c)

The emNet non-blocking connect sample demonstrates how to connect to a server using
non-blocking sockets. The target tries to connect to TCP server with an non-blocking socket.
The sample can be used with any TCP server independent of the application which is
listening on the port. The client only opens a TCP connection to the server and closes it
without any further communication. The terminal I/O output in your debugger should be

similar to the following out:

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

68

CHAPTER 3 Overview

Connecti ng usi ng non-bl ocki ng socket. ..
Successfully connected after 2ns!
1 of 1 tries were successful.

Connecti ng usi ng non-bl ocki ng socket. ..
Successfully connected after 1ns!
2 of 2 tries were successful.

3.1.3 emNet ping (IP_Ping.c)

The emNet ping sample demonstrates how to send ICMP echo requests and how to process
received ICMP packets in your application. A callback function is implemented which outputs
a message if an ICMP echo reply or an ICMP echo request has been received.

To test the emNet ICMP implementation, you have to perform the following steps:

1. Customize the Local defines, confi gurabl e section of | P_Pi ng. c. Change the macro
HOST_TO _PI NG according to your configuration. For example, if the Windows host PC
which you want to ping use the IP address 192.168.5.15, change the HOST_TO PI NG
macro to 0OxCOA8050F.

2. Open the command line interface and enter:

ping [| P_ADDRESS _OF YOUR TARGET_ RUNNI NG EMNET]
The terminal I/0 output in your debugger should be similar to the following out:

| CMP echo reply received!
| CMP echo request received!
| CMP echo reply received!
| CMP echo reply received!
| CMP echo reply received!
| CMP echo reply received!
| CMP echo request received!
| CMP echo reply received!
| CMP echo reply received!
| CMP echo reply received!

3.1.4 emNet simple server (IP_SimpleServer.c)

Demonstrates setup of a simple server which simply sends back the target system tick
for every character received. It opens TCP-port 23 (telnet) and waits for a connection. To
connect to the target, use the command line: tel net <target-i p> where <target-ip>
represents the IP address of the target, which depends on the configuration and is usually
192. 168. 2. 252 if the DHCP client is not enabled.

3.1.5 emNet speed client (IP_SpeedClient_TCP.c)

The emNet speed client is a small application to detect the TCP send and receive
performance of emNet on your hardware.

3.1.5.1 Running the emNet speed client

To test the emNet performance, you have to perform the following steps:

1. Start the Windows speed test server. The example application for the host-side is
supplied as executable and in source code in the W ndows\ SpeedTest Ser ver\ directory.
To run the speed test server, simply start the executable, for example by double-clicking
it or open the supplied Visual C project and compile and start the application.

2. Add | P_Speedd i ent. c to your project.

3. Customize the Local defines, configurabl e section of | P_Speedd i ent.c. Change
the macro SERVER | P_ADDR according to your configuration. For example, if the
Windows host PC running the speed test server uses the IP address 192.168.5.15,

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

69 CHAPTER 3 Overview

change the SERVER | P_ADDR macro to 0xCOA8050F. If you have changed the port which
the Windows host application uses to listen, change the macro SERVER_PORT accordingly.

4. Build and download the speed client into your target. The target connects to the server
and starts the transmission.

:\Documents and Settings\5ven\Desktop\SpeedTestServer exe

éeruer sent 4194384 hytes.
Total Time: 1359 ms
Bytes per second: 3885465

ding 4194384 huytes.

t 4194384 hytes.
: 1359 ms
3885465

3.1.6 emNet start (IP_Start.c)

Demonstrates use of the IP stack without any server or client program. To ping the target,
use the command line: pi ng <target-i p> where <t arget -i p> represents the IP address
of the target, which depends on the configuration and is usually 192. 168. 2. 252 if the DHCP
client is not enabled.

3.1.7 emNet UDP discover (IP_UDPDiscover.c /
IP_UDPDiscover_ZeroCopy.c)

To test the emNet UDP discover example, you have to perform the following steps:

1. Start the Windows UDP discover example application. The example application for the
host-side is supplied as executable and in source code in the W ndows\ UDPDi scover\
directory. To run the UDP discover example, simply start the executable, for example
by double-clicking it or open the supplied Visual C project and compile and start the
application.

2. Add | P_UDPDi scover. c to your project.

3. Customize the Local defines, configurable section of | P_UDPDi scover.c. By
default, the example uses port 50020. If you have changed the port that the Windows
host application uses, change the macro PORT accordingly.

4. Build and download the UDP discover example into your target. The target sends an
answer for every received discover packet. The related host application sends discover
packets as UDP broadcasts and waits for the feedback of the targets which are available
in the subnet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 4

Core functions

In this chapter, you will find a description of each emNet core function.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

71 CHAPTER 4 API functions

4.1 APIfunctions

The table below lists the available API functions within their respective categories.

Function Description

Configuration functions

| P_AddBuf f ers() Adds buffers to the TCP/IP stack.

| P_AddEt her I nt erface() Adds an Ethernet interface to the stack.
Adds a virtual interface to the stack

| P_AddVirt Et herl nterface() that uses a hardware interface for

communication.

| P_AddLoopbackl nt erface() Adds a loopback interface to the stack.

This function is called from the application

| P_AddMenor y() to add additional memory to the stack.

Allows back pressure if the driver supports

| P_Al'| owBackPressure() this feature

| P_Assi gnMenory() Assigns memory to the stack.

Configures the timeout for cached ARP

| P_ARP_Conf i gAgeout () entries

Configures the timeout for an ARP entry
that has been added due to sending an
ARP request to the network that has not
been answered yet.

| P_ARP_Conf i gAgeout NoRepl y()

Configures the age out value for ARP
| P_ARP_Confi gAgeout Sni ff () entries, which we have created by looking
up addresses of received IP packets.

Configures if gratuitous ARP packets from
| P_ARP_Confi gAl | owG at ui t ousARP() other network members are allowed to
update the ARP cache.

Configures whether to announce using a
| P_ARP_Confi gAnnounceSt ati cl P() static IP in the network using gratuitous
ARP packets.

Configures the maximum number packets

| P_ARP_Conf i gMaxPendi ng() that can be queued waiting for an ARP
reply.
Configures how often an ARP request is
| P_ARP_ConfighVaxRetries() resent before considering the request
failed.

Configures the maximum number of

| P_ARP_Conf i gNunntri es() possible entries in the ARP cache.

Sends a gratuitous ARP to announce usage
of an address.

Sets an API to be used for BSP related
| P_BSP_Set API () abstraction like initializing hardware and
installing interrupt handlers.

Tells the stack to not add low level ARP
| P_Confi gDoNot AddLowLevel Checks ARP()| checks when initializing the stack with
IP_Init().

Tells the stack to not add low level UDP
| P_Confi gDoNot AddLowLevel Checks UDP()| checks when initializing the stack with
IP_Init().

| P_ARP_SendGr at ui t ousARP()

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

72

CHAPTER 4

API functions

Function

Description

| P_Confi gMaxl Faces()

Configures the maximum number of
interfaces that can be added to the
system.

| P_Confi gNunii nkDownPr obes()

Configures the number of continuous link
down probes to take before the stack
accepts the link down status.

| P_Confi gNunii nkUpPr obes()

Configures the number of continuous link
up probes to take before the stack accepts
the link up status.

| P_Confi gOf f Cached2Uncached()

Configures the offset from a cached
memory area to its uncached equivalent
for uncached access.

| P_Confi gReport SameMacOnNet ()

Configures if the stack warns about
receiving an Ethernet packet from the
same HW address as the interface the
packet came in.

| P_Confi gTCPSpace()

Configures the size of the TCP send and
receive window size.

| P_Di sabl el PRxChecksum()

Disables checksum verification of the
checksum in the IP header for incoming
packets.

| P_Di sabl el Pv4()

Disables IPv4 in the stack as good as
possible.

| P_CACHE_Set Confi g()

Configures cache related functionality

that might be required by the stack for
several purposes such as cache handling in
drivers.

| P_DNS Get Server ()

Retrieves the first DNS server configured
of the first interface.

| P_DNS Cet Server Ex()

Retrieves a DNS server configured for an
interface.

| P_DNS Resol veHost Ex()

Sends a query to the DNS server.

| P_DNS_SendDynUpdat e()

Build a dynamic update request.

| P_DNS_Set TSI GCont ext ()

Set the TSIG signature context with the
parameters needed to perform Secured
Dynamic Updates signed with TSIG.

| P_DNS_Set MaxTTL()

Sets the maximum Time To Live (TTL) of a
DNS entry in seconds.

| P_DNS_Set Server ()

Sets the DNS server address of the first
interface.

| P_DNS_Set Server Ex()

Sets the IP address of the available DNS
servers for an interface.

| P_VDNS Resol veHost ()

Sends a query using Multicast DNS.

| P_VDNS Resol veHost Si ngl el P()

Sends a query using Multicast DNS.

| P_Enabl el PRxChecksum()

Enables the IP Rx checksum calculation in
the IP header for incoming packets.

| P_Get MaxAvai | Packet Si ze()

Asks the stack for the maximum available
free packet size that can then be allocated.

| P_Get MenPool I nfo()

Collects data about a memory pool such as
its size and free bytes.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

73

CHAPTER 4 API functions

Function

Description

| P_Get MTU()

Retrieves the configured TCP MTU size for
an interface.

| P_GetPrimaryl Face()

Retrieves the currently set primary
interface index.

| P_I CVP_Add()

Adds ICMP Protocol function to the stack.

| P_I CVP_Di sabl eRxChecksunt)

Disables the ICMP Rx checksum
calculation.

| P_I CMP_Enabl eRxChecksum()

Enables the ICMP Rx checksum calculation.

| P_I GVP_Add()

Adds the IGMP protocol to interface #0.

| P_I GVP_AddEX()

Adds the IGMP protocol to an interface.

| P_I GWP_Confi gV2Al waysReport ()

Configures if upon every IGMPv2 QUERY a
REPORT shall be sent back.

| P_I GW_Joi nGroup()

Joins an IGMP group.

| P_I GVWP_Joi nGroup_Aut oRej 0i n()

Joins an IGMP group and rejoins when the
interface link state changes.

| P_I GW_LeaveG oup()

Leaves an IGMP group.

| P_RAW Add()

Adds RAW socket function to stack.

| P_Set Addr Mask()

Sets the IP address and subnet mask of an
interface.

| P_Set Addr MaskEx()

Sets the IP address and subnet mask of an
interface.

| P_Set GMAddr ()

Sets the default gateway address of the
selected interface.

| P_Set HWAddr ()

Sets the Media Access Control address
(MAC) of the interface 0.

| P_Set HWAddr Ex()

Sets the Media Access Control address
(MAC) of the selected interface.

| P_Set MIU()

Allows to set the maximum transmission
unit (MTU) of an interface.

| P_Set M crosecondsCal | back()

Sets a callback that is used to get a
timestamp in microseconds.

| P_Set NanosecondsCal | back()

Sets a callback that is used to get a
timestamp in nanoseconds.

| P_Set Onl FaceSel ect Cal | back()

Sets a callback that gets notified about an
internal interface selection by the stack
and allows to override it.

| P_SetPrimaryl Face()

Sets the primary interface index.

| P_Set Support edDupl exModes()

Sets the supported duplex/speed of the
device to be advertised during Auto-
Negotiation.

| P_Set TTL()

Sets the default value for the Time-To-Live
IP header field.

| P_Set d obal McTTL()

Sets the default value for the Time-To-
Live IP header field for global multicast
packets.

| P_Set Local McTTL()

Sets the default value for the Time-To-Live
IP header field for local multicast packets.

| P_Set UseRxTask()

Sets the internal flag for using the
| P_RxTask() manually.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

74 CHAPTER 4 API functions

Function Description

Configures the multiplicator for the
timeout parameter of sel ect ().

| P_SOCKET_Set Def aul t Opti ons() Sets the socket options enabled by default.

| P_SOCKET_Confi gSel ect Mul tiplicator()

| P_SOCKET Set Li mit () Sets the maximum number of allowed

sockets.
Initializes the profile instrumentation of

| P_SYSVIEW I nit() the stack and SystemView as profiling
implementation.

| P_TCP_Add() Adds TCP Protocol function to the stack.

| P_TCP_Di sabl eRxChecksun() Disables the TCP Rx checksum calculation.
Enables checksum verification of the

| P_TCP_Enabl eRxChecksum() checksum in the TCP header for incoming
packets.

| P_TCP_Set 2VBLDel ay() (SI\(/aItSsL';he maximum segment lifetime

| P_TCP_Set ConnKeepal i veOpt () Sets the keepalive options.

| P_TCP_Set Ret r ansDel ayRange() Sets retransmission delay range.

| P_UDP_Add() Adds UDP Protocol support to the stack.
Adds a simple echo server for UDP packets

| P_UDP_AddEchoSer ver () that can be used for UDP pings and other
tests.
Disables checksum verification of the

| P_UDP_Di sabl eRxChecksum() checksum in the UDP header for incoming
packets.
Enables checksum verification of the

| P_UDP_Enabl eRxChecksum() checksum in the TCP header for incoming
packets.

Configuration functions (IP fragmentation)

Modifies the default settings for IPv4
fragmentation.

| P_FRAGVENT_Conf i gRx()

Initializes the required variables and adds
| P_FRAGVENT _Enabl e() a timer to the stack to handle outdated
fragment queues.

Modifies the default settings for IPv6
fragmentation.

| P_I PV6_FRAGVENT_Conf i gRx()

Initializes the required variables and adds
| P_I PV6_FRAGVENT Enabl e() a timer to the stack to handle outdated
fragment queues.

Management functions

| P_Del nit() Deinitializes the TCP/IP stack.
IP_Init() Initializes the TCP/IP stack.
| P_Task() Main task for handling the stack.

Processes received packets and handles

| P_Exec() timers and other jobs.

Initializes the main IP task context when

| P_TASK_I'ni t() not using | P_Task() .

Processes received packets and handles

| P_TASK_Exec() timers and other jobs.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

75

CHAPTER 4

API functions

Function

Description

| P_TASK Wit For Event ()

Waits for an event for the main IP task to
be signaled.

| P_RxTask()

Optional task to reduce time spent in
receive interrupts.

| P_RXTASK_I nit ()

Initializes the RxTask context when not
using | P_RxTask() .

| P_RXTASK_Exec()

Copies received packets from driver to
stack in a task context instead of from an
interrupt.

| P_RXTASK Wi t For Event ()

Waits for an event for the | P_RxTask to be
signaled.

| P_Shut down()

Prepare network stack related tasks for a
graceful shutdown.

Network interface configuration and handling functions

| P_NI _AddPTPDri ver ()

Adds an NI specific PTP driver for HW
timestamp support.

| P_NI_ClrBPressure()

Disables usage of back pressure (sending
a jam signal to signal when we run into

a shortage where the hardware can not
receive more data).

| P_NI _ConfigPoll ()

Select polled mode for the network
interface.

| P_NI _ForceCaps()

Allows to force capabilities to be set for an
interface.

| P_NI _Set BPressure()

Enables usage of back pressure (sending
a jam signal to signal when we run into
a shortage where the hardware can not
receive more data).

| P_NI _Set TxBuf ferSi ze()

Sets the size of the Tx buffer of the
network interface.

PHY configuration functions

| P_NI _Confi gPHYAddr ()

Configure the PHY Addr.

I P_NI_Conf i gPHYMbde()

Configure the PHY mode.

| P_PHY_AddDri ver ()

Adds a PHY driver and assigns it to an
interface.

| P_PHY_ AddReset Hook()

This function adds a hook function to the
| P_HOOK_ON_PHY_ RESET list.

| P_PHY_ Confi gAddr ()

Configures the PHY address to use.

| P_PHY_Confi gAfterReset Del ay()

Configures the delay between
(soft) resetting the PHY and further
communication with it.

| P_PHY_Confi gAl t Addr ()

Sets a list of PHY addresses that can
alternately be checked for the link state.

| P_PHY_ Confi gG gabit Support ()

Configures if the MAC supports Gigabit
Ethernet.

| P_PHY_ Confi gSupport edModes()

Configures the supported duplex/speed of
the device to be advertised during Auto-
Negotiation.

| P_PHY_ConfigUseStaticFilters()

Tells the stack if using PHY static MAC filter
is allowed.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

76

CHAPTER 4

API functions

Function

Description

| P_PHY_Di sabl eCheck()

Disables PHY checks for all interfaces.

| P_PHY_Di sabl eCheckEx()

Disables PHY checks for one interface.

| P_PHY ReadReg()

Reads a PHY register.

| P_PHY_Rel nit ()

Re-initializes the PHY.

| P_PHY_Set WITi neout ()

Sets the watchdog timeout for watching if
the PHY reached an unstable state.

| P_PHY WiteReg()

Writes a PHY register.

Statistics

functions

| P_STATS_Enabl el FaceCount er s()

Enables statistic counters for a specific
interface.

| P_STATS Get | FaceCount ers()

Retrieves a pointer to the statistic counters
for a specific interface.

| P_STATS Get Last Li nkSt at eChange()

Retrieves the tick count when an interface
entered its current state.

| P_STATS Get RxByt esCnt ()

Retrieves the number of bytes received on
an interface.

| P_STATS_Get RxDi scardCnt ()

Retrieves the number of packets received
but discarded although they were O.K.

| P_STATS Get RXErr Cnt ()

Retrieves the number of receive errors.

| P_STATS_Get RxNot Uni cast Cnt ()

Retrieves the number of packets received
on an interface that were not unicasts.

| P_STATS Get RxUni cast Cnt ()

Retrieves the number of unicast packets
received on an interface.

| P_STATS_Get RxUnknownPr ot oCnt ()

Retrieves the number of unknown
protocols received.

| P_STATS Get TxByt esCnt ()

Retrieves the number of bytes sent on an
interface.

| P_STATS Get TxDi scardCnt ()

Retrieves the number of packets to send
but discarded although they were O.K.

| P_STATS Get TXErrCnt ()

Retrieves the number of send errors on an
interface.

| P_STATS_Get TxNot Uni cast Cnt ()

Retrieves the number of packets sent on
an interface that were not unicasts.

| P_STATS_Get TxUni cast Cnt ()

Retrieves the number of unicast packets
sent on an interface.

Other IP stack functions

| P_AddAfterl nitHook()

Adds a hook to a callback that is executed
attheend of IP_Init() to allow adding
initializations to be executed right after the
stack itself has been initialized and all API
can be used.

| P_AddEt her TypeHook()

This function registers a callback to
be called for received packets with the
registered Ethernet type.

| P_Addl nt er f aceEr r or Hook()

Adds a hook function which will be called if
initialization fails for an interface.

| P_AddLi nkChangeHook()

Adds a callback that gets executed each
time the link state changes.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

77

CHAPTER 4

Function

Description

| P_AddOnPacket Fr eeHook()

This function adds a hook function to the
| P_HOOK_ON_PACKET_FREE list.

| P_AddSt at eChangeHook()

Adds a hook to a callback that is executed
when the AdminState or HWState of an
interface changes.

I P_All oc()

Thread safe memory allocation from main
IP stack memory pool.

| P_Al'l| ocEt her Packet ()

Allocates a packet to store the raw data of
an Ethernet packet of up to NumBytes at
the location returned by ppBuf fer.

| P_All ocEx()

Thread safe memory allocation from
a specific memory pool managed by
the stack that has been added using
| P_AddMenory().

| P_ARP_Cl eanCache()

Cleans all ARP entries that are not static
entries.

| P_ARP_Cl eanCacheByl nterface()

Cleans all ARP entries that are known to
belong to a specific interface and are not
static entries.

| P_Connect ()

Calls a previously registered hook
for the interface if any was set using
| P_Set | FaceConnect Hook() .

| P_Di sconnect ()

Calls a previously registered hook
for the interface if any was set using
| P_Set | FaceDi sconnect Hook() .

I P_Err2Str()

Converts IP stack error code to a readable
string by simply using the defines name.

| P_Fi ndl FaceByl P()

Tries to find out the interface number
when only the IP address is known.

| P_Free()

Thread safe memory free to IP stack
memory pools.

| P_FreePacket ()

Frees a packet back to the stack.

| P_Get Addr Mask()

Retrieves the IP address and subnet mask
of an interface.

| P_Get CurrentLi nkSpeed()

Returns the current link speed of the first
interface (interface ID 0).

| P_CGet CurrentLi nkSpeedEx()

Returns the current link speed of the
requested interface.

| P_Get FreePacket Cnt ()

Checks how many packets for a specific
size or greater are currently available in
the system.

| P_Get | FaceHeader Si ze()

Retrieves the size of the header necessary
for the transport medium that is used by a
specific interface.

| P_Get GMAdr ()

Returns the gateway address of the
interface in host endianness.

| P_Get HWAdr ()

Returns the hardware address (Media
Access Control address) of the interface.

| P_Get | PAddr ()

Returns the IP address of the interface in
host endianness.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

API functions

78 CHAPTER 4

API functions

Function

Description

| P_Get | PPacket | nfo()

Returns the start address of the data part
of an IPv4 packet.

| P_Get RawPacket | nf o()

Returns the start address of the raw data
of an | P_PACKET.

| P_Get Version()

Returns the version of the stack.

| P_I CMP_AddRxHook()

This function adds a callback that is
executed upon receiving an ICMPv4
packet.

| P_I OMP_Set RxHook ()

Sets a hook function which will be called if
target receives a ping packet.

| P_I CVP_RenpveRxHook()

This function removes a hook function
from the | P_HOOK_ON_| CMPV4 list.

| P_I Facel sReady()

Checks if the interface is ready for usage.

| P_I Facel sReadyEXx()

Checks if the specified interface is ready
for usage.

| P_I PV4_Par sel Pv4Addr ()

Transforms an IPv4 address separated by
dots into a byte stream (big endian byte
order).

I P_IsAll Zero()

Checks if there are zeros at the given
pointer.

| P_I sExpired()

Checks if the given system timestamp has
already expired.

| P_NI _Confi gLi nkCheckMul tiplier()

Configures the multiplier of the period
between interface link checks typically
executed each second.

| P_NI _ConfigUseProm scuoushbde()

Configures if the driver tries to use its
hardware precise and hash filters as
available before switching to promiscuous
mode or if promiscuous mode will be used
in any case.

| P_NI _Get Adm nSt at e()

Retrieves the admin state of the given
interface.

| P_NI _Getl FaceType()

Retrieves a short textual description of the
interface type.

IP_N_GetState()

Returns the hardware state of the
interface.

| P_NI _Set Admi nSt at e()

Sets the AdminState of the interface.

| P_NI _Get TxQueueLen()

Retrieves the current length of the Tx
queue of an interface.

| P_NI _PauseRx()

Pauses the Rx handling of an interface by
disabling it temporary.

| P_NI _PauseRxI nt ()

Pauses the Rx interrupt of an interface by
disabling it temporary.

| P_Printl PAddr ()

Convert a 4-byte IP address to a dots-and-
number string.

| P_Resol veHost ()

Resolve a host name string to its IP
address by using a configured DNS server.

| P_RenoveEt her TypeHook()

This function removes a hook function for
a previously registered Ethernet type.

| P_RenovelLi nkChangeHook()

Removes a callback which was previously
added via | P_AddLi nkChangeHook() .

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

79 CHAPTER 4 API functions

Function Description

Sends a previously allocated Ethernet

| P_SendEt her Packet () packet

Sends a user defined packet on the

| P_SendPacket () interface

Sends a single ICMP echo request (“ping”)

| P_SendPi ng() to the specified host.

Sends a single ICMP echo request (“ping”)
| P_SendPi ngCheckRepl y() to the specified host using the selected
interface and waits for the reply.

Sends a single ICMP echo request (“ping”)
| P_SendPi ngEx() to the specified host using the selected
interface.

Sets a hook for an interface that is

| P_Set 1 FaceConnect Hook() executed when | P_Connect () is called.

Sets a hook for an interface that is

| P_Setl FaceDi sconnect Hook() executed when | P_Di sconnect () is called.

This function sets a callback to be
executed once the packet has been freed.

Sets the value of the ToS/DSCP byte in the
| P_Set Packet ToS() IP header of a packet to be sent via the
zero-copy API.

| P_Set OnPacket FreeCal | back()

Sets a hook function which will be called if

| P_Set RkHook() target receives a packet.

Sets a hook function which will be called if

| P_Set TxHook() target transmits a packet.

Sets a callback that can provide random

| P_Set RandCal | back() data

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

80 CHAPTER 4 Configuration functions

4.2 Configuration functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

81 CHAPTER 4 Configuration functions

4.2.1 |P_AddBuffers()

Description

Adds buffers to the TCP/IP stack. This is a configuration function, typically called from
| P_X Config(). It needs to be called 2 times, one per buffer size.

Prototype

void | P_AddBuffers(int NunBuffers,
int BytesPerBuffer);

Parameters

Parameter Description
NunBuf f er s The number of buffers.
Byt esPer Buf f er Size of buffers in bytes.

Additional information

The stack requires small and large buffers. We recommend to define the size of the big
buffers to 1536 to allow a full Ethernet packet to fit. The small buffers are used to store
packets which encapsulates no or few application data like protocol management packets
(TCP SYNs, TCP ACKs, etc.). We recommend to define the size of the small buffers to 256

bytes.

Example

| P_AddBuf f ers(20, 256); /1 20 small buffers, each 256 bytes.
| P_AddBuffers(12, 1536); /1 12 big buffers, each 1536 bytes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

82

CHAPTER 4 Configuration functions

4.2.2 |IP_AddEtherinterface()

Description

Adds an Ethernet interface to the stack.

Prototype
int | P_AddEt herlnterface(const | P_HWDRI VER * pDriver);
Parameters
Parameter Description
pDri ver Pointer to a network interface driver structure.

Return value

>0 Zero-based interface index of the newly created interface.
<0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using | P_Confi gVaxl Faces() needs to be done before adding any interface and
must not be changed later.

While the order in which interfaces are added to the stack does not matter to the stack
itself, it might be important for the driver to add.

Typically drivers for CPU integrated controllers are expected to be added first. Next drivers
for external controllers can be added. As external controllers can be used as an extension
to internal controllers they do not rely on a specific interface order.

To fill in gaps in the order of interfaces added, a dummy driver | P_Dri ver _Dummy can be
added. A sample of such a configuration would be an application that relies on the following
order: - IFaceO: Internal controller - IFacel: External WiFi module The same hardware
might be produced with a different configuration like only providing WiFi but using a cheaper
CPU without internal controller. In this case the dummy driver can be used to keep up the
same order: - IFace0: Dummy - IFacel: External WiFi module

For drivers and hardware that supports dual Ethernet the requirement to add drivers for
internal controllers remain. For using both internal controllers this means: - IFaceO: First
internal controller - IFacel: Second internal controller - IFace2: External WiFi module When
using only the second internal controller the interface index needs to be pushed by using
the dummy driver again: - IFace0: Dummy - IFacel: Second internal controller - IFace2:
External WiFi module However for using only the first controller of a driver that supports a
dual unit, no dummy needs to be added before adding additional external drivers: - IFace0:
First internal controller, second is not used. - IFacel: External WiFi module

Additional information

Refer to Available network interface drivers on page 597 for a list of available network
interface drivers.

Example

| P_AddEt herInterface(& P_Driver_SAMIX); // Add Ethernet driver for your hardware

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

83

CHAPTER 4 Configuration functions

4.2.3 |IP_AddVirtEtherinterface()

Description

Adds a virtual interface to the stack that uses a hardware interface for communication.

Prototype
int | P_AddVirtEtherlnterface(unsigned HW Facel d);
Parameters
Parameter Description
HW Facel d Zero-based interface index of the hardware interface.

Return value

>0 Zero-based interface index of the newly created interface.
<0 Error.

Additional information

Virtual interfaces can be added to allow configuration of multiple IP addresses on the same
target. One configuration can be assigned per interface.

Optional configuration of the maximum number of interfaces that can be added to the
system using | P_Confi gVaxl Faces() needs to be done before adding any interface and
must not be changed later.

Example

int | Facel d;

| Facel d = | P_AddEt herInterface(& P_Driver_SAM’X); // Add HW Et hernet driver
| P_AddVirtEt herlnterface(lFaceld);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

84

CHAPTER 4 Configuration functions

4.2.4 |P_AddLoopbackinterface()

Description

Adds a loopback interface to the stack.

Prototype

int | P_AddLoopbackl nterface(void);

Return value

=20 Zero-based interface index of the newly created interface.
<0 Error.

Additional information

The loopback interface will be added with the pre-configured static IP addresse of
127.0.0.1/8.

Optional configuration of the maximum number of interfaces that can be added to the
system using | P_Confi gMaxl Faces() needs to be done before adding any interface and
must not be changed later.

Example

| P_AddLoopbackl nterface(); // Add an Ethernet |oopback interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

85 CHAPTER 4 Configuration functions

4.2.5 IP_AddMemory()

Description

This function is called from the application to add additional memory to the stack.
| P_Assi gnMenor y() needs to be called first.

Prototype

voi d | P_AddMenory(U32 * pMem
u32 NunmByt es) ;

Parameters
Parameter Description
A pointer to the start of the memory region which should be
pMem
added.
NunByt es Number of bytes which should be added.

Additional information

This function can be used to add additional memory to the stack that can then be requested
by application level modules such as Web server or FTP server directly from the stacks
memory management.

For further information about the available memory management functions, refer to
| P_All oc on page 236 and | P_Free on page 245.

Example

#define MEM SI ZE 0x8000 // Size of nenory to add to the stack in bytes.
U2 _aMeni MEM SIZE / 4]; // Menory area to add to the stack.

| P_AddMenory(_aMem sizeof (_aMem));

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

86 CHAPTER 4 Configuration functions

4.2.6 IP_AllowBackPressure()

Description

Allows back pressure if the driver supports this feature.

Prototype
voi d | P_Al | owBackPressure(char v);
Parameters
Parameter Description
Y% 0 to disable, 1 to enable back pressure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

87 CHAPTER 4 Configuration functions

4.2.7 1P_AssignMemory()

Description

Assigns memory to the stack.

Prototype

voi d | P_Assi gnMenory(U32 * pMem
u32 NunmByt es) ;

Parameters
Parameter Description
NEm A pointer to the start of the memory region which should be
P assigned.
NunByt es Number of bytes which should be assigned.

Additional information

| P_Assi gnMenory() should be the first function which is called in | P_X_Config(). The
amount of RAM required depends on the configuration and the respective application
purpose. The assigned memory pool is required for the socket buffers, memory buffers, etc.

Example
#define ALLOC S| ZE 0x8000
/1 Size of menmory dedicated to the stack in bytes
U32 _aPool [ALLOCC SI ZE /| 4]; /1 Menory area used by the stack.

| P_Assi gnMenory(_aPool , sizeof (_aPool));

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

88 CHAPTER 4 Configuration functions

4.2.8 IP_ARP_ConfigAgeout()

Description

Configures the timeout for cached ARP entries. The ARP timer removes entries which have
not been used for a time longer than AgeOut.

Prototype
voi d | P_ARP_Confi gAgeout (U32 Ageout);
Parameters
Parameter Description
Ageout Timeout in ms after which an entry is deleted from the
g ARP cache. Default: 30s.

Additional information

Only effective after adding at least one interface that is capable of using ARP (all kinds of
Ethernet interfaces). Might be overwritten if set before adding the first Ethernet interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

89 CHAPTER 4 Configuration functions

4.29 IP_ARP_ConfigAgeoutNoReply()

Description

Configures the timeout for an ARP entry that has been added due to sending an ARP request
to the network that has not been answered yet.

Prototype
voi d | P_ARP_Conf i gAgeout NoRepl y(U32 Ageout);
Parameters
Parameter Description
Ageout Timeout in ms after which an entry is deleted in case we
9 are still waiting for an ARP response. Default: 3s.

Additional information

Only effective after adding at least one interface that is capable of using ARP (all kinds of
Ethernet interfaces). Might be overwritten if set before adding the first Ethernet interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

90 CHAPTER 4 Configuration functions

4.2.10 IP_ARP_ConfigAgeoutSniff()

Description

Configures the age out value for ARP entries, which we have created by looking up addresses
of received IP packets. The ARP timer removes entries which have not been used for a time
longer than AgeOut.

Prototype
voi d | P_ARP_Confi gAgeout Sni ff (U32 Ageout);
Parameters
Parameter Description
Ageout Timeout in ms after which an entry is deleted from the ARP
g cache. Default: 500ms.

Additional information

Only effective after adding at least one interface that is capable of using ARP (all kinds of
Ethernet interfaces). Might be overwritten if set before adding the first Ethernet interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

91

CHAPTER 4 Configuration functions

4.2.11 IP_ARP_ConfigAllowGratuitousARP()

Description

Configures if gratuitous ARP packets from other network members are allowed to update
the ARP cache.

Prototype
voi d | P_ARP_Confi gAl | owGr at ui t ousARP(U3 OnOf f) ;
Parameters
Parameter Description
Default: On.
OnCOf f e 0: Off.
e 1:0n.

Additional information

Gratuitous ARP packets allow the network to update itself by sending out informations about
changes regarding IP and hardware ID assignments. As this behaviour helps the network
to become more stable and helps to manage itself it is on by default.

In case you consider gratuitous ARP packets as a security risk
| P_ARP_Confi gAl | owGr at ui t ousARP() can be used to disallow this behaviour.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

92 CHAPTER 4 Configuration functions

4.2.12 IP_ARP_ConfigAnnounceStaticlP()

Description

Configures whether to announce using a static IP in the network using gratuitous ARP
packets.

Prototype
voi d | P_ARP_Confi gAnnounceSt ati cl P(unsi gned | Facel d,

us NumAnnouncenent s) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
NumAnnouncemnent s Number of gARPs to send.

Additional information

Configures the stack to send a humber of gARP packets when a static IP is configured and/
or a link-UP for an interface with a static IP set occurs. The gARPs are typically sent with
one second delay between them.

A race condition exists between setting a static IP and recognizing a link-UP event that
can lead to sending up to twice as many gARPs as configured. As this is not harmful, only
occurring very rarely and would need a lot of overhead to prevent this to happen, this
should be taken into account when using this feature.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

93

4.2.13 IP_ARP_ConfigMaxPending()

Description

CHAPTER 4

Configuration functions

Configures the maximum number packets that can be queued waiting for an ARP reply.

Prototype
voi d | P_ARP_Confi gMaxPendi ng(unsi gned NunPacket s);
Parameters
Parameter Description
Maximum number of packets that can be pending for one
NunPacket s ARP entry. Default: 3.

Additional information

Only effective after adding at least one interface that is capable of using ARP (all kinds of
Ethernet interfaces). Might be overwritten if set before adding the first Ethernet interface.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

94 CHAPTER 4 Configuration functions

4.2.14 IP_ARP_ConfigMaxRetries()

Description

Configures how often an ARP request is resent before considering the request failed.

Prototype
voi d | P_ARP_Confi gMaxRetri es(unsi gned Retri es);
Parameters
Parameter Description
Retries Number of retries for sending an ARP request. Default: 8.

Additional information

Only effective after adding at least one interface that is capable of using ARP (all kinds of
Ethernet interfaces). Might be overwritten if set before adding the first Ethernet interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

95 CHAPTER 4 Configuration functions

4.2.15 IP_ARP_ConfigNumEntries()

Description

Configures the maximum number of possible entries in the ARP cache.

Prototype
int | P_ARP_Confi gNumEntries(unsi gned MaxNunEntries);
Parameters
Parameter Description
MaxNunEntri es New value to use as humber of entries. Default: 8.

Return value

0 OK, stack will try to allocate the requested number of ARP entries.
-1 Error, called after IP_Init ().

Additional information
Needs to be called early in | P_X Confi g(), typically before adding interfaces.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

96 CHAPTER 4 Configuration functions

4.2.16 IP_ARP_SendGratuitousARP()

Description

Sends a gratuitous ARP to announce usage of an address. A gARP qualifies by sender and
destination IP address being the same.

Prototype
int | P_ARP_SendGrat ui t ousARP(unsi gned | Facel d,
u32 | PAdr) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
| PAddr IP address to announce.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

97 CHAPTER 4 Configuration functions

4.2.17 IP_BSP_SetAPI()

Description

Sets an API to be used for BSP related abstraction like initializing hardware and installing
interrupt handlers.

Prototype
void | P_BSP_Set API (unsi gned | Facel d,
const BSP_IP_API * pAPI);
Parameters
Parameter Description
| Facel d Zero-based interface index.
AP Pointer to function table to use. For further information

P regarding BSP_I P_API please refer to Structure BSP_| P_API .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

98 CHAPTER 4 Configuration functions

4.2.18 IP_ConfigDoNotAddLowLevelChecks ARP()

Description
Tells the stack to not add low level ARP checks when initializing the stack with IP_Init() .

Prototype
voi d | P_Confi gDoNot AddLowLevel Checks_ARP(voi d);

Additional information
Please refer to | P_Conf i gDoNot AddLowlLevel Checks() for more information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

99 CHAPTER 4 Configuration functions

4.2.19 IP_ConfigDoNotAddLowLevelChecks UDP()

Description
Tells the stack to not add low level UDP checks when initializing the stack with I P_Init() .

Prototype
voi d | P_Confi gDoNot AddLowLevel Checks_UDP(voi d);

Additional information
Please refer to | P_Conf i gDoNot AddLowlLevel Checks() for more information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

100 CHAPTER 4 Configuration functions

4.2.20 IP_ConfigMaxlFaces()

Description

Configures the maximum number of interfaces that can be added to the system.

Prototype
voi d | P_Confi gMaxl Faces(unsi gned Numl Faces);
Parameters
Parameter Description
Nunl Faces Number of interfaces to allocate memory for.

Additional information

The memory for the driver list will be pre-allocated for the maximum allowed number of
interfaces. The system uses the default value of | P_MAX | FACES if not configured else with
this function. To save some memory the maximum number of interfaces should be only the
number of interfaces that are really required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

101

CHAPTER 4 Configuration functions

4.2.21 IP_ConfigNumLinkDownProbes()

Description

Configures the number of continuous link down probes to take before the stack accepts
the link down status.

Prototype

voi d | P_Confi gNunii nkDownPr obes(U8 | Facel d,
U8 NunProbes);

Parameters
Parameter Description
| Facel d Zero-based interface index.
Number of continuous link down probes to take before link
NunPr obes) .
down is set in the stack.

Additional information

On unstable hardware or unstable network hardware like a switch a link jitter might occur.
This jitter might lead to disconnects on upper protocol layers like TCP that might be
disconnected once a link down is recognized. To prevent this to happen due to link jitter,
multiple samples of a link down state can be taken before actually accepting the link down.

Typically the link status is checked once per second. Therefore by default NunProbes =
seconds after which the link state in the stack is allowed to really get down after the first
link down reported by the driver.

This routine is only effective in case the define | P_NUM LI NK_DOAN_PROBES is not 0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

102 CHAPTER 4 Configuration functions

4.2.22 IP_ConfigNumLinkUpProbes()

Description

Configures the number of continuous link up probes to take before the stack accepts the
link up status.

Prototype

voi d | P_Confi gNunLi nkUpProbes(U8 | Facel d,
U8 NunProbes);

Parameters
Parameter Description
| Facel d Zero-based interface index.
NUITPr obes Number of continuous link up probes to take before link up is
set in the stack.

Additional information

Some switches might already report a link between switch and target but are not
immediately operational resulting in packets getting lost until fully operational.

Typically the link status is checked once per second. Therefore by default NunProbes =
seconds after which the link state in the stack is allowed to really get up after the first link
up reported by the driver.

At the moment this only applies to Ethernet interfaces to address this behavior with some
Ethernet switches.

This routine is only effective in case the define | P_NUM LI NK_UP_PROBES is not 0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

103

CHAPTER 4 Configuration functions

4.2.23 IP_ConfigOffCached2Uncached()

Description
Configures the offset from a cached memory area to its uncached equivalent for uncached
access.
Prototype
voi d | P_ConfigCOf f Cached2Uncached(132 O f);
Parameters
Parameter Description
Offset from cached to uncached area. Can be negative if
O f .
uncached area is before cached area.

Additional information

This function needs to be called in case the microcontroller is utilizing cache. Typically the
data area that is used by default is accessed cached. In this case the stack needs to know
where it can bypass the cache to write hardware related data such as driver descriptors
that will be accessed by a DMA.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

104

CHAPTER 4 Configuration functions

4.2.24 IP_ConfigReportSameMacOnNet()

Description

Configures if the stack warns about receiving an Ethernet packet from the same HW address
as the interface the packet came in.

Prototype
voi d | P_Confi gReport SaneMacOnNet (unsi gned OO f,
voi d * p);
Parameters
Parameter Description

e = 0: Disabled.

OnOr f e * 0: Enabled, reports a warning if a duplicate MAC
is seen on the network.

p Reserved for future extensions of this API.

Additional information
The generated warning uses the filter type | P_MI'YPE_APPLI CATI ON .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

105

CHAPTER 4

4.2.25 IP_ConfigTCPSpace()

Description

Configuration functions

Configures the size of the TCP send and receive window size.

Prototype

voi d | P_Confi gTCPSpace(unsi gned SendSpace,
unsi gned RecvSpace);

Parameters

Parameter Description
SendSpace Transmit window size.
RecvSpace Receive window size.

Additional information

The receive window size is the amount of unacknowledged data a sender can send to the
receiver on a particular TCP connection before it gets an acknowledgment.

For more information, please refer to Window Scaling on page 1289.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

106 CHAPTER 4 Configuration functions

4.2.26 IP_DisablelPRxChecksum()

Description

Disables checksum verification of the checksum in the IP header for incoming packets.

Prototype
voi d | P_Di sabl el PRxChecksun{ U8 | Face) ;
Parameters
Parameter Description
| Face Zero-based interface index.

Additional information

In a typical network all data contained in a transferred frame have already been verified by
the hardware checking the transmitted frames checksum and it is unlikely that data within
this frame are corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

107 CHAPTER 4 Configuration functions

4.2.27 |P_DisablelPv4()

Description

Disables IPv4 in the stack as good as possible.

Prototype
voi d | P_Di sabl el Pv4(voi d);

Additional information

Needs to be called before IP_Init() or during | P_X Config() . As IPv4 is a base
component of the stack, disabling IPv4 will be done to the best as possible.

Also disables other IPv4 related protocols like ARP and ICMPv4.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

108

CHAPTER 4 Configuration functions

4.2.28 |IP_CACHE_SetConfig()

Description

Configures cache related functionality that might be required by the stack for several
purposes such as cache handling in drivers.

Prototype
voi d | P_CACHE_Set Confi g(const SEGGER_CACHE_CONFI G * pConfi g,
unsi gned Conf Si ze) ;
Parameters
Parameter Description
pConfi g Pointer to an element of SEGGER_CACHE CONFI G.
. Size of the passed structure in case library and header size
Conf Si ze :
of the structure differs.

Additional information

| P_CACHE_Set Config() has to be called before IP_Init() or during I P_X _Config().
Typically used together with | P_Conf i gO f Cached2Uncached()

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

109 CHAPTER 4 Configuration functions

4.2.29 IP_DNS_GetServer()

Description

Retrieves the first DNS server configured of the first interface.

Prototype

U32 | P_DNS_Get Server (voi d);

Return value
IP address of the DNS server in host-byte-order.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

110 CHAPTER 4 Configuration functions

4.2.30 IP_DNS_GetServerEx()

Description

Retrieves a DNS server configured for an interface.

Prototype
voi d | P_DNS_Get Server Ex(unsi gned | Facel d,
us DNSI ndex,
us * pAddr,
i nt * pAddrLen);
Parameters
Parameter Description
| Facel d Zero-based interface index.
DNSI ndex Zero-based index of the server to retrieve from interface.
Pointer to a U32 variable to store the IPv4 DNS address in
pAddr
host-byte-order.
pAddr Len Length of DNS addr. in bytes. Typically 4 for IPv4.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

111 CHAPTER 4 Configuration functions

4.2.31 IP_DNS ResolveHostEXx()

Description

Sends a query to the DNS server. The functions blocks until the reply is received or for a
maximum time.

Prototype

int | P_DNS_Resol veHost Ex(unsi gned | Facel d,
const | P_DNSSD REQUEST * pRequest,

unsi gned ns) ;
Parameters
Parameter Description

| Facel d Zero-based interface index.

pRequest Pointer to the request description.

B Maximum time to wait for a reply (around 5s for all

attempts).

Return value

=0 Request is valid.

=1 No reply. All attempts not done.

<0 No reply all attempts done or request invalid.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

112

4.2.32

Description

CHAPTER 4 Configuration functions

IP_DNS_ SendDynUpdate()

Build a dynamic update request. It could send the IPv4 address and/or a request to clear

all previous records.

Prototype
int | P_DNS_SendDynUpdat e(unsi gned | Facel d,
const char * sHost,
const char * sDomai n,
u32 | Pv4Addr,
int Cl ear Previ ousRR,
u32 ns) ;
Parameters
Parameter Description
| Facel d Index of the interface.
sHost Null-terminated string of the host to update.
sDomai n Null-terminated string of the domain name.
| Pv4Addr IPv4 address used for the update. Set to 0 to ignore.

Cl ear Previ ouskRR

Sent an update request to remove all previous records.

ns

Time in ns that the function is waiting for a reply. The reply
might still be fulfilled after the timeout.

Return value

=1 Send is pending
0 Success
0

< Error

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

113 CHAPTER 4 Configuration functions

4.2.33 IP_DNS_SetTSIGContext()

Description

Set the TSIG signature context with the parameters needed to perform Secured Dynamic
Updates signed with TSIG.

Prototype

voi d | P_DNS_Set TSI GCont ext
(char * KeyNane,
char * KeyAl goNane,
int (*pfSign)
(U8 * pData , Ul6 DatalLength , U8 * pDigest , int D gestMxSize),
i nt (*pfGetTine)(U32 * pSeconds));

Parameters
Parameter Description
Kev Narme Pointer to the string containing the key name. Only the
y pointer is kept so the string must be static.
Pointer to the string containing the algorithm name. Only the
KeyAl goName pointer is kept so the string must be static.
£Sian Function pointer on the function which is called to do the
P g crypto signature.
f Get Ti me Function pointer on the function used to get the current time
P in seconds since 1th January 1970.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

114 CHAPTER 4 Configuration functions

4.2.34 |P_DNS_SetMaxTTL()

Description

Sets the maximum Time To Live (TTL) of a DNS entry in seconds.

Prototype
voi d | P_DNS_Set MaxTTL(U32 TTL);
Parameters
Parameter Description
TTL Maximum TTL of a DNS entry in seconds.

Additional information

The real TTL is the minimum of this value and the TTL specified by the DNS server for the
entry. The default for the maximum TTL of a DNS entry is 600 seconds.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

115 CHAPTER 4 Configuration functions

4.2.35 |P_DNS_SetServer()

Description

Sets the DNS server address of the first interface.

Prototype
voi d | P_DNS_Set Server (U32 DNSServer Addr) ;
Parameters
Parameter Description
DNSSer ver Addr IP address of the DNS server.

Additional information

If a DHCP server is used for configuring your target, | P_DNS_Set Server () should not be
called. The DNS server settings are normally part of the DHCP configuration setup. The DNS
server has to be defined before calling get host bynane() to resolve an internet address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

116 CHAPTER 4 Configuration functions

4.2.36 IP_DNS_ SetServerEx()

Description

Sets the IP address of the available DNS servers for an interface.

Prototype
int | P_DNS_Set Server Ex(unsi gned | Facel d,
us DNSI ndex,
const U8 * pDNSAddr,
int Addr Len) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
DNSI ndex Zero-based index of DNS servers.
Pointer to memory location holding the DNS address to set.
PDNSAddr Typically a 4-byte IP address.
Addr Len Length of IP address of server. Typically 4-bytes.

Return value

0 OK.
1 - Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

117

CHAPTER 4 Configuration functions

4.2.37 IP_MDNS_ResolveHost()

Description

Sends a query using Multicast DNS. The functions blocks until the reply is received or for
a maximum time.

Prototype
int | P_VDNS_Resol veHost (unsi gned | Facel d,
const | P_DNSSD REQUEST * pRequest,
unsi gned ns) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
pRequest Pointer to the request description.
e Maximum time [ns] to wait for a reply (around 5s for all
attempts).

Return value

0 Request is valid.
1 No reply. All attempts not done.
0 No reply all attempts done or request invalid.

AL

Additional information

When the requested type is A (IPv4 address) or AAAA (IPv6 address), the request is sent
for both Apple mDNS and Microsoft LLMNR. Other DNS-SD request are sent only on mDNS.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

118 CHAPTER 4 Configuration functions

4.2.38 IP_MDNS ResolveHostSinglelP()

Description

Sends a query using Multicast DNS. The functions blocks until the reply is received or for a
maximum time. Only the first reply is returned, all others will be discarded.

Prototype
int | P_VDNS_Resol veHost Si ngl el P(unsi gned | Facel d,

voi d * pl P,

const char * sHost,

Ul6 Type,

unsi gned ns) ;
Parameters

Parameter Description

| Facel d Zero-based interface index.

Pointer where to store the result. Make sure that enough
pl P space is available to store a 4-bytes IPv4 (in host
endianness) or 16-bytes IPv6 as requested.

sHost Hostname to resolve.

Type of desired result:
Type e | P_DNS_SERVER TYPE A
e | P_DNS_SERVER TYPE_AAAA

Maximum time [ns] to wait for a reply (around 5s for all
attempts).

Return value

0 Request is valid.
1 No reply. All attempts not done.
0 No reply all attempts done or request invalid.

AL

Additional information
The requested is sent for both Apple mDNS and Microsoft LLMNR.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

119

CHAPTER 4 Configuration functions

4.2.39 IP_EnablelPRxChecksum()

Description

Enables the IP Rx checksum calculation in the IP header for incoming packets. This is the
default behaviour of the stack.

Prototype
voi d | P_Enabl el PRxChecksum(U8 | Face);
Parameters
Parameter Description
| Face Zero-based interface index.

Additional information

In a typical network all data contained in a transferred frame have already been verified by
the hardware checking the transmitted frames checksum and it is unlikely that data within
this frame are corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

120

CHAPTER 4 Configuration functions

4.2.40 IP_GetMaxAvailPacketSize()

Description

Asks the stack for the maximum available free packet size that can then be allocated. (e.g.
with a zero-copy alloc).

Prototype
U32 | P_Get MaxAvai | Packet Si ze(i nt | Facel d);
Parameters
Parameter Description
Zero-based interface index for which the packet shall be
| Facel d
allocated.

Return value

No free packet is available at all: 0. Other : Max. packet size that is free.

Additional information

The packet size returned does not contain any protocol headers other than the transport
layer (for Ethernet typically 14 bytes/for PPP typically 6 bytes). Other protocol header such
as IPvX and UDPvX need to be subtracted from the value returned.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

121 CHAPTER 4 Configuration functions

4.2.41 IP_GetMemPoollnfo()

Description

Collects data about a memory pool such as its size and free bytes.

Prototype
int |P_GetMenmPool I nfo(void * pPool Addr,
| P_MEM POOL_I NFO * pl nfo);
Parameters
Parameter Description
Pool Addr Memory pool to retrieve information for. NULL for the main

P memory pool added with | P_Assi gnMenory() .

Pointer to structure of | P_MEM POOL_| NFO where to store
pl nfo .)

information about the selected pool.

Return value

=0 O.K.
0 Error, memory pool not found ?

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

122 CHAPTER 4 Configuration functions

4.2.42 IP_GetMTU()

Description

Retrieves the configured TCP MTU size for an interface.

Prototype
U32 | P_Get MTU(unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

MTU configured for the interface, either set as default when adding the interface or set
via | P_Set MTU() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

123 CHAPTER 4 Configuration functions

4.2.43 |IP_GetPrimarylFace()

Description

Retrieves the currently set primary interface index.

Prototype

int |P_GetPrimaryl Face(void);

Return value

Currently set primary interface index. Default is 0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

124 CHAPTER 4 Configuration functions

4.2.44 IP_ICMP_Add()

Description
Adds ICMP Protocol function to the stack.

Prototype

void | P_I CMP_Add(void);

Additional information

| P_ICMP_Add() adds ICMP to the stack. The function should be called during the
initialization of the stack. In the supplied sample configuration files | P_I CMP_Add() is called
from | P_X Confi g() . If you remove the call of | P_I CMP_Add(), the ICMP code will not be
available in your application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

125

CHAPTER 4 Configuration functions

4.2.45 IP_ICMP_DisableRxChecksum()

Description

Disables the ICMP Rx checksum calculation. The ICMP checksum computation can be
disabled to improve the performance of the stack.

Prototype
voi d | P_I CMP_Di sabl eRxChecksunm(U8 | Face) ;
Parameters
Parameter Description
| Face Interface index.

Additional information

In a typical network all data contained in a transferred frame have already been verified by
the hardware by checking the trasmitted frames checksum. It is unlikely that data within
this frame is corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

126

CHAPTER 4 Configuration functions

4.2.46 IP_ICMP_EnableRxChecksum()

Description

Enables the ICMP Rx checksum calculation. This is the default behaviour of the stack. The
ICMP checksum computation can be disabled to improve the performance of the stack.

Prototype
voi d | P_I CMP_Enabl eRxChecksum(U8 | Face);
Parameters
Parameter Description
| Face Zero-based interface index.

Additional information

In a typical network all data contained in a transferred frame have already been verified by
the hardware by checking the trasmitted frames checksum. It is unlikely that data within
this frame is corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

127

CHAPTER 4

4.2.47 IP_IGMP_Add()

Description
Adds the IGMP protocol to interface #0.

Prototype
int | P_I GW_Add(void);
Return value

=0 0.K.
0 Error.

Additional information

Configuration functions

The IGMP (Internet Group Management Protocol) allows a host to JOIN (or subscribe) to a
multicast group and receive messages for it. If the switch supports “IGMP snooping” it can
then forward multicast packets only to hosts that are subscribed to a group while saving
bandwidth on other ports where no host is subscribed to that group. A typical usage example
is any form of broadcasting like IPTV where a video feed is sent to a multicast group but
switches/routers will only deliver it to the hosts actually interested in receiving the content.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

128 CHAPTER 4 Configuration functions

4.2.48 IP_IGMP_AddEX()

Description
Adds the IGMP protocol to an interface.

Prototype
int | P_IGW_AddEx(unsigned | Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

=0 O.K.
#0 Error.

Additional information

The IGMP (Internet Group Management Protocol) allows a host to JOIN (or subscribe) to a
multicast group and receive messages for it. If the switch supports “"IGMP snooping” it can
then forward multicast packets only to hosts that are subscribed to a group while saving
bandwidth on other ports where no host is subscribed to that group. A typical usage example
is any form of broadcasting like IPTV where a video feed is sent to a multicast group but
switches/routers will only deliver it to the hosts actually interested in receiving the content.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

129 CHAPTER 4 Configuration functions

4.2.49 IP_IGMP_ConfigV2AlwaysReport()

Description
Configures if upon every IGMPv2 QUERY a REPORT shall be sent back.

Prototype
voi d | P_I GW_Confi gV2Al waysReport (unsi gned | Facel d,
us OO f);
Parameters
Parameter Description
| Facel d Zero-based interface index.
e 0: Default. Do not send a REPORT if another
NG f host has already sent a REPORT for a QUERY.
e 1: Send a REPORT even if a REPORT from another
host has been seen.

Additional information

According to RFC 2236 duplicate REPORTs for the same group shall be avoided. With
IGMP snooping on the switch/router this should never happen as REPORTs should not be
forwarded anyhow. However there are some faulty switches/routers that forward REPORTs
and in such a case we have to respond with a REPORT even if it seems like IGMP snooping
is not in use and duplicates should be avoided. Otherwise we might loose our group
membership with IGMP snooping due to this faulty implementation on the switch/router.

This behavior can be configured per interface as it might be the case that on a multi interface
device one interface is part of a network behaving entirely correct and the other interface
being part of a network with faulty switches/routers.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

130

CHAPTER 4 Configuration functions

4.2.50 IP_IGMP_JoinGroup()

Description
Joins an IGMP group.

Prototype

int | P_IGW_Joi nGoup(unsi gned | Faceld,
| P_ADDR Groupl P);

Parameters
Parameter Description
| Facel d Zero-based interface index.
G oupl P IGMP group IP to join in host endianness.

Return value

=0 O.K.
<0 Error, no memory ?

Additional information

Multicast is a technique to distribute a packet to multiple receivers in a network by sending
only one packet. Handling of who will receive the packet is not done by the sender but
instead is done by network hardware such as routers or switches that will duplicate the
packet and send it to everyone that participates the chosen group.

After sending an initial JOIN REPORT the target does not actively participate by sending
more unsolicitied messages. The network hardware periodically sends a membership QUERY
either to all hosts or specific groups to check that these groups are still in use and if we
still want to be part of it.

The “all-systems”/"all-hosts” group 224.0.0.1 is automatically “joined” by opening receive
filters for it. This group is a special case as it is a receive only group. In older versions
this group had to be joined manually. When calling JOIN for this group it is how ignored
and returns O.K.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

131

CHAPTER 4 Configuration functions

4.2.51 IP_IGMP_JoinGroup_AutoRejoin()

Description

Joins an IGMP group and rejoins when the interface link state changes. Executed on link
DOWN to UP or different in speed/duplex.

Prototype

int | P_IGW_Joi nGoup_Aut oRej oi n(unsi gned | Facel d,
| P_ADDR Groupl P);

Parameters
Parameter Description
| Facel d Zero-based interface index.
G oupl P IGMP group IP to join in host endianness.

Return value

=0 O.K.
<0 Error, no memory ?

Additional information

Multicast is a technique to distribute a packet to multiple receivers in a network by sending
only one packet. Handling of who will receive the packet is not done by the sender but
instead is done by network hardware such as routers or switches that will duplicate the
packet and send it to everyone that participates the chosen group.

After sending an initial JOIN REPORT the target does not actively participate by sending
more unsolicitied messages. The network hardware periodically sends a membership QUERY
either to all hosts or specific groups to check that these groups are still in use and if we
still want to be part of it.

The “all-systems”/"all-hosts” group 224.0.0.1 is automatically “joined” by opening receive
filters for it. This group is a special case as it is a receive only group. In older versions
this group had to be joined manually. When calling JOIN for this group it is how ignored
and returns O.K.

Rejoining groups sends a mesaage immediately after the link change is reported by the
system followed by a randomly delayed second message in case the first one got lost
(same as for a regular join). To avoid the first message getting lost due to the link change
being reported but not immediately being stable/usable, please configure a delay using
| P_Confi gNunLi nkUpPr obes() .

Example

/* Excerpt fromthe UPnP code */
#define SSDP_|I P OxEFFFFFFA // Sinple service discovery prot. |P,
239. 255. 255. 250

| P_IGW_Add(); // 1GW is needed for UPnP
Il

/1 Join the | GW group for SSDP .

Il

| P_I GWP_Joi nG oup_Aut oRej 0i n(0, SSDP_I P);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

132 CHAPTER 4 Configuration functions

4.2.52 IP_IGMP_LeaveGroup()

Description
Leaves an IGMP group.

Prototype

void | P_I| GW_LeaveG oup(unsi gned | Facel d,
| P_ADDR Groupl P);

Parameters
Parameter Description
| Facel d Zero-based interface index.
G oupl P IGMP group IP to leave in host endianness.
Example

/* Excerpt fromthe UPnP code */
#define SSDP_I P OxEFFFFFFA // Sinple service discovery prot. |P,
239. 255. 255. 250

Il

/'l Leave the | GW group for SSDP .
Il

| P_I GW_LeaveG oup(0, SSDP_IP);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

133 CHAPTER 4 Configuration functions

4253 IP_RAW_Add()

Description
Adds RAW socket function to stack

Prototype
voi d | P_RAW Add(voi d);

Additional information

| P_RAW Add() adds RAW socket support to the stack. The function should be called during
the initialization of the stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

134

CHAPTER 4 Configuration functions

4.254 IP_SetAddrMask()

Description

Sets the IP address and subnet mask of an interface. Operates on interface 0.

Prototype
voi d | P_Set Addr Mask(U32 Addr,
U32 Mask);
Parameters
Parameter Description
Addr IP address in host endianness.
Mask Subnet mask in host endianness.

Additional information

The address mask should only be set if no DHCP server is used to obtain IP address, subnet

mask and default gateway.

Refer to chapter DHCP client on page 414 for detailed information about the usage of the

emNet DHCP client.

Example

| P_Set Addr Mask(OxCOA80505, OxFFFFO000); /'l 1P: 192.168.5.5

emNet User Guide & Reference Manual

/1 Subnet mask: 255.255.0.0

© 2010-2025 SEGGER Microcontroller GmbH

135

CHAPTER 4 Configuration functions

4.2.55 IP_SetAddrMaskEXx()

Description

Sets the IP address and subnet mask of an interface.

Prototype

voi d | P_Set Addr MaskEx(U8 | Face,
U32 Addr,
U32 Mask);

Parameters

Parameter Description

| Face Interface number.

Addr IP address in host endianness.

Mask Subnet mask in host endianness.

Additional information

The address mask should only be set if no DHCP server is used to obtain IP address, subnet

mask and default gateway.

Refer to chapter DHCP client on page 414 for detailed information about the usage of the

emNet DHCP client.

Example

| P_Set Addr MaskEx(0, 0xCOA80505, OxFFFF0000); /1 1P: 192.168.5.5

emNet User Guide & Reference Manual

/'l Subnet mask: 255.255.0.0

© 2010-2025 SEGGER Microcontroller GmbH

136

CHAPTER 4 Configuration functions

4.2.56 IP_SetGWAddr()

Description

Sets the default gateway address of the selected interface.

Prototype
voi d | P_Set GMddr (U8 | Face,
U32 GMAddr) ;
Parameters
Parameter Description
| Face Zero-based interface index.
GWAddr 4-byte gateway address in host endianness.

Additional information

The address mask should only be set if no DHCP server is used to obtain IP address, subnet
mask and default gateway.

Refer to chapter DHCP client on page 414 for detailed information about the usage of the
emNet DHCP client.

Example

| P_Set GAAddr (0, 0xC0A80101); /1 Interface: O
/1 I Pv4d address of the GWN 192.168.1.1

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

137 CHAPTER 4 Configuration functions

4257 IP_SetHWAddr()

Description
Sets the Media Access Control address (MAC) of the interface 0.

Prototype
voi d | P_Set HMddr (const U8 * pHWAddr) ;
Parameters
Parameter Description
pHWAddr 6 bytes MAC address.

Additional information

The MAC address needs to be unique for production units.
Example

| P_Set HAAJdr (" \ x00\ x22\ x33\ x44\ x55\ x66") ;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

138

CHAPTER 4 Configuration functions

4.2.58 IP_SetHWAddrEx()

Description
Sets the Media Access Control address (MAC) of the selected interface.

Prototype

voi d | P_Set HWAddr Ex(unsigned | Faceld,
const U3 * pHWAddr,
unsi gned NurmByt es) ;
Parameters
Parameter Description

| Facel d Zero-based interface index.

pHWAddr Pointer to the MAC address.

NunByt es Number of bytes of the MAC address (typically 6).

Additional information

The MAC address needs to be unique for production units.
Example

| P_Set HWAddr Ex(0, "\ x00\ x22\ x33\ x44\ x55\ x66", 6);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

139 CHAPTER 4 Configuration functions

4259 IP_SetMTU()

Description

Allows to set the maximum transmission unit (MTU) of an interface.

Prototype
voi d | P_Set MTU(unsi gned | Facel d,
u32 Mu);
Parameters
Parameter Description
| Facel d Zero-based interface index.
M u Size of maximum transmission unit in bytes.

Additional information

The Maximum Transmission Unit is the MTU from an IP standpoint, so the size of the IP-
packet without local net header. A typical value for ethernet is 1500, since the maximum
size of an Ethernet packet is 1518 bytes. Since Ethernet uses 12 bytes for MAC addresses,
2 bytes for type and 4 bytes for CRC, 1500 bytes “payload” remain. The minimum size
of the MTU is 576 according to RFC 879. Refer to [RFC 879] - TCP - The TCP Maximum
Segment Size and Related Topics for more information about the MTU.

All TCP connections are guaranteed to work with any MTU in the permitted range of 576
- 1500 bytes. The advantage of a smaller MTU is that smaller packets are sent in TCP
communication, resulting in reduced RAM requirements, especially if the window size is
also reduced. The disadvantage is a loss of communication speed.

When being called from | P_X Confi g() during the configuration phase, the MTU can only
be reduced to avoid configuring an MTU bigger than what the interface is capable of. The
initial MTU for an interface is set by the stack automatically when an interface is added.
After the configuration phase the MTU can freely be set and the application is responsible
to make sure to read the initially set MTU using | P_Get MTU() and to not configure an MTU
higher than that.

Note:

In the supplied emNet example configurations, the MTU is used to configure the maximum
packet size that the stack can handle. This means that if you lower the MTU (for example,
set it to 576 bytes), the stack can only handle packets up to that size. If you plan to use
larger UDP packets, change the configuration according to your requirements. For further
information about the configuration of the stack, refer to Configuring emNet on page 625.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

140 CHAPTER 4 Configuration functions

4.2.60 IP_SetRandCallback()

Description

Sets a callback that can provide random data.

Prototype
voi d | P_Set RandCal | back(void (*pfGetRand) (U8 * pBuffer , unsigned NunBytes));
Parameters
Parameter Description
pf Get Rand Callback function that provides randomized data.
Example

/**

_cbRand()

Functi on description
Provi des a source of randomess.

Par anet er s
pBuffer : Pointer where to store the random dat a.
NunByt es: Number of random bytes to store.

EE R S T I

~

static void _cbRand(U8* pBuffer, unsigned NunBytes) ({
/1
/'l Generate NunBytes of random data and store it at pBuffer.
/1

}

| P_Set RandCal | back(_cbRand) ;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

141 CHAPTER 4 Configuration functions

4.2.61 IP_SetOnlFaceSelectCallback()

Description

Sets a callback that gets notified about an internal interface selection by the stack and
allows to override it.

Prototype
voi d | P_Set Onl FaceSel ect Cal | back(1 P_ON_| FACE_SELECT_FUNC * pf);
Parameters
Parameter Description
f Callback to execute when an interface is selected. Use NULL
P to remove the callback.
Example

/***

*

* _Onl FaceSel ect ()

*

* Function description

* Cal | back executed for an internal interface selection. The

* proposed interface selected internally can be overridden.

*

* Paraneters

* pFam ly: Protocol famly (at the nmoment only PF_INET or PF_I NET6).
* plnfo : Further information of type |IP_ON_| FACE _SELECT | NFO

* about the interface selection paraneters as well as

* the proposed interface, selected internally based upon
* t hese paraneters.

*

* Return val ue

* == -1: No suitable interface.

* >= 0: Interface index to use.

*/

static int _OnlFaceSelect(int PFamly, |P_ON | FACE SELECT I NFOf plinfo) {
Il
/'l Exanple: IPv4 firewall out-filter.
/1 Bl ocki ng communi cation with a specific foreign host.
/1 Thi s does not necessarily block comunicaton if the

/1 initial transfer was started by the peer as in this
/1 case we mght get our interface assigned based on the
/1 interface it came in on. This only causes us to not

/1 find a suitable interface if we do the initial
/1 comuni cation |like a connect() to a host.
Il
if (PFamily == PF_INET) { // W define rules for |Pv4d only.
if (plnfo->pFAddrVv4 !'= NULL) {
i f (htonl (*plnfo->pFAddrVv4) == | P_BYTES2ADDR(192, 168, 2, 3)) {
return -1; // No interface.
}
}

}
11

/1 Do not care about other cases and accept the proposed
/1l interface as selected by the stack internally.

Il

return plnfo->lFacel d;

}

/***

*

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

142 CHAPTER 4 Configuration functions

Mai nTask()

*
*
* Function description
* Main task executed by the RTOS to create further resources and
* runni ng the main application.
*/
voi d Mai nTask(voi d) {
IP_Init();
/1
/1 Set callback that gets notified when the stack has internally
/'l selected an interface.
/1
| P_Set Onl FaceSel ect Cal | back(_Onl FaceSel ect) ;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

143

CHAPTER 4

4.2.62 IP_SetPrimarylFace()

Description

Sets the primary interface index.

Configuration functions

Prototype
int IP_SetPrimaryl Face(int |Faceld);
Parameters
Parameter Description
Zero-based interface index to use as primary interface of the
| Facel d .
system. Default is 0.

Return value

=0 OK.
<0 Error.

Additional information

The primary interface is given priority for several purposes in multi interface setups. One
example would be to use a preferred interface when looking for a DNS server to use in case
multiple interface have set DNS servers.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

144 CHAPTER 4 Configuration functions

4.2.63 |IP_SetSupportedDuplexModes()

Description

Sets the supported duplex/speed of the device to be advertised during Auto-Negotiation.

Prototype

i nt | P_Set SupportedbDupl exMbdes(unsi gned | Facel d,
unsi gned Dupl exMode) ;

Parameters

Parameter Description

| Facel d Zero-based interface index.

Bitwise-OR combination of the following supported modes:
| P_PHY_MODE 10 HALF

| P_PHY_MODE_10_FULL

| P_PHY_MODE 100 HALF

| P_PHY_MODE 100 FULL

| P_PHY_MODE_1000_HALF

| P_PHY_MODE_1000_FULL

Dupl exMode

Return value

=0 Success
<0 Not supported.

Additional information

Combining one of the supported duplex/speed modes with | P_PHY MODE NO AUTONEG
disables the Auto-Negotiation advertisement and configures a fixed duplex/speed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

145 CHAPTER 4 Configuration functions

4.2.64 IP_SetTTL()

Description

Sets the default value for the Time-To-Live IP header field.

Prototype

void I P_Set TTL(int v);

Parameters

Parameter Description

\Y; Time-To-Live value.

Additional information

By default, the TTL (Time-To-Live) is 64. The TTL field length of the IP is 8 bits. The
maximum value of the TTL field is therefore 255.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

146 CHAPTER 4 Configuration functions

4.2.65 IP_SetGlobalMcTTL()

Description

Sets the default value for the Time-To-Live IP header field for global multicast packets.

Prototype

void | P_Setd obal McTTL(int v);

Parameters

Parameter Description

\Y; Time-To-Live value.

Additional information

By default, the TTL (Time-To-Live) is 64. The TTL field length of the IP is 8 bits. The
maximum value of the TTL field is therefore 255.

Global multicast packets are packets with destinations outside the following networks:

e 224.0.0.x
e 239.x.X.X

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

147 CHAPTER 4 Configuration functions

4.2.66 IP_SetLocalMcTTL()

Description

Sets the default value for the Time-To-Live IP header field for local multicast packets.

Prototype
voi d | P_SetLocal McTTL(int v);
Parameters
Parameter Description
v Time-To-Live value.

Additional information

By default, the TTL (Time-To-Live) is 1. The TTL field length of the IP is 8 bits. The maximum
value of the TTL field is therefore 255.

Local multicast packets are packets with destinations inside the following networks:

e 224.0.0.x
e 239.x.X.X

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

148 CHAPTER 4 Configuration functions

4.2.67 IP_SetUseRxTask()

Description
Sets the internal flag for using the | P_RxTask() manually.

Prototype

voi d | P_Set UseRxTask(void);

Additional information

The | P_RxTask flag has to be set before enabling the interrupt as otherwise it would still be
possible for an Rx interrupt to fire before the | P_RxTask flag has been set on first execution
of said task. Processing the first interrupt(s) without | P_RxTask however should not hurt
and a device should not be offended by interrupt delay during or directly after init when
the task scheduler gets started.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

149

CHAPTER 4

Configuration functions

4.2.68 IP_SOCKET_ConfigSelectMultiplicator()

Description

Configures the multiplicator for the timeout parameter of sel ect () . Default multiplicator

is 1.

Prototype

voi d | P_SOCKET_ConfigSel ect Mul tiplicator(U32 v);

Parameters

Parameter

Description

\Y

Multiplicator to be used.

Additional information

By default the sel ect () timeout is given in ticks of 1 ms. The UNIX standard takes the
timeout in a structue including seconds. The multiplicator can be configured but as it is
more common for an embedded system we will stick to units of 1 tick (typically 1 ms) for

the default.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

150

CHAPTER 4 Configuration functions

4.2.69 IP_SOCKET_SetDefaultOptions()

Description

Sets the socket options enabled by default.

Prototype
voi d | P_SOCKET_Set Def aul t Opti ons(U16 v);
Parameters
Parameter Description
Y% Socket options which should be enabled.

Additional information

By default, keepalive (SO KEEPALI VE) socket option is enabled. Refer to set sockopt ()
for a list of supported socket options. This only applies for socket options that are ‘binary’,
i.e. something like SO KEEPALI VE which is either set or not, and not for options like
SO _RCVTI MEO that also require a timeout parameter.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

151 CHAPTER 4 Configuration functions

4.2.70 IP_SOCKET_SetLimit()

Description

Sets the maximum number of allowed sockets.

Prototype
voi d | P_SOCKET_SetLimt(unsigned Limt);
Parameters
Parameter Description
Limit Sets a limit on number of sockets which can be created. The
default is 0 which means that no limit is set.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

152 CHAPTER 4 Configuration functions

4.2.71 IP_SYSVIEW _Init()

Description

Initializes the profile instrumentation of the stack and SystemView as profiling
implementation.

Prototype

void | P_SYSVIEW I nit(void);

Additional information

For further information regarding the SysView profiling implementation in emNet please
refer to the chapter Profiling with SystemView on page 1245.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

153 CHAPTER 4 Configuration functions

4.2.72 IP_TCP_Add()

Description
Adds TCP Protocol function to the stack.

Prototype
void | P_TCP_Add(void);

Additional information

| P_TCP_Add() adds TCP to the stack. The function should be called during the initialization
of the stack. In the supplied sample configuration files | P_TCP_Add() is called from
| P_X_Config().If youremove the call of | P_TCP_Add(), the TCP code will not be available
in your application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

154 CHAPTER 4 Configuration functions

4.2.73 IP_TCP_DisableRxChecksum()

Description

Disables the TCP Rx checksum calculation. The TCP checksum computation can be disabled
to improve the performance of the stack.

Prototype
voi d | P_TCP_Di sabl eRxChecksun(unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Additional information

In a typical network all data contained in a transferred frame has already been verified by
the hardware checking the trasmitted frames checksum and it is unlikely that data within
this frame is corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

This only affects the checksum calculation in software. In case the hardware supports TCP
Rx checksum calculation it might still discard a received frame in which the TCP checksum
is invalid. When supported by hardware, the software calculation is disabled by default and
enabled by default if not supported in hardware.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

155 CHAPTER 4 Configuration functions

4.2.74 |P_TCP_EnableRxChecksum()

Description

Enables checksum verification of the checksum in the TCP header for incoming packets.

Prototype
voi d | P_TCP_Enabl eRxChecksun(unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Additional information

In a typical network all data contained in a transferred frame has already been verified by
the hardware checking the trasmitted frames checksum and it is unlikely that data within
this frame is corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

This only affects the checksum calculation in software. In case the hardware supports TCP
Rx checksum calculation it might still discard a received frame in which the TCP checksum
is invalid. When supported by hardware, the software calculation is disabled by default and
enabled by default if not supported in hardware.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

156 CHAPTER 4 Configuration functions

4.2.75 |IP_TCP_Set2MSLDelay()

Description

Sets the maximum segment lifetime (MSL).

Prototype
voi d | P_TCP_Set 2MSLDel ay(unsi gned v);
Parameters
Parameter Description
Y% Maximum segment lifetime. The default is 2 seconds.

Additional information

The maximum segment lifetime is the amount of time any segment can exist in the network
before being discarded. This time limit is constricted. When TCP performs an active close
the connection must stay in TI ME_WAI T (2MSL) state for twice the MSL after sending the
final ACK.

Refer to [RFC 793] - TCP - Transmission Control Protocol for more information about TCP
states.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

157 CHAPTER 4 Configuration functions

4.2.76 IP_TCP_SetConnKeepaliveOpt()

Description

Sets the keepalive options.

Prototype
voi d | P_TCP_Set ConnKeepal i veOpt (U32 Init,
u32 1 dle,
U32 Peri od,
U32 MaxRep);
Parameters
Parameter Description

Maximum time [ms] after TCP-connection open (response to
I nit SYN) in ms in case no data transfer takes place. The default
is | P_TCP_KEEPALIVE INIT .

Time [ms] of TCP-inactivity before first keepalive probe is

ldie sent. The default is | P_TCP_KEEPALI VE_| DLE .
Peri od Time [ms] of TCP-inactivity between keepalive probes. The
default is | P_TCP_KEEPALI VE_PERI OD .
Number of keepalive probes before we give up and close
MaxRep the connection. The default is | P_TCP_KEEPAL| VE_MAX_REPS

repetitions.

Additional information

Keepalives are not part of the TCP specification, since they can cause good connections to
be dropped during transient failures. For example, if the keepalive probes are sent during
the time that an intermediate router has crashed and is rebooting, TCP will think that the
client’s host has crashed, which is not what has happened. Nevertheless, the keepalive
feature is very useful for embedded server applications that might tie up resources on
behalf of a client, and want to know if the client host crashes.

Keepalives will be sent if the TCP connection sits idle for | dl e ms and will then start sending
a keepalive each Peri od ms for MaxRep. Each time a keepalive is ACked by the peer, the
next keepalive will again be sent after | dl e ms.

By design keepalives are retransmissions of already sent and ACKed data. Depending on
the used IP stack a retransmit is typically one byte sent with the current sequence number -
1, so that the peer will discard the data itself as it has already been received and ACKed but
will send an ACK back to notify the sender that it has been received and to not send it again.

Other stacks might even send a TCP packet with zero data and the current sequence
number, forcing the other side to practically answer back to a duplicate ACK. Keepalives
might not be displayed correctly by tools like Wireshark. A zero length keepalive is typically
seen like a duplicate ACK while a one byte keepalive might actually be a one byte retransmit
if sending chunks of one byte and one of them has not been ACKed.

The I nit value configured is the connect timeout that will be used for connect () .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

158

CHAPTER 4 Configuration functions

4.2.77 IP_TCP_SetRetransDelayRange()

Description

Sets retransmission delay range.

Prototype

voi d | P_TCP_Set RetransDel ayRange(unsi gned RetransDel ayM n,
unsi gned RetransDel ayMax) ;

Parameters

Parameter Description

Minimum time [ms] before first retransmission. The

default is | P_TCP_RETRANS M N . Please note that setting a
minimum value below the minimum value of the peer is not
recommended and might break delayed ACKs. The default
for many stacks is ~200ms, therefore the minimum should
be set slightly higher.

Ret ransDel ayM n

Maximum time [ms] to wait before a retransmission. The

RetransDel ayMax default is | P_TCP_RETRANS MAX .

Additional information

TCP is a reliable transport layer. One of the ways it provides reliability is for each end to
acknowledge the data it receives from the communication partner. But data segments and
acknowledgments can get lost. TCP handles this by setting a timeout when it sends data,
and if the data is not acknowledged when the timeout expires, it retransmits the data. The
timeout and retransmission is the measurement of the round-trip time (RTT) experienced on
a given connection. The RTT can change over time, as routes might change and as network
traffic changes, and TCP should track these changes and modify its timeout accordingly.
| P_TCP_Set Ret ransDel ayRange() should be called if the default limits are not sufficient
for your application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

159 CHAPTER 4 Configuration functions

4.2.78 IP_UDP_Add()

Description
Adds UDP Protocol support to the stack.

Prototype

voi d | P_UDP_Add(void);

Additional information

| P_UDP_Add() adds UDP to the stack. The function should be called during the initialization
of the stack. In the supplied sample configuration files | P_UDP_Add() is called from
| P_X_Config().If you remove the call of | P_UDP_Add(), the UDP code will not be available
in your application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

160

CHAPTER 4 Configuration functions

4.2.79 IP_UDP_AddEchoServer()

Description

Adds a simple echo server for UDP packets that can be used for UDP pings and other tests.

Prototype
| P_UDP_CONNECTI ON *1 P_UDP_AddEchoSer ver (UL6 LPort);
Parameters
Parameter Description
LPort Local port on which to listen for incoming packets.

Return value

NULL O.K. Pointer to the connection.
= NULL Error.

Additional information

The echo server will simply send back the incoming packet to the sender.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

161 CHAPTER 4 Configuration functions

4.2.80 IP_UDP_DisableRxChecksum()

Description

Disables checksum verification of the checksum in the UDP header for incoming packets.

Prototype
voi d | P_UDP_Di sabl eRxChecksun(voi d) ;

Additional information

In a typical network all data contained in a transfered frame have already been verified by
the hardware checking the trasmitted frames checksum and it is unlikely that data within
this frame are corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

162 CHAPTER 4 Configuration functions

4.2.81 IP_UDP_EnableRxChecksum()

Description

Enables checksum verification of the checksum in the TCP header for incoming packets.

Prototype
voi d | P_UDP_Enabl eRxChecksun(voi d);

Additional information

In a typical network all data contained in a transfered frame have already been verified by
the hardware checking the trasmitted frames checksum and it is unlikely that data within
this frame are corrupted if the frame checksum was verified as being correct. Therefore for
optimization reasons the checksum calculation might be disabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

163 CHAPTER 4 Configuration functions (IP fragmentation)

4.3 Configuration functions (IP fragmentation)

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

164 CHAPTER 4 Configuration functions (IP fragmentation)

4.3.1 IP_FRAGMENT_ ConfigRx()

Description

Modifies the default settings for IPv4 fragmentation.

Prototype
voi d | P_FRAGVENT_Confi gRx(Ul6 MaxFragnents,
U32 Ti neout,
Ug KeepOOXO) ;
Parameters
Parameter Description

Maximum number of fragments which are allowed for a

MaxFragment s fragmented packet. Currently 0..255 fragments are allowed.

Ti meout Ti meout [ms] before discarding fragment queues.
Keep Out Of Order fragments.

KeepOQO e 0: Discard (default).
e 1: Keep.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

165 CHAPTER 4 Configuration functions (IP fragmentation)

4.3.2 |IP_FRAGMENT_Enable()

Description

Initializes the required variables and adds a timer to the stack to handle outdated fragment
queues.

Prototype
voi d | P_FRAGVENT_Enabl e(voi d);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

166 CHAPTER 4 Configuration functions (IP fragmentation)

4.3.3 IP_IPV6_FRAGMENT_ConfigRx()

Description

Modifies the default settings for IPv6 fragmentation.

Prototype
voi d | P_I PV6_FRAGVENT Confi gRx(U16 MaxFragments,
U32 Ti nmeout,
Ug KeepOOO;
Parameters
Parameter Description

Maximum number of fragments which are allowed for a

MaxFragnent s fragmented packet.

Ti meout Ti meout [ms] before discarding fragment queues.
Keep Out Of Order fragments.

KeepOQO e 0: Discard (default).
e 1: Keep.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

167 CHAPTER 4 Configuration functions (IP fragmentation)

4.3.4 IP_IPV6_FRAGMENT Enable()

Description

Initializes the required variables and adds a timer to the stack to handle outdated fragment
queues.

Prototype
void | P_I PV6_FRAGVENT_Enabl e(voi d);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

168 CHAPTER 4 Management functions

4.4 Management functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

169

CHAPTER 4 Management functions

4.4.1 IP_Delnit()

Description
Deinitializes the TCP/IP stack.

Prototype

void | P_Delnit(void);

Additional information

| P_Del ni t () de-initializes the IP stack. This function should be the very last function of the
stack called by the application and is typically not needed if you do not need to shutdown
your whole application for a special reason.

For a clean de-initialization | P_Di sconnect () and | P_Shut down() should be called first.

De-initialization should be done in the exact reversed order of initialization. This means
terminating any created task that uses the IP API, terminating the | P_RxTask (if used),
terminating the | P_Task and finally calling | P_Delnit() to close down the stack. The
whole de-initialization should be done with Ethernet interrupts disabled and task switching
disabled to prevent the de-initialization being interrupted by an Ethernet event.

De-init has to be supported by the driver as well. If your driver does not yet support
| P_Del nit() you will end up in | P_Pani c() . Please contact our support address and ask
for | P_Del nit () support to be added to your driver.

Example

#i nclude "I P. h"

void main(void) {
IP_Init();
I
/'l Create |IP tasks and use the stack
I
I
/! Disable Ethernet interrupt
I
OS EnterRegion(); // Prevent task sw tching
I
/1l Terminate all application tasks that nake use of the |P API
I

I
/'l Terminate | P_RxTask first (if used) and |IP_Task
I
| P_Delnit();
OS_LeaveRegion(); // Alow task switching
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

170

4.4.2

CHAPTER 4

IP_Init()
Description

Initializes the TCP/IP stack.
Prototype

int IP_Init(void);

Return value

=0 0.K.
<0 Error.

Additional information

Management functions

I P_Ini t () initializes the IP stack and creates resources required for an OS integration. This
function must be called before any other function of the stack is called.

Does not detect memory allocation problems during | P_I nit () at this time. A sufficient
memory pool size should be checked by running an | P_DEBUG enabled build with
| P_PANI C() checks first as this will help to discover other problems with the setup as well.

Example

#i nclude "I P. h"

void main(void) {
IP_Init();
/*
* Use the stack
*/

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

171

CHAPTER 4 Management functions

4.43 IP_Task()

Description
Main task for handling the stack.

Prototype

voi d | P_Task(void);

Additional information

Implementing this task is the simplest way to include the stack into your project. An
example for typical task stack usage is defined by TASK_STACK SI ZE | P_TASK .

For best performance this task should be given a task priority higher than any other IP
stack related application task. It however must not have a higher or the same priority
than the | P_RxTask() or its API alternatives | P_RXTASK Init (), | P_RXTASK Exec() and
| P_RXTASK_ Wi t For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt usage
on page 48 .

After startup, this routine settles into a loop, handling received packets and executing other
jobs. This loop sleeps until signaled by a driver or a stack internal job being ready for
execution.

In case of de-initializing the stack with IP_Delnit(), it is possible to leave the loop
gracefully by using | P_Shut Down() .

Example

#i ncl ude <stdio. h>
#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

#i nclude "I P. h"
#include "IP_Int.h"

static OS_STACKPTR int _StackO[512]; /'l Task stacks
static OS _TASK _TCBO; /'l Task-control -bl ocks
static OS_STACKPTR int _| PStack[1024]; /'l Task stacks
static OS _TASK _| PTCB; /'l Task-control -bl ocks

/***

*

* Mai nTask

*/

voi d Mai nTask(voi d);

voi d Mai nTask(void) {
printf("**\nProgram Start\n")

IP_Init();

OS_SetPriority(0OS_Get Taskl D(), 255); /1 This task has highest prio!
OS_CREATETASK(& | PTCB, "I P_Task", |P_Task, 150, _IPStack);

while (1) {

BSP_Toggl eLED(1) ;
CS_Del ay (200);
}
}

/**
*
* mai n
*/
void main(void) {
BSP_Init();
BSP_Set LED(0) ;
CS_IncDi(); /* Initially disable interrupts */

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

172 CHAPTER 4 Management functions

CS I nitKern(); /* initialize OS */
CS I nitHW); /* initialize Hardware for OGS */
OS_CREATETASK(& TCBO, "Mai nTask", MainTask, 100, _StackO);
CS Start();

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

173

CHAPTER 4 Management functions

4.4.4 IP_Exec()

Description

Processes received packets and handles timers and other jobs.

Prototype

U32 | P_Exec(void);

Return value

Value of the next timeout [ms].

Additional information

This function is normally called internally from an endless loop in | P_Task() . If no dedicated
task running | P_Task() is implemented in your project e.g. when using a superloop,
| P_Exec() should be called regularly.

When being called from a task context, the same task priority rules as for | P_Task() apply.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

174

CHAPTER 4 Management functions

4.45 IP_TASK_Init()

Description

Initializes the main IP task context when not using | P_Task() .

Prototype

void | P_TASK | nit(void);

Additional information

The | P_TASK * API is an alternative to using the | P_Task() . It allows finer control over
the internal steps done in | P_Task() . This can be utilized for example to feed a watchdog
from the same task periodically.

Note

This routine is not intended to be used when using | P_Task() or | P_Exec() instead.
It needs to be called before | P_TASK Exec() or | P_TASK Wi t For Event () is used.

For best performance the | P_TASK * API should be called with a task priority higher
than any other IP stack related application task.

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the | P_RxTask() or its API alternatives
| P_RXTASK I nit(), | P_RXTASK Exec() and | P_RXTASK Wit For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

Example

/***

1P _Task()

Function description
Application specific inplenentation of |P_Task()

Addi ti onal information
Allows to insert your own code |ike feeding a watchdog
i n-between the separate steps that woul d be executed by the
original task APl provided by the stack.

E I I S S I B R

/
static void _IP_Task(void) {
unsi gned Ti neout ;

11

/1 Initialize.

11

| P_TASK Init();

11

/'l Task-I| oop.

11

for (;;) {
11
/'l Process received packets and execute pending jobs.
/'l The tineout returned is when the next tiner-event is due.
11
Ti meout = | P_TASK Exec();

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

175 CHAPTER 4 Management functions

I

/1l Sleep until the next tinmer-event is due or an event |ike
/'l new packets have been received is signal ed.

I

| P_TASK Wai t For Event (Ti meout) ;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

176 CHAPTER 4 Management functions

4.4.6 IP_TASK_Exec()

Description

Processes received packets and handles timers and other jobs.

Prototype

unsi gned | P_TASK Exec(void);

Return value

Value of the next timeout [ms].

Additional information

The | P_TASK_* API is an alternative to using the | P_Task() . It allows finer control over
the internal steps done in | P_Task() . This can be utilized for example to feed a watchdog
from the same task periodically.

Note

This routine is not intended to be used when using | P_Task() or | P_Exec() instead.

For best performance the | P_TASK * API should be called with a task priority higher
than any other IP stack related application task.

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the | P_RxTask() or its API alternatives
| P_RXTASK I nit(), | P_RXTASK Exec() and | P_RXTASK Wi t For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

177 CHAPTER 4 Management functions

4.4.7 IP_TASK_WaitForEvent()

Description

Waits for an event for the main IP task to be signaled.

Prototype

unsi gned | P_TASK Wi t For Event (unsi gned Ti nmeout);

Parameters

Parameter Description

Ti meout [ms] to wait for an event. 0 for INFINITE is

Ti meout currently not supported (but can be used) and is internally
changed to 1 . Typically the timeout value returned by
| P_TASK Exec() should be used.

Return value

=0 An event was signaled.
0 Ti meout .
Additional information

The | P_TASK * API is an alternative to using the | P_Task() . It allows finer control over
the internal steps done in | P_Task() . This can be utilized for example to feed a watchdog
from the same task periodically.

Note

This routine is not intended to be used when using | P_Task() or | P_Exec() instead.

For best performance the | P_TASK * API should be called with a task priority higher
than any other IP stack related application task.

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the | P_RxTask() or its API alternatives
| P_RXTASK I nit(), | P_RXTASK Exec() and | P_RXTASK Wi t For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

178 CHAPTER 4 Management functions

4.4.8 IP_RxTask()

Description

Optional task to reduce time spent in receive interrupts.

Prototype

voi d | P_RxTask(void);

Additional information

This optional task can be implementing into your project to reduce the time spent
in Ethernet receive interrupts. An example for typical task stack usage is defined by
TASK_STACK_SI ZE | P_RX_TASK .

Warning

This task operates as a pseudo-interrupt executed from task context and is not secured
against other API or tasks of the stack. It therefore needs to be given a task priority
above all tasks that make use of the API of the stack or one of the other tasks of the
stack like the | P_Task() or its API alternatives like | P_TASK I nit() ,| P_TASK Exec()
and | P_TASK Wi t For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

After startup, this routine settles into a loop, receiving/copying packets in a task context
instead of from the interrupt itself to reduce interrupt latency. This loop sleeps until signaled
by a driver.

In case of de-initializing the stack with I P_Delnit(), it is possible to leave the loop
gracefully by using | P_Shut Down() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

179 CHAPTER 4 Management functions

4.4.9 IP_RXTASK_lInit()

Description

Initializes the RxTask context when not using | P_RxTask() .

Prototype

void | P_RXTASK I nit(void);

Additional information

The | P_RXTASK_* API is an alternative to using the | P_RxTask() . It allows finer control
over the internal steps done in | P_RxTask() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using | P_RxTask() instead. It needs to
be called before | P_RXTASK Exec() or | P_RXTASK Wit For Event () is used.

Warning

This routine is part of a pseudo-interrupt executed from task context and is not secured
against other API or tasks of the stack. The task priority from which this routine is
executed has to be above all tasks that make use of the API of the stack or one of the
other tasks of the stack like the | P_Task() orits API alternatives like | P_TASK I nit(),
| P_TASK Exec() and | P_TASK Wai t For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

It can however be used from a lower task priority when locking the API with
| P_OS LOCK() before and unlocking with | P_OS UNLOCK() after calling this routine.

Example

/***

_|I P_RxTask()

Function description
Application specific inplenentation of |P_RxTask()

Addi ti onal information
Allows to insert your own code |ike feeding a watchdog
i n-between the separate steps that woul d be executed by the
original task APl provided by the stack.

E I I S S I B R

/

static void _I P_RxTask(void) {

I

/[l Initialize.

I

| P_RXTASK I nit();

I

/'l Task-I| oop.

I

for (;;) {
I
/1 Wait with tineout [ns] (here INFINITE) for the next event to be
/'l signaled. Typically the signal is triggered by an interrupt
/1 fromthe driver when receiving new packets.
I

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

180 CHAPTER 4 Management functions

| P_RXTASK Wi t For Event (0u);

I
/'l Handl e recei ved packets and copy theminto the stack.

/1
| P_RXTASK_Exec() ;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

181 CHAPTER 4 Management functions

4.4.10 IP_RXTASK_Exec()

Description

Copies received packets from driver to stack in a task context instead of from an interrupt.

Prototype

voi d | P_RXTASK_Exec(voi d);

Additional information

The | P_RXTASK_* API is an alternative to using the | P_RxTask() . It allows finer control
over the internal steps done in | P_RxTask() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using | P_RxTask() instead.

Warning

This routine is part of a pseudo-interrupt executed from task context and is not secured
against other API or tasks of the stack. The task priority from which this routine is
executed has to be above all tasks that make use of the API of the stack or one of the
other tasks of the stack like the | P_Task() orits API alternatives like | P_TASK I nit(),
| P_TASK Exec() and | P_TASK Wai t For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

It can however be used from a lower task priority when locking the API with
| P_OS LOCK() before and unlocking with | P_OS_UNLOCK() after calling this routine. In
this case you might have to manually remove the | P_DEBUG check in the | P_CS layer
that ensures that the task priorities are used correctly.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

182 CHAPTER 4 Management functions

4.4.11 IP_RXTASK_WaitForEvent()

Description

Waits for an event for the | P_RxTask to be signaled.

Prototype
unsi gned | P_RXTASK Wi t For Event (unsi gned Ti neout);
Parameters
Parameter Description
Ti meout Ti meout [ms] to wait for an event. 0 for INFINITE .

Return value

=0 An event was signaled.
+0 Ti meout .

Additional information

The | P_RXTASK_* API is an alternative to using the | P_RxTask() . It allows finer control
over the internal steps done in | P_RxTask() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using | P_RxTask() instead.

Warning

This routine is part of a pseudo-interrupt executed from task context and is not secured
against other API or tasks of the stack. The task priority from which this routine is
executed has to be above all tasks that make use of the API of the stack or one of the
other tasks of the stack like the | P_Task() or its API alternatives like | P_TASK I nit (),
| P_TASK Exec() and | P_TASK Wi t For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

It can however be used from a lower task priority when locking the API with
| P_OS_LOCK() before and unlocking with | P_OS_UNLOCK() after calling this routine. In
this case you might have to manually remove the | P_DEBUG check in the | P_CS layer
that ensures that the task priorities are used correctly.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

183 CHAPTER 4 Management functions

4.4.12 IP_Shutdown()

Description

Prepare network stack related tasks for a graceful shutdown.

Prototype
unsi gned | P_Shut down(unsi gned LeaveTaskLoop,
u32 Ti meout) ;
Parameters
Parameter Description

LeaveTaskLoop Leave the task loop(s) of the stack when shutting down the
tasks.
Ti meout [ms] after which the routine returns regardless of
all tasks being able to shut down or not. A timeout of 0 ms

Ti meout for immediate return can be used but the tasks will only be
shut down for sure if all of them have a higher priority than
the task calling this routine. A non-zero timeout is therefore
advised.

Return value

=0 All tasks have been shut down successfully.

0 Mask of | P_TASK_ * bits for the tasks that have not been shut down within the

timeout.

Additional information

Before calling | P_Del nit () all application tasks should stop calling network API and all
tasks that belong directly to the stack like | P_Task() should be stopped as well. The later
of both is not as easy as the application has no knowledge about the current execution
status of these tasks and it might happen that for example | P_Task() is currently deep
into some protocol like TCP or even deeper like in a callback back into the application.

By calling this routine a graceful stop of these tasks can be requested to prepare them for
having their tasks completely removed in the next step.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

184 CHAPTER 4 Network interface configuration and handling
functions

4.5 Network interface configuration and handling
functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

185

CHAPTER 4 Network interface configuration and handling
functions

45.1 IP_NI_AddPTPDriver()

Description
Adds an NI specific PTP driver for HW timestamp support.

Prototype
int | P_NI _AddPTPDri ver (unsi gned | Facel d,
const | P_PTP_DRI VER * pPTPDri ver,
u32 d ock);
Parameters
Parameter Description
| Facel d Zero-based interface index.
pPTPDr i ver PTP driver to add.
Cl ock Cl ock [Hz] of the PTP timer. Can not be 0.
Return value
-1 Error, not supported
0 OK
1 Error, called after driver initialization has been completed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

186 CHAPTER 4 Network interface configuration and handling
functions

4.5.2 IP_NI_CIrBPressure()

Description

Disables usage of back pressure (sending a jam signal to signal when we run into a shortage
where the hardware can not receive more data).

Prototype
void I P_NI _Cl rBPressure(unsi gned | Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

187 CHAPTER 4 Network interface configuration and handling
functions

4.5.3 IP_NI_ConfigPoll()

Description

Select polled mode for the network interface. This should be used only if the NI can not
activate an ISR itself.

Prototype

void | P_NI _ConfigPol | (unsi gned | Facel d);

Parameters
Parameter Description
| Facel d Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

188 CHAPTER 4 Network interface configuration and handling
functions

45.4 |IP_NI_ForceCaps()

Description

Allows to force capabilities to be set for an interface. Typically this is used to allow the
checksum calculation capabilities to be set manually. Typically this is used to give the target
a performance boost in high traffic applications on stable networks, where the occurence
of wrong checksums is unlikely.

Prototype
voi d | P_NI _For ceCaps(unsi gned | Facel d,
us CapsFor cedMask,
us CapsFor cedVal ue) ;
Parameters
Parameter Description
| Facel d Zero-based index network interfaces.

Defines which bits in the Caps byte will be modified. A
CapsFor cedMask 1 in the mask will allow the Caps to be modified by the
corresponding bit in CapsFor cedVal ue.

Values for the corresponding bits in CapsFor cedMask.
Usually an OR of the following values:

e |P_N _CAPS WRI TE_| P_CHKSUM

| P_NI_CAPS WRI TE_UDP_CHKSUM

| P_NI_CAPS WRI TE_TCP_CHKSUM

| P_NI_CAPS WRI TE_| CMP_CHKSUM

| P_NI _CAPS CHECK_| P_CHKSUM

| P NI _CAPS CHECK_UDP_CHKSUM

| P_NI _CAPS CHECK_TCP_CHKSUM

| P_NI _CAPS CHECK_| CMP_CHKSUM

CapsFor cedVal ue

Example

Forcing the capability bits 0 to value ‘0’ and bit 2 to value "1’ for the first interface can be
done as shown in the code example below:

I P_NI _ForceCaps(0, 5, 4);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

189 CHAPTER 4 Network interface configuration and handling
functions

455 IP_NI_SetBPressure()

Description

Enables usage of back pressure (sending a jam signal to signal when we run into a shortage
where the hardware can not receive more data).

Prototype
voi d | P_NI _Set BPressure(unsi gned | Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

190

CHAPTER 4 Network interface configuration and handling

functions
456 IP_NI_SetTxBufferSize()

Description
Sets the size of the Tx buffer of the network interface.
Prototype
int | P_NI_Set TxBufferSize(unsigned | Faceld,

unsi gned NunByt es);
Parameters

Parameter Description

| Facel d Zero-based interface index.

Size of the Tx buffer (at least size of the MTU + 16 bytes for
NunByt es

Ethernet).
Return value
-1 Error, not supported
0 OK
1 Error, called after driver initialization has been completed.

Additional information

The default Tx buffer size is 1536 bytes. It can be useful to reduce the buffer size on systems
with less RAM and an application that uses a small MTU. According to RFC 576 bytes is
the smallest possible MTU. The size of the Tx buffer should be at least MTU + 16 bytes for
Ethernet header and footer. The function should be called in | P_X_Confi g() .

Note:

This function is not implemented in all network interface drivers, since not all Media Access
Controllers (MAC) support variable buffer sizes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

191 CHAPTER 4 PHY configuration functions

4.6 PHY configuration functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

192 CHAPTER 4 PHY configuration functions

4.6.1 IP_NI_ConfigPHYAddr()

Description
Configure the PHY Addr.

Prototype
voi d | P_NI _Confi gPHYAddr (unsi gned | Facel d,
us Addr) ;
Parameters
Parameter Description
| Facel d Zero-based interface number.
Addr 5-bit address.

Additional information

The PHY address is a 5-bit value. The generic PHY driver tries to detect the PHY
address automatically, therefore this should not be called if not explicitly needed. If you
use this function to set the address explicitly, the function must be called from within
| P_X_Config().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

193 CHAPTER 4 PHY configuration functions

4.6.2 IP_NI_ConfigPHYMode()

Description
Configure the PHY mode.

Prototype
voi d | P_NI _Confi gPHYMdde(unsi gned | Facel d,
us Mbde) ;
Parameters
Parameter Description
| Facel d Zero-based interface number.
Mode The operating mode of the PHY.

Valid values for parameter Mode

Value Description

Phy uses the Media Independent
Interface (MII).

Phy uses the Reduced Media
Independent Interface (RMII).

| P_PHY_MODE_M |

| P_PHY_MODE_RM |

Additional information

The PHY can be connected to the MAC via two different modes, MII or RMII. Refer to section
MII / RMII: Interface between MAC and PHY on page for detailed information about
the differences of the MII and RMII modes.

The selection which mode is used is normally done correctly by the hardware. The mode
is typically sampled during power-on RESET. If you use this function to set the mode
explicitly, the function must be called from within | P_X Config(). Refer to I P_X Config
on page 627.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

194 CHAPTER 4 PHY configuration functions

4.6.3 IP_PHY_AddDriver()

Description

Adds a PHY driver and assigns it to an interface.

Prototype
void | P_PHY_AddDri ver (unsi gned | Facel d,
const | P_PHY_HWDRI VER * pDriver,
const void * pAccess,
| P_PHY_pf Config pf);
Parameters
Parameter Description
| Facel d Zero-based interface index.
pDri ver Pointer to driver function table.
Pointer to function table containing routines for hardware
pAccess . .
access, depending on the driver to add.
pf Callback to PHY config routine.

Additional information

If a driver has already been added for the selected interface the driver will not be
overwritten. The same applies for the hardware access functions and the config callback.
This allows settings different parameters like the driver and access routines from different
places.

Typically the network interface driver will try to add the generic PHY driver so it is not
necessary to update an existing | P_X Confi g() unless new | P_PHY_* functions shall be
used or a driver other than the generic PHY driver shall be used.

Example
The following is an excerpt from an | P_Confi g_*.c file:

/***

_Confi gPHY()

Function description
Cal | back executed during the PHY init of the stack to configure
PHY settings once the hardware interface has been initialized.

Par aneters
| Facel d: Zero-based interface index.

EE T T S T I

~

static void _ConfigPHY(unsigned | Faceld) {
Il
/1 Further PHY configuration can be added here by calling
/1 1P_PHY *() functions for generic or specific PHY configuration.
Il

}

/***

| P_X_Config()

Function description
This function is called by the IP stack during IP_Init().

E I

/
void I P_X Config(void) {

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

195 CHAPTER 4 PHY configuration functions

I

/1 Add the generic PHY driver for interface #0 and register

/1 a PHY config routine executed when the PHY driver is initialized.
I

| P_PHY_AddDriver (0, & P_PHY Driver_GCeneric, NULL, & ConfigPHY);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

196

CHAPTER 4 PHY configuration functions

4.6.4 IP_PHY_AddResetHook()

Description

This function adds a hook function to the | P_HOOK_ON_PHY_RESET list. Registered hooks will
be called after a PHY reset has been executed and the generic init has been finished. This
allows the user to apply further settings to the PHY if needed.

Prototype

voi d | P_PHY_AddReset Hook(| P_HOOK_ON_PHY_RESET * pHook,
I P_NI _pf OnPhyReset pf);
Parameters
Parameter Description
Hook Pointer to static element of | P_HOOK_ON_PHY_RESET that can
P be internally used by the stack.
pf Function pointer to the callback that will be executed.

Additional information

In some cases it might be necessary to apply a custom configuration to the PHY. The
generic PHY module used by the stack in most cases will only apply a minimal configuration.
Registering a callback custom settings can be applied to this configuration.

If you are changing the PHY register page you need to reset it back to page 0 before
returning from the callback.

Example

Il

/'l Excerpt of content of IP_Config *.c
Il

static | P_HOOK_ON PHY_RESET _Hook;

/***

_OnPhyReset ()

Function description
Cal | back called after a PHY reset and generic initialization has
been applied by the stack to allow the user to apply his own
settings if necessary.

Par anet er s
| Faceld : Zero-based interface |ID.
pCont ext: PHY context.
pApI : PHY access API.

L S T N R S R B

~

static void _OnPhyReset (unsi gned | Faceld, void *pContext, const |P_PHY_ APl *pApi) {
Ul6 v;

v = pApi - >pf Read(pContext, 0); // Read PHY register O.
/1 Modify val ue read.
pApi - >pf Wite(pContext, 0, v); // Wite nodified value back to PHY register O.

}
void I P_X Config(void) {
| P_PHY_AddReset Hook(& Hook, _OnPhyReset); // Register _OnPhyReset() to

/1l be executed after a PHY
/] software reset.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

197 CHAPTER 4 PHY configuration functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

198 CHAPTER 4 PHY configuration functions

4.6.5 IP_PHY_ConfigAddr()

Description

Configures the PHY address to use.

Prototype

voi d | P_PHY_Confi gAddr (unsi gned | Facel d,
unsi gned Addr);

Parameters

Parameter Description
| Facel d Zero-based interface index.
Addr PHY address.

Additional information

New version of the old function | P_NI _Conf i gPHYAddr () that makes direct use of the PHY
module.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

199 CHAPTER 4 PHY configuration functions

4.6.6 IP_PHY_ConfigAfterResetDelay()

Description

Configures the delay between (soft) resetting the PHY and further communication with it.

Prototype
voi d | P_PHY_Confi gAfterReset Del ay(unsi gned | Facel d,
Ul6 ns) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
B Delay between (soft) resetting the PHY and further
communication with it.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

200 CHAPTER 4 PHY configuration functions

4.6.7 IP_PHY_ConfigAltAddr()

Description

Sets a list of PHY addresses that can alternately be checked for the link state.

Prototype
voi d | P_PHY_Confi gAl t Addr (unsi gned | Facel d,
const | P_PHY_ALT_LI NK_STATE_ADDR * pAl t PhyAddr);
Parameters
Parameter Description
| Facel d Zero-based interface index.
pAl t PhyAddr List of alternate PHY addresses.

Additional information

A typical setup would be using a switch where the first PHY/port uses the PHY addr. 0x01
and the second PHY/port uses the addr. 0x02. The PHY driver by default might only support
one addr. to check the link state (e.g. on PHY addr. 0x01) and will ignore the link state
on any other PHY addr. Using this alternate list of addr. these will be checked as well if
supported by the driver.

Example

Il

/1 PHY addresses of switch ports 2 - 4 (port 1 with addr. Ox01 will be
/1 found automatically).

Il

const U8 aAltPhyAddr[] = { 0x02, 0x03, 0x04 };

const | P_PHY_ALT LI NK_STATE_ADDR Al t PhyAddr = {
aAl t PhyAddr,

SEGGER_COUNTOF(aAl t PhyAddr)
he

void | P_X Config(void) {

| Faceld = | P_AddEt herInterface(DRl VER);
| P_PHY_Confi gAl t Addr (| Facel d, &Alt PhyAddr);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

201 CHAPTER 4 PHY configuration functions

4.6.8 IP_PHY_ConfigGigabitSupport()

Description

Configures if the MAC supports Gigabit Ethernet. If the MAC does not support Gigabit
Ethernet (default) then the PHY driver does not have to handle it in case it is not supported
anyhow.

Prototype

voi d | P_PHY_Confi gG gabi t Support (unsi gned | Facel d,
unsi gned OnOff);

Parameters
Parameter Description
| Facel d Zero-based interface index.
e 0: MAC does not support Gigabit Ethernet.
OnOr f e 1: MAC supports Gigabit Ethernet. If the PHY is Gigabit
capable as well it can be used.

Additional information
Typically only required if a PHY driver other than the generic PHY driver is used.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

202

CHAPTER 4 PHY configuration functions

4.6.9 IP_PHY_ConfigSupportedModes()

Description

Configures the supported duplex/speed of the device to be advertised during Auto-
Negotiation.

Prototype

voi d | P_PHY_Confi gSupport edMbdes(unsi gned | Facel d,
unsi gned Mbdes);

Parameters

Parameter Description

| Facel d Zero-based interface index.

Bitwise-OR combination of the following supported modes:
| P_PHY_MODE 10 HALF

| P_PHY_MODE_10_FULL

| P_PHY_MODE 100 HALF

| P_PHY_MODE 100 FULL

| P_PHY_MODE_1000_HALF

Modes

| P_PHY_MODE_1000_FULL

Additional information

New version of the old function | P_Set Support edDupl exModes() that makes direct use of
the PHY module.

Combining one of the supported duplex/speed modes with | P_PHY MODE NO AUTONEG
disables the Auto-Negotiation advertisement and configures a fixed duplex/speed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

203 CHAPTER 4 PHY configuration functions

4.6.10 IP_PHY_ConfigUseStaticFilters()

Description
Tells the stack if using PHY static MAC filter is allowed.

Prototype

voi d | P_PHY_ConfigUseStaticFilters(unsigned | Faceld,
unsi gned OnOFf);

Parameters
Parameter Description
| Facel d Zero-based interface index.
NG f e 0: Do not use the PHY static filters.
e 1: Use the PHY static filters.

Additional information

By default the stack is allowed to use PHY filters if available. Can be disabled using this
function if a custom filtering by the user shall be used.

Needs to be used with a hardware interface (typically #0). Does have no effect when being
used with virtual interfaces like Tail Tagging interfaces.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

204

CHAPTER 4 PHY configuration functions

4.6.11 IP_PHY_DisableCheck()

Description

Disables PHY checks for all interfaces. This might be necessary for some PHYs that are not

fully IEEE 802.3u compliant.

Prototype

voi d | P_PHY_Di sabl eCheck(U32 Mask);

Parameters

Parameter Description
Bitwise-OR bit mask of checks to disable:
Mask e PHY_DI SABLE CHECK_|I D

e PHY_DI SABLE_CHECK_LI NK_STATE_AFTER _UP
e PHY_DI SABLE_WATCHDOG

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

205 CHAPTER 4 PHY configuration functions

4.6.12 IP_PHY_DisableCheckEx()

Description

Disables PHY checks for one interface. This might be necessary for some PHYs that are not
fully IEEE 802.3u compliant.

Prototype
voi d | P_PHY_Di sabl eCheckEx(unsi gned | Facel d,
u32 Mask) ;
Parameters
Parameter Description

| Facel d Zero-based interface index.
Bitwise-OR bit mask of checks to disable:

Vask e PHY DI SABLE CHECK | D
e PHY DI SABLE CHECK LI NK_STATE_AFTER UP
e PHY_DI SABLE WATCHDOG

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

206

CHAPTER 4 PHY configuration functions

4.6.13 IP_PHY_ReadReq()

Description
Reads a PHY register.

Prototype

i nt | P_PHY_ ReadReg(unsi gned | Facel d,
unsi gned Regl ndex,
unsi gned * pData);

Parameters
Parameter Description
| Facel d Zero-based interface index.
Regl ndex Register index to read.
pDat a Pointer where to store the register value read.

Return value

=0 0.K.
0 Error.

Additional information

At the moment PHY access is only implemented as a blocking operation including actively
waiting for the access to finish. PHY access routines that operate according to the IEEE
802.3 standard have a maximum clock speed of 2.5 MHz. Frequent access to PHY registers
might block other operations in the stack.

Example

static | P_HOOK ON_LI NK_CHANGE _Li nkChangeHook;

static void _OnLi nkChange(unsi gned | Faceld, U32 Dupl ex, U32 Speed) {
unsi gned Reg;

| P_USE_PARA(Dupl ex) ;

if (Speed !=0u) { // Only on LINK-UP .
(voi d) I P_PHY_ReadReg(| Facel d, 0x06u, &Reg);
if (Reg & 1u) {
| P_Logf _Application("AutoNeg advertised by peer.");
} else {
| P_Logf _Application("No Aut oNeg advertised by peer.");
}
}
}

/**

*

* Mai nTask()

*/

voi d Mai nTask(void) {
IP_Init();

| P_AddLi nkChangeHook(& Li nkChangeHook, _OnLi nkChange);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

207 CHAPTER 4 PHY configuration functions

4.6.14 IP_AddLinkChangeHook()

Description

Adds a callback that gets executed each time the link state changes.

Prototype

voi d | P_AddLi nkChangeHook

(1 P_HOOK_ON_LI NK_CHANGE * pHook,

voi d (*pf)
(unsigned | Faceld , U32 Duplex , U32 Speed));

Parameters
Parameter Description
pHook Management element of type | P_HOOK _ON LI NK_CHANGE.
pf Callback to execute on a link state change.
Example

static | P_HOOK ON_LI NK_CHANGE _Hook;
static void _OnLi nkChange(unsi gned | Faceld, U32 Dupl ex, U32 Speed) {
} Ce
voi d nain(void) {
iiD._AddLi nkChangeHook(& Hook, _OnLi nkChange); // Register _OnLinkChange() to be

/'l executed when interface changes.
/1 Connect dial-up interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

208

4.6.15

Description

This function adds a hook function to the | P_HOOK_ON PACKET_FREE list. Registered hooks
will be called in case a packet gets freed.

CHAPTER 4 PHY configuration functions

IP_AddOnPacketFreeHook()

Prototype
voi d | P_AddOnPacket Fr eeHook(| P_HOOK_ON_PACKET_FREE * pHook,
voi d (*pf) (I P_PACKET * pPacket));
Parameters
Parameter Description
pHook Element of type | P_HOOK _ON _PACKET_FREE to register.
pf Callback that is notified on a packet free.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

209

CHAPTER 4 PHY configuration functions

4.6.16 IP_AddStateChangeHook()

Description

Adds a hook to a callback that is executed when the AdminState or HWState of an interface
changes.

Prototype

voi d | P_AddSt at eChangeHook
(1 P_HOOK_ON_STATE_CHANGE * pHook,
voi d (*pf)
(unsigned | Faceld , U8 AdninState , U8 HWstate));

Parameters
Parameter Description
Pointer to static element of | P_HOOK_ON_STATE_CHANGE that
pHook .
can be internally used by the stack.
pf Function pointer to the callback that will be executed.

Additional information

A state change hook can be used to be notified about an interface disconnect that has not
been triggered by the application. Typical example would be a peer that closes a dial-up
connection and the application needs to get notified of this event to call a disconnect itself.
Examples of this behavior can be found in the samples shipped with the stack.

Example

static | P_HOOK _ON_STATE_CHANGE _Hook;
static void _OnChange(unsi gned | Faceld, U8 AdnminState, U3 HWstate) {
} ce
voi d mai n(void) {
ii:’._AddSt at eChangeHook(& Hook, _OnChange); // Register _OnState() to be

/'l executed when interface changes.
/1 Connect dial-up interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

210 CHAPTER 4 PHY configuration functions

4.6.17 IP_PHY_Relnit()

Description
Re-initializes the PHY.

Prototype
voi d | P_PHY_Rel nit(unsigned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

211

CHAPTER 4 PHY configuration functions

4.6.18 IP_PHY_SetWwdTimeout()

Description

Sets the watchdog timeout for watching if the PHY reached an unstable state.

Prototype
voi d | P_PHY_Set WiTi neout (i nt ShiftCnt);
Parameters
Parameter Description
Shi ft Cnt Timeout comparison mask is (1 << ShiftCnt) - 1.

Additional information

For optimization reasons the comparison is done by using a bitmask instead of a division.
The bitmask is not allowed to contain a zero bit on a lower value position than a one bit.
To reach this we pass a shift count instead of a typical timeout.

A PHY watchdog timeout might occur due to a link down of the interface if it had a link up
before. In this case the stack resets the PHY as well to make sure it is not in a bad state
and is kept functional.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

212

CHAPTER 4

4.6.19 IP_PHY_WriteReg()

Description
Writes a PHY register.

Prototype

int |P_PHY _ WiteReg(unsigned | Faceld,
unsi gned Regl ndex,
unsi gned Data);

PHY configuration functions

Parameters
Parameter Description
| Facel d Zero-based interface index.
Regl ndex Register index to write.
Dat a Dat a to write to the register.

Return value

=0 0.K.
0 Error.

Additional information

At the moment PHY access is only implemented as a blocking operation including actively
waiting for the access to finish. PHY access routines that operate according to the IEEE
802.3 standard have a maximum clock speed of 2.5 MHz. Frequent access to PHY registers
might block other operations in the stack.

Writes to the PHY registers 0-5 might use an internal caching of the values written. This
cache is currently not updated when using this routine and might therefore result in working
with wrong values and resetting values when these registers are written by the stack after
they have been modified by the application using this routine.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

213 CHAPTER 4 Statistics functions

4.7 Statistics functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

214 CHAPTER 4 Statistics functions

4.7.1 IP_STATS EnablelFaceCounters()

Description

Enables statistic counters for a specific interface.

Prototype
voi d | P_STATS Enabl el FaceCount er s(unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

215 CHAPTER 4 Statistics functions

4.7.2 |IP_STATS_ GetlFaceCounters()

Description

Retrieves a pointer to the statistic counters for a specific interface.

Prototype
| P_STATS | FACE *| P_STATS GCet | FaceCount er s(unsi gned | Facel d);
Parameters

Parameter Description
| Facel d Zero-based interface index.

Return value
Success: Pointer to structure of type | P_STATS | FACE. Error : NULL

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

216 CHAPTER 4 Statistics functions

4.7.3 IP_STATS GetLastLinkStateChange()

Description

Retrieves the tick count when an interface entered its current state.

Prototype
U32 | P_STATS GCet Last Li nkSt at eChange(unsi gned | Facel d);
Parameters

Parameter Description
| Facel d Zero-based interface index.

Return value

Timestamp in system ticks (typically 1ms).

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

217 CHAPTER 4 Statistics functions

474 IP_STATS GetRxBytesCnt()

Description

Retrieves the number of bytes received on an interface.

Prototype
U32 | P_STATS Get RxByt esCnt (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

Number of bytes received on this interface.

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

218 CHAPTER 4 Statistics functions

4.7.5 IP_STATS_GetRxDiscardCnt()

Description

Retrieves the number of packets received but discarded although they were O.K. .

Prototype
U32 | P_STATS Get RxDi scardCnt (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

Number of packets received but discarded although they were O.K. .

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

219 CHAPTER 4 Statistics functions

4.7.6 IP_STATS_GetRxErrCnt()

Description

Retrieves the number of receive errors.

Prototype
U32 | P_STATS Get RxErrCnt (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

Number of receive errors.

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

220 CHAPTER 4 Statistics functions

4.7.7 IP_STATS_GetRxNotUnicastCnt()

Description

Retrieves the number of packets received on an interface that were not unicasts.

Prototype
U32 | P_STATS_ Get RxNot Uni cast Cnt (unsi gned | Facel d) ;
Parameters

Parameter Description
| Facel d Zero-based interface index.

Return value

Number of packets received on this interface that were not unicasts.

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

221 CHAPTER 4 Statistics functions

4.7.8 IP_STATS_GetRxUnicastCnt()

Description

Retrieves the nhumber of unicast packets received on an interface.

Prototype
U32 | P_STATS_ Get RxUni cast Cnt (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

Number of unicast packets received on this interface.

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

222 CHAPTER 4 Statistics functions

4.7.9 IP_STATS_GetRxUnknownProtoCnt()

Description

Retrieves the number of unknown protocols received.

Prototype
U32 | P_STATS_Get RxUnknownPr ot oCnt (unsi gned | Facel d) ;
Parameters

Parameter Description
| Facel d Zero-based interface index.

Return value

Number of unknown protocols received.

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

223 CHAPTER 4 Statistics functions

4.7.10 IP_STATS GetTxBytesCnt()

Description

Retrieves the humber of bytes sent on an interface.

Prototype
U32 | P_STATS Get TxByt esCnt (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

Number of bytes sent on this interface.

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

224 CHAPTER 4 Statistics functions

4.7.11 IP_STATS_GetTxDiscardCnt()

Description

Retrieves the number of packets to send but discarded although they were O.K. .

Prototype
U32 | P_STATS Get TxDi scardCnt (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value
Number of packets to send but discarded although they were O.K. .

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

225 CHAPTER 4 Statistics functions

4.7.12 |P_STATS_GetTxErrCnt()

Description

Retrieves the number of send errors on an interface.

Prototype
U32 | P_STATS Get TxErr Cnt (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

Number of send errors.

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

226 CHAPTER 4 Statistics functions

4.7.13 IP_STATS_ GetTxNotUnicastCnt()

Description

Retrieves the number of packets sent on an interface that were not unicasts.

Prototype
U32 | P_STATS_ Get TxNot Uni cast Cnt (unsi gned | Facel d) ;
Parameters

Parameter Description
| Facel d Zero-based interface index.

Return value

Number of packets sent on this interface that were not unicasts.

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

227 CHAPTER 4 Statistics functions

4.7.14 IP_STATS GetTxUnicastCnt()

Description

Retrieves the nhumber of unicast packets sent on an interface.

Prototype
U32 | P_STATS_ Get TxUni cast Cnt (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

Number of unicast packets sent on this interface.

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

228 CHAPTER 4 Other IP Stack functions

4.8 Other IP Stack functions

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

229

CHAPTER 4 Other IP Stack functions

4.8.1 IP_AddAfterIinitHook()

Description

Adds a hook to a callback that is executed at the end of IP_Init() to allow adding
initializations to be executed right after the stack itself has been initialized and all API can
be used.

Prototype
voi d | P_AddAf t er | ni t Hook(| P_HOOK_AFTER_INI T * pHook,
voi d (*pf)());
Parameters
Parameter Description
Pointer to static element of | P_HOOK_AFTER | NI T that can be
pHook .
internally used by the stack.
pf Function pointer to the callback that will be executed.

Additional information

Adding a callback to be executed right after | P_I ni t () can be helpful for various things.
For example this allows using a centralized initialization that is not located in the main
routine that calls I P_I nit() and has to make use of IP API that is only valid to be used
after IP_Init() .

Example

Il

/'l Excerpt of content of IP_Config *.c
Il

static | P_HOOK AFTER | NI T _Hook;

static void _Connect(void) {

}
void | P_X Config(void) {

| P_AddAfterlnitHook(& Hook, _Connect); // Register _Connect() to be
/'l executed at end of IP_Init()

}

Il

/'l Excerpt of content of main.c
Il

voi d mai n(void) ({

ii:’._lnit();

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

230 CHAPTER 4 Other IP Stack functions

4.8.2 IP_AddEtherTypeHook()

Description

This function registers a callback to be called for received packets with the registered
Ethernet type.

Prototype

voi d | P_AddEt her TypeHook
(1 P_HOOK_ON_ETH TYPE * pHook,

int (*pf)
(unsigned | Faceld , | P_PACKET * pPacket , void * pBuffer , U32 NunBytes),

ul6 Type) ;
Parameters

Parameter Description

pHook Hook resource of type | P_HOOK ON_ETH TYPE.
pf Callback to call for the registered Ethernet type.
Type Ethernet type that triggers the callback in host endianness.
Example

static | P_HOOK_ON_ETH TYPE _Hook;

/**

_OnARP()

Function description
This function allocates a packet to mirror back a received ARP
packet to the network. This is of no use but denonstrates how
to use the API.
The recei ved packet will be handled regularly by the stack as
well by returning | P_OK TRY_OTHER HANDLER.

Par anmet ers
| Facel d : Zero-based interface index.
pPacket : Pointer to received packet.
pBuffer : Pointer to start of data of the received packet.
NunmByt es: NunBytes data received in the packet.

Return val ue
Origi nal packet has not been changed and the stack shall
process it: | P_OK TRY_OTHER _HANDLER
Original packet has been freed or reused by the call back:
O her like IP_OK or | P_RX _ERROR.

E I D S T I N N S N N S I N . N S N N .

-~

static int _OnARP(unsigned | Faceld, | P_PACKET* pPacket, voi d* pBuffer, U32 NunBytes) {
| P_PACKET* pPacket Qut ;
ug* p;

pPacket Qut = | P_Al| ocEt her Packet (| Facel d, NunBytes, &p);
i f (pPacketQut != NULL) {
| P_MEMCPY(p, pBuffer, NunBytes);
| P_SendEt her Packet (1 Facel d, pPacket Qut, NunmBytes);
}
return | P_OK_TRY_OTHER HANDLER;

}

/**

*

* Mai nTask()

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

231 CHAPTER 4 Other IP Stack functions

*/
voi d Mai nTask(void) {
IP_Init();
| P_AddEt her TypeHook(& Hook, _OnARP, 0x0806);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

232

CHAPTER 4

4.8.3 IP_AddInterfaceErrorHook()

Description

Other IP Stack functions

Adds a hook function which will be called if initialization fails for an interface.

Prototype
voi d | P_AddI nterfaceErrorHook(1 P_HOOK ON_ | F_ERROR * pfOnlnterfaceError);
Parameters

Parameter Description

pf Onl nterfaceError

Pointer to the callback function of type

| P_HOOK_ON_| F_ERRCR.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

233 CHAPTER 4 Other IP Stack functions

4.8.4 IP_AddLinkChangeHook()

Description

Adds a callback that gets executed each time the link state changes.

Prototype

voi d | P_AddLi nkChangeHook

(1 P_HOOK_ON_LI NK_CHANGE * pHook,

voi d (*pf)
(unsigned | Faceld , U32 Duplex , U32 Speed));

Parameters
Parameter Description
pHook Management element of type | P_HOOK _ON LI NK_CHANGE.
pf Callback to execute on a link state change.
Example

static | P_HOOK ON_LI NK_CHANGE _Hook;
static void _OnLi nkChange(unsi gned | Faceld, U32 Dupl ex, U32 Speed) {
} Ce
voi d nain(void) {
iiD._AddLi nkChangeHook(& Hook, _OnLi nkChange); // Register _OnLinkChange() to be

/'l executed when interface changes.
/1 Connect dial-up interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

234

CHAPTER 4 Other IP Stack functions

4.8.5 IP_AddOnPacketFreeHook()

Description

This function adds a hook function to the | P_HOOK_ON PACKET_FREE list. Registered hooks
will be called in case a packet gets freed.

Prototype
voi d | P_AddOnPacket Fr eeHook(| P_HOOK_ON_PACKET_FREE * pHook,
voi d (*pf) (I P_PACKET * pPacket));
Parameters
Parameter Description
pHook Element of type | P_HOOK _ON _PACKET_FREE to register.
pf Callback that is notified on a packet free.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

235

CHAPTER 4 Other IP Stack functions

4.8.6 IP_AddStateChangeHook()

Description

Adds a hook to a callback that is executed when the AdminState or HWState of an interface
changes.

Prototype

voi d | P_AddSt at eChangeHook
(1 P_HOOK_ON_STATE_CHANGE * pHook,
voi d (*pf)
(unsigned | Faceld , U8 AdninState , U8 HWstate));

Parameters
Parameter Description
Pointer to static element of | P_HOOK_ON_STATE_CHANGE that
pHook .
can be internally used by the stack.
pf Function pointer to the callback that will be executed.

Additional information

A state change hook can be used to be notified about an interface disconnect that has not
been triggered by the application. Typical example would be a peer that closes a dial-up
connection and the application needs to get notified of this event to call a disconnect itself.
Examples of this behavior can be found in the samples shipped with the stack.

Example

static | P_HOOK _ON_STATE_CHANGE _Hook;
static void _OnChange(unsi gned | Faceld, U8 AdnminState, U3 HWstate) {
} ce
voi d mai n(void) {
ii:’._AddSt at eChangeHook(& Hook, _OnChange); // Register _OnState() to be

/'l executed when interface changes.
/1 Connect dial-up interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

236 CHAPTER 4 Other IP Stack functions

4.8.7 IP_Alloc()

Description

Thread safe memory allocation from main IP stack memory pool.

Prototype
void *I P_All oc(U32 NunByt esReq);
Parameters
Parameter Description
NunByt esReq Number of bytes to allocate.

Return value

= NULL Error.
NULL O.K. Pointer to allocated memory

Additional information

Memory allocated with this function has to be freed with | P_Free() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

237 CHAPTER 4 Other IP Stack functions

4.8.8 IP_AllocEtherPacket()

Description

Allocates a packet to store the raw data of an Ethernet packet of up to NunByt es at the
location returned by ppBuffer.

Prototype
| P_PACKET *1 P_Al | ocEt her Packet (unsi gned | Facel d,
u32 NunByt es,
us ** ppBuffer);
Parameters
Parameter Description
| Facel d Zero-based interface index.
NunByt es Minimum buffer size the packet has to provide.
Pointer where to store the pointer to the beginning of the
ppBuf f er
packet buffer.

Return value
O.K. : Pointer to packet allocated. Error: NULL.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

238

CHAPTER 4 Other IP Stack functions

4.8.9 IP_AllocEx()

Description

Thread safe memory allocation from a specific memory pool managed by the stack that
has been added using | P_AddMenory() .

Prototype

void *I P_Al'l ocEx(U32 * pPool Addr,
u32 NurmByt esReq) ;

Parameters

Parameter Description
pPool Addr Base address of the memory pool.
NunByt esReq Number of bytes to allocate.

Return value

= NULL Error.
NULL O.K. Pointer to allocated memory

Additional information

Memory allocated with this function has to be freed with | P_Free() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

239 CHAPTER 4 Other IP Stack functions

4.8.10 IP_ARP_CleanCache()

Description

Cleans all ARP entries that are not static entries.

Prototype
voi d | P_ARP_C eanCache(voi d);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

240 CHAPTER 4 Other IP Stack functions

4.8.11 IP_ARP_CleanCacheBylInterface()

Description

Cleans all ARP entries that are known to belong to a specific interface and are not static
entries.

Prototype

voi d | P_ARP_C eanCacheByl nt er f ace(unsi gned | Facel d);

Parameters
Parameter Description
| Facel d Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

241 CHAPTER 4 Other IP Stack functions

4.8.12 IP_Connect()

Description

Calls a previously registered hook for the interface if any was set using
| P_Set | FaceConnect Hook() .

Prototype
i nt | P_Connect(unsigned | Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

=0 0.K. or no callback set.
<0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

242 CHAPTER 4 Other IP Stack functions

4.8.13 IP_Disconnect()

Description

Calls a previously registered hook for the interface if any was set using
| P_Set | FaceDi sconnect Hook() .

Prototype
int | P_Disconnect(unsigned | Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

=0 0.K. or no callback set.
<0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

243 CHAPTER 4 Other IP Stack functions

4.8.14 IP_Err2Str()

Description

Converts IP stack error code to a readable string by simply using the defines name.

Prototype
char *IP_Err2Str(int x);
Parameters
Parameter Description
X Error code returned by API of the stack.

Return value

Pointer to string of the define name.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

244

CHAPTER 4 Other IP Stack functions

4.8.15 IP_FindIFaceBylIP()

Description

Tries to find out the interface number when only the IP address is known.

Prototype
int |P_Findl FaceByl P(void * pAddr,
unsi gned Len);
Parameters
Parameter Description

Addr Pointer to a variable holding the address to find in host
P endianness.
Len Length of address at pAddr .
Return value

-1 Interface not found.

>0 Interface found.

Additional information

For the moment only IPv4 is supported.

Example

The following sample tries to find an interface that has previously been configured to a
fixed IP address of 192.168.2.10.

int | Faceld;

U32 | PAddr;
| PAddr = | P_BYTES2ADDR(192, 168, 2, 10);
| Facel d = | P_Fi ndl FaceByl P(& PAddr, sizeof (I PAddr));

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

245 CHAPTER 4 Other IP Stack functions

4.8.16 IP_Free()

Description

Thread safe memory free to IP stack memory pools.

Prototype
void I P_Free(void * p);
Parameters
Parameter Description
Pointer to memory block previously allocated with
P IP_Alloc().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

246

CHAPTER 4

4.8.17 IP_FreePacket()

Description

Frees a packet back to the stack.

Other IP Stack functions

Prototype
voi d | P_FreePacket (1 P_PACKET * pPacket);
Parameters
Parameter Description
pPacket Packet to free.

Additional information

This routine can be used to typically free any allocated packet regardless of the API used

to allocate it.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

247 CHAPTER 4 Other IP Stack functions

4.8.18 IP_GetAddrMask()

Description

Retrieves the IP address and subnet mask of an interface. The values are stored in host
bytes order. (for example, 192.168.1.1 is returned as 0xC0OA80101).

Prototype
void | P_CGet Addr Mask(U8 | Face,
U32 * pAddr,
U32 * pMask);
Parameters
Parameter Description
| Face Zero-based interface index.
pAddr Address to store the IP address in host order. Can be NULL.
Address to store the subnet mask in host order. Can be
pMask NULL.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

248 CHAPTER 4 Other IP Stack functions

4.8.19 IP_GetCurrentLinkSpeed()

Description

Returns the current link speed of the first interface (interface ID 0).

Prototype

int | P_GetCurrentLinkSpeed(void);

Return value

Current link speed in Hertz.

Additional information

The application should check if the link is up before a packet will be sent. It can take 2-3
seconds till the link is up if the PHY has been reset.

Example

11

/1 Wait until link is up.

11

while (I P_GetCurrentlLinkSpeed() == 0) {
CS_| P_Del ay(100);

}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

249 CHAPTER 4 Other IP Stack functions

4.8.20 IP_GetCurrentLinkSpeedEXx()

Description

Returns the current link speed of the requested interface.

Prototype
int | P_GetCurrentLi nkSpeedEx(unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface number.

Return value

Current link speed in Hertz.

Additional information

The application should check if the link is up before a packet will be sent. It can take 2-3
seconds till the link is up if the PHY has been reset.

Example

Il

[/ Wait until link is up.

Il

whi |l e (I P_GetCurrentLinkSpeedEx(0) == 0) {
OS_I P_Del ay(100);

}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

250 CHAPTER 4 Other IP Stack functions

4.8.21 IP_GetFreePacketCnt()

Description

Checks how many packets for a specific size or greater are currently available in the system.

Prototype
U32 | P_Get FreePacket Cnt (U32 NunBytes);
Parameters
Parameter Description
NunByt es Minimum size of packets to find.

Return value

Number of packets available for this size.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

251 CHAPTER 4 Other IP Stack functions

4.8.22 |IP_GetlFaceHeaderSize()

Description

Retrieves the size of the header necessary for the transport medium that is used by a
specific interface. Example: Ethernet: 14 bytes header + 2 bytes padding.

Prototype
U32 | P_Get | FaceHeader Si ze(unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

Size of header for this interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

252 CHAPTER 4 Other IP Stack functions

4.8.23 IP_GetGWAddr()

Description

Returns the gateway address of the interface in host endianness. (for example, 192.168.1.1
is returned as 0xc0a80101).

Prototype
U32 | P_Get GMAAdr (U8 | Face);
Parameters
Parameter Description
| Face Zero-based interface index.

Return value

The gateway address of the interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

253 CHAPTER 4 Other IP Stack functions

4.8.24 IP_GetHWAddr()

Description

Returns the hardware address (Media Access Control address) of the interface.

Prototype

voi d | P_Get HMJdr (unsi gned | Facel d,
us * pDest,
unsi gned Len);

Parameters
Parameter Description
| Facel d Zero-based interface index.
pDest Address of the buffer to store the 48-bit MAC address.
Len Size of the buffer. Should be at least 6-bytes.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

254 CHAPTER 4 Other IP Stack functions

4.8.25 |P_GetIPAddr()

Description

Returns the IP address of the interface in host endianness. Example: 192.168.0.1 is
returned as 0xc0a80001 for a big endian target, 0x0100a8c0 for a little endian target.

Prototype
U32 | P_Get | PAddr (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface number.

Return value

IP address of the interface in host endianness.

Example

voi d Printl Facel PAddr (voi d) {
char ac[16];
U32 | PAddr;

| PAddr = | P_Get | PAddr (0);

| P_Printl PAddr(ac, |PAddr, sizeof(ac));
printf("IP Addr: 9%\n", ac);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

255 CHAPTER 4 Other IP Stack functions

4.8.26 IP_GetIPPacketInfo()

Description

Returns the start address of the data part of an IPv4 packet.

Prototype
Us *| P_Get | PPacket | nfo(l P_PACKET * pPacket);
Parameters
Parameter Description
pPacket Pointer to an | P_PACKET .

Return value

NULL Pointer to the data part of the IPv4 packet.
= NULL Error.

Example

/***

*

* _pf OnRxI QWP

*/

static int _pfOnRxl CVMP(1 P_PACKET* pPacket) {
const U8* pbDat a;

pData = | P_Get| PPacket | nf o(pPacket) ;
i f(*pData == 0x08) {
printf("1CVMP echo request received!'\n");

}
i f(*pData == 0x00) {

printf("1CVP echo reply received!'\n");
}

return O;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

256 CHAPTER 4 Other IP Stack functions

4.8.27 IP_GetRawPacketInfo()

Description
Returns the start address of the raw data of an | P_PACKET.

Prototype
char *1 P_Get RawPacket | nfo(const | P_PACKET * pPacket,
Ul6 * pNunByt es) ;
Parameters
Parameter Description
pPacket Pointer to an | P_PACKET structure.
pNunByt es Output length of the packet.

Return value

Start address of the raw data part of the IP packet.
On failure.

v

0
0

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

257 CHAPTER 4 Other IP Stack functions

4.8.28 IP_GetVersion()
Description

Returns the version of the stack.

Prototype

int |P_GetVersion(void);

Return value

Version number.

Additional information

The format of the version number: <Major><Minor><Minor><Revision><Revision> . For
example, the return value 10201 means version 1.02a.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

258

CHAPTER 4 Other IP Stack functions

4.8.29 IP_ICMP_AddRxHook()

Description

This function adds a callback that is executed upon receiving an ICMPv4 packet.

Prototype

voi d | P_I OMP_AddRxHook (| P_HOOK_ON_| CMPV4 * pHook,
| P_ON_I| CMPV4_FUNC * pf,

voi d * pUser Cont ext);
Parameters
Parameter Description

Pointer to static element of | P_HOOK_ON | CMPV4 that can be
pHook .

internally used by the stack.
pf Function pointer to the callback to execute.
pUser Cont ext User defined context top pass to the callback.
Example

static | P_HOOK_ON_| CMPV4 _Hook;

/*)\'*)\'*)\'*)\'*)\'*)\'*)\'***)\'*)\'*)\'*)\'*)\'*)\'*)\'*)\'*)\'*)\'*)\'*)\'***)\'*************************

Return val ue
= |P_.X : Packet has been handl ed (freed or reused).
== | P_OK_TRY_OTHER HANDLER Packet is untouched and stack shall try another

handl er.
*

*

* _cbhOnRx()

*

* Function description

* Cal | back executed when an | CWPv4 packet is received.

*

* Paraneters

* | Facel d . Zero-based interface index.

* pPacket : Packet that has been received.

* pUser Cont ext: User context given when addi ng the hook.
* p : Reserved for future extensions of this API.
*

*

*

*

* Additional infornmation
* The cal | back can renove its own hook using | P_I CVP_RenpoveRxHook()
*/
static int _cbOnRx(unsigned | Facel d,
| P_PACKET* pPacket,
voi d* pUser Cont ext
voi d* p) {
const U8* pbDat a;

| P_USE_PARA(| Facel d);
| P_USE_PARA(pUser Cont ext) ;
| P_USE_PARA(p);

pData = | P_Cet| PPacket | nf o(pPacket) ;
if(*pData == | P_I CVP_TYPE_ECHO REQUEST) ({
| P_Logf _Application("ICVMP echo request received! ");
}
if(*pData == | P_I CVP_TYPE_ECHO REPLY) {
| P_Logf _Application("ICWP echo reply received!");
}
Il
/1 Optional: Renpbve the hook once no | onger needed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

259 CHAPTER 4 Other IP Stack functions

I
| P_I CMP_RenpveRxHook(SEGGER _PTR2PTR(| P_HOOK_ON | CMPV4, pUser Context));
return | P_OK TRY_OTHER HANDLER, // Let the stack handl e the nessage.

}

/***

Mai nTask()

Function description
Main task executed by the RTOS to create further resources and
runni ng the nmain application.

E I I

/

voi d Mai nTask(void) {

IP_Init();

/1

/1 Add a hook that gets notified about received | CMP nessages.

/1 In this exanple the pointer to the hook itemitself is passed as
/'l user context to denonstrate the hook renoving itself.

/1

| P_I CMP_AddRxHook(& Hook, _cbOnRx, & Hook);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

260

CHAPTER 4 Other IP Stack functions

4.8.30 IP_ICMP_SetRxHook()

Description

Sets a hook function which will be called if target receives a ping packet.

Prototype
voi d | P_I CMP_Set RxHook (1 P_RX_HOOK * pf RxHook) ;
Parameters
Parameter Description
pf RxHook Pointer to the callback function of type | P_RX HOK.

Additional information

The return value of the callback function is relevant for the further processing of the ICMP
packet. A return value of 0 indicates that the stack has to process the packet after the
callback has returned. A return value of 1 indicates that the packet will be freed directly
after the callback has returned.

The callback is executed AFTER evaluating ICMP replies to our requests but BEFORE
answering to foreign requests.

Example

/*~k***~k*~k*~k*~k*~k*~k***~k*~k*~k*~k*~k*~k***~k***~k*~k*~k*~k*************************
*

* Local defines, configurable

*

EE R IR Sk S I I S R S I I S S I I S R S I S R S I I kR R R S I R I S I S R b I S I
*/

#def i ne HOST_TO _PI NG 0xC0A80101

/***

*

k3 _pf OnRxI CWP

*/

static int _pfOnRxl CMP(| P_PACKET * pPacket) {
const char * pData;

pData = | P_Get | PPacket | nf o(pPacket) ;
i f(*pData == 0x08) ({

printf("l1CVWP echo request received!'\n");
}

i f(*pData == 0x00) {
printf("lICVMP echo reply received!\n");
}

return 0; // G ve packet back to the stack for further processing.

}

/***

*

k3 Pi ngTask
*/
voi d Pi ngTask(void) {
int Seq;
char * s = "This is a | CW echo request!";

while (IP_IFacelsReady() == 0) {
CS_Del ay(50);

}

| P_I CMP_Set RxHook(_pf OnRxI CVP) ;

Seq = 1111;

while (1) {

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

261 CHAPTER 4 Other IP Stack functions

BSP_Toggl eLED(1) ;
CS_Del ay (200);
| P_SendPi ng(htonl (HOST_TO PING, s, strlen(s), Seq++);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

262

CHAPTER 4 Other IP Stack functions

4.8.31 IP_ICMP_RemoveRxHook()

Description

This function removes a hook function from the | P_HOOK _ON | CMPV4 list.

Prototype
voi d | P_I CMP_RenpveRxHook(| P_HOOK_ON_I| CMPV4 * pHook) ;
Parameters
Parameter Description
pHook Element of type | P_HOOK_ON | CMPV4 to remove from list.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

263

CHAPTER 4 Other IP Stack functions

4.8.32 IP_IFacelsReady()

Description

Checks if the interface is ready for usage. Ready for usage means that the target has a
physical link detected and a valid IP address. Operates on interface 0.

Prototype

int |P_IlFacel sReady(void);

Return value

1 Network interface is ready.
0 Network interface is not ready.

Additional information

The application has to check if the link is up before a packet will be sent and if the interface
is configured. If a DHCP server is used for configuring your target, this function has to be
called to assure that no application data will be sent before the target is ready.

Example

I

[l Wait until interface is ready.

I

while (IP_IFacelsReady() == 0) {
CS_Del ay(100);

}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

264

CHAPTER 4 Other IP Stack functions

4.8.33 |IP_IFacelsReadyEXx()

Description

Checks if the specified interface is ready for usage. Ready for usage means that the target
has a physical link detected and a valid IP address.

Prototype
int |P_IlFacel sReadyEx(unsi gned | Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface number.

Return value

1 Interface is ready.
0 Interface is not ready.

Additional information

The application has to check if the link is up before a packet will be sent and if the interface
is configured. If a DHCP server is used for configuring your target, this function has to be
called to assure that no application data will be sent before the target is ready.

Example

Il

/1 Wait until second interface is ready.

Il

while (1P_|I Facel sReadyEx(1) == 0) {
CS_Del ay(100);

}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

265 CHAPTER 4 Other IP Stack functions

4.8.34 |P_IPV4_ParselPv4Addr()

Description

Transforms an IPv4 address separated by dots into a byte stream (big endian byte order).

Prototype

int | P_IPV4_Parsel Pv4Addr (const char * sHost,
| P_ADDR * pl Pv4Addr);

Parameters
Parameter Description
sHost Pointer to the IPv4 address string to parse.
ol Pv4Addr Pointer to an IPv4 address structure to store the converted
byte stream.

Return value

0 OK.

-1 Error. Not every character in address are decimal values (0-9) or dots (.).
-2 Error. Too many characters for 8bit block.

-5 Error. Address string to long.

-6 Error. Too many dots.

-7 Error. Parameter invalid

Additional information

IPv4 addresses are represented in four 8-bit blocks. Each 8-bit block is converted to a 3-
digit decimal number and separated by dots. For example: 192.168.11.100.

Example

static void _ParseAndPrint| Pv4Addr (void) ({
| P_ADDR | Pv4Addr ;
char | PAddr [16] ;
i nt r;

r = | P_I PV4_Par sel Pv4Addr (" 192. 168. 11. 100", &l Pv4Addr);
if (r <0) {
| P_PANIC("Illegal |IP Address.");

}
| P_Printl PAddr (1 PAddr, htonl (1 Pv4Addr), sizeof (1 PAddr));
| P_Logf _Application("IPv4d addr.: %", |PAddr);
}
Output:

| Pv4 addr.: 192.168.11.100

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

266 CHAPTER 4 Other IP Stack functions

4.8.35 IP_IsAllZero()

Description

Checks if there are zeros at the given pointer.

Prototype
unsi gned | P_I sAl' | Zero(const U3 *p,
unsi gned NurmByt es) ;
Parameters
Parameter Description
p Pointer to location to check for zeros.
NunByt es Number of bytes to check to be zero.

Return value

0 NOT all bytes are 0x00 at the pointer.
1 All bytes are 0x00 at the pointer.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

267 CHAPTER 4 Other IP Stack functions

4.8.36 IP_IsExpired()

Description

Checks if the given system timestamp has already expired.

Prototype
unsi gned | P_I sExpired(U32 Tine);
Parameters
Parameter Description
Ti me System timestamp as used by OS abstraction layer.

Return value

1 Ti me has expired.
0 Ti me has not yet expired.
Example

U32 Ti nmeout ;

/1

/'l Get current systemtime [ns] and timeout in one second.
/1

Tinmeout = IP_OS GET_TIME() + 1000;
/1

/1 Wait until tinmeout expires.

/1

do {

CS Del ay(1);

} while (IP_IsExpired(Ti neout) == 0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

268

CHAPTER 4 Other IP Stack functions

4.8.37 IP_NI_ConfigLinkCheckMultiplier()

Description

Configures the multiplier of the period between interface link checks typically executed
each second.

Prototype

int | P_NI_ConfigLi nkCheckMul tiplier(unsigned |Faceld,
unsi gned Multiplier);

Parameters
Parameter Description
| Facel d Zero-based interface index.
Ml tiplier Mul ti plier of the link check period (default 1s).

Return value

=0 O.K.
0 Error/Not supported.

Additional information

The default period between link checks is one second which is fine for reacting on a link
change. For other interfaces like WiFi it might not be necessary to check for the link status
each second or it might even be worth reducing link checks to a minimum if this interferes
with packet transactions on the same interface like a single SPI.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

269

CHAPTER 4 Other IP Stack functions

4.8.38 IP_NI_ConfigUsePromiscuousMode()

Description

Configures if the driver tries to use its hardware precise and hash filters as available before
switching to promiscuous mode or if promiscuous mode will be used in any case.

Prototype

void | P_NI _ConfigUseProni scuoushMbde(unsi gned | Facel d,

unsi gned OnOFf);

Parameters
Parameter Description
| Facel d Zero-based interface index.
e 0: Driver will try to use its hardware filters (default).
OnCOf f
e 1: Driver will be using promiscuous mode.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

270 CHAPTER 4 Other IP Stack functions

4.8.39 IP_NI_GetAdminState()

Description

Retrieves the admin state of the given interface.

Prototype
int I P_Nl _Get Admi nSt at e(unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

0 Interface disabled.
1 Interface enabled.
-1 Invalid interface ID.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

271 CHAPTER 4 Other IP Stack functions

4.8.40 IP_NI_GetlFaceType()

Description

Retrieves a short textual description of the interface type.

Prototype
int IP_Nl_Getl FaceType(unsi gned | Facel d,
char * pBuffer,
u32 * pNunByt es) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
pBuf f er Pointer to the buffer where to store the string.
NUMBVt es Pointer to the size of the buffer at pBuf f er and where to
P Y store the length of the string (without termination).

Return value

=0 0.K.
0 Error.

Additional information

If the buffer is big enough this function will terminate the string in the buffer as well. The
length of the string is always stored at pNunmByt es.

Example

char ac[10]; // Should be big enough to hold all short interface descriptions.
U32 NunByt es;

I

/1l CGet the type of interface #0 .

I

NunmByt es = sizeof (ac);

| P_Nl _Get| FaceType(0, &ac[O0], &NunBytes);
printf("Interface #0 is of type \"%\"", &ac[O0]);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

272 CHAPTER 4 Other IP Stack functions

4.8.41 IP_NI_GetState()

Description

Returns the hardware state of the interface.

Prototype
int IP_NI_GetState(unsigned | Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

0 Interface is down
1 Interface is up
-1 Invalid interface ID

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

273 CHAPTER 4 Other IP Stack functions

4.8.42 IP_NI_SetAdminState()

Description

Sets the Adni nSt at e of the interface.

Prototype
void | P_Nl _Set Adni nSt at e(unsi gned | Facel d,
i nt Admi nSt ate);
Parameters
Parameter Description
| Facel d Zero-based interface index.
Admin state to set.
Admi nSt at e e 0: DOWN
e 1:UP

Additional information

For most interfaces like Ethernet, WiFi and virtual interfaces like VLAN the state is UP by
default. Connection oriented interfaces like PPP or PPPOE use the state for a connect request
and therefore start with state DOAN.

Setting an interface like Ethernet to DOMN will try to disable this interface to the best possible.
A software filter for interfaces with state DOM discards packets that can not be filtered
using other mechanisms.

e Best case: The Rx interrupt of the interface gets disabled, reducing the CPU load for
the disabled interface.

e Worst case: Only software filtering is applied. The CPU load for processing incoming
packets will remain like for an interface with state UP.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

274 CHAPTER 4 Other IP Stack functions

4.8.43 IP_NI_GetTxQueuelLen()
Description
Retrieves the current length of the Tx queue of an interface.

Prototype

int | P_N_Get TxQueueLen(unsigned | Facel d);

Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

=20 Current Tx queue length.
<0 Error.

Additional information
| P_SUPPORT_STATS | FACE or | P_SUPPORT_STATS needs to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

275 CHAPTER 4 Other IP Stack functions

4.8.44 1P_NI_PauseRx()

Description

Pauses the Rx handling of an interface by disabling it temporary. The Rx handling will be
automatically re-enabled after the specified pause time.

Prototype
int | P_NI_PauseRx(unsigned | Faceld,
u32 Pause) ;

Parameters

Parameter Description
| Facel d Zero-based interface index.
Pause Time to pause the Rx handling [ms].
Return value
=0 O.K.
<0 Error or disable Rx not supported by driver.

Additional information
Can be called from an interrupt context!

While most of the API is using an API lock that can not be used from an interrupt, this API
can be called from an interrupt context as this is the typical case when being flooded with
incoming packets. Calling this API from a task might not succeed anymore as the CPU is
held constantly busy by Rx.

Unlike | P_NI _PauseRxI nt () this routine disables the complete Rx logic of the driver which
will also prevent being kept busy processing received data from any hardware RxFIFO. By
disabling the Rx path completely the RxFIFO no longer is fed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

276

CHAPTER 4 Other IP Stack functions

4.8.45 IP_NI_PauseRxInt()

Description

Pauses the Rx interrupt of an interface by disabling it temporary. The Rx interrupt will be
automatically re-enabled after the specified pause time.

Prototype
int | P_NI_PauseRxl nt (unsigned | Faceld,
u32 Pause) ;

Parameters

Parameter Description
| Facel d Zero-based interface index.
Pause Time to pause the Rx interrupt [ms].
Return value
=0 O.K.
<0 Error or disable Rx interrupt not supported by driver.

Additional information
Can be called from an interrupt context!

While most of the API is using an API lock that can not be used from an interrupt, this API
can be called from an interrupt context as this is the typical case when being flooded with
incoming packets. Calling this API from a task might not succeed anymore as the CPU is
held constantly busy by Rx interrupts.

For plain anti-flooding measurements please use | P_Nl _PauseRx() .

Pausing the Rx interrupt of an interface can be used as countermeasure to flood situations.
It does not prevent the flood of packets being received at the interface itself. It will prevent
new Rx interrupts to occur for a certain period of time but will not abort already started
Rx handling from a previous interrupt. This means that if the flood keeps on feeding
the hardwares RxFIFO for example, it is possible that Rx handling will continue until the
hardware is able to read away all incoming data and return to an idle state.

Pausing the Rx interrupt alone but keeping the Rx logic in general enabled can be used
to continue receiving incoming data in a flood situation using the | P_RxTask while making
sure to give Rx a pause once the flooding stops for a moment.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

277 CHAPTER 4 Other IP Stack functions

4.8.46 IP_PrintIPAddr()

Description

Convert a 4-byte IP address to a dots-and-number string.

Prototype
int | P_PrintlPAddr(char * pBuffer,
u32 | PAddr,
int Buf f er Si ze) ;
Parameters
Parameter Description
pBuf f er Pointer to a buffer where to store the string.
| PAddr IPv4 addresse in host byte order.
. Size of buffer at pBuf f er . Should be at least 16 bytes to
Buf ferSi ze
store XXX.XXX.XXX.XXX .

Return value

>0 Length of string stored into the buffer without string termination character.
=0 Buffer is too small.

Additional information

| PAddr is given in host order. Example: 192.168.0.1 is 0xC0A80001 for big endian targets
0x0100A8C0 for little endian targets.

Example

void PrintlPAddr(void) {
U32 | PAddr ;
char ac[16];

| PAddr = 0xCO0A80801; // 1P address: 192.168.8.1

| P_Printl PAddr (ac, |PAddr, sizeof(ac));
printf("lP address: %\n", ac); // Qutput: |P address: 192.168.8.1

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

278 CHAPTER 4 Other IP Stack functions

4.8.47 IP_ResolveHost()

Description

Resolve a host hame string to its IP address by using a configured DNS server.

Prototype

int | P_Resol veHost (const char * sHost,
U32 * pl PAddr,

u32 ns) ;
Parameters
Parameter Description

sHost Host name string to resolve.

Pointer to where to store the resolved IP addr. in network
pl PAddr

order.
ns Timeout in ns to wait for the DNS server to answer.
Return value
=0 0.K., host name resolved.
<0 Error: Could not resolve host name.

Additional information

In contrast to the standard socket function get host bynane(), this function allows resolving
a host name in a thread safe way and should therefore be used whenever possible. The
retrieved IP address will be returned in network order so it can be directly used with the
BSD socket API.

When setting the ns (timeout) parameter, it should be taken into account that the
_DNSc_cbTi ner only runs every second and could thus cause the retry time to exceed
DNS_FI RST_RETRY by up to one second. ns should be set large enough to accomodate this.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

279

CHAPTER 4 Other IP Stack functions

4.8.48 IP_RemoveEtherTypeHook()

Description

This function removes a hook function for a previously registered Ethernet type.

Prototype
voi d | P_RenoveEt her TypeHook (| P_HOOK_ON_ETH TYPE * pHook);
Parameters
Parameter Description
pHook Element of type | P_ HOOK_ON _ETH TYPE to remove.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

280 CHAPTER 4 Other IP Stack functions

4.8.49 IP_RemoveLinkChangeHook()

Description

Removes a callback which was previously added via | P_AddLi nkChangeHook() .

Prototype
voi d | P_RenovelLi nkChangeHook(| P_HOOK_ON_LI NK_CHANGE * pHook);
Parameters
Parameter Description
pHook Management element of type | P_HOOK _ON LI NK_CHANGE.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

281 CHAPTER 4 Other IP Stack functions

4.8.50 IP_SendEtherPacket()

Description

Sends a previously allocated Ethernet packet.

Prototype
i nt | P_SendEt her Packet (unsi gned | Facel d,
| P_PACKET * pPacket,
u32 NunByt es) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
pPacket Previously allocated Ethernet packet to send.
NunByt es Number of bytes that have been stored in the packet buffer.

Return value

=0 0.K.
0 Error.

Additional information

The packet gets freed by the stack whether the return code is success or error. The packet
can not be reused by the application.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

282

CHAPTER 4

4.8.51 IP_SendPacket()

Description

Other IP Stack functions

Sends a user defined packet on the interface. The packet will not be modified by the stack.
| P_SendPacket () allocates a packet control block (I P_PACKET) and adds it to the out queue

of the interface.

Prototype
i nt |1 P_SendPacket (unsi gned | Face,
voi d * pDat a,
unsi gned NunmByt es) ;
Parameters
Parameter Description
| Face Zero-based interface index.
pDat a Pointer to user data to send.
NunByt es Length of data to send.
Return value
-1 Could not allocate a packet for sending.
0 Packet in out queue.
1 Interface can not send.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

283

CHAPTER 4 Other IP Stack functions

4.8.52 IP_SendPing()

Description

Sends a single ICMP echo request (“ping”) to the specified host. Function uses always
interface 0.

Prototype
int | P_SendPi ng(U32 FHost ,
char * pDat a,
unsi gned NurByt es,
Ul6 SegNun) ;
Parameters
Parameter Description
4-byte IPv4 address in network endian byte order of the
FHost
target.
pDat a Pointer to the ping data, NULL if do not care.
NunByt es Length of data to attach to ping request.
SeqNum Ping sequence number.
Return value
=0 ICMP echo request was successfully sent.

<0 Error

Additional information

If you call this function with activated logging, the ICMP reply or (in case of an error) the
error message will be sent to stdout. To enable the output of ICMP status messages, add
the message type | P_MI'YPE_| CVP to the log filter and the warn filter. Refer to Debugging
on page 1250 for detailed information about logging.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

284 CHAPTER 4 Other IP Stack functions

4.8.53 IP_SendPingCheckReply()

Description

Sends a single ICMP echo request (“ping”) to the specified host using the selected interface
and waits for the reply.

Prototype
i nt |1 P_SendPi ngCheckRepl y(U32 | Facel d,
u32 FHost ,
char * pDat a,
unsi gned NurByt es,
unsi gned ns);
Parameters
Parameter Description
| Facel d Zero-based interface index.
4-byte IPv4 address in network endian byte order of the
FHost
target.
pDat a Pointer to the ping data, NULL if do not care.
NunByt es Length of data to attach to ping request.
ns Number of s to wait for the reply.
Return value
=0 OK, ping sent and reply received.
= | P_ERR_TI MEDOUT Timeout, ping sent but no reply received.
<0 Error.

Additional information

If you call this function with activated logging, the ICMP reply or (in case of an error) the
error message will be sent to stdout. To enable the output of ICMP status messages, add
the message type | P_MI'YPE | CMVP to the log filter and the warn filter. Refer to Debugging
on page 1250 for detailed information about logging.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

285 CHAPTER 4 Other IP Stack functions

4.8.54 IP_SendPingEXx()

Description

Sends a single ICMP echo request (“ping”) to the specified host using the selected interface.

Prototype
int | P_SendPi ngEx(U32 | Facel d,
u32 FHost ,
char * pDat a,
unsi gned NurByt es,
Ul6 SeqNum ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
4-byte IPv4 address in network endian byte order of the
FHost
target.
pDat a Pointer to the ping data, NULL if do not care.
NunByt es Length of data to attach to ping request.
SeqNum Ping sequence number.

Return value

=0 OK
<0 Error

Additional information

If you call this function with activated logging, the ICMP reply or (in case of an error) the
error message will be sent to stdout. To enable the output of ICMP status messages, add
the message type | P_MI'YPE | CMVP to the log filter and the warn filter. Refer to Debugging
on page 1250 for detailed information about logging.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

286 CHAPTER 4 Other IP Stack functions

4.8.55 IP_SetlFaceConnectHook()

Description

Sets a hook for an interface that is executed when | P_Connect () is called.

Prototype
voi d | P_Set | FaceConnect Hook(unsi gned | Facel d,
i nt (*pf)(unsigned | Faceld));
Parameters
Parameter Description
| Facel d Zero-based interface index.
pf Hook that is called on | P_Connect () .

Additional information

Typically for a pure Ethernet interface this functionality is not needed. Typically it is
used with dial-up interfaces or interfaces that need more configurations to be set by the
application to work.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

287 CHAPTER 4 Other IP Stack functions

4.8.56 IP_SetlFaceDisconnectHook()

Description

Sets a hook for an interface that is executed when | P_Di sconnect () is called.

Prototype
voi d | P_Set | FaceDi sconnect Hook(unsi gned | Facel d,
i nt (*pf)(unsigned | Faceld));
Parameters
Parameter Description
| Facel d Zero-based interface index.
pf Hook that is called on | P_Di sconnect () .

Additional information

Typically for a pure Ethernet interface this functionality is not needed. Typically it is
used with dial-up interfaces or interfaces that need more configurations to be set by the
application to work.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

288

CHAPTER 4 Other IP Stack functions

4.8.57 IP_SetOnPacketFreeCallback()

Description
This function sets a callback to be executed once the packet has been freed.

Prototype

voi d | P_Set OnPacket FreeCal | back
(1 P_PACKET * pPacket,

voi d (*pf OnFreeCB) (I P_PACKET * pPacketCB , void * pContextCB),
voi d * pContext);
Parameters
Parameter Description
pPacket Pointer to the packet.
pf OnFr eeCB Callback that is notified on a packet free.
Cont ext Application context that will be passed to the callback once
P the packet gets freed.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

289

CHAPTER 4 Other IP Stack functions

4.8.58 IP_SetPacketToS()

Description

Sets the value of the ToS/DSCP byte in the IP header of a packet to be sent via the zero-
copy API.

Prototype
voi d | P_Set Packet ToS(| P_PACKET * pPacket,
us ToS) ;
Parameters
Parameter Description
pPacket Pointer to packet buffer.
ToS ToS byte to use in packet when being sent.

Additional information

The ToS (Type of Service) byte in the IPv4 header has been reused as DSCP (Differentiated
Services Code Point) byte with its values remaining somewhat compatible between both
use cases.

While the ToS field is only present for IPv4, the DSCP field is present in the same way for
IPv4 and IPv6 . If the user intends to explicitly set a ToS value, it is the users responsibility
to make sure that he is applying it to an IPv4 packet only.

A good starting point regarding the ToS/DSCP field and its value can be found at the
following location: https://en.wikipedia.org/wiki/Type_of service

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

https://en.wikipedia.org/wiki/Type_of_service

290

CHAPTER 4 Other IP Stack functions

4.8.59 IP_SetRxHook()

Description

Sets a hook function which will be called if target receives a packet.

Prototype
voi d | P_Set RxHook (| P_RX_HOOK * pf RxHook) ;
Parameters
Parameter Description
pf RxHook Pointer to the callback function of type | P_RX HOK.

Additional information

The return value of the callback function is relevant for the further processing of the packet.
A return value of 0 indicates that the stack has to process the packet after the callback
has returned. A return value of >0 indicates that the packet will be freed directly after the
callback has returned.

The prototype for the callback function is defined as follows:
typedef int (I P_RX_HOXK)(I P_PACKET * pPacket);

Example
Refer to | P_| CMP_Set RxHook on page 260 for an example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

291 CHAPTER 4 Other IP Stack functions

4.8.60 IP_SetTxHook()

Description

Sets a hook function which will be called if target transmits a packet.

Prototype
voi d | P_Set TxHook (| P_TX_HOOK * pf TxHook) ;
Parameters
Parameter Description
pf TxHook Pointer to the callback function of type | P_TX HOK.

Additional information
The prototype for the callback function is defined as follows:
typedef void (I P_TX HOK)(lI P_PACKET * pPacket);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

292 CHAPTER 4 Other IP Stack functions

4.8.61 IP_SetMicrosecondsCallback()

Description

Sets a callback that is used to get a timestamp in microseconds.

Prototype
voi d | P_Set M crosecondsCal | back(U64 (*pfGetTinme_us)());
Parameters

Parameter Description
pf Get Ti me_us The callback to set.

Additional information

Replaces a previously set | P_Set NanosecondsCal | back() with an internal conversion
routine. If your system can provide a nanosecond precise timestamp use
| P_Set NanosecondsCal | back() only.

Example

| P_Set M crosecondsCal | back(OS_Get Ti me_us64) ;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

293 CHAPTER 4 Other IP Stack functions

4.8.62 IP_SetNanosecondsCallback()

Description

Sets a callback that is used to get a timestamp in nanoseconds.

Prototype
voi d | P_Set NanosecondsCal | back(U64 (*pfGetTinme_ns)());
Parameters
Parameter Description
pf Get Ti me_ns The callback to set.

Additional information

Replaces previously set time callbacks of different time bases with an internal conversion
as required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

294 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9 Stack internal functions, variables and data-
structures

emNet internal functions, variables and data-structures are not explained here as they are
in no way required to use emNet. Your application should not rely on any of the internal
elements, as only the documented API functions are guaranteed to remain unchanged in
future versions of emNet. The following data-structures are meant for public usage together
with the documented API.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

295 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.1 Structure BSP_IP_INSTALL_ISR_PARA

Description

Used to pass parameters for installing an ISR handler between driver and hardware specific
callback.

Prototype

typedef struct {
void (*pflSR)(void);
i nt | SRl ndex;
int Prio;
} BSP_I P_I NSTALL_I SR_PARA;

Member Description

pf 1 SR Interrupt handler to register.

Interrupt index given by the driver as reference. The index might
differ from hardware to hardware.

Interrupt priority given by the driver as reference. Override this with
a priority that best fits your system.

| SRI ndex

Prio

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

296

CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.2 Structure BSP_IP_API

Description

Used to set callbacks for a driver to call hardware specific functions that can not be handled
in a generic way by the driver itself.

Prototype
typedef struct {
voi d (*pflnit) (unsi gned | Facel d);
voi d (*pfDelnit) (unsi gned | Facel d);
voi d
(*pflnstall 1 SR) (unsigned | Faceld, BSP_I P_I NSTALL_| SR PARA* pPara);
unsi gned (*pf Get M i Mbde) (unsigned | Facel d);
unsi gned | ong (*pf Get Et hC ock) (voi d);
} BSP_IP_API;
Member Description
pflnit Initializes port pins and clocks for Ethernet. Can be NULL.
pf Del ni t De-initializes port pins and clocks for Ethernet. Can be NULL.

Installs the driver interrupt handler. Can be NULL. For further

pflnstal I 1 SR |information regarding BSP_I| P_I NSTALL_| SR _PARA please refer to

Structure BSP_I P_I NSTALL_| SR _PARA on page 295.

pf Get M i Mode

Returns the MII mode that the pins have been configured for (0: MII,
1: RMII). Can be NULL.

pf Get Et hCl ock

Returns the clock frequency [Hz] used by the Ethernet peripheral for
auto-configuration of internal parameters. Can be NULL.

Additional information

For further information about how this structure is used please refer to | P_BSP_Set APl on
page 97.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

297

CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.3 Structure SEGGER_CACHE_CONFIG

Description

Used to pass cache configuration and callback function pointers to the stack.

Prototype

typedef struct {

int CachelLineSi ze;

voi d (*pf DVB)
voi d (*pfdC ean)
void (*pflnvali

(void);
(void *p, unsigned NunBytes);
date) (void *p, unsigned NunBytes);

} SEGGER CACHE_CONFI G

Member

Description

CachelLi neSi ze

Length of one cache line of the CPU.

= 0: No Cache.

> 0: Cache line size in bytes.

Most Systems such as ARM9 use a 32 bytes cache line size.

Pointer to a callback function that executes a DMB (Data Memory

pf DVB Barrier) instruction to make sure all memory operations are
completed. Can be NULL.
of O ean Pointer to a callback function that executes a clean operation on

cached memory. Can be NULL.

pfl nval i date

Pointer to a callback function that executes a clean operation on
cached memory. Can be NULL.

Additional information

For further information about how this structure is used please refer to

| P_CACHE_Set Conf

i g on page 108.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

298

4.9.4

Description

IP_STATS_IFACE

CHAPTER 4 Stack internal functions, variables and data-

structures

Used to access the whole structure that can be accessed individually using the | P_STATS *
functions. Primary usage for these information is utilizing them for SNMP statistics,
therefore their SNMP usage is explained.

Prototype

typedef struct {
u32
u32
u32
u32
u32
u32
u32
u32
u32
u32

RxByt esCnt ;
RxUni cast Cnt ;
RxNot Uni cast Cnt ;
RxDi scardCnt ;
RXErr Cnt ;
RxUnknownPr ot oCnt ;
TxByt esCnt ;
TxUni cast Cnt ;
TxNot Uni cast Cnt ;
U32 TxDi scardCnt;
U32 TxErrCnt;
} | P_STATS | FACE;

Last Li nkSt at eChange;

Member Description (SNMP usage)
Last Li nkSt at eChange iNll\//ll;:ogLsaesctg:dasngﬁ‘c[ligﬁl\cla'l\l/'lilgkesg.oé\lhe.eds to be converted into
RxByt esCnt SNMP: ifInOctets [Counter].
RxUni cast Cnt SNMP: ifInUcastPkts [Counter].
RxNot Uni cast Cnt SNMP: ifInNUcastPkts [Counter].
RxDi scar dCnt SNMP: ifInDiscards [Counter].
RXEr r Cnt SNMP: ifInErrors [Counter].
RxUnknownPr ot oCnt SNMP: ifInUnknownProtos [Counter].
TxByt esCnt SNMP: ifOutOctets [Counter].
TxUni cast Cnt SNMP: ifOutUcastPkts [Counter].
TxNot Uni cast Cnt SNMP: ifOutNUcastPkts [Counter].
TxDi scar dCnt SNMP: ifOutDiscards [Counter].
TXErr Cnt SNMP: ifOutErrors [Counter].

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

299

CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.5 IP_HOOK_ON_IF_ERROR

Description

Callback executed for an error during interface initialization.

Type definition

typedef void (I P_HOOK ON | F_ERROR) (1 P_DRI VER | NTERFACE_ERRCR i ni t,

int | Facel d,
i nt Errcode) ;
Parameters
Parameter Description
Gives information about which i ni t failed.
e init = 1P _DRI VER | NTERFACE_| NI T_ERROR: Error during
init driverinit.
e init = |P_DRIVER | NTERFACE PHY ERROR: Error during
PHY Init.
| Facel d Number of interface that failed.
Err Code Error Code.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

300

CHAPTER 4 Stack internal functions, variables and data-
structures

49.6 IP_ON_IFACE_SELECT_INFO

Description

Provides information about an internal interface selection for an operation (typically sending
without previous receive), as well as to propose an interface.

Type definition

typedef struct {

i nt | Facel d;

const U32 * pLAddr V4;
const U32 * pFAddr V4;
const | PV6_ADDR * pLAddrV6;
const | PV6_ADDR * pFAddrV6;

us Fl ags;
} I P_ON_| FACE_SELECT_ | NFO

Structure members

Member Description

Interface as proposed by internal selection. -1 if no suitable

| Facel d interface was found.

Pointer to local IPv4 address. NULL if not used. Value is in

pLAddr V4 network endianness (big endian).
FAddr Va Pointer to foreign IPv4 address. NULL if not used. Value is in
P network endianness (big endian).
pLAddr V6 Pointer to local IPv6 address. NULL if not used.
pFAddr V6 Pointer to foreign IPv6 address. NULL if not used.
ORR-ed combination of | P_I FACE_SELECT_FLAG * :
e None : Looking for a unicast interface.
Fl ags e | P_ON I FACE_SELECT_FLAG BROADCAST: Looking for an

interface that is capable of broadcasting.
e | P_ON_IFACE _SELECT_FLAG MJULTI CAST: Looking for an

interface that is capable of multicast.

Additional information

Most parameters are presented as pointers to the actual internal value. If a parameter/
pointer is NULL, this means that this parameter was not involved in selecting the proposed
interface.

If | Facel d is -1, this means no interface has been selected by the internal procedure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

301 CHAPTER 4 Stack internal functions, variables and data-
structures

4.9.7 IP_ON_IFACE_SELECT_FUNC

Description

Callback executed for an internal interface selection. The proposed interface selected
internally can be overridden.

Type definition

typedef int (1P_ON_|I FACE_SELECT_FUNC) (i nt PFani |y,
| P_ON_| FACE_SELECT_I NFO * plnfo);
Parameters
Parameter Description
PFami |y Protocol family (at the moment only PF_I NET or PF_| NET6).
Further information of type | P_ON_I FACE_SELECT_I NFO
Info about the interface selection parameters as well as the
P proposed interface, selected internally based upon these
parameters.
Return value
=-1 No suitable interface.
>0 Interface index to use.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

302 CHAPTER 4 Stack internal functions, variables and data-

structures
49.8 IP_ON_ICMPV4 FUNC
Description
Callback executed when an ICMPv4 packet is received.
Type definition
typedef int (1P_ON_I CMPV4_FUNC) (unsi gned | Facel d,
| P_PACKET * pPacket,
voi d * pUser Cont ext,
voi d * p);
Parameters
Parameter Description
| Facel d Zero-based interface index.
Packet Packet that has been received. pPacket ->pDat a points to
P the IPv4 header.
pUser Cont ext User context given when adding the hook.
p Reserved for future extensions of this API.

Return value

P K Packet has been handled (freed or reused).
| P_OK_TRY_OTHER_HANDLER Packet is untouched and stack shall try another handler.

Additional information

The callback can remove its own hook using | P_I CVMP_RenpveRxHook() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

303

CHAPTER 4 Stack internal functions, variables and data-
structures

499 IP_MEM_POOL_INFO

Description
Provides information about a memory pool managed by the stack.
Type definition

typedef struct {
PTR_ADDR BaseAddr;

u32 Si ze;
u32 Free;
u32 MaxFr eeChunk;

} | P_VEM POOL_I NFO,

Structure members

Member Description
BaseAddr Base address of the memory pool.
Si ze Total number of bytes managed for this pool.
Free Number of bytes available for allocation from this pool.
Max Fr eeChunk Biggest chunk available for allocation.

Additional information

Numbers such as free space and maximum chunk size that can be allocated vary by a couple
of bytes with values returned being higher than what can be successfully allocated. This
is due to internal overhead and alignments that are calculated during allocation processes
that are not calculated when retrieving this information about a pool and its free resources.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 5

Socket interface

The emNet socket API is almost compatible to the Berkeley socket interface. The Berkeley
socket interface is the de facto standard for socket communication. emNet specific functions

allow an easier or even extended usage of some socket operations. All API functions are
described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

305

5.1 UDP Socket Calls

CHAPTER 5

UDP Socket Calls

The following figure shows a typical UDP client-server application and the BSP calls used.
The client does not establish a connection with the server. Instead, the client simply sends
datagrams to the server using sendto(), which contains the address of the server as
a parameter. The server calls recvfrom(), which waits until data arrives from a client
(assuming the socket has been opened in 'blocking’” mode). recvfron() returns enough
information about the client to allow the server to send it a response.

More
Requests

emNet User Guide & Reference Manual

UDP Client

socket()

Y

Y

sendto()

Data (Request to Server)

UDP Server

socket()

bi

nd()

Y

recvirom() <

Block until datagram
Is received

v

recvirom()

Block until datagram
1s received

A

Data (Reply to Client)

L. |

ra

Service More
Requests

Process the request
from the client

Done

close()

sendto()

© 2010-2025 SEGGER Microcontroller GmbH

306 CHAPTER 5 TCP Socket Calls

5.2 TCP Socket Calls

The following figure shows a typical TCP client-server application and the BSD calls used.
You would typically start the server first and then, sometime later, start the client which
connects to the server. The client sends requests to the server, the server processes the
request and then sends back a reply to the client. This continues until the client closes its
end of the connection. Closing the client causes the client to send a special notification to
the server. The server then closes its end of the connection and, either terminates, or waits
for a new client connection.

TCP Client TCP Server
socket() socket()
A4
bind()

v

listen()
Server listens for
Block until we get a ! other connections

connection from a client |
1

New socket created to
v handle the connection

v Establish connection accept()
(TCP three-way handshaking)
connect() < >
Y Y
Data (Request to Server)
> send() » recvfrom() <
Block until we receive data
Y Service
recv() More
Requests
More Block until we receive data Process the request
Requests from the client
Data (Reply to Client)
< sendto()
Done
Y
close() » recv()
Y
close()

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

307

CHAPTER 5

5.3 APIfunctions

The table below lists the available socket API functions.

API functions

Function

Description

Generic socket interface functions

accept ()

Accepts an incoming attempt on a socket.

bi nd()

Assigns a name (port) to an unnamed
socket.

cl osesocket ()

Closes a socket.

connect ()

Establishes a connection to a socket.

get host bynane()

Resolve a host name into an IP address.

get peer nane()

Fills the passed structure sockaddr with
the IP addressing information of the
connected host.

get socknane()

Returns the current address to which the
socket is bound in the buffer pointed to by
pAddr .

get sockopt ()

Returns the options associated with a
socket.

listen() Prepares the socket to accept connections.
recv() Receives data from a connected socket.
Receives a datagram and stores the source
recvfron() address.
sel ect () Provides a UNIX-like socket sel ect () call.
send() Hands data to the stack in order to send it
to a connected socket.
Hands data to the stack in order to send it
sendt o()

to a specified address on a socket.

set sockopt ()

Configures some options for the socket.

shut down()

Stops specific activities on a socket.

socket ()

Creates a socket.

emNet specific socket interface functions

| P_RAW AddPacket ToSocket ()

Adds a packet and its data to a RAW
socket (buffer).

| P_SOCKET_Abort Read()

Aborts a blocking recv(), recvfrom() and
its variations or sel ect () call on a socket.

| P_SOCKET _AddGet Set Opt Hook()

This function adds a callback that gets
executed when the application uses
get sockopt () /set sockopt () with the
registered option.

| P_SOCKET_Cl oseAl'l ()

Closes all socket handles that are open.

| P_SOCKET_Confi gSel ect Mul tiplicator()

Configures the multiplicator for the
timeout parameter of sel ect ().

| P_SOCKET_Get Addr Fan()

Returns the IP version of a socket (IPv4 or
IPV6).

| P_SOCKET_Get Er r or Code()

Returns the last error reported on a
socket.

| P_SOCKET_Get Local Port ()

Returns the local port of a socket.

| P_SOCKET_Get NumRxByt es()

Returns the number of received bytes.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

308

CHAPTER 5 API functions

Function

Description

| P_SOCKET_Set Def aul t Opti ons()

Sets the socket options enabled by default.

| P_SOCKET_Set Li mit ()

Sets the maximum number of allowed
sockets.

| P_SOCKET_Set Li nger ()

Activates | i nger.

| P_SOCKET_Set RxTi meout ()

Sets the rx timeout.

| P_SOCK recvfrom.info()

Receives a datagram and stores the source
address and additional information as
requested.

| P_SOCK recvfromts()

Receives a datagram and stores the source
address and timestamp.

| P_TCP_Accept ()

Registers a callback that will be executed
upon a new client.

Set management functions

| P_FD CLR() Removes a socket from a set.

| P_FD SET() Adds a socket to a set.

| P_FD | SSET() Checks if a socket is part of a set.

Helper macros

nt ohl Converts a unsigned long value from
network to host byte order.

ht onl Converts a unsigned long value from host
byte order to network byte order.

ht ons Converts a unsigned short value from host
byte order to network byte order.
Converts a unsigned short value from

nt ohs

network to host byte order.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

309

CHAPTER 5 API functions

5.3.1 accept()

Description

Accepts an incoming attempt on a socket.

Prototype
int accept(int Socket ,
struct sockaddr *pSockAddr,
int * pAddrLen);
Parameters
Parameter Description
Socket Socket handle.
An optional pointer to a buffer where the address of the
SockAddr connecting entity is stored. The format of the address
P depends on the defined address family which was defined
when the socket was created.
As input an optional pointer to a variable with the maximum
length of socket address that can be stored. Aa output
Addr Len an optional pointer to an integer where the length of the
P received address is stored. Just like the format of the
address, the length of the address depends on the defined
address family.

Return value

0 Socket handle of the socket on which the actual connection is made.
-1 Error.

v

Additional information

This call is used with connection-based socket types, currently with SOCK_STREAM. Refer to
socket () for more information about the different socket types.

Before calling accept () , the used socket Socket has to be bound to an address with
bi nd() and should be listening for connections after calling | i sten() . accept () extracts
the first connection on the queue of pending connections, creates a new socket with the
same properties of Socket and allocates a new file descriptor for the socket. If no pending
connections are present on the queue, and the socket is not marked as non-blocking,
accept () blocks the caller until a connection is present. If the socket is marked non-blocking
and no pending connections are present on the queue, accept () returns and reports an
error. The accepted socket is used to read and write data to and from the socket which is
connected to this one; it is not used to accept more connections. The original socket Socket
remains open for accepting further connections.

The argument pSockAddr is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The exact format of the pSockAddr
parameter is determined by the domain in which the communication is occurring. The
pAddr Len is a value-result parameter. It should initially contain the amount of space pointed
to by pSockAddr .

Example
The following sample can be used to retrieve information about the accepted client:
struct sockaddr _in Cient;

struct sockaddr _in Addr;
i nt AddrLen;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

310 CHAPTER 5 API functions

Addr Len = si zeof (Addr);

if ((hSock = accept(hSockListen, (struct sockaddr*)&Addr, &AddrLen)) ==
SOCKET_ERROR) {
conti nue; /1l Error

}

For example the peer IP address can then be retrieved in network endianness from
Addr . sin_addr.s_addr.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

311 CHAPTER 5 API functions

5.3.2 bind()

Description

Assigns a name (port) to an unnamed socket.

Prototype

int bind(int Socket ,
struct sockaddr *pSockAddr,
int Addr Len) ;

Parameters
Parameter Description

Socket Socket handle.

A pointer to a buffer where the address of the connecting
SockAddr entity is stored. The format of the address depends on the

P defined address family which was defined when the socket
was created.

Addr Len The length of the address.

Return value

0 Success.
-1 Error.

Additional information

When a socket is created with socket () it exists in @ name space (address family) but has
no name assigned. bi nd() is used on an unconnected socket before subsequent calls to
the connect () orlisten() functions. bi nd() assigns the name pointed to by pSockAddr
to the socket.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

312

CHAPTER 5

5.3.3 closesocket()

Description

Closes a socket.

Prototype

i nt cl osesocket (int Socket);

Parameters

API functions

Parameter

Description

Socket Socket handle.

Return value

0 On success.
-1 On failure.

Additional information

cl osesocket () closes a connection on the socket associated with Socket and the socket
descriptor associated with Socket will be returned to the free socket descriptor pool. Once
a socket is closed, no further socket calls should be made with it.

If the socket promises reliable delivery of data and SO LI NGER is set, the system will
block the caller on the cl osesocket () attempt until it is able to transmit the data or until
it decides it is unable to deliver the information (a timeout period, termed the |i nger
interval, is specified in the set sockopt () call when SO LI NGER is requested). If SO LI NGER
is disabled and a cl osesocket () is issued, the system will process the close in a manner
that allows the caller to continue as quickly as possible. If SO LI NGER is enabled with a
timeout period of ‘0’ and a cl osesocket () is issued, the system will perform a hard close.

W apper for closesocket() with linger enabled to verify a gracefull

Example
/***
*

* _Cl oseSocket Graceful | y()
*

* Function description

*

* di sconnect .

*

/

static int _C oseSocket Gracefully(long pConnectionlnfo) {

struct |inger Linger;
Li nger.| _onoff = 1;
Li nger. | _linger = 1;

/1 Enable linger for this socket.
/] Linger timeout in seconds

set sockopt (hSocket, SOL_SOCKET, SO LI NCGER, &Linger, sizeof(Linger));

return cl osesocket (hSocket);

W apper for closesocket() with linger option enabled to performa hard

/*~k***~k*~k*~k*~k*~k*~k***~k*~k*~k*~k*~k*~k***~k***~k*~k*~k*~k*************************
*

* _Cl oseSocket Har d()

*

* Function description

*

cl ose.

*/

static int _Cl oseSocketHard(long hSocket) {
struct |inger Linger;
Li nger.| _onoff = 1;
Li nger. | _linger = 0;

/1 Enable linger for this socket.
/1 Linger timeout in seconds

set sockopt (hSocket, SOL_SOCKET, SO LI NCGER, &Linger, sizeof(Linger));

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

313 CHAPTER 5 API functions

return cl osesocket (hSocket);

}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

314

CHAPTER 5 API functions

5.3.4 connect()

Description

Establishes a connection to a socket.

Prototype
i nt connect (int Socket ,
struct sockaddr *pSockAddr,
i nt Addr Len) ;
Parameters
Parameter Description
Socket Socket handle.
A pointer to a buffer where the address of the connecting
entity is stored. The format of the address depends on the
pSockAddr

defined address family which was defined when the socket
was created.

A pointer to an integer where the length of the received
Addr Len address is stored. Just like the format of the address, the
length of the address depends on the defined address family.

Return value

0 On success.
-1 On failure.

Additional information

If Socket is of type SOCK _DGRAM or SOCK_RAW then this call specifies the peer with which
the socket is to be associated. pAddr defines the address to which datagrams are sent and
the only address from which datagrams are received. To enable RAW socket support in the
IP stack it is madatory to call | P_RAW Add() during initialization of the stack.

If Socket is of type SOCK _STREAM , then this call attempts to make a connection to
another socket. The other socket is specified by pSockAddr which is an address in the
communications space of the socket. Each communications space interprets the pSockAddr
parameter in its own way.

Generally, stream sockets may successfully connect () only once; datagram sockets may
use connect () multiple times to change their association. Datagram sockets may dissolve
the association by connecting to an invalid address, such as a NULL address.

If a connect is in progress and the socket is blocking, the connect call waits until connected
or an error to happen. If the socket is non-blocking (refer to set sockopt () for more
information), 0 is returned.

You can use the get sockopt () function to determine the status of the connect attempt.

The timeout for a connect attempt can be configured via the Init parameter of
| P_TCP_Set ConnKeepal i veOpt () .

Example
#defi ne SERVER_PORT 1234
#defi ne SERVER_| P_ADDR 0xCDA80101 /1 192.168.1.1

/***

*

* _TCPd i ent Task
*
*

Functi on description

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

315 CHAPTER 5 API functions

* Creates a connection to a given |IP address, TCP port.
*/
static void _TCPC i ent Task(void) {
i nt TCPSockl D
struct sockaddr_in Server Addr;
i nt Connect St at us;
I
/1 Wait until link is up. This can take 2-3 seconds if PHY has been reset.
I

while (I P_GetCurrentlLinkSpeed() == 0) {
0S_Del ay(100);

}
while(l) {
TCPSockl D = socket (AF_I NET, SOCK_STREAM 0); // Open socket
if (TCPSocklD < 0) { /'l Error, Could not get socket
while (1) {
CS_Del ay(20);
}
} else {
I
/'l Connect to server
I
ServerAddr.sin_famly = AF_| NET,;
Server Addr. si n_port = ht ons(SERVER_PORT) ;
Server Addr. si n_addr.s_addr = htonl (SERVER_| P_ADDR) ;
Connect St at us = connect (TCPSockl D,
(struct sockaddr *)&Server Addr,
si zeof (struct sockaddr_in));
if (ConnectStatus == 0) {
I
/1 Do sonething...
I
}
}
cl osesocket (TCPSockl D) ;
CS_Del ay(50);
}

}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

316 CHAPTER 5 API functions

5.3.5 gethostbyname()

Description

Resolve a host name into an IP address.

Prototype
get host byname(const char * sNane);
Parameters
Parameter Description
sNane Host name to resolve.

Return value

OK: Pointer to a host ent structure Error: NULL if not successful.

Additional information

The function is called with a string containing the host name to be resolved as a fully-
qualified domain name (for example, myhost.mydomain.com).

Example

static void _DNSClient() {
struct hostent *pHostEnt;
char **ps;
char **ppAddr;
Il
[/ Wait until link is up.
Il
while (IP_IFacelsReady() == 0) {
CS_Del ay(100);
}
while(1) {
pHost Ent = get host byname(" ww. segger. contl');
if (pHostEnt == NULL) {
printf("Could not resolve host addr.\n");
br eak;

printf("h_name: %\n", pHostEnt->h_nane);
Il
/1 Show al i ases
Il
ps = pHost Ent->h_al i ases;
for () {

char * s;

S = *ps++;

if (s == NULL) {

br eak;

printf("h_aliases: %\n", s);
}
/1
/1 Show | P addresses
/1
ppAddr = pHost Ent->h_addr _|i st;
for (5;) {

U32 | PAddr;

char * pAddr;

char ac[16];

pAddr = *ppAddr ++;

if (pAddr == NULL) {

br eak;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

317 CHAPTER 5 API functions

}

| PAddr = *(U32*) pAddr;

| P_PrintlPAddr(ac, |PAddr, sizeof(ac));
printf("IP Addr: %\n", ac);

Warning

get host bynane() is not thread safe and should therefore only be used where

absolutely necessary. If possible use the thread safe function | P_Resol veHost ()
instead.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

318

CHAPTER 5 API functions

5.3.6 getpeername()

Description

Fills the passed structure sockaddr with the IP addressing information of the connected
host.

Prototype
i nt getpeernane(int Socket ,
struct sockaddr *pSockAddr,
i nt * pAddrLen);
Parameters
Parameter Description
Socket Socket handle.
SockAddr A pointer to a structure of type sockaddr in which the IP
P address information of the connected host should be stored.
pAddr Len I\b/ljf)ff.ersae of address to return without exceeding the output

Return value

0 Success.
-1 Error.

Additional information

Refer to sockaddr on page 357 for detailed information about the structure sockaddr .

Example

The following sample can be used to retrieve information about the peer host from an
existing connection:

struct sockaddr _in Cient;
int i;

if ((hSock = accept (hSockLi sten, &Addr, &AddrLen)) == SOCKET_ERROR) ({
conti nue; /1l Error

}
i = sizeof (Client);
get peer nane(hSock, (struct sockaddr*)&Cient, &);

For example the peer IP address can then be retrieved in network endianness from
Client.sin_addr.s_addr.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

319 CHAPTER 5 API functions

5.3.7 getsockname()

Description
Returns the current address to which the socket is bound in the buffer pointed to by pAddr.

Prototype
int getsocknane(int Socket ,
struct sockaddr *pSockAddr,
i nt * pAddrLen);
Parameters
Parameter Description
Socket Socket handle.
SockAddr A pointer to a structure of type sockaddr in which the IP
P address information of the connected host should be stored.
pAddr Len Eluaf);éflze of address to return without exceeding the output

Return value

0 Success.
-1 Error.

Additional information

Refer to sockaddr on page 357 for detailed information about the structure sockaddr .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

320 CHAPTER 5 API functions

5.3.8 getsockopt()

Description

Returns the options associated with a socket.

Prototype
i nt getsockopt (int Socket
i nt Level ,
i nt Opti on,
void * pval,
int Val Len);
Parameters
Parameter Description
Socket Socket handle.
Level Compatibility parameter for set sockopt () and
get sockopt (). Use symbol SOL_ SOCKET.
Option The socket option which should be retrieved.
A pointer to the buffer in which the value of the requested
pVal .
option should be stored.
Val Len The size of the data buffer.

Return value

0 Success.
-1 Error.

Valid values for parameter Option

Value

Description

SO DONTROUTE

Indicates that outgoing messages must bypass the standard
routing facilities.

SO_KEEPALI VE

Indicates that the periodic transmission of messages on a
connected socket is enabled. If the connected party fails to
respond to these messages, the connection is considered
broken. For keepalive behavior configuration please refer to
| P_TCP_Set ConnKeepal i veOpt () .

SO LI NGER

Controls the action taken when unsent messages are queued
on a socket and a cl osesocket () is performed. Refer to

cl osesocket () for detailed information about the | i nger
option.

SO_NCSLOASTART

Determines if suppressing slow start on this socket is
enabled. This option stores an integer value which will
contain a non-zero value to suppress slow start or a 0 value
to let the socket slow start.

SO_BROADCAST

Determines if sending broadcasts for UDP communication is
permitted.

SO_REUSEADDR

Determines if reusing local addresses is allowed when using
bi nd() on a socket. This option stores an integer which will
contain a non-zero value to allow reusing addresses or a 0
value to disallow reusing addresses.

SO_RCVTI MEO

emNet User Guide & Reference Manual

Determines the timeout for recv() in ms. A return value of
0 indicates that no timeout is set. This changes the behavior
of recv().recv() is by default a blocking function which

© 2010-2025 SEGGER Microcontroller GmbH

321 CHAPTER 5 API functions
Value Description

only returns if data has been received. If a timeout is set
recv() will return in case of data reception or timeout.
Determines the timeout for send() in ms. A return value of
0 indicates that no timeout is set. This changes the behavior

SO _SNDTI MEO of send() . send() is by default a blocking function which
only returns if data has been received. If a timeout is set
send() will return in case of data reception or timeout.
Determines sockets blocking status. This option stores an

SO _NONBLOCK integer which will contain a non-zero value to set non-
blocking IO or a 0 value to reset non-blocking IO.

SO _SNDBUF Determines the TX buffer size in bytes.

SO _RCVBUF Determines the RX buffer size in bytes.

SO_NMAXMEG Determines the Maximum TCP segment size.
Determines if the IP header has to be included by the user

| P_HDRI NCL for a RAW socket or if the IP header is generated by the
stack.
Determines if fragmentation of large packets is permitted.

| P DONTERAG This option stores an integer vaIue_ which will contain a non-

- zero value to suppress fragmentation or a 0 value to allow

fragmentation.

| P_TOS Determines the IPv4 type of service.

| P_TTL Determines the IPv4 time to live.

| P_MULTI CAST_TTL Determines the IPv4 multicast time to live.

TCP_MAXSEG Determines the maximum segment size in bytes.

TCP_ACKDELAYTI ME

Determines the time for delayed acks in milliseconds.

TCP_NOACKDELAY

Determines if delayed ACKs are suppressed.

TCP_NODELAY

Determines if Nagle’s Algorithm is disabled. This option
stores an integer value which will contain a non-zero value
to disable Nagle’s Algorithm or a 0 value to enable Nagle’s
Algorithm.

SO_BI NDTCDEVI CE

Allows to force a socket to use a particular interface for
incoming and outgoing traffic. Works for UDP and TCP, IPv4
and IPv6. The Opt parameter should be set to the desired
interface’s Id as returned by | P_AddEt her I nterface() . This
feature can be used for cases where the network stack can
not automatically determine through which interface data
should be sent.

Read-Only

Stores the latest socket error in pVal and clears the error in

SO_ERROR the socket structure.
SO_MYADDR Stores the IP address of the used interface in pVal .
SO TYPE Determines the socket type. For valid socket types refer to
SO TXDATA Stores the amount of data currently in the TX buffer in

- bytes.
SO RXDATA Stores the amount of data currently in the RX buffer in

- bytes.

Write-Only

SO NBI O Sets socket non-blocking status. The specified value will be

ignored.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

322 CHAPTER 5 API functions

Value Description
Sets socket blocking status. The specified value will be
SO BI O :
- ignored.
Sets zero-copy callback routine. Refer to TCP zero-copy
SO_CALLBACK interface on page 364 for detailed information.
| PV6_UNI CAST_HOPS Set the unicast hop limit for the socket.
| PV6_JO N _GROUP Used to join a multicast group on a specified interface.
| PV6_LEAVE GROUP Used to leave a multicast group on a specified interface.

Additional information

get sockopt () retrieves the current value for a socket option associated with a socket of
any type, in any state, and stores the result in pVval . Options can exist at multiple protocol
levels, but they are always present at the uppermost “socket” level. Options affect socket
operations, such as the packet routing.

The value associated with the selected option is returned in the buffer pVal . The integer
pointed to by Val Len should originally contain the size of this buffer; on return, it will be set
to the size of the value returned. For SO LI NGER, this will be the size of a LINGER structure.
For most other options, it will be the size of an integer.

The application is responsible for allocating any memory space pointed to directly or
indirectly by any of the parameters it specified. If the option was never set with
set sockopt (), then get sockopt () returns the default value for the option.

The option SO ERRCR returns 0 or the number of the socket error and clears the socket
error. The following table lists the socket errors.

Symbolic name Value Description
| P_ERR SEND PENDI NG 1 Packet to send is not sent yet.
P ERR M SC 1 M|sc<_al_laneous errors that do not have a
- = specific error code.
| P_ERR _TI MEDOUT -2 Operation timed out.
| P_ERR | SCONN -3 Socket is already connected.
| P_ERR OP_NOT_SUPP 4 Operation not supported for selected
socket.
| P_ERR_CONN_ABORTED -5 Connection was aborted.
Socket is in non-blocking state and the
| P_ERR WOULD BLOCK -6 current operation would block the socket if
not in non-blocking state.
| P_ERR CONN_REFUSED -7 Connection refused by peer.
| P_ERR CONN_RESET -8 Connection has been reset.
| P_ERR_NOT_CONN -9 Socket is not connected.
| P_ERR_ALREADY -10 Socket already is in the requested state.
| P_ERR I N_VAL -11 Passed value for configuration is not valid.
| P_ERR MSG SI ZE -12 Message is too big to send.
| P ERR Pl PE 13 Socket is not in the correct state for this
- - operation.
| P_ERR DEST ADDR REQ -14 Destination addr. has not been specified.
Connection has been closed as soon as
| P_ERR SHUTDOWN -15 all data has been received upon a FIN
request.
| P ERR NO PROTO OPT 16 Unknown socket option for set sockopt ()
- == - or get sockopt ().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

323

CHAPTER 5

Symbolic name

Value

Description

No known path to send to the specified

| P_ERR_ADDR_NOT_AVAI L -19
addr.
Socket already has a connection to this
| P_ERR ADDR | N _USE -20 addr. and port or is already bound to this
addr.
| P_ERR | N PROGRESS -22 Operation is still in progress.
| P_ERR NO BUF -23 No internal buffer was available.
| P ERR NOT SOCK 24 Socket has not been opened or has
- == already been closed
| P_ERR FAULT -25 Generic error for a failed operation.
| P_ERR NET_UNREACH -26 No path to the desired network available.
| P_ERR PARAM -27 Invalid parameter to function.
| P_ERR LOGI C -8 Logical error that should not have
happened.
| P ERR NOVEM 29 Systerr_l error: No memory for requested
- = operation.
| P_ERR NOBUFFER 230 System error: No internal buffer available
for the requested operation.
| P ERR RESOURCE 31 Sysfcem error: Not enough free resources
- = available for the requested operation.
| P_ERR BAD STATE -32 Socket is in an unexpected state.
| P_ERR TI MEQUT -33 Requested operation timed out.
| P_ERR _NO RQUTE -36 Net error: Destination is unreachable.
No more packets can be queued for
| P_ERR QUEUE FULL -37 sending. Typically caused by packets
waiting for an ARP response to be fulfilled.
When | P_SOCKET_Abor t Read() was
| P_ERR USER _ABORT -38 used on a socket that is currently waiting

blocked in recv() or other API.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

API functions

324

CHAPTER 5 API functions

5.3.9 listen()

Description

Prepares the socket to accept connections.

Prototype

int listen(int Socket,
i nt Backl og);

Parameters

Parameter Description

Socket Socket handle.
Backl og for incoming connections. Defines the maximum

Backl og

length of the queue of pending connections.

Return value

-1 Error.
0 Success.
Additional information

The Backl og parameter uses a one by one mapping of its values, meaning the given number
means exactly the amount of connections that can be accepted before being processed by
calling accept () . As the Backl og parameter is not standardized, other stacks might use
different value mappings.

A Backl og parameter of 0 will be increased to 1 as not accepting any connections does
not make sense.

/***

_Li st enAt TcpAddr

Function description
Starts listening at the given TCP port.

E I

/

static int _ListenAt TcpAddr(U16 Port) ({
i nt Sock;

struct sockaddr_in Addr;

Sock = socket (AF_I NET, SOCK_STREAM 0);

nmenset (&Addr, 0, sizeof (Addr));

Addr.sin_famly AF_| NET;

Addr . si n_port ht ons(Port);

Addr . si n_addr.s_addr = | NADDR_ANY;

bi nd(Sock, (struct sockaddr *)&Addr, sizeof (Addr));
i sten(Sock, 1);

return Sock;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

325

CHAPTER 5 API functions

5.3.10 recv()

Description

Receives data from a connected socket.

Prototype
int recv(int Socket
char * pbData,
i nt NunByt es,
i nt Fl ag) ;
Parameters
Parameter Description
Socket Handle on the socket.
pDat a A pointer to a buffer for incoming data.
NunByt es Number of bytes of the buffer.
Fl ag OR-combination of flags (MSG_PEEK).

Return value

= - Error occurred.
=0 Connection was gracefully closed.
>0 Number of bytes received.

Additional information

If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from. Refer to socket () for more
information about the different types of sockets.

You can only use the recv() function on a connected socket. To receive data on a socket,
whether it is in a connected state or not refer to recvfron() . If no messages are available
at the socket and the socket is blocking, the receive call waits for a message to arrive. If
the socket is non-blocking (refer to set sockopt () for more information), -1 is returned.

You can use the sel ect () function to determine when more data arrives.

Valid values for parameter Flag

Value Description

“Peek” at the data present on the
socket; the data are returned,
MSG_PEEK but not consumed, so that a
subsequent receive operation will
see the same data.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

326

CHAPTER 5 API functions

5.3.11 recvfrom()

Description

Receives a datagram and stores the source address.

Prototype
int recvfron(int Socket ,
char * pDat a,
i nt NunByt es,
i nt Fl ag,
struct sockaddr *pFrom
int * pFromnLen);
Parameters
Parameter Description
Socket Handle on the socket.
pDat a A pointer to a buffer for incoming data.
NunByt es Number of bytes of the buffer pointed by pDat a.
Fl ag OR-combination of flags (MSG_PEEK).
An optional pointer to a buffer where the address of the
From connecting entity is stored. The format of the address
P depends on the defined address family which was defined
when the socket was created. Can be NULL.
An optional pointer to an integer where the length of the
Fronlen received address is stored. Just like the format of the
P address, the length of the address depends on the defined
address family.

Return value

-1 Error occurred.
0 Number of bytes received.

vVl

Additional information

If pFromis not a NULL pointer, the source address of the message is filled in. pFronlien is
a value-result parameter, initialized to the size of the buffer associated with pFrom, and
modified on return to indicate the actual size of the address stored there.

If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from. Refer to socket () for more
information about the different types of sockets.

If no messages are available at the socket and the socket is blocking, the receive call waits
for a message to arrive. If the socket is non-blocking (refer to set sockopt () for more
information), -1 is returned.

You can use the sel ect () function to determine when more data arrives.

Valid values for parameter Flag

Value Description

“Peek” at the data present on the
socket; the data are returned,
MSG_PEEK but not consumed, so that a
subsequent receive operation will
see the same data.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

327

CHAPTER 5 API functions

5.3.12 select()

Description

Provides a UNIX-like socket sel ect () call.

Prototype

int select(lIP_fd_set * readfds,
IP_fd_set * witefds,
I P_fd_set * exceptfds,

132 timeout);
Parameters
Parameter Description
r eadf ds Read file descriptor set. Can be NULL.
writefds Write file descriptor set. Can be NULL.
except f ds Exception file descriptor set. Can be NULL.

Maximum ti neout [ms] that sel ect () should block, waiting
for any file descriptor in any given FD_SET to become ready.
ti meout of O will result in the function retuning immediately.
ti meout of -1 will cause the function to block indefinitely
(until one of the descriptors becomes ready or an error

ti meout

occurs).
Return value
= < 0 (SOCKET_ERROR) Error occurred.
= < 0 (I P_ERR_USER_ABORT) Only when calling | P_SOCKET_Abor t Read() on a
socket that is part of the r eadf ds .
=0 Timeout.
>0 Number of ready file descriptors (sockets) returned

over all given descriptor sets.

Additional information

The sel ect () call overwrites the given descriptor sets with subsets consisting of those file
descriptors (sockets) that are ready. The descriptor sets r eadf ds, wri t ef ds and except f ds
may be omitted using NULL if no file descriptors are of interest for the specific operation.

In the standard Berkeley UNIX Sockets API, the descriptor sets are stored as bit fields
in arrays of integers. This works in the UNIX environment because under UNIX socket
descriptors are file system descriptors which are guaranteed to be small integers that can
be used as indexes into the bit fields. In emNet, socket descriptors are pointers and thus a
bit field representation of the descriptor sets is not feasible. Because of this, the emNet API
differs from the Berkeley standard in that the descriptor sets are represented as instances
of the following structure:

typedef struct |P_FD SET { /'l The sel ect socket array manager
unsi gned fd_count; /1 how many are SET?
I ong fd_array[FD_SETSI ZE] ; /1 an array of SOCKETs

} I1P_fd_set;

Instead of a socket descriptor being represented in a descriptor set via an indexed bit, an
emNet socket descriptor is represented in a descriptor set by its presence in the fd_array
field of the associated | P_fd_set structure. Despite this non-standard representation
of the descriptor sets themselves, the following standard entry points are provided for
manipulating such descriptor sets: | P_FD ZERQ(&f dset) initializes a descriptor set fdset
to the null set. | P_FD SET(fd, &fdset) includes a particular descriptor, fd , in fdset.
| P_FD CLR(fd, &fdset) removes fd from fdset.|P_FD | SSET(fd, &fdset) is nonzero

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

328 CHAPTER 5 API functions

if fd is @ member of fdset, zero otherwise. These entry points behave according to the
standard Berkeley semantics.

You should be aware that the value of FD SETSI ZE defines the maximum number of
descriptors that can be represented in a single descriptor set. The default value of
FD_SETSI ZE is 12. This value can be increased in the source code version of emNet to
accommodate a larger maximum number of descriptors at the cost of increased processor
stack usage.

Another difference between the Berkeley and emNet sel ect () calls is the representation
of the ti meout parameter. Under Berkeley Sockets, the ti neout parameter is represented
by a pointer to a structure. Under emNet sockets, a ti neout is specified by the ti neout
parameter, which defines the maximum number of milliseconds that should elapse before
the call to sel ect () returns. Ati neout parameter equal to O implies that sel ect () should
return immediately (effectively a poll of the sockets in the descriptor sets). A ti neout
parameter equal to -1 implies that sel ect () blocks forever unless one of its descriptors
becomes ready.

The final difference between the Berkeley and emNet versions of sel ect () is the absence
in the emNet version of the Berkeley width parameter. The width parameter is of use only
when descriptor sets are represented as bit arrays and was thus deleted in the emNet
implementation.

Note:

Under rare circumstances, sel ect () may indicate that a descriptor is ready for writing when
in fact an attempt to write would block. This can happen if system resources necessary
for a write are exhausted or otherwise unavailable. If an application deems it critical that
writes to a file descriptor not block, it should set the descriptor for non-blocking I/0. Refer
to setsockopt on page 332 for detailed information.

Example
static void _Cient() {
| ong Socket ;
struct sockaddr_in Addr;
| P_fd_set r eadf ds;
char RecvBuf f er[1472]
i nt r;

while (IP_IFacelsReady() == 0) {
0S_Del ay(100);
}

Restart:
Socket = socket (AF_I NET, SOCK_DGRAM 0); /] Open socket
Addr.sin_famly AF_| NET;
Addr . si n_port ht ons(2222);
Addr . si n_addr.s_addr = | NADDR_ANY;
r = bind(Socket, (struct sockaddr *)&Addr, sizeof (Addr));
if (r == -1){
socket cl ose(Socket);
OS_Del ay(1000);
goto Restart;

}
while(1) {
| P_FD_ZERQ(&r eadf ds) ; /'l Clear the set
| P_FD_SET(Socket, &readfds); /'l Add descriptor to the set
r = sel ect (& eadfds, NULL, NULL, 5000); // Check for activity.
if (r <=0 {
conti nue;
/1 No socket activity or error detected
}
if (1P_FD_|I SSET(Socket, &readfds)) {
| P_FD_CLR(Socket, &readfds); /'l Remove socket from set

r = recvfrom Socket, RecvBuffer, sizeof(RecvBuffer), 0, NULL, NULL);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

329 CHAPTER 5 API functions

if (r == -1){
socket cl ose(Socket)
goto Restart;
}
}
CS_Del ay(100);
}
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

330

CHAPTER 5 API functions

5.3.13 send()

Description

Hands data to the stack in order to send it to a connected socket. The stack will copy the
data into the socket buffer. In blocking mode, the function returns when all data have been
accepted by the stack. If non blocking mode, the function returns immediately.

Prototype
int send(int Socket ,
const char * pBuffer,
i nt NunByt es,
i nt Fl ags) ;
Parameters
Parameter Description
Socket Socket handle to a connected socket
pBuf f er Pointer to a buffer that contains data to send
NunByt es Number of bytes to send from pBuf f er
OR-combination of one or more of the valid values listed in
Fl ags
the table below.

Return value

<0 Error (SOCKET_ERROR).

=20 OK, Number of bytes accepted by the stack and ready to be sent. Note: In
blocking mode this can only be the full number of bytes, since the function
would otherwise block.

Additional information

send() may be used only when the socket is in a connected state. Refer to sendt o() for
information about sending data to a non-connected socket.

If no messages space is available at the socket to hold the message to be transmitted, then
send() normally blocks, unless the socket has been placed in non-blocking I/O mode.

MSG_DONTROUTE is usually used only by diagnostic or routing programs.

Valid values for parameter Flags

Value Description

Specifies that the data should not

MSG_ E be subject to routing.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

331

5.3.14 sendto()

Description

CHAPTER 5 API functions

Hands data to the stack in order to send it to a specified address on a socket. The stack will
copy the data into the socket buffer. In blocking mode, the function returns when all data
have been accepted by the stack. If non blocking mode, the function returns immediately.

Prototype
i nt sendto(int Socket ,
const char * pBuffer,

i nt NunByt es,

i nt Fl ags,

struct sockaddr *pDest Addr,

i nt NunmByt esAddr) ;
Parameters

Parameter Description

Socket Socket handle
pBuf f er Pointer to a buffer that contains data to send
NunByt es Number of bytes to send from pBuf f er
Fl ags Ignored at the moment
pDest Addr Pointer to a buffer containing the destination address
NunByt esAddr Length of the address stored at pDest Addr in bytes

Return value

<0 Error (SOCKET_ERROR).

=20 OK, Number of bytes accepted by the stack and ready to be sent. Note: In
blocking mode this can only be the full number of bytes, since the function
would otherwise block.

Additional information

In contrast to send(), sendt o() can be used at any time. The connection state is in which
case the address of the target is given by the pDest Addr parameter.

Valid values for parameter Flags

Value

Description

MSG_DONTROUTE

Specifies that the data should not
be subject to routing.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

332 CHAPTER 5 API functions

5.3.15 setsockopt()

Description

Configures some options for the socket.

Prototype
i nt setsockopt (i nt Socket,
i nt Level ,
int Narre,
const void * pVal,
int Val Len);
Parameters
Parameter Description
Socket Socket handle.
Level Level at which the option should be interpreted
(SOL_SOCKET for example).
Narme Option enum.
pVal Pointer on the value for the given option.
Val Len Length of the data pointed by pVal .

Return value

0 Success.
-1 Error.

Valid values for parameter Option

For valid values and options please refer to get sockopt () .

Example

voi d _Enabl eKeepAl i ve(l ong sock) {
int v = 1;
set sockopt (sock, SOL_SOCKET, SO KEEPALI VE, &v, sizeof(v));

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

333

5.3.16 shutdown()

Description

CHAPTER 5

Stops specific activities on a socket.

API functions

Prototype
i nt shutdown(int hSock,
int How);
Parameters
Parameter Description

hSock Socket handle.
One of the following modes:

How e SHUT RD: No more receive operations.
e SHUT WR: No more send operations.
e SHUT RDWR: No more receive & send operations.

Return value

0 Success.
-1 SOCKET_ERROR

Additional information

A shut down() call causes all or a part of a full-duplex connection on the socket associated to
be shut down. If Howis SHUT_RD, then further receives will be disallowed. If Howis SHUT VR,
then further sends will be disallowed. If How is 2, then further receives and sends will be
disallowed. The shutdown function does not block regardless of the SO LI NGER setting on

the socket.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

334 CHAPTER 5 API functions

5.3.17 socket()

Description

Creates a socket.

Prototype
i nt socket (int Donain,

int Type,

int Proto);
Parameters

Parameter Description

Domai n Protocol family which should be used.
Type Specifies the type of the socket.

Specifies the protocol which should be used with the socket.

Proto Must be set to zero except when Type is SOCK_RAW

Return value

=-1 In case of error.
>0 Socket handle.

Valid values for parameter Domain

Value Description
AF_| NET IPv4 - Internet protocol version 4
AF_I NET6 IPv6 - Internet protocol version 6

Valid values for parameter Type

Value Description
SCOCK_STREAM Stream socket
SOCK_DGRAM Datagram socket
SCOCK_RAW RAW socket

Additional information

The Domai n parameter specifies a communication domain within which communication will
take place; the communication domain selects the protocol family which should be used.
The protocol family generally is the same as the address family for the addresses supplied
in later operations on the socket.

A SOCK _STREAM socket provides sequenced, reliable, two-way connection based byte
streams. A SOCK_ DGRAM socket supports datagrams (connectionless, unreliable messages
of a fixed - typically small - maximum length).

Sockets of type SOCK_STREAMare full-duplex byte streams, similar to UNIX pipes. A stream
socket must be in a connected state before it can send or receive data.

A connection to another socket is created with a connect () call. Once connected, data
can be transferred using send() and recv() calls. When a session has been completed, a
cl osesocket () should be performed.

The communications protocols used to implement a SOCK_STREAM ensure that data is not
lost or duplicated. If a piece of data (for which the peer protocol has buffer space) cannot
be successfully transmitted within a reasonable length of time, then the connection is
considered broken and calls will return -1 which indicates an error. The protocols optionally
keep sockets “warm” by forcing transmissions roughly every minute in the absence of

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

335

CHAPTER 5 API functions

other activity. An error is then indicated if no response can be elicited on an otherwise idle
connection for a extended period (such as five minutes).

When receiving data from a socket of type SOCK_STREAMonly up to the requested amount
of data is consumed from the socket buffer upon calling a receive routine. Excess bytes of
a message remain in the socket buffer and are available upon further calls to the receive
routine.

When receiving data from a socket that is not of type SOCK_STREAM like a socket of type
SOCK_DGRAM or SOCK_RAWone complete message (in the chunk as it was received) will be
consumed and excess bytes of this message that are not read out of the buffer will be
discarded and are not available for further calls to the receive routine.

SOCK_DGRAM sockets allow sending of datagrams to correspondents named in sendt o()
calls. Datagrams are generally received with recvf romn(), which returns the next datagram
with its return address.

SOCK_RAWSsockets allow receiving data including network and IP header and allow sending
of data either with or without specifying the IP header yourself. RAW sockets are operated
the same way as SOCK_DGRAM sockets but allow the ability to receive data including the
IP and protocol header and to implement your own protocol. For using RAW sockets it
is mandatory to call | P_RAW Add on page 133 during the initialization of the stack. More
information about RAW sockets can be found below.

The operation of sockets is controlled by socket-level options. The get sockopt () and
set sockopt () functions are used to get and set options. Refer to getsockopt on page 320
and setsockopt on page 332 for detailed information.

RAW sockets (receiving)

For RAW sockets the Pr ot o parameter specifies the IP protocol that will be received using
this socket. Protocols registered to be used with | P_* Add() will be handled the stack and
can not be used with RAW sockets at the same time. Using | PPROTO_RAWwill receive data
for any protocol not handled by the IP stack.

RAW sockets (sending)

For RAW sockets the Prot o parameter specifies the IP protocol that will be entered into
the IP header when sending data using this socket. Using | PPROTO _RAWfor Proto for a
sending socket results in the same as setting the socket option | P_HDRI NCL for this socket
by using setsockopt on page 332 and requires the user to include his own IP header in
the data to send.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

336

CHAPTER 5 API functions

5.3.18 IP_RAW_AddPacketToSocket()

Description

Adds a packet and its data to a RAW socket (buffer). The current pData pointer and
NumBytes of the packet will be used for the payload that will be added to the RAW socket
(buffer).

Prototype
int | P_RAW AddPacket ToSocket (i nt hSock,
| P_PACKET * pPacket);
Parameters
Parameter Description
hSock Socket handle of a RAW socket.
pPacket Packet to add to socket (buffer).

Return value

=20 0.K., packet is now handled by the stack.
<0 Error. Packet has to be freed by application.

Additional information

This function can be used to imitate a packet socket using RAW socket API. As the new
data gets stored into the socket buffer without traversing all the way through other layers
like IPv4, it is more effective but lacks a proper IP header. Therefore things like getting the
source address using recvfron() is not supported and will return invalid data.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

337

5.3.19 IP_SOCKET_AbortRead()

Description

CHAPTER 5

API functions

Aborts a blocking recv(), recvfrom() and its variations or sel ect () call on a socket.

Prototype
int | P_SOCKET_AbortRead(int hSock);
Parameters
Parameter Description
hSock Socket handler.

Return value

0 O.K.

-1 (SOCKET_ERROR) Error, socket is invalid.

Additional information

Using this routine on a socket that is currently waited on usingrecv() orrecvfrom) orone
of its variations aborts the blocking wait process. The waiting API sets | P_ERR USER ABORT

as socket error. For sel ect()

instead of SOCKET_ERROR , sel ect() directly returns

| P_ERR USER ABORT instead of SOCKET ERRCR if the socket aborted was part of the “read”

FD_SET .

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

338

5.3.20

Description

CHAPTER 5 API functions

IP_SOCKET_AddGetSetOptHook()

This function adds a callback that gets executed when the application uses get sockopt () /
set sockopt () with the registered option.

Prototype
voi d | P_SOCKET _AddGet Set Opt Hook(| P_SOCK_HOOK_ON_SETGETOPT * pHook,
| P_SOCK_HOOK_ON_GETSETOPT_FUNC * pf,
i nt Narre) ;
Parameters
Parameter Description
pHook Management block of type | P_SOCK _HOOK ON SETGETOPT .
pf Callback to execute on get sockopt () /set sockopt () .
Option name for which the callback gets executed. To avoid
NaTe conflicts between newly added and existing option names,
the base of | P_SOCK_GETSETOPT_HOOK NAME_BASE should be
used when implementing your own options.
Example
enum {

b

static char

static | P_SOCK_HOOK_ON_SETGETCPT
static | P_SOCK_HOOK_ON_SETGETCPT

static U8

APP_SOCK_OPT_VENDOR_NAME = | P_SOCK_GETSETOPT_HOOK_NANME_BASE

_acVendor [32] ;

_Sockopt Hook_Vendor Nane;
_Sockopt Hook_SO_RXDATA;
_ShowNot eOnce_SO_RXDATA;

[kK ok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok k ok kkk ok

_cbGet Set Vendor Nane()

Function description

Par aneters

Return val ue
== | P_SOCK_HOOK_| GNORE_CB:

=0
== |P_ERR LOG C

B T T T T T T S

== | P_ERR _MSG S| ZE

*

*/

static int _cbGetSetVendor Name(unsi gned Type,

unsi gned Len;

int r;

| P_USE_PARA(hSock) ;
| P_USE_PARA(Level) ;
| P_USE_PARA(Nane) ;
r =0; // Assune OK

emNet User Guide & Reference Manual

Cal | back for application specific socket option extension of
set/get an application specific vendor nane.

such as SOL_SOCKET .
APP_SOCK_OPT_VENDOR_NAME .

Pointer to the string to set or where to read to.
Length of string to set or size of buffer (including
string term nation) where to read to.

Type Sour ce/ reason of execution:
* | P_SOCK_HOOK_GETOPT
* | P_SOCK_HOOK_SETOPT

hSock : Socket handl e.

Level Socket | evel

Nane Option nanme -

pVal

Val Len:

Magi ¢ return value used to tell the
stack that while it ended up in the
cal I back it should still execute its
regul ar (internal) behavior.

O K

Not able to get the string as no buffer
or a zero buffer has been given.

Unable to get/set a string due to string
or buffer size.

int hSock, int Level, int Name, void* pVal, int VallLen) {

© 2010-2025 SEGGER Microcontroller GmbH

339

if (Type
11
/'l Get vendor
11
if ((pval == NULL)
r = IP_ERR LOG G
} else {
Len

nane.

[(val

r = | P_ERR_MSG S| ZE;

strlen(_acVendor) + 1;
if ((unsigned)Val Len < Len)

CHAPTER 5 API functions

| P_SOCK_HOOK_GETOPT) {

Len

=0) {

/'l Al ways count the termnation char.

{

} else {
nencpy(pVal, & acVendor[O0], Len);
} else {
11
/1 Set vendor nane.
11
if ((pval == NULL) || (ValLen == 0)) {
_acVendor[0] = '\0"; // Cear vendor nane.
} else {
if ((unsigned)Val Len > sizeof (_acVendor)) {
r = | P_ERR_MSG Sl ZE;
} else {
nmencpy(& acVendor[0], pVal, ValLen);
}
}
}
return r;

}

[Kk kKK ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK ok ok ok ok kK Kk ok ok ok kK kR ok kK ok k ok ko K ok ok ok ok kK ok ok kK kK k ok kK K Rk kK K Kk

Function description

notify in case get

Return val ue

B T T T A N 2

/

static int _cbOnSockopt _SO RXDATA(unsigned Type,

| P_USE_PARA(Type) ;

| P_USE_PARA(hSock) ;
| P_USE_PARA(Level);
| P_USE_PARA(Nane) ;

| P_USE_PARA(pVal) ;

| P_USE_PARA(Val Len);

if (_ShowNot eOnce_SO RXDATA
_ShowNot eOnce_SO _RXDATA =
printf("NOTE: You can use

== | P_SOCK_HOOK_| GNORE_CB:

_cbOnSockopt _SO _RXDATA()

Cal | back for application specific socket option extension to
SO _RXDATA i s used.

Par anmet er s
Type Sour ce/ reason of execution:
* | P_SOCK_HOOK_GETOPT
* | P_SOCK_HOOK_SETOPT
hSock : Socket handl e.
Level Socket |evel such as SOL_SOCKET .
Nane Option nane.
pVal Pointer to the option val ue.
Val Len: Length of the option at pVal

Magi ¢ return value used to tell the
stack that while it ended up in the
call back it should still execute its

regular (internal) behavior.
O K
Error (typically negative) that will be

stored as socket error. The APl call
itself will still return SOCKET_ERROR .
Value is limted to the size of signed char.

int hSock, int Level, int Name, void* pVal, int ValLen) {

== 0u) {

1u;

| P_SOCKET_Get NunRxByt es() for a nore direct call.\n");

return | P_SOCK_HOOK_ | GNORE_CB;

}

[k kK Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok kK K ok ok ok K ok ok ok kK K ok k ok ko ok ok ok ok kK ok ok ok K kK k ok kK kR kK K K Kk

Function description
Installs a couple of appl
get sockopt () / set sockopt ()

R T

/

_Instal |l AppSocket Cal | backs()

ication specific sanple callbacks for
options.

static void _lnstall AppSocket Cal | backs(void) {
| P_SOCKET_AddGet Set Opt Hook(& Sockopt Hook_\Vendor Nare,

emNet User Guide & Reference Manual

_cbGet Set Vendor Name , APP_SOCK_CPT_VENDCR_NAME) ;

© 2010-2025 SEGGER Microcontroller GmbH

340 CHAPTER 5 API functions

| P_SOCKET_AddGet Set Opt Hook(& Sockopt Hook_SO RXDATA , _chOnSockopt SO RXDATA, SO RXDATA) ;
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

341

CHAPTER 5 API functions

5.3.21 IP_SOCKET_CloseAll()

Description

Closes all socket handles that are open. Can be used to close all sockets in case of changing
the local IP address or similar actions that change connection parameters.

Prototype
voi d | P_SOCKET_Cl oseAl | (U32 Conf Mask) ;
Parameters
Parameter Description
Conf Mask Bitwise-OR bit mask of configurations:
e CLOSE ALL_KEEP_LI STEN: Keep listening sockets.

Example: Closing all webserver child tasks

The following code closes all webserver child tasks for example if the target has changed
its IP address. The parent listening socket shall be kept open as it is independent from the
IP address and typically listens to any address of the system.

OS EnterRegion(); // Avoid being disturbed by disabling task switches.
/1
/1 End all child tasks that m ght access sockets.
/1
for (i = 0; i < MAX_CONNECTIONS; i++) {

r = OS_IsTask(& aWebTasks[i]);

if (r 1=0) {

CS_Terni nat eTask(& aWebTasks[i]);
}

}
11

/1 Close all sockets that m ght been abandoned but
/'l 1 eave open |istening parent sockets.

/1

| P_SOCKET_Cl oseAl | (CLOSE_ALL_KEEP_LI STEN) ;

OS LeaveRegion(); // Allow task switches again.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

342

CHAPTER 5

API functions

5.3.22 |IP_SOCKET_ConfigSelectMultiplicator()

Description

Configures the multiplicator for the timeout parameter of sel ect () . Default multiplicator

is 1.

Prototype

voi d | P_SOCKET_ConfigSel ect Mul tiplicator(U32 v);

Parameters

Parameter

Description

\Y

Multiplicator to be used.

Additional information

By default the sel ect () timeout is given in ticks of 1 ms. The UNIX standard takes the
timeout in a structue including seconds. The multiplicator can be configured but as it is
more common for an embedded system we will stick to units of 1 tick (typically 1 ms) for

the default.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

343 CHAPTER 5 API functions

5.3.23 IP_SOCKET_GetAddrFam()

Description

Returns the IP version of a socket (IPv4 or IPv6).

Prototype
U16 | P_SOCKET Get Addr Fan{int hSock);
Parameters
Parameter Description
hSock Socket handle.

Return value

0 Invalid socket handle.
AF | NET 1IPv4 socket.
AF | NET6 IPv6 socket.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

344 CHAPTER 5 API functions

5.3.24 |IP_SOCKET_GetErrorCode()

Description

Returns the last error reported on a socket. Returns 0 if the socket has not previously
reported an error.

Prototype
int | P_SOCKET_Get ErrorCode(int hSock);
Parameters
Parameter Description
hSock Socket handle.

Return value

Last error of the socket. Please refer to the IP.h | P_ERR * return codes for more details.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

345 CHAPTER 5 API functions

5.3.25 IP_SOCKET_GetLocalPort()

Description

Returns the local port of a socket.

Prototype
Ul6 | P_SOCKET_Get Local Port (i nt hSock);
Parameters
Parameter Description
hSock Socket handle.

Return value

OK. Local port number of the socket in network byte order.
Error. Socket not available or no local port bound to socket.

v

0
0

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

346 CHAPTER 5 API functions

5.3.26 IP_SOCKET_GetNumRxBytes()

Description

Returns the number of received bytes

Prototype
int | P_SOCKET_Get NunRxByt es(int hSock);
Parameters
Parameter Description
hSock Socket handler.

Return value

>0 Number of bytes received.
= -1 (SOCKET_ERROR) Error, socket is invalid.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

347

CHAPTER 5 API functions

5.3.27 IP_SOCKET_SetDefaultOptions()

Description

Sets the socket options enabled by default.

Prototype
voi d | P_SOCKET_Set Def aul t Opti ons(U16 v);
Parameters
Parameter Description
Y% Socket options which should be enabled.

Additional information

By default, keepalive (SO KEEPALI VE) socket option is enabled. Refer to set sockopt ()
for a list of supported socket options. This only applies for socket options that are ‘binary’,
i.e. something like SO KEEPALI VE which is either set or not, and not for options like
SO _RCVTI MEO that also require a timeout parameter.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

348 CHAPTER 5 API functions

5.3.28 IP_SOCKET_SetLimit()

Description

Sets the maximum number of allowed sockets.

Prototype
voi d | P_SOCKET_SetLimt(unsigned Limt);
Parameters
Parameter Description
Limit Sets a limit on number of sockets which can be created. The
default is 0 which means that no limit is set.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

349 CHAPTER 5 API functions

5.3.29 IP_SOCKET_SetLinger()

Description

Activates linger.

Prototype
int | P_SOCKET_Set Li nger (int hSock,
int Linger);

Parameters

Parameter Description
hSock Socket handler.
Li nger Flag to activate or deactivate | i nger.
Return value
0 O.K.
-1 (SOCKET_ERROR) Error, socket is invalid.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

350 CHAPTER 5

5.3.30 IP_SOCKET_SetRxTimeout()

Description

Sets the rx timeout

Prototype

int | P_SOCKET_Set RxTi neout (i nt hSock,
int Tineout);

API functions

Parameters

Parameter Description
hSock Socket handler.
Ti meout New timeout value.

Return value

0 O.K.
-1 (SOCKET_ERROR) Error, socket is invalid.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

351 CHAPTER 5 API functions

5.3.31 IP_SOCK recvfrom_info()

Description

Receives a datagram and stores the source address and additional information as requested.

Prototype
int | P_SOCK recvfrom.info(int hSock,
char * pDat a,
i nt NunByt es,
i nt Fl ags,
struct sockaddr *pFrom
i nt * pAddrLen,
| P_SOCK_RECVFROM_ | NFO * plnfo);
Parameters
Parameter Description
hSock Handle on the socket.
pDat a A pointer to a buffer for incoming data.
NunByt es Number of bytes of the buffer.
Fl ags OR-combination of flags (MSG_PEEK).
An optional pointer to a buffer where the address of the
From connecting entity is stored. The format of the address
P depends on the defined address family which was defined
when the socket was created. Can be NULL.
An optional pointer to an integer where the length of the
Addr Len received address is stored. Just like the format of the
P address, the length of the address depends on the defined
address family.
Pointer to a structure of type | P_SOCK_RECVFROM | NFO
where to store additional requested information about the
I nfo received data. MUST NOT be NULL. User must also make
P sure | P_SOCK_RECVFROM | NFO->pTi nest anp is initialized
correctly (NULL or valid pointer to a | P_PACKET_TI MESTAMP
structure).
Return value
=-1 Error occurred.
=20 Number of bytes received.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

352 CHAPTER 5 API functions

5.3.32 IP_SOCK _recvfrom_ts()

Description

Receives a datagram and stores the source address and timestamp.

Prototype
int | P_SOCK recvfromts(int hSock,
char * pDat a,
i nt NunByt es,
i nt Fl ags,
struct sockaddr *pFrom
i nt * pAddrLen,
| P_PACKET_TI MESTAMP * pTi nest anp) ;
Parameters
Parameter Description
hSock Handle on the socket.
pDat a A pointer to a buffer for incoming data.
NunByt es Number of bytes of the buffer.
Fl ags OR-combination of flags (MSG_PEEK).
An optional pointer to a buffer where the address of the
From connecting entity is stored. The format of the address
P depends on the defined address family which was defined
when the socket was created. Can be NULL.
An optional pointer to an integer where the length of the
Addr Len received address is stored. Just like the format of the
P address, the length of the address depends on the defined
address family.
pTi mest anp Pointer where to store the packet timestamp. Can be NULL.

Return value

-1 Error occurred.
0 Number of bytes received.

[\

Additional information
Requires | P_SUPPORT_PACKET Tl MESTAWP and/or | P_SUPPORT_PTP to be enabled.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

353

CHAPTER 5 API functions

5.3.33 IP_TCP_Accept()

Description

Registers a callback that will be executed upon a new client.

Prototype

int | P_TCP_Accept
(I P_TCP_ACCEPT_HOOKX * pHook,

voi d (*pfAccept)
(int hSock , IP_TCP_ACCEPT_INFO * pInfo , void * pContext),
i nt hSock,
voi d * pContext);
Parameters
Parameter Description
pHook Management element of type | P_TCP_ACCEPT_HOOK.
pf Accept Callback to register.
Parent socket handle (needs to have bi nd() and listen()
hSock
done).
pCont ext Custom context that will be passed to the callback.

Return value

=0 O.K.
0 Error.

Additional information

The registered callback has to prevent any blocking situation. Calling send() for example
on a non-blocking socket is fine.

Only clients fitting the registered parent socket will be reported to the callback like a
regular accept () call. Therefore the usual steps like calling bi nd() and | i sten() are still
necessary.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

354 CHAPTER 5 API functions

5.3.34 IP_FD_CLR()

Description

Removes a socket from a set.

Prototype
void I P_FD CLR(int hSock,
IP_fd_set * pSet);
Parameters
Parameter Description
hSock Socket handle.
pSet Pointer on a set of type | P_fd_set.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

355

5.3.35

IP_FD_SET()

Description

Adds a socket to a set.

CHAPTER 5 API functions

Prototype
void | P_FD _SET(int hSock,
IP_fd_set * pSet);
Parameters
Parameter Description
hSock Socket handle.
pSet Pointer on a set of type | P_fd_set.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

356 CHAPTER 5 API functions

5.3.36 IP_FD_ISSET()

Description

Checks if a socket is part of a set.

Prototype
int | P_FD_|I SSET(i nt hSock,
IP_fd_set * pSet);
Parameters
Parameter Description
hSock Socket handle.
pSet Pointer on a set of type | P_fd_set.

Return value

1 Socket is part of the set.
0 Socket is not part of the set.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

357

CHAPTER 5 Data structures

5.4 Data structures

54.1 sockaddr

Description

This structure holds socket address information for many types of sockets.

Prototype
struct sockaddr ({
ul6 sa_famly;
char sa_dat a[14];
e
Member Description
sa_famly Address family. Normally AF_I NET.
The character array sa_dat a contains the destination address and
sa_data
- port number for the socket.

Additional information

The structure sockaddr is mostly used as function parameter. To deal with struct sockaddr,
a parallel structure struct sockaddr _i n is implemented. The structure sockaddr _i n is the
same size as structure sockaddr, so that a pointer can freely be casted from one type to
the other. Refer to sockaddr _i n on page 358 for more information and an example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

358 CHAPTER 5 Data structures

5.4.2 sockaddr_in

Description

Structure for handling Internet addresses.

Prototype

struct sockaddr_in {
short sin_famly;
unsi gned short sin_port;
struct in_addr sin_addr;

char sin_zero[8];

I

Member Description

sin_famly Address family. Normally AF_| NET.

si n_port Port number for the socket.

sin addr Structure of type i n_addr . The structure represents a 4-byte number
- that represents one digit in an IP address per byte.

sin_zero si n_zer o member is unused.

Example

Refer to connect on page 314 for an example.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

359 CHAPTER 5 Data structures

5.4.3 in_addr
Description
4-byte number that represents one digit in an IP address per byte.

Prototype

struct in_addr {
unsi gned | ong s_addr;

}i

Member Description

s_addr Number that represents one digit in an IP address per byte.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

360 CHAPTER 5 Data structures

5.4.4 hostent

Description

The host ent structure is used by functions to store information about a given host, such
as host name, IPv4 address, and so on.

Prototype

struct hostent {
char * h_name;
char ** h_aliases;

int h_addrt ype;

int h_I engt h;

char ** h_addr_list;
I

Member Description

h_nane Official name of the host.
h_al i ases Alias list.
s_addrtype Host address type.
h_l ength Length of the address.
s_addr _|ist List of addresses from the name server.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

361

CHAPTER 5 Data structures

5.45 IP_SOCK_HOOK_ON_GETSETOPT FUNC

Description

Callback for custom implementations with set sockopt () /get sockopt () .

Type definition

typedef int (1P_SOCK HOOK ON_GETSETOPT_FUNC) (unsi gned Type,

i nt hSock,
i nt Level ,
i nt Nane,
voi d * pVal,
int Val Len);
Parameters
Parameter Description
Source/reason of execution:
Type e | P_SOCK HOOK_GETOPT
e | P_SOCK HOOK_SETOPT
hSock Socket handle.
Level Socket level such as SO SOCKET .
Nane Option name.
pVal Pointer to the option value.
Val Len Length of the option at pval .

Return value

= | P_SOCK_HOOK | GNORE_CB Magic return value used to tell the stack that while

1
o o

emNet User Guide & Reference Manual

it ended up in the callback it should still execute its
regular (internal) behavior.

O.K.

Error (typically negative) that will be stored as socket
error. The API call itself will still return SOCKET ERRCR
. Value is limited to the size of signed char.

© 2010-2025 SEGGER Microcontroller GmbH

362 CHAPTER 5 Data structures

5.4.6 IP_SOCK_RECVFROM_INFO

Description

Returns information about the received UDP packet typically not available with the original
BSD compatible call.

Type definition

typedef struct {
| P_PACKET_TI MESTAMP * pTi nest anp;

voi d * pLAddr V6;
unsi gned Addr LenVe;
u32 LAddr ;

us | Facel d;

} | P_SOCK_RECVFROM | NFQ,

Structure members

Member Description
pTi mest anp Pointer where to store the packet timestamp. Can be NULL.
Pointer to buffer where to store the local IPv6 address on
pLAddr V6 which the datagram was received. Can be NULL.
Addr LenV6 Length of the buffer at pLAddr V6 .
LAddr Local IPv4 address on which the datagram was received.
| Facel d Zero-based interface index the packet has been received on.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

363 CHAPTER 5 Error codes

5.5 Error codes

The following table contains a list of generic error codes, generally full success is 0. Definite
errors are negative numbers, and indeterminate conditions are positive numbers.

Symbolic name ‘ Value ‘ Description
Programming errors
| P_ERR_PARAM -10 Bad parameter.
IP_ERR LOE C -11 Sequence of events that shouldn’t happen.
System errors
| P_ERR_NOVEM -20 malloc() or calloc() failed.
| P_ERR_NOBUFFER -21 Run out of free packets.
| P_ERR RESOURCE -22 Run out of other queue-able resource.
| P_ERR BAD STATE -23 TCP layer error.
| P_ERR TI MEQUT -24 Timeout error on TCP layer.
Networking errors
| P_ERR BAD HEADER -32 Bad header at upper layer (for upcalls).
| P_ERR_NO RQUTE -33 Can not find a reasonable next IP hop.
Networking errors
| P_ERR SEND PENDI NG 1 Packet queued pending an ARP reply.
| P_ERR _NOT_M NE 2 Packet was not of interest (upcall reply).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 6

TCP zero-copy interface

The TCP protocol can be used via socket functions or the TCP zero-copy interface which
is described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

365 CHAPTER 6 TCP zero-copy

6.1 TCP zero-copy

This section documents an optional extension to the Sockets layer, the TCP zero-copy
API. The TCP zero-copy API is intended to assist the development of higher-performance
embedded network applications by allowing the application direct access to the TCP/IP stack
packet buffers. This feature can be used to avoid the overhead of having the stack copy
data between application-owned buffers and stack-owned buffers in send() and recv() ,
but the application has to fit its data into, and accept its data from, the stack buffers.

The TCP zero-copy API is small because it is simply an extension to the existing Sockets
API that provides an alternate mechanism for sending and receiving data on a socket. The
Sockets API is used for all other operations on the socket.

6.1.1 Allocating, freeing and sending TCP packet buffers

The two functions for allocating and freeing packet buffers are straightforward requests:

| P_TCP_All oc() allocates a packet buffer from the pool of packet buffers on the stack
and | P_TCP_Free() frees a packet buffer. Applications using the TCP zero-copy API are
responsible for allocating packet buffers for use in sending data, as well as for freeing
buffers that have been used to receive data and those that the application has allocated
but decided not to use for sending data. As these packet buffers are a limited resource, it
is important that applications free them promptly when they are no longer of use.

The functions for sending data, | P_TCP_Send() and | P_TCP_SendAndFr ee() , send a packet
buffer of data using a socket. The TCP zero-copy interface supports two different approaches
to send and free a packet. One approach is that the stack frees the packet independent from
the success of sending the packet. Therefore, | P_TCP_SendAndFr ee() is called to send and
free the packet. It frees the packet independent from the success of the send operation.
The other approach is that | P_TCP_Send() is called. In this case it is the responsibility of
the application to free the packet. Depending on the return value the application can decide
if | P_TCP_Free() should be called to free the packet.

6.1.2 Callback function for TCP zero-copy

Applications that use the TCP Zero-copy API for receiving data must include a callback
function for acceptance of received packets, and must register the callback function with
the socket using the set sockopt () sockets function with the SO CALLBACK option name.
The callback function, once registered, receives not only received data packets, but also
connection events that result in socket errors.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

366 CHAPTER 6 Sending data with the TCP zero-copy API

6.2 Sending data with the TCP zero-copy API

To send data with the TCP zero-copy API, you should proceed as follow:

1. Allocating a packet buffer
2. Filling the allocated buffer
3. Sending the packet

The following section describes the procedure for allocating a packet buffer, sending data,
and freeing the packet buffer step by step.

6.2.1 Allocating a packet buffer for TCP zero-copy

The first step in using the TCP zero-copy API to send data is to allocate a packet buffer from
the stack using the | P_TCP_Al | oc() function. This function takes the maximum length of
the data you intend to send in the buffer as argument and returns a pointer to an | P_PACKET
structure.

| P_PACKET * pPacket;

u32 Dat aLen; // Ampunt of data to send
Dat aLen = 512; /1 Shoul d indicate anbunt of data to send
pPacket = | P_TCP_Al | oc(Dat aLen);

if (pPacket == NULL) {
/1l Error, could not allocate packet buffer

}

This limits how much data you can send in one call using the TCP zero-copy API, as the
data sent in one call to | P_TCP_Send() must fit in a single packet buffer. The actual limit is
determined by the big packet buffer size, less 68 bytes for protocol headers. If you try to
request a larger buffer than this, | P_TCP_Al | oc() returns NULL to indicate that it cannot
allocate a sufficiently large buffer.

6.2.2 Filling the allocated buffer with data for TCP zero-copy

Having allocated the packet buffer, you now fill it with the data to send. The function
| P_TCP_Al I oc() has initialized the returned | P_PACKET pPacket and so pPacket - >pDat a
points to where you can start depositing data.

6.2.3 Sending the TCP zero-copy packet

Finally, you send the packet by giving it back to the stack using the function | P_TCP_Send() .

e = | P_TCP_Send(socket, pPacket);
if (e <0) {

| P_TCP_Free(pPacket);
}

This function sends the packet over TCP, or returns an error. If its return value is less than
zero, it has not accepted the packet and the application has to decide either to free the
packet or to retain it for sending later. Use | P_TCP_SendAndFr ee() if the packet should be
freed automatically in any case.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

367 CHAPTER 6 Receiving data with the TCP zero-copy API

6.3 Receiving data with the TCP zero-copy API

To receive data with the TCP zero-copy API, you should proceed as follow:

1. Writing a callback function
2. Registering the callback function

6.3.1 Writing a callback function for TCP zero-copy

Using the TCP zero-copy API for receiving data requires the application developer to write
a callback function that the stack can use to inform the application of received data packets
and other socket events. This function is expected to conform to the following prototype:

int rx_callback(long Socket, |P_PACKET * pPacket, int code);

The stack calls this function when it has received a data packet or other event to report
for a socket. The parameter Socket identifies the socket. The parameter pPacket passes
a pointer to the packet buffer (if there is a packet buffer). If pPacket is not NULL, it is a
pointer to a packet buffer containing received data for the socket. pPacket - >pDat a points
to the start of the received data, and pPacket - >NunByt es indicates the number of bytes
of received data in this buffer.

The parameter code passes an error event (if there is an error to report). If code is not
0, it is a socket error indicating that an error or other event has occurred on the socket.
Typical nonzero values are | P_ERR SHUTDOWN and | P_ERR_CONN_RESET. | P_ERR SHUTDOWWN
defines that the connected peer has closed its end of the connection and sends no more
data. | P_ERR_CONN_RESET defines that the connected peer has abruptly closed its end of
the connection and neither sends nor receives more data.

Returned values

The callback function may return one of the following values:

Symbolic Numerical Description
| P_OK 0 Data handled, packet can be freed.

Data will be handled by application later,
the stack should NOT free the packet. This
| P_OK_KEEP_PACKET 1 will be done by the application at a later
time when the data has been handled and
the packet is no longer needed.

Note: The callback function is called from the stack and is expected to return promptly. No
blocking API shall be called from within the callback.

6.3.2 Registering the TCP zero-copy callback function

The application must also inform the stack of the callback function. set sockopt () function
provides an additional socket option, SO _CALLBACK , which should be used for this purpose
once the socket has been created. The following code fragment illustrates the use of this
option to register a callback function named RxUpcal | () on the socket Socket :

set sockopt (Socket, SOL_SOCKET, SO CALLBACK, (void *)RxUpcall, 0);

See the function setsockopt on page 332 for more details.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

368 CHAPTER 6 API functions

6.4 API functions

Function Description

Allocates a packet buffer large enough to hold

| P_TCP_All oc() NumBytes bytes of TCP data, plus TCP, IP and MAC
headers.
Allocates a packet buffer large enough to hold

| P_TCP_Al | ocEx() NumBytes bytes of TCP data, plus TCP, IP and MAC
headers.

| P_TCP_Free() Free a packet allocated by | P_TCP_Al | oc() .

| P_TCP_Send() Sends a packet buffer on a socket.

| P_TCP_SendAndFr ee() Sends a packet buffer on a socket.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

369 CHAPTER 6 API functions

6.4.1 IP_TCP_Alloc()

Description

Allocates a packet buffer large enough to hold NunByt es bytes of TCP data, plus TCP, IP
and MAC headers.

Prototype
| P_PACKET *I P_TCP_AI|l oc(unsi gned NunBytes);
Parameters
Parameter Description
NunByt es Length of the data which should be sent.

Return value

NULL Success, pointer to the allocated buffer.
= NULL Error.

Additional information

This function must be called to allocate a buffer for sending data via | P_TCP_Send() .
It returns the allocated packet buffer with its pPacket ->pDat a field set to where the
application must deposit the data to be sent.

This datasize limits how much data that you can send in one call using the TCP zero-copy
API, as the data sent in one call to | P_TCP_Send() must fit in a single packet buffer, with
the TCP, IP, and lower-layer headers that the stack needs to add in order to send the packet.

The actual limit is determined by the big packet buffer size (normally 1516 bytes). Refer
to | P_AddBuf f er s() for more information about defining buffer sizes. If you try to request
a larger buffer than this, | P_TCP_Al |l oc() returns NULL to indicate that it cannot allocate
a sufficiently-large buffer.

Example

| P_PACKET * pPacket ;

U32 Dat alLen; /1 Ampunt of data to send

Dat aLen = 1024; /1 Should indicate ambunt of data to send

pPacket = | P_TCP_Al | oc(Dat aLen);
i f (pPacket == NULL) {
/1 Error, could not allocate packet buffer

}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

370 CHAPTER 6 API functions

6.4.2 IP_TCP_AllocEx()

Description

Allocates a packet buffer large enough to hold NunByt es bytes of TCP data, plus TCP, IP
and MAC headers.

Prototype

| P_PACKET *1 P_TCP_Al | ocEx(unsi gned NunBytes,
unsi gned NunByt esHeader) ;

Parameters

Parameter Description
NunByt es Length of the data which should be sent.
NunByt esHeader Size of all headers (Ethernet + IPvX + TCPvX).

Return value

NULL Success, pointer to the allocated buffer.
= NULL Error.

Additional information

For further information please refer to | P_TCP_Al | oc() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

371 CHAPTER 6 API functions

6.4.3 IP_TCP_Free()

Description
Free a packet allocated by I P._ TCP_Al | oc() .

Prototype
void | P_TCP_Free(l P_PACKET * p);
Parameters
Parameter Description
p Pointer to the | P_Packet structure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

372

CHAPTER 6 API functions

6.4.4 IP_TCP_Send()

Description

Sends a packet buffer on a socket.

Prototype
int |P_TCP_Send(int hSock,
| P_PACKET * pPacket);
Parameters
Parameter Description
hSock Socket handle.
pPacket Pointer to the | P_PACKET structure.

Return value

=0 The packet was sent successfully.

<0 The packet was not accepted by the stack. The packet has
already been freed.

= SOCKET_ERROR Error. The packet must be freed using | P_TCP_Free() .

= | P_ERR BAD STATE Error. The packet must be freed using | P_TCP_Free() .

= | P_ERR_RESOURCE Error. The packet must be freed using | P_TCP_Free() .

>0 The packet has been accepted and queued on the socket but

has not yet been transmitted.

Additional information

Applications using the TCP zero-copy API are responsible for allocating packet buffers for
use in sending data, as well as for freeing buffers that have been used to receive data and
those that the application has allocated but decided not to use for sending data. As these
packet buffers are a limited resource, it is important that applications free them promptly
when they are no longer of use.

Packets have to be freed after processing. The TCP zero-copy interface supports two
different approaches to free a packet. One approach is that the stack frees the packet
independent from the success of sending the packet. Therefore, | P_TCP_SendAndFr ee()
is called to send the packet and free the packet. It frees the packet independently from
the success of the send operation. The other approach is that | P_TCP_Send() is called. In
this case it is the responsibility application programmer to free the packet. Depending on
the return value the application programmer can decide if | P_TCP_Free() should be called
to free the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

373 CHAPTER 6 API functions

6.4.5 IP_TCP_SendAndFree()

Description

Sends a packet buffer on a socket.

Prototype
int | P_TCP_SendAndFree(int hSock,
| P_PACKET * pPacket);
Parameters
Parameter Description
hSock Socket handle.
pPacket Pointer to the | P_PACKET structure.

Return value

0 The packet was sent successfully.

0 The packet was not accepted by the stack.

0 The packet has been accepted and queued on the socket but has not yet been
transmitted.

vV A

Additional information

Applications using the TCP zero-copy API are responsible for allocating packet buffers for
use in sending data, as well as for freeing buffers that have been used to receive data and
those that the application has allocated but decided not to use for sending data. As these
packet buffers are a limited resource, it is important that applications free them promptly
when they are no longer of use.

| P_TCP_SendAndFree() frees packet pPacket after processing. It frees the packet
independent from the success of the send operation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 7

UDP zero-copy interface

The UDP transfer protocol can be used via socket functions or the zero-copy interface which
is described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

375

CHAPTER 7 UDP zero-copy

7.1 UDP zero-copy

7.1.

7.1.

The UDP zero-copy API functions are provided for systems that do not need the overhead of
sockets. These routines impose a lower demand on CPU and system memory requirements
than sockets. However, they do not offer the portability of sockets.

UDP zero-copy API functions are intended to assist the development of higher-performance
embedded network applications by allowing the application direct access to the UDP/IP
stack packet buffers. This feature can be used to avoid the overhead of having the stack
copy data between application-owned buffers and stack-owned buffers in sendto() and
recvfron(), but the application has to fit its data into, and accept its data from the stack
buffers. Refer to emNet UDP discover (1 P_UDPDi scover.c /| P_UDPDi scover_Zer oCopy. c)
on page 69 for detailed information about the UDP zero-copy example application.

1 Allocating, freeing and sending UDP packet buffers

The two functions for allocating and freeing packet buffers are straightforward requests:

| P_UDP_Al | oc() allocates a packet buffer from the pool of packet buffers on the stack
and | P_UDP_Free() frees a packet buffer. Applications using the UDP zero-copy API are
responsible for allocating packet buffers for use in sending data, as well as for freeing
buffers that have been used to receive data and those that the application has allocated
but decided not to use for sending data. As these packet buffers are a limited resource, it
is important that applications free them promptly when they are no longer of use.

The functions for sending data, | P_UDP_Send() and | P_UDP_SendAndFr ee() , send a packet
buffer of data using a port. The UDP zero-copy interface supports two different approaches
to send and free a packet. One approach is that the stack frees the packet independent from
the success of sending the packet. Therefore, | P_UDP_SendAndFr ee() is called to send and
free the packet. It frees the packet independent from the success of the send operation.
The other approach is that | P_UDP_Send() is called. In this case it is the responsibility of
the application to free the packet. Depending on the return value the application can decide
if | P_UDP_Free() should be called to free the packet.

2 Callback function for UDP zero-copy

Applications that use the UDP zero-copy API for receiving data must include a call- back
function for acceptance of received packets, and must register the callback function with
a port using the | P_UDP_Open() function. The callback function, once registered, receives
all matching data packets.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

376 CHAPTER 7 Sending data with the UDP zero-copy API

7.2 Sending data with the UDP zero-copy API

To send data with the UDP zero-copy API, you should proceed as follow:

1. Allocating a packet buffer
2. Filling the allocated buffer
3. Sending the packet

The following section describes the procedure for allocating a packet buffer, sending data,
and freeing the packet buffer step by step.

7.2.1 Allocating a packet buffer for UDP zero-copy

The first step in using the UDP zero-copy API to send data is to allocate a packet buffer from
the stack using the | P_UDP_Al | oc() function. This function takes the maximum length of
the data you intend to send in the buffer as argument and returns a pointer to an | P_PACKET
structure.

| P_PACKET * pPacket;

u32 Dat aLen; // Ampunt of data to send
Dat aLen = 512; /1 Shoul d indicate anbunt of data to send
pPacket = | P_UDP_Al | oc(Dat aLen);

if (pPacket == NULL) {
/1l Error, could not allocate packet buffer

}

This limits how much data you can send in one call using the UDP zero-copy API, as the
data sent in one call to | P_UDP_Send() must fit in a single packet buffer. The actual limit is
determined by the big packet buffer size, less typically 42 bytes for protocol headers (14
bytes for Ethernet header, 20 bytes IP header, 8 bytes UDP header). If you try to request
a larger buffer than this, | P_UDP_AI | oc() returns NULL to indicate that it cannot allocate
a sufficiently large buffer.

7.2.2 Filling the allocated buffer with data for UDP zero-copy

Having allocated the packet buffer, you now fill it with the data to send. The function
| P_UDP_Al | oc() has initialized the returned | P_PACKET pPacket and so pPacket - >pDat a
points to where you can start depositing data.

7.2.3 Sending the UDP zero-copy packet

Finally, you send the packet by giving it back to the stack using the function | P_UDP_Send() .

#define SRC_PORT 50020
#defi ne DEST_PORT 50020
#defi ne DEST_ADDR OxC0A80101

e = | P_UDP_Send(0, htonl (DEST_ADDR), SRC _PORT, DEST_PORT, pPacket);
if (e <0) {

| P_UDP_Fr ee(pPacket);
}

This function sends the packet over UDP, or returns an error. If its return value is less than
zero, it has not accepted the packet and the application has to decide either to free the
packet or to retain it for sending later. Use | P_UDP_SendAndFr ee() if the packet should be
freed automatically in any case.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

377 CHAPTER 7 Receiving data with the UDP zero-copy API

7.3 Receiving data with the UDP zero-copy API

To receive data with the UDP zero-copy API, you should proceed as follow:

1. Writing a callback function
2. Registering the callback function

7.3.1 Writing a callback function for UDP zero-copy

Using the UDP zero-copy API for receiving data requires the application developer to write a
callback function that the stack can use to inform the application of received data packets.
This function is expected to conform to the following prototype:

int rx_callback(lP_PACKET * pPacket, void * pContext)

The stack calls this function when it has received a data packet for a port. The parameter
pPacket points to the packet buffer. The packet buffer contains the received data for the
socket. pPacket - >pDat a points to the start of the received data, and pPacket - >NunByt es
indicates the number of bytes of received data in this buffer.

Returned values

The callback function may return one of the following values:

Symbolic Numerical Description
| P_OK 0 Data handled. emNet will free the packet.

Data will be handled by application later,
the stack should NOT free the packet. This
| P_OK_KEEP_PACKET 1 will be done by the application at a later
time when the data has been handled and
the packet is no longer needed.

Note: The callback function is called from the stack and is expected to return promptly. No
blocking API shall be called from within the callback.

7.3.2 Registering the UDP zero-copy callback function

The application must also inform the stack of the callback function. This is done by calling
the | P_UDP_Open() function. The following code fragment illustrates the use of this option
to register a callback function named RxUpcal | () on the port 50020:

#define SRC_PORT 50020
#def i ne DEST_PORT 50020

| P_UDP_Open(OL /* any foreign host */, SRC PORT, DEST_PORT, RxUpCall, OL /* any
tag

For further information, refer to | P_UDP_Qpen on page 391.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

378

7.4 API functions

CHAPTER 7 API functions

Function

Description

| P_UDP_AI I oc()

Returns a pointer to a packet buffer big enough for
the specified sizes.

| P_UDP_AI I ocEx()

Allocates a packet for UDP on the given interface.

| P_UDP_Cl ose()

Closes a UDP connection handle and removes the
connection from demux table list of connections and
deallocates it.

| P_UDP_Fi ndFreePort ()

Obtains a random port number that is suitable
for use as the LPort parameter in a call to
| P_UDP_Qpen() .

| P_UDP_Free()

Frees the buffer which was used for a packet.

| P_UDP_Cet Dat aSi ze()

Returns the size of the data contained in the
received UDP packet.

| P_UDP_Get Dat aPtr ()

Returns a pointer to the data contained in the
received UDP packet.

| P_UDP_Get Dest Addr ()

Extracts destination IP address information from a
UDP packet.

| P_UDP_Cet FPort ()

Extracts foreign port information from a UDP
packet.

| P_UDP_Get | FI ndex()

Extracts the zero-based interface index of the given
UDP Packet.

| P_UDP_Get LPort ()

Extracts local port information from a UDP packet.

| P_UDP_Get SrcAddr ()

Extracts source IP address information from a UDP
packet.

| P_UDP_Qpen()

Creates a UDP connection to receive and pass
upwards UDP packets that match the parameters
passed.

| P_UDP_OpenEx()

Creates a UDP connection to receive, and pass
upwards UDP packets that match the parameters
passed.

| P_UDP_Send()

Sends an UDP packet to a specified host.

| P_UDP_SendAndFr ee()

Sends an UDP packet to a specified host and frees
the packet.

| P_UDP_ReducePayl oadLen()

Reduces the payload length of an allocated packet.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

379

CHAPTER 7 API functions

7.4.1 IP_UDP_Alloc()

Description

Returns a pointer to a packet buffer big enough for the specified sizes.

Prototype
| P_PACKET *I P_UDP_Al | oc(unsi gned NunByt esDat a) ;
Parameters
Parameter Description
NunByt esDat a Length of the data which should be sent.

Return value

NULL Success, pointer to the allocated buffer.
= NULL Error.

Additional information

Applications using the UDP zero-copy API are responsible for allocating packet buffers for
use in sending data, as well as for freeing buffers that have been used to receive data and
those that the application has allocated but decided not to use for sending data. As these
packet buffers are a limited resource, it is important that applications free them promptly
when they are no longer of use.

The UDP zero-copy interface supports two different approaches to free a packet. One
approach is that the stack frees the packet independent from the success of sending the
packet. Therefore, | P_UDP_SendAndFr ee() is called to send the packet and free the packet.
It frees the packet independent from the success of the send operation. The other approach
is that | P_UDP_Send() is called. In this case it is the responsibility of the application to
free the packet. Depending on the return value the application programmer can decide if
| P_UDP_Free() should be called to free the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

380 CHAPTER 7 API functions

7.4.2 |P_UDP_AllocEx()

Description

Allocates a packet for UDP on the given interface.

Prototype

| P_PACKET *1 P_UDP_AI | ocEx(unsi gned | Facel d,
unsi gned NunByt esDat a) ;

Parameters
Parameter Description
| Facel d Zero-based interface index.
NunByt esDat a Length of the data which should be sent.

Return value

Success: Returns a pointer to the allocated buffer. Error : NULL.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

381 CHAPTER 7 API functions

7.4.3 IP_UDP_Close()

Description

Closes a UDP connection handle and removes the connection from demux table list of
connections and deallocates it.

Prototype

voi d | P_UDP_d ose(l P_UDP_CONNECTI ON * pCon):

Parameters

Parameter Description
pCon Pointer to the UDP connection.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

382

CHAPTER 7 API functions

7.4.4 |P_UDP_FindFreePort()

Description

Obtains a random port number that is suitable for use as the LPort parameter in a call to
| P_UDP_Open() .

Prototype

Ul6 | P_UDP_Fi ndFreePort (void);

Return value

A usable port number in local endianness.

Additional information

The returned port number is suitable for use as the LPort parameter in a call to
| P_UDP_QOpen() . Refer to | P_UDP_QOpen() for more information. | P_UDP_Fi ndFr eePort ()
avoids picking port numbers in the reserved range 0-1024, or in the range 1025-1199,
which may be used for server applications.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

383 CHAPTER 7 API functions

7.45 IP_UDP_Free()

Description

Frees the buffer which was used for a packet.

Prototype
void | P_UDP_Free(l P_PACKET * pPacket);
Parameters
Parameter Description
pPacket Pointer to a packet structure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

384 CHAPTER 7 API functions

7.4.6 IP_UDP_GetDataSize()

Description

Returns the size of the data contained in the received UDP packet.

Prototype
Ul6 | P_UDP_GCet Dat aSi ze(const | P_PACKET * pPacket);
Parameters

Parameter Description
pPacket Pointer to a packet structure.

Return value

Size of the data contained in the received UDP packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

385 CHAPTER 7 API functions

7.4.7 IP_UDP_GetDataPtr()

Description

Returns a pointer to the data contained in the received UDP packet.

Prototype
void *| P_UDP_Get Dat aPtr (const | P_PACKET * pPacket);
Parameters
Parameter Description
pPacket Pointer to a packet structure.

Return value
Pointer to the data part of the UDP packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

386 CHAPTER 7 API functions

7.4.8 IP_UDP_GetDestAddr()

Description

Extracts destination IP address information from a UDP packet.

Prototype
voi d | P_UDP_Get Dest Addr (const | P_PACKET * pPacket,
voi d * pDest Addr,
i nt Addr Len) ;
Parameters
Parameter Description
pPacket Pointer to a packet structure.
pDest Addr Pointer to a buffer to store the destination address.
Addr Len Size of the buffer used to store the destination address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

387 CHAPTER 7 API functions

7.49 IP_UDP_GetFPort()

Description

Extracts foreign port information from a UDP packet.

Prototype
Ul6 | P_UDP_Get FPort (const | P_PACKET * pPacket);
Parameters
Parameter Description
pPacket Pointer to a packet structure.

Return value
Foreign port of the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

388 CHAPTER 7 API functions

7.4.10 IP_UDP_GetIFIndex()

Description

Extracts the zero-based interface index of the given UDP Packet.

Prototype
unsi gned | P_UDP_GCet | FI ndex(const | P_PACKET * pPacket);
Parameters

Parameter Description
pPacket Pointer to a packet structure.

Return value

Zero-based interface index on which the packet was received.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

389 CHAPTER 7 API functions

7.4.11 IP_UDP_GetLPort()

Description

Extracts local port information from a UDP packet.

Prototype
Ul6 | P_UDP_GetLPort (const | P_PACKET * pPacket);
Parameters
Parameter Description
pPacket Pointer to a packet structure.

Return value
Local port of the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

390 CHAPTER 7 API functions

7.4.12 |P_UDP_GetSrcAddr()

Description

Extracts source IP address information from a UDP packet.

Prototype
voi d | P_UDP_Get SrcAddr (const | P_PACKET * pPacket,
voi d * pSrcAddr,
int Addr Len) ;
Parameters
Parameter Description
pPacket Pointer to a packet structure.
pSr cAddr Pointer to a buffer to store the source address.
Addr Len Size of the buffer used to store the source address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

391 CHAPTER 7 API functions

7.4.13 IP_UDP_Open()

Description

Creates a UDP connection to receive and pass upwards UDP packets that match the
parameters passed.

Prototype
| P_UDP_CONNECTI ON *1 P_UDP_Open(| P_ADDR FAddr,
Ul6 FPort,
Ul6 LPort,
int (*handl er) (I P_PACKET * , void *),
voi d * pContext);
Parameters
Parameter Description
FAddr Foreign IP address in network endianness.
FPor t Foreign port in host endianness.
LPort Local port in host endianness.
Callback function which is called when a UDP packet is
handl er .
received.
pCont ext Application defined context pointer.

Return value

NULL Success, pointer to the UDP connection.
= NULL Error.

Additional information

The parameters FAddr, FPort , LPort, can be set to 0 as a wild card, which enables the
reception of broadcast datagrams. The callback handl er function is called with a pointer
to a received datagram and a copy of the data pointer which is passed to | P_UDP_Qpen() .
This can be any data the programmer requires, such as a pointer to another function, or a
control structure to help in demultiplexing the received UDP packet.

The returned handle is used as parameter for | P_UDP_Cl ose() only. If | P_UDP_C ose() is
not called, there is no need to save the return value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

392 CHAPTER 7 API functions

7.4.14 IP_UDP_OpenEx()

Description

Creates a UDP connection to receive, and pass upwards UDP packets that match the
parameters passed.

Prototype
| P_UDP_CONNECTI ON *| P_UDP_QpenEx(| P_ADDR FAddr,
Ul6 FPort,
| P_ADDR LAddr,
Ul6 LPort,
int (*handl er) (I P_PACKET * , void *),
voi d * pContext);
Parameters
Parameter Description
FAddr Foreign IP address in network endianness.
FPor t Foreign port in host endianness.
LAddr Local IP address in network endianness.
LPort Local port in host endianness.
Callback function which is called when a UDP packet is
handl er -
received.
pCont ext Application defined context pointer.

Return value

NULL Success, pointer to the UDP connection.
= NULL Error.

Additional information

The parameters FAddr, FPort , LAddr and LPort, can be set to 0 as a wild card, which
enables the reception of broadcast datagrams. The callback handl er function is called
with a pointer to a received datagram and a copy of the data pointer which is passed to
| P_UDP_QpenEx() . This can be any data the programmer requires, such as a pointer to
another function, or a control structure to help in demultiplexing the received UDP packet.

The returned handle is used as parameter for | P_UDP_Cl ose() only. If | P_UDP_d ose() is
not called, there is no need to save the return value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

393

CHAPTER 7 API functions

7.4.15 IP_UDP_Send()

Description

Sends an UDP packet to a specified host. Contrarily to | P_UDP_SendAndFr ee() , it does not
free the packet in case of error.

Prototype

int | P_UDP_Send(int | Face,
| P_ADDR FHost ,
Ul6 fport,
Ul6 | port,
| P_PACKET * pPacket);

Parameters

Parameter Description

| Face Zero-based interface index.

FHost IP address of the target host in network endianness.

f port Foreign port in host endianness.

| port Local port in host endianness.

pPacket Data which should be sent to the target host.

Return value

=0 0O.K. Packet sent or in a send FIFO, to be on the wire shortly.

=1 | P_ERR_SEND _PENDI NG. Packet is waiting for address resolution (incoming ARP
response).

<0 Error code.

Additional information

The packet pPacket has to be allocated by calling IP_UDP_Alloc(). Refer to
| P_UDP_Al | oc() for detailed information.

If you expect to get any response to this packet you should have opened a UDP connection
prior to calling | P_UDP_Send(). Refer to | P_UDP_Open() for more information about
creating a UDP connection.

| P_UDP_Send() does not free the packet in case of an error. In this case it is the
responsibility of the application to either free the packet using | P_UDP_Free() or to try
sending the packet again.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

394 CHAPTER 7 API functions

7.4.16 IP_UDP_SendAndFree()

Description
Sends an UDP packet to a specified host and frees the packet.

Prototype
int | P_UDP_SendAndFree(i nt | Face,
| P_ADDR FHost ,
ule6 f port,
ule6 | port,
| P_PACKET * pPacket);
Parameters
Parameter Description
| Face Zero-based interface index.
FHost IP address of the target host in network endianness.
f port Foreign port in host endianness.
| port Local port in host endianness.
pPacket Data which should be sent to the target host.

Return value

=0 0O.K. Packet sent or in a send FIFO, to be on the wire shortly.

=1 | P_ERR_SEND _PENDI NG. Packet is waiting for address resolution (incoming ARP
response).

<0 Error code.

Additional information

The packet pPacket has to be allocated by calling IP_UDP_Alloc(). Refer to
| P_UDP_Al | oc() for detailed information.

If you expect to get any response to this packet you should have opened a UDP connection
prior to calling this. Refer to | P_UDP_Qpen() for more information about creating a UDP
connection.

Packets are always freed by calling | P_UDP_SendAndFree(). Therefore no call of
| P_UDP_Free() is required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

395 CHAPTER 7 API functions

7.4.17 IP_UDP_ReducePayloadLen()

Description

Reduces the payload length of an allocated packet.

Prototype
i nt | P_UDP_ReducePayl oadLen(| P_PACKET * pPacket,
i nt NunByt es) ;

Parameters

Parameter Description
pPacket Pointer to previously allocated packet.
NunByt es Reduced payload len.
Return value
<0 Error, NunByt es parameter is bigger than current len. Other: O.K., current

payload len.

Additional information

A previously allocated packet might have been allocated bigger than necessary to be on
the safe side. This function allows to reduce the number of bytes that will be sent to the
real amount necessary. The payload len can only be reduced. Trying to increase it (again)
is returned as error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 8

RAW zero-copy interface

Transferring RAW data can be used via socket functions or the zero-copy interface which
is described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

397 CHAPTER 8 RAW zero-copy

8.1 RAW zero-copy

The RAW zero-copy API functions are provided for systems that do not need the overhead of
sockets. These routines impose a lower demand on CPU and system memory requirements
than sockets. However, they do not offer the portability of sockets.

RAW zero-copy API functions are intended to assist the development of higher-performance
embedded network applications by allowing the application direct access to the IP stack
packet buffers. This feature can be used to avoid the overhead of having the stack copy data
between application-owned buffers and stack-owned buffers in sendt o() and recvfromn()
, but the application has to fit its data into, and accept its data from the stack buffers.

To enable RAW socket support in the IP stack it is mandatory to call | P_RAW Add() during
initialization of the stack.

8.1.1 Allocating, freeing and sending packet buffers for RAW
Zero-Copy

The two functions for allocating and freeing packet buffers are straightforward requests:

| P_RAW Al | oc() allocates a packet buffer from the pool of packet buffers on the stack
and | P_RAW Free() frees a packet buffer. Applications using the RAW zero-copy API are
responsible for allocating packet buffers for use in sending data, as well as for freeing
buffers that have been used to receive data and those that the application has allocated
but decided not to use for sending data. As these packet buffers are a limited resource, it
is important that applications free them promptly when they are no longer of use.

The functions for sending data, | P_RAW Send() and | P_RAW SendAndFr ee(), send a packet
buffer of data using a specific protocol or sending pure data which requires the user to
include his own IP header. The RAW zero-copy interface supports two different approaches
to send and free a packet. One approach is that the stack frees the packet independent from
the success of sending the packet. Therefore, | P_RAW SendAndFr ee() is called to send and
free the packet. It frees the packet independent from the success of the send operation.
The other approach is that | P_RAW Send() is called. In this case it is the responsibility of
the application to free the packet. Depending on the return value the application can decide
if | P_RAW Free() should be called to free the packet.

8.1.2 Callback function for RAW Zero-Copy

Applications that use the RAW zero-copy API for receiving data must include a call- back
function for acceptance of received packets, and must register the callback function with a
protocol using the | P_RAW Open() function. The callback function, once registered, receives
all matching data packets.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

398 CHAPTER 8 Sending data with the RAW zero-copy API

8.2 Sending data with the RAW zero-copy API

To send data with the RAW zero-copy API, you should proceed as follow:

1. Allocating a packet buffer
2. Filling the allocated buffer
3. Sending the packet

The following section describes the procedure for allocating a packet buffer, sending data,
and freeing the packet buffer step by step.

8.2.1 Allocating a packet buffer for RAW Zero-Copy

The first step in using the RAW zero-copy API to send data is to allocate a packet buffer from
the stack using the | P_RAW Al | oc() function. This function takes the maximum length of
the data you intend to send in the buffer and if the IP header will be written by the stack
or by yourself as arguments and returns a pointer to an | P_PACKET structure.

| P_PACKET * pPacket;

u32 Dat aLen; // Ampunt of data to send
Dat aLen = 512; // Shoul d indicate anbunt of data to send
pPacket = IP_RAWAI |l oc(0, DatalLen, 0); // Stack will wite |IP header

if (pPacket == NULL) {
/1l Error, could not allocate packet buffer

}

This limits how much data you can send in one call using the RAW zero-copy API, as the
data sent in one call to | P_RAW Send() must fit in a single packet buffer. The actual limit is
determined by the big packet buffer size, less typically 34 bytes for protocol headers (14
bytes for Ethernet header, 20 bytes IP header). If you try to request a larger buffer than this,
| P_RAW Al | oc() returns NULL to indicate that it cannot allocate a sufficiently large buffer.

If you decide to provide the IP header yourself you can allocate a packet buffer the following
way:

pPacket = I P_RAWAI | oc(0, DatalLen, 1);

In this case the packet size allocate limit is determined by the big packet buffer size, less
typically 14 bytes for the Ethernet header.

8.2.2 Filling the allocated buffer with data for RAW Zero-Copy

Having allocated the packet buffer, you now fill it with the data to send. The function
| P_RAW Al | oc() has initialized the returned | P_PACKET pPacket and so pPacket - >pDat a
points to where you can start depositing data.

Depending on if you decided to provide your own IP header you will have to store this data
starting at pPacket - >pDat a as well.

8.2.3 Sending the packet

Finally, you send the packet by giving it back to the stack using the function | P_RAW Send() .

#define PROTOCOL 1 // |CW
#def i ne DEST_ADDR 0xCOA80101

e = | P_RAW Send(0, DEST_ADDR, PROTOCOL, pPacket);
if (e <0) {

| P_RAW Fr ee(pPacket);
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

399 CHAPTER 8 Sending data with the RAW zero-copy API

This function sends the packet specifying the ICMP protocol in the IP header, or returns
an error. If its return value is less than zero, it has not accepted the packet and the
application has to decide either to free the packet or to retain it for sending later. Use
| P_RAW SendAndFr ee() if the packet should be freed automatically in any case.

In case you intend to provide your own IP header the protocol passed has to be
| PPROTO_RAW This prevents the stack to generate and include a header on its own.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

400 CHAPTER 8 Receiving data with the RAW zero-copy API

8.3 Receiving data with the RAW zero-copy API

To receive data with the RAW zero-copy API, you should proceed as follow:

1. Writing a callback function
2. Registering the callback function

8.3.1 Writing a callback function

Using the RAW zero-copy API for receiving data requires the application developer to write
a callback function that the stack can use to inform the application of received data packets.
This function is expected to conform to the following prototype:

int rx_callback(lP_PACKET * pPacket, void * pContext)

The stack calls this function when it has received a data packet for a protocol. The parameter
pPacket points to the packet buffer. The packet buffer contains the received data for the
socket. pPacket - >pDat a points to the start of the received data (including network and IP
header), and pPacket - >NunByt es indicates the number of bytes of received data in this
buffer.

Returned values

The callback function may return one of the following values:

Symbolic Numerical Description
| P_OK 0 Data handled. emNet will free the packet.

Data will be handled by application later,
the stack should NOT free the packet. This
| P_OK_KEEP_PACKET 1 will be done by the application at a later
time when the data has been handled and
the packet is no longer needed.

Note: The callback function is called from the stack and is expected to return promptly. No
blocking API shall be called from within the callback.

8.3.2 Registering the callback function for RAW Zero-Copy

The application must also inform the stack of the callback function. This is done by calling
the | P_RAW Open() function. The following code fragment illustrates the use of this option
to register a callback function named RxUpcal | () for the ICMP protocol:

#define PROTOCOL 1 // |CW

| P_RAW Open(OL /* any foreign host */, OL /* any |ocal host
*/, PROTOCOL, RxUpCall,
OL /* any tag */);

See function | P_RAW Open on page 410 for reference.

To receive ICMP packets the ICMP protocol has not to be added to the stack by calling
| P_I CMP_Add() . Protocols known to the stack and added for handling through the stack
can not be used with the RAW zero-copy API.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

401 CHAPTER 8 API functions

8.4 API functions

Function Description

Returns a pointer to a packet buffer big enough for

| P_RAW Al | oc() the specified sizes.

Closes a RAW connection handle and removes the
| P_RAW O ose() connection from demux table list of connections and
deallocates it.

| P_RAW Free() Frees the buffer which was used for a packet.

Returns pointer to data contained in the received
RAW packet.

Returns size of the payload in the received RAW
packet.

| P_RAW Get Dat aPt r ()

| P_RAW Cet Dat aSi ze()

Extracts destination IP address information from a
RAW packet.

Retrieves the zero-based interface index of the
given RAW Packet.

Extracts source address information from a RAW

| P_RAW Get Dest Addr ()

| P_RAW Get | FI ndex()

| P_RAW Get Sr cAddr ()

packet.
Creates a RAW connection handle to receive,

| P_RAW Open() and pass upwards RAW packets that match the
parameters passed.

| P_RAW Send() Send a RAW packet to a specified host.

| P_RAW SendAndFr ee() Sends a RAW Packet to a specified host and frees
the packet.

| P_RAW ReducePayl oadLen() Reduces the payload length of an allocated packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

402

CHAPTER 8 API functions

8.4.1 IP_RAW_Alloc()

Description

Returns a pointer to a packet buffer big enough for the specified sizes.

Prototype

| P_PACKET *1 P_RAW Al | oc(unsi gned | Facel d,
unsi gned NunByt esDat a,

i nt | pHdr I ncl) ;
Parameters
Parameter Description
| Facel d Zero-based index of available interfaces.
NunByt esDat a Length of the data which should be sent.
Specifies if the IP header is generated or has to be provided
| pHdr I ncl by the user. 0: Header generated by the stack; 1: Header to
be provided in the packet data by the user.

Return value

NULL Success, pointer to the allocated buffer.
= NULL Error.

Additional information

Applications using the RAW zero-copy API are responsible for allocating packet buffers for
use in sending data, as well as for freeing buffers that have been used to receive data and
those that the application has allocated but decided not to use for sending data. As these
packet buffers are a limited resource, it is important that applications free them promptly
when they are no longer of use.

The RAW zero-copy interface supports two different approaches to free a packet. One
approach is that the stack frees the packet independent from the success of sending the
packet. Therefore, | P_RAW SendAndFr ee() is called to send the packet and free the packet.
It frees the packet independent from the success of the send operation. The other approach
is that | P_RAW Send() is called. In this case it is the responsibility of the application to
free the packet. Depending on the return value the application programmer can decide if
| P_RAW Free() should be called to free the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

403 CHAPTER 8 API functions

8.4.2 IP_RAW_Close()

Description

Closes a RAW connection handle and removes the connection from demux table list of
connections and deallocates it.

Prototype

voi d | P_RAW O ose(| P_RAW CONNECTI ON * pCon)

Parameters

Parameter Description
pCon RAW Connection handle.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

404 CHAPTER 8 API functions

8.4.3 IP_RAW_Free()

Description

Frees the buffer which was used for a packet.

Prototype
voi d | P_RAW Free(l P_PACKET * pPacket);
Parameters
Parameter Description
pPacket Pointer to a packet structure.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

405

CHAPTER 8 API functions

8.4.4 IP_RAW_GetDataPtr()

Description

Returns pointer to data contained in the received RAW packet

Prototype
voi d *|1 P_RAW Get Dat aPtr (const | P_PACKET * pPacket);
Parameters
Parameter Description
pPacket Pointer to a packet structure.

Return value
Pointer to the data part of the packet.

Additional information

The data pointer returned points to the start of the network header. Therefore typically 34
bytes header (14 bytes Ethernet header, 20 bytes IP header) are included.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

406 CHAPTER 8 API functions

8.4.5 IP_RAW_GetDataSize()

Description

Returns size of the payload in the received RAW packet.

Prototype
Ul6 | P_RAW Get Dat aSi ze(const | P_PACKET * pPacket);
Parameters

Parameter Description
pPacket Pointer to a packet structure.

Return value

Number of data bytes received in the packet.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

407 CHAPTER 8 API functions

8.4.6 IP_RAW_GetDestAddr()

Description

Extracts destination IP address information from a RAW packet.

Prototype
voi d | P_RAW Get Dest Addr (const | P_PACKET * pPacket,
voi d * pDest Addr,
i nt Addr Len) ;
Parameters
Parameter Description
pPacket Pointer to a packet structure.
pDest Addr Pointer to a buffer to store the destination address.
Addr Len Size of the buffer used to store the destination address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

408 CHAPTER 8 API functions

8.4.7 IP_RAW_GetIFIndex()

Description

Retrieves the zero-based interface index of the given RAW Packet.

Prototype
unsi gned | P_RAW Get | FI ndex(const | P_PACKET * pPacket);
Parameters

Parameter Description
pPacket Pointer to a packet structure.

Return value

Zero-based interface index on which the packet was received.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

409 CHAPTER 8 API functions

8.4.8 IP_RAW_GetSrcAddr()

Description

Extracts source address information from a RAW packet.

Prototype
voi d | P_RAW Get SrcAddr (const | P_PACKET * pPacket,
voi d * pSrcAddr,
int Addr Len) ;
Parameters
Parameter Description
pPacket Pointer to a packet structure.
pSr cAddr Pointer to a buffer to store the source address.
Addr Len Size of the buffer used to store the source address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

410 CHAPTER 8 API functions

8.4.9 IP_RAW_Open()

Description

Creates a RAW connection handle to receive, and pass upwards RAW packets that match
the parameters passed.

Prototype

| P_RAW CONNECTI ON *| P_RAW Open
(IP_ADDR FAddr,
|P_ADDR LAddr,

us Pr ot ocol

i nt (*handl er) (I P_PACKET * pPacket , void * pContext),

voi d * pContext);
Parameters

Parameter Description
FAddr Foreign IP address.
LAddr Local IP address.
Pr ot ocol IP protocol.
Callback function which is called when a packet. of protocol
handl er w " ;
Prot ocol ” is received.

pCont ext Application defined context pointer.

Return value

NULL Success, pointer to the RAW connection handle.
= NULL Error.

Additional information

The parameters FAddr and LAddr can be set to 0 as a wild card, which enables the reception
of broadcast packets. To enable the reception of any protocol use | PPROTO RAWas Pr ot ocol .
The callback handl er function is called with a pointer to a received protocol and a copy of
the data pointer which is passed to | P_RAW Open() . This can be any data the application
requires, such as a pointer to another function, or a control structure to aid in demultiplexing
the received packet.

The returned handle is used as parameter for | P_RAW Cl ose() only. If | P_RAW O ose() is
not called, there is no need to save the return value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

411

CHAPTER 8 API functions

8.4.10 IP_RAW_Send()

Description

Send a RAW packet to a specified host. Contrarily to | P_RAW SendAndFr ee(), it does not
free the packet in case of error.

Prototype
int | P_RAW Send(i nt | Face,
| P_ADDR FHost ,
us Pr ot ocol ,
| P_PACKET * pPacket);
Parameters
Parameter Description
| Face Zero-based index of available interfaces.
FHost IP address of the target host in network endianness.
Prot ocol that will be used in the IP header generated by the
Pr ot ocol
stack.
pPacket Packet that should be sent to the target host.

Return value

=0 O.K. Packet sent or in a send FIFO, to be on the wire shortly.

=1 | P_ERR_SEND_PENDI NG. Packet is waiting for address resolution (incoming ARP
response).
<0 Error code.

Additional information

The packet pPacket has to be allocated by calling IP_RAWAIIoc(). Refer to
| P_RAW Al | oc() for detailed information.

If you expect to get any response to this packet you should have opened a RAW connection
prior to calling | P_RAW Send(). Refer to | P_RAW Open() for more information about
creating a RAW connection.

| P_RAW Send() does not free the packet in case of an error. In this case it is the
responsibility of the application to either free the packet using | P_RAW Free() or to try
sending the packet again.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

412 CHAPTER 8 API functions

8.4.11 IP_RAW_SendAndFree()

Description

Sends a RAW Packet to a specified host and frees the packet. Typically called from
applications using zero-copy RAW communication. A packet sent with this function is
normally allocated by calling | P_RAW Al | oc()

Prototype
int | P_RAW SendAndFree(i nt | Face,
| P_ADDR FHost ,
us Pr ot ocol
| P_PACKET * pPacket);
Parameters
Parameter Description
| Face Zero-based index of available interfaces.
FHost IP address of the target host in network endianness.
Prot ocol that will be used in the IP header generated by the
Pr ot ocol
stack.
pPacket Packet that should be sent to the target host.

Return value

0 O.K. Packet sent or in a send FIFO, to be on the wire shortly.

1 | P_ERR_SEND_PENDI NG. Packet is waiting for address resolution (incoming ARP
response).

<0 Error code.

Additional information

The packet pPacket has to be allocated by calling IP_RAWAIIoc(). Refer to
| P_RAW Al | oc() for detailed information.

If you expect to get any response to this packet you should have opened a RAW connection
prior to calling this. Refer to | P_RAW Open() for more information about creating a UDP
connection.

Packets are always freed by calling | P_RAW SendAndFree(). Therefore no call of
| P_RAW Free() is required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

413

8.4.12 IP_RAW_ReducePayloadLen()

Description

Reduces the payload length of an allocated packet.

CHAPTER 8

API functions

Prototype
i nt | P_RAW ReducePayl oadLen(| P_PACKET * pPacket,
i nt NunByt es) ;
Parameters
Parameter Description
pPacket Pointer to previously allocated packet.
NunByt es Reduced payload len.

Return value

<0 Error, NunByt es parameter is bigger than current len. Other: O.K., current

payload len.

Additional information

A previously allocated packet might have been allocated bigger than necessary to be on
the safe side. This function allows to reduce the number of bytes that will be sent to the
real amount necessary. The payload len can only be reduced. Trying to increase it (again)

is returned as error.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

Chapter 9
DHCP client

This chapter explains the usage of the Dynamic Host Control Protocol (DHCP) with emNet.
All API functions are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

415 CHAPTER 9 DHCP backgrounds

9.1 DHCP backgrounds

DHCP stands for Dynamic Host Configuration Protocol. It is designed to ease configuration
management of large networks by allowing the network administrator to collect all the
IP hosts “soft” configuration information into a single computer. This includes IP address,
name, gateway, and default servers. Refer to [RFC 2131] - DHCP - Dynamic Host
Configuration Protocol for detailed information about all settings which can be assigned
with DHCP.

DHCP is a “client/server” protocol, meaning that machine with the DHCP database “serves”
requests from DHCP clients. The clients typically initiate the transaction by requesting an IP
address and perhaps other information from the server. The server looks up the client in its
database, usually by the client’s media address, and assigns the requested fields. Clients
do not always need to be in the server’s database. If an unknown client submits a request,
the server may optionally assign the client a free IP address from a “pool” of free addresses
kept for this purpose. The server may also assign the client default information of the local
network, such as the default gateway, the DNS server, and routing information.

When the IP addresses is assigned, it is “leased” to the client for a finite amount of time.
The DHCP client needs to keep track of this lease time, and obtain a lease extension from
the server before the lease time runs out. Once the lease has elapsed, the client should
not send any more IP packets (except DHCP requests) until he get another address. This
approach allows computers (such as laptops or factory floor monitors) which will not be
permanently attached to the network to share IP addresses and not hog them when they
are not using the net.

DHCP is just a superset of the Bootstrap Protocol (BOOTP). The main differences between the
two are the lease concept, which was created for DHCP, and the ability to assign addresses
from a pool. Refer to [RFC 951] - Bootstrap Protocol for detailed information about the
Bootstrap Protocol.

Most of the | P_DHCPC * API also applies to the BOOTP protocol. Therefore no separate API
for BOOTP is available except for | P_BOOTPC _Acti vate().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

416

CHAPTER 9

9.2 APIfunctions

Function

Description

| P_BOOTPC Acti vate()

Activates the BOOTP client for the specified
interface.

| P_DHCPC Activate()

Activates the DHCP client for the specified
interface.

| P_DHCPC _AddSt at eChangeHook()

This function adds a hook function to the
| P_DHCPC_HOOK_ON_STATE_CHANGE list.

| P_DHCPC Assi gnCurrent Confi g()

Assigns the internally saved configuration
received so far to the interface.

| P_DHCPC_Conf i gAl waysStartlnit()

Configures if the client always starts with INIT
phase, sending a DISCOVER packet, even if an
IP was configured for the interface before.

| P_DHCPC_Conf i gAssi gnConf i gManual

Configures if the configuration received by a
PHCP server is assigned to the interface as
soon as received.

| P_DHCPC Confi gDhi sabl eARPCheck()

Configures if the client checks an offered
address to be really free by sending ARP
probes before using the IP.

| P_DHCPC Conf i gDNSManual | y()

Configures if the client will request and use a
received DNS server configuration.

| P_DHCPC Confi gRequest LeaseTi ne()

Configures the lease time to use in REQUEST
messages.

| P_DHCPC_Confi gOnActi vat e()

Configures behavior regarding currently set
parameters of an interface when the DHCP
client is activated on this interface.

| P_DHCPC_Conf i gOnFai | ()

Configures behavior regarding currently set
parameters of an interface when the DHCP
client fails in communication to negotiate a
previously received configuration with a server
(REQUEST message).

| P_DHCPC Confi gOnLi nkDown()

Configures behavior regarding currently set
parameters of an interface when the DHCP
client is activated on this interface and the link
goes down.

| P_DHCPC Confi gUni BcSt art Mode()

Configures if the client will start with unicast
or broadcast messages first and enables
automatic mode switching.

| P_DHCPC_Get Opt i onRequest Li st ()

Retrieves the current list of DHCP options to
request from a server.

| P_DHCPC_Get St at e()

Returns the state of the DHCP client.

| P_DHCPC_Hal t ()

Stops DHCP client activity for the given
network interface.

| P_DHCPC_Renew()

Sends a REQUEST with the currently in use
DHCP configuration to the DHCP server to
check if the configuration is still valid.

| P_DHCPC_SendDecl i neAndHal t ()

Sends a DECLINE to the DHCP server and halts
the DHCP client.

| P_DHCPC _SendDecl i neAndReset | P()

Sends a DECLINE to the DHCP server without
halting the DHCP client.

| P_DHCPC Set Cal | back()

This function allows the caller to set a callback
for an interface.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

API functions

417 CHAPTER 9 API functions

Function Description

Sets the DHCP client id for the specified
interface.

| P_DHCPC Set d i ent | d()

Sets a callback that gets notified about

| P_DHCPC_Set OnOpt i onCal | back() received DHCP options.

| P_DHCPC_Set Opt i onRequest Li st () Sets the list of DHCP options to request from a

server.
| P_DHCPC Set Ti nmeout () Sets timeout parameters for DHCP requests.
| P_DHCPC_Rel ease() Returns the used IP addr.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

418

CHAPTER 9

9.2.1 IP_BOOTPC_Activate()

Description

Activates the BOOTP client for the specified interface.

API functions

Prototype
int | P_BOOTPC Activate(int |Faceld);
Parameters
Parameter Description
| Facel d Interface index.

Return value

=0 O.K.

*0 Error, no memory ?

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

419

CHAPTER 9 API functions

9.2.2 IP_DHCPC_Activate()

Description

Activates the DHCP client for the specified interface.

Prototype
int | P_DHCPC_Acti vat e(i nt | Facel d,
const char * sHost,
const char * sDomain,
const char * sVendor);
Parameters
Parameter Description
| Facel d Zero based interface index.
sHost Pointer to host name to use in negotiation. May be NULL.
sDonmai n Pointer to domain name to use in negotiation. May be NULL.
sVendor Pointer to vendor to use in negotiation. May be NULL.

Return value

=0 O.K.
#0 Error, no memory ?

Additional information

This function is typically called from within | P_X Confi g(). This function initializes the
DHCP client. It attempts to open a UDP connection to listen for incoming replies and begins
the process of configuring a network interface using DHCP. The process may take several
seconds, and the DHCP client will keep retrying if the service does not respond.

The parameters sHost, sDomai n, sVendor are optional (can be NULL). If not NULL, must
point to a memory area which remains valid after the call since the string is not copied.

Example

/1 Correct function call

| P_DHCPC Activate(0, "Target", NULL, NULL);
/1 11legal function call

char ac;

sprintf(ac, "Target%d, |ndex);

| P_DHCPC Activate(0, ac, NULL, NULL);

/1 Correct function call

static char ac;

sprintf(ac, "Target%d, |ndex);

| P_DHCPC Activate(0, ac, NULL, NULL);

If you start the DHCP client with activated logging the output on the terminal I/O should
be similar to the listing below:

DHCP: Sendi ng di scover!

DHCP: Recei ved packet from 192.168.1.1
DHCP: Packet type is OFFER

DHCP: Renewal time: 2160 min.

DHCP: Rebi nding tine: 3780 mn.

DHCP: Lease tine: 4320 mn.

DHCP: Host nane received.

DHCP: Sendi ng Request.

DHCP: Recei ved packet from 192.168.1.1
DHCP: Packet type is ACK.

DHCP: Renewal time: 2160 min.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

420 CHAPTER 9 API functions

DHCP: Rebinding tine: 3780 mn.

DHCP: Lease tine: 4320 mn.

DHCP: Host nane recei ved.

DHCP: | Face 0: |P: 192.168.199.20, Msk: 255.255.0.0, GW 192.168.1. 1.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

421

CHAPTER 9 API functions

9.2.3 IP_DHCPC_AddStateChangeHook()

Description

This function adds a hook function to the | P_DHCPC HOOK ON_STATE_CHANGE list. Registered
hooks will be called with every status change and reports some DHCP informations about
the current status.

Prototype

voi d | P_DHCPC_AddsSt at eChangeHook
(1 P_DHCPC_HOOK_ON_STATE_CHANGE * pHook,
voi d (*pf)
(unsigned | Faceld , unsigned State , |P_DHCPC STATE INFO * pinfo));

Parameters

Parameter Description

Element of type | P_DHCPC HOOK ON_STATE_CHANGE to
register.

Callback that is notified on a state change.

f e IFaceld: Zero-based interface index.

P e State : Current DHCP client state.

e plnfo : Further information about the current state.

pHook

Additional information

This mechanism is provided so that the caller can do some processing when the interface
is up (like doing initializations or blinking LEDs, etc.).

The pointer on | P_DHCPC_STATE_| NFOstructure will not be valid after the callback is called.
If parameters are to be used, they need to be copied.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

422 CHAPTER 9 API functions

9.2.4 |P_DHCPC_AssignCurrentConfig()

Description

Assigns the internally saved configuration received so far to the interface.

Prototype
i nt | P_DHCPC _Assi gnCurrent Config(int |Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

1 No configuration available (no previous IP address received).
0 0.K., configuration previously received assigned.
-1 Error, no memory ?

Additional information
Please refer to | P_DHCPC Confi gAssi gnConfi gManual | y() for more information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

423 CHAPTER 9 API functions

9.2.5 IP_DHCPC_ConfigAlwaysStartinit()

Description

Configures if the client always starts with INIT phase, sending a DISCOVER packet, even
if an IP was configured for the interface before.

Prototype
int | P_DHCPC_Confi gAl waysStartlnit(int |Faceld,
us OnOff);
Parameters
Parameter Description

| Facel d Zero-based interface index.

e 0: Off.
G e 1:0n.

Return value

=0 O.K.
*0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
| P_DHCPC Activate() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

424 CHAPTER 9 API functions

9.2.6 IP_DHCPC_ConfigAssignConfigManually()

Description

Configures if the configuration received by a DHCP server is assigned to the interface as
soon as received.

Prototype
int | P_DHCPC_Confi gAssi gnConfi gManual I y(int | Faceld,
U8 OnOff);
Parameters
Parameter Description
| Facel d Zero-based interface index.
e 0: Off (default), configuration is assigned as soon
onok f as received.
e 1: On, configuration is only saved internally and the
user needs to manually assign it to an interface.

Return value

=0 O.K.
*0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
| P_DHCPC Activate() .

In case the received configuration shall not be used immediately upon receiving it,
it needs to be set manually later on. This can be done by either using information
from the state callback using | P_DHCPC AddSt at eChangeHook() or by simply calling
| P_DHCPC Assi gnCurrent Config() to activate the configuration as it would have been
done automatically.

This configuration does not override assigning a fallback configuration if this has been
configured as well.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

425

CHAPTER 9 API functions

9.2.7 IP_DHCPC_ConfigDisableARPCheck()

Description

Configures if the client checks an offered address to be really free by sending ARP probes

before using the IP.

Prototype
int | P_DHCPC_Confi gbi sabl eARPCheck(int | Facel d,
us OnOff);

Parameters

Parameter Description
| Facel d Zero-based interface index.
NG f e 0: Off, ARP probes are sent (default).

e 1: 0n, ARP probes are disabled.

Return value

=0 O.K.

*0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using

| P_DHCPC Activate() .

This routine is

not

available when configuring the define

| P_DHCPC_CHECK_| P_BEFORE_BOUND=0 .

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

426 CHAPTER 9 API functions

9.2.8 IP_DHCPC_ConfigDNSManually()

Description

Configures if the client will request and use a received DNS server configuration.

Prototype
int | P_DHCPC_Confi gDNSManual | y(i nt | Facel d,
us OnOoff);
Parameters
Parameter Description
| Facel d Zero-based interface index.
NG f e 0: Off, DNS configuration from server is used.
e 1: On, DNS configuration needs to be set manually.

Return value

=0 O.K.
*0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
| P_DHCPC Activate() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

427 CHAPTER 9 API functions

9.2.9 IP_DHCPC_ConfigRequestLeaseTime()

Description

Configures the lease time to use in REQUEST messages.

Prototype

int | P_DHCPC_Confi gRequest LeaseTi ne(int | Faceld,
U32 LeaseTine);

Parameters
Parameter Description
| Facel d Zero-based interface index.

Lease time [s] to request from the server. The value
LeaseTi ne 0xFFFFFFFF requests an infinte lease from the server. Which
lease time is actually granted is decided by the server.

Return value

=0 O.K.
*0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
| P_DHCPC Activate() .

By default the lease time initially granted by the server in its OFFER message is used when
sending REQUEST messages. To only initially send a custom lease time you should revert
back to a value of 0 (use the previously granted value) or OxFFFFFFFF (infinity). It is possible
to call this routine while the DHCP client is active to change this behavior on the fly.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

428 CHAPTER 9 API functions

9.2.10 IP_DHCPC_ConfigOnActivate()

Description

Configures behavior regarding currently set parameters of an interface when the DHCP
client is activated on this interface.

Prototype
int | P_DHCPC Confi gOnActivate(int |Faceld,
Us Mode);
Parameters
Parameter Description
| Facel d Zero-based interface index.
Mbde Mbde to configure.

Return value

=0 O.K.
*0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
| P_DHCPC Activate() .

Please be aware that activating the DHCP client with a static configured IP address
instructs the DHCP client to try to request this address from the server. In case
| P_DHCPC Confi gOnFail () is configured to use DHCP_RESET_CONFI G (default) it might
happen that the static IP will be reset if no server is reachable for the REQUEST or the IP
addr. gets declined by a server.

Possible values for Mode

Mbde Description

Reset interface when activating the DHCP client on
DHCPC _RESET_CONFI G this interface to avoid using old settings longer than
necessary. Default.

Keep previous static configuration, if any,
DHCPC _USE_STATI C_CONFI G as fallback configuration as long as no new
configuration has been received from a server.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

429 CHAPTER 9 API functions

9.2.11 IP_DHCPC_ConfigOnFail()

Description

Configures behavior regarding currently set parameters of an interface when the DHCP
client fails in communication to negotiate a previously received configuration with a server
(REQUEST message).

Prototype
int | P_DHCPC_ConfigOnFail (int |Faceld,
Us Mode);

Parameters

Parameter Description
| Facel d Zero-based interface index.
Mbde Mbde to configure.
Return value
=0 O.K.
*0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
| P_DHCPC Activate() .

To configure a fallback IP in case no DHCP server is available at all, starting the DHCP client
from INIT state, please refer to | P_DHCPC Confi gOnActivate() .

When the on-fail configuration is applied this does not mean that the DHCP client activity
is stopped. It could be intended to keep the DHCP client running in case a server
becomes available. To stop the DHCP client you should monitor the state changes using
| P_DHCPC AddSt at eChangeHook() and react to the messages DHCPC STATE INIT and
DHCPC _STATE_RESTARTI NGthat signal fallbacks caused by server timeout or no server being
available at all. You should then halt the DHCP client service from the callback.

Possible values for Mode

Mbde Description

Reset interface to avoid using old settings longer
DHCPC _RESET_CONFI G than necessary as they might interfere with other
DHCP clients in this network. Default.

Setup previous static configuration, if any, as
fallback configuration to remain accessible.

DHCPC_USE_STATI C_CONFI G

Keep previously received DHCP configuration. Not
DHCPC_USE_DHCP_CONFI G recommended as it might interfere with other DHCP
clients in this network.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

430

CHAPTER 9 API functions

9.2.12 IP_DHCPC_ConfigOnLinkDown()

Description

Configures behavior regarding currently set parameters of an interface when the DHCP
client is activated on this interface and the link goes down.

Prototype
int | P_DHCPC_Confi gOnLi nkDown(i nt | Facel d,
U32 Ti neout,
Us Mode);
Parameters
Parameter Description
| Facel d Zero-based interface index.
Ti meout Ti meout to wait before reacting on link down [ms].
Mode Mbde to configure.

Return value

=0 O.K.
*#0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using

| P_DHCPC Activate().

Possible values for Mode

Mode

Description

DHCPC_RESET_CONFI G

Reset interface when link goes down on this
interface to avoid using old settings longer than
necessary as the target might be connected to
another network. Default.

DHCPC_USE_STATI C_CONFI G

Setup previous static configuration, if any, as
fallback configuration on link down to allow a quick
start once the link goes up again.

DHCPC_USE_DHCP_CONFI G

Keep previously received DHCP configuration on link
down as long as the configuration is not declined

or a new configuration is received once link on this
interface is up again.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

431

CHAPTER 9 API functions

9.2.13 |IP_DHCPC_ConfigUniBcStartMode()

Description

Configures if the client will start with unicast or broadcast messages first and enables
automatic mode switching.

Prototype
int | P_DHCPC_Confi gUni BcSt art Mode(i nt | Facel d,
Us Mode);
Parameters
Parameter Description
| Facel d Zero-based interface index.
Vbde e 0: Start with unicasts first.
e 1: Start with broadcasts first.

Return value

=0 O.K.
*0 Error, no memory ?

Additional information

This function shall be called before activating the DHCP client for an interface using
| P_DHCPC Activate() .

The mode switch will be applied after a couple of retries have been sent for the same
message. The number of retries can be configured using | P_DHCPC Set Ti neout () .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

432 CHAPTER 9 API functions

9.2.14 IP_DHCPC_GetState()

Description
Returns the state of the DHCP client.

Prototype
unsi gned | P_DHCPC Get State(int |Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

=0 DHCP client not in use.
>0 DHCP client in use.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

433 CHAPTER 9 API functions

9.2.15 IP_DHCPC_GetOptionRequestList()

Description

Retrieves the current list of DHCP options to request from a server.

Prototype
int | P_DHCPC Get Opti onRequest Li st (i nt | Facel d,
us * pBuffer,
unsi gned Buf f er Si ze) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
Pointer to buffer where to store up to Buf f er Si ze DHCP
Buf f er options that are requested from a server. Can be NULL to
P determine the size of the buffer required to retrieve all
options in use.
Buf ferSi ze Maximum amount of options to retrieve.

Return value

<0 Request list disabled via compile switch or error, no memory ?
=0 Number of U8 DHCP options returned or would be returned if Buf f er Si ze would
be sufficient. A list with zero entries is valid if it has been set via config.

Additional information

For more information about the actual DHCP options please refer to RFC 1533 . For an
example please refer to | P_DHCPC _Set OnOpt i onCal | back() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

434

CHAPTER 9

9.2.16 IP_DHCPC_Halt()

emNet User Guide & Reference Manual

Description

Stops DHCP client activity for the given network interface.

API functions

Prototype
int | P_DHCPC Halt(int |Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

=0 0O.K.
*0 Error, no memory ?

© 2010-2025 SEGGER Microcontroller GmbH

435 CHAPTER 9 API functions

9.2.17 IP_DHCPC_Renew()

Description

Sends a REQUEST with the currently in use DHCP configuration to the DHCP server to check
if the configuration is still valid.

Prototype
int | P_DHCPC Renew(int | Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

=0 0O.K.
*0 Error, no memory ?

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

436 CHAPTER 9 API functions

9.2.18 IP_DHCPC_SendDeclineAndHalt()

Description
Sends a DECLINE to the DHCP server and halts the DHCP client.

Prototype
int | P_DHCPC_SendDecl i neAndHal t (i nt | Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

=0 O.K.
#0 Error.

Additional information

Please refer to | P_DHCPC Decl i ne() for more information.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

437

CHAPTER 9 API functions

9.2.19 IP_DHCPC_SendDeclineAndResetIP()

Description

Sends a DECLINE to the DHCP server without halting the DHCP client. The IP address of
the interface is cleared.

Prototype
int | P_DHCPC_SendDecl i neAndReset | P(i nt | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

=0 O.K.
#0 Error.

Additional information

Can be used to reject a previously accepted address from a DHCP server. A reason to do so
would be that despite this address seemed free before, now an address collision for example
via ACD has been detected. The DHCP client needs to be in BOUND state, otherwise no
decline is sent as we do not own the address.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

438

CHAPTER 9 API functions

9.2.20 IP_DHCPC_SetCallback()

Description

This function allows the caller to set a callback for an interface.

Prototype

int | P_DHCPC_Set Cal | back(int |Faceld,
int (*routine)(int IFaceld , int State));

Parameters
Parameter Description
| Facel d Zero-based interface index.
foutine Callback functions which should be called with every status
changes.
Return value
=0 O.K.
*0 Error, no memory ?

Additional information

The callback is called with every status change. This mechanism is provided so that the
caller can do some processing when the interface is up (like doing initializations or blinking
LEDs, etc.).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

439

CHAPTER 9 API functions

9.2.21 IP_DHCPC_SetClientld()

Description

Sets the DHCP client id for the specified interface. Should be called prior to
| P_DHCPC Activate()

Prototype
int | P_DHCPC Setdientld(int | Facel d,

const U8 * plientld,

unsi gned ClientldLen);
Parameters
Parameter Description

| Facel d Zero based interface index.
pClientld Pointer to Clientld to use in negotiation. Will not be copied.
ClientldLen Length of client ID.

Return value

=0 O.K.
*#0 Error, no memory ?

Additional information

Typically a DHCP server will recognize a client based on its MAC address. A client ID can
be included by the client when communicating with the server for identification if needed.
Please be aware that one byte is prepend that contains the type of the ID. The client ID
will not be copied into the stack, therefore you need to make sure that the memory will
be available even after the call.

Bad example

ug dientlD7]; /1 1 byte type + 6 bytes MAC address.
ClientlD0] = 0x01; // Type = Ethernet.

| P_Get HMAddr (0, &ClientlD 1], sizeof(ClientID) - 1);
| P_DHCPC SetClientld(0, CientlD, sizeof(CientlD));

Good example

static UB dientl7]; // 1 byte type + 6 bytes MAC address.

Clientl D 0] = 0x01; /1l Type = Ethernet.
| P_Get HMADdAr (0, &l ientlD 1], sizeof(CientID - 1);
| P_DHCPC SetClientld(0, dientlD, sizeof(CientlD));

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

440 CHAPTER 9 API functions

9.2.22 IP_DHCPC_SetOnOptionCallback()

Description

Sets a callback that gets notified about received DHCP options.

Prototype
voi d | P_DHCPC_Set OnOpt i onCal | back(| P_DHCPC_ON_OPTI ON_FUNC * pf);
Parameters

Parameter Description
pf Callback to execute for each DHCP option received.
Example

#defi ne DHCP_NTP_OPTI ON_TYPE (42u)

static U8 _DhcpReqList[16]; // Default is ~4 U8 options.

[RAE KRk KKk KKk Kk KKK KKK KK KKK KKK KKK KKK KKK A KKK KKK KKKk * A IR Kk Kk kA Kk kK k ok Kk k%

_OnDhcpOpti on()

Function description
Cal | back executed for every DHCP option received.

Par aneters
| Facel d: Zero-based interface index.
pInfo : Further information of type |P_DHCPC ON_OPTI ON_| NFO
about the DHCP option parsed.

Addi tional infornmation
Once all options are parsed the end marker (option type OxFF) is
reported as well for an easy to detect end of the |ist from
within the callback. No end is signaled if there was an abort
that can be detected by |ooking at plnfo->Status .

T T T T T

/
static void _OnDhcpOption(unsigned | Faceld, |P_DHCPC ON OPTI ON_| NFO* plnfo) {
U32 Addr;

| P_USE_PARA(| Facel d);

if (plnfo->Status == 0u) { // Not a parser error ?
if (plnfo->Type == DHCP_NTP_OPTI ON_TYPE) {

11
/1 Miltiple U32 | Pv4 addresses of NTP servers m ght be returned.
11
| P_Logf _Application("“NTP servers retrieved via DHCP:");
do {
11

/'l Get the |Pv4 address of an NTP server in network endi anness (BE)
/'l as our printf formatter % for an |Pv4 expects it that way.

11
nmencpy(&Addr, plnfo->pVal, 4);
| P_Logf _Application(" - %", Addr);
pl nfo->Len -= 4u;
} while (plnfo->Len !'= Qu);

}
}
}

/***
_AskDhcpFor Nt pSer vers()
Function description
Wien sending a request to a DHCP server, also ask it for NTP servers.

To be called fromIP_X Config() before activating the DHCP client.

Par anet ers:
| Facel d: Zero-based interface index.

I N N

/
static void _AskDhcpFor Nt pServers(unsigned | Faceld) {
int NunOptions;

11
/1 Get old (default list).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

441 CHAPTER 9 API functions

11
NumOpt i ons = | P_DHCPC_Get Opti onRequest Li st (| Facel d, & DhcpReqList[0], sizeof(_DhcpReqList));
if (NunDptions >= 0) { /'l Successfully retrieved current list ?
if (NunOptions < (int)sizeof(_bDhcpReqList)) { // Do we have space for one nore option ?
11
/'l Assune that the NTP option 42 is not in the list and add it.
/1 1f unsure, add code to | ook through the options present
/1 and only add the option if it is not already in there.
11
_DhcpReqLi st [NunOpt i ons++] = DHCP_NTP_OPTI ON_TYPE;
11
/1 Set new list.
11
| P_DHCPC_Set Opt i onRequest Li st (| Facel d, (const U8*)& DhcpReqList[0], (unsigned)NunOptions);
11
/'l Set callback that gets notified about received options.
11
| P_DHCPC_Set OnOpt i onCal | back(_OnDhcpOpti on);
}
}

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

442 CHAPTER 9 API functions

9.2.23 |IP_DHCPC_SetOptionRequestList()

Description

Sets the list of DHCP options to request from a server.

Prototype
i nt | P_DHCPC_Set Opti onRequest Li st (i nt | Facel d,
const U8 * pOpti ons,
unsi gned NumOpt i ons) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
Pointer to array with U8 DHCP options that shall be
requested from a server when sending a REQUEST . The
pOpti ons memory has to remain valid after the call. Can be NULL for
empty list but might prevent the DHCP client from proper
functioning.
NunOpt i ons Number of options at pOpti ons .
Return value
<0 Request list disabled via compile switch or error, no memory ?

=0 O.K.

Additional information

Best practice to add your own DHCP options is to read back the current list of options with
| P_DHCPC Get Opti onRequest Li st () and then add the desired options that are missing.

To set an empty list (whether this makes sense or not) set pOpt i ons # NULL and NunOpt i ons
= 0 . For an example please refer to | P_DHCPC_Set OnOpt i onCal | back() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

443 CHAPTER 9 API functions

9.2.24 IP_DHCPC_SetTimeout()

Description

Sets timeout parameters for DHCP requests. RFC2131 demands exponential retransmission
times (doubling retransmission time with each retry), but in practice it may make more
sense to work with a fixed, non-exponential timeout.

Prototype
voi d | P_DHCPC_Set Ti neout (i nt | Facel d,
u32 Ti meout ,
u32 MaxTri es,
unsi gned Exponential);
Parameters
Parameter Description
| Facel d Interface index.
Ti meout Value of the timeout [ms].
MaxTri es Maximum number or attempts.
Exponenti al Value used to delay new attempts.

Additional information

This function can be called before or after activating the DHCP client for an interface using
| P_DHCPC Activate() inl1P_X Config().

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

444 CHAPTER 9 API functions

9.2.25 |IP_DHCPC_Release()

Description

Returns the used IP addr. before the end of the lease.

Prototype
int | P_DHCPC Rel ease(int |Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

=0 0O.K.
*0 Error, no memory ?

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

445 CHAPTER 9 Data structures

9.3 Data structures

9.3.1 IP_DHCPC_ON_OPTION_INFO

Description
Returns information about the next DHCP option to be processed.
Type definition

typedef struct {
const U8 * pVval;

i nt St at us;
us Type;
us Len;

} | P_DHCPC_ON_OPTI ON_I NFQ,

Structure members

Member Description
pVal Value of the DHCP option.
St at us e =0:0.K
e < 0: Parse error, abort of parser.
- DHCP option type. Please refer to RFC 1533 for further
yp information.
Len Length of the option value.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

446 CHAPTER 9 Data structures

9.3.2 IP_DHCPC_ON_OPTION_FUNC

Description

Callback executed for every DHCP option received.

Type definition

typedef void (I P_DHCPC _ON_OPTI ON_FUNC) (unsi gned | Facel d,
| P_DHCPC_ON_OPTI ON_I NFO * plnfo);
Parameters
Parameter Description
| Facel d Zero-based interface index.
Info Further information of type | P_DHCPC_ON_OPTI ON_I NFO
P about the DHCP option parsed.

Additional information

Once all options are parsed, the end marker (option type 0xFF) is reported as well for an
easy to detect end of the list from within the callback. No end is signaled if there was an
abort that can be detected by looking at pl nf o->Status .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 10
DHCP server (Add-on)

The emNet implementation of the DHCP server is an optional extension to emNet. It allows
setting up a Dynamic Host Control Protocol (DHCP) server that seamlessly integrates with
emNet. All API functions are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

448 CHAPTER 10 DHCP Backgrounds

10.1 DHCP Backgrounds

DHCP stands for Dynamic Host Configuration Protocol. It is designed to ease configuration
management of large networks by allowing the network administrator to collect all the
IP hosts “soft” configuration information into a single computer. This includes IP address,
name, gateway, and default servers. Refer to [RFC 2131] - DHCP - Dynamic Host
Configuration Protocol for detailed information about all settings which can be assigned
with DHCP.

Further information can be found in the chapter DHCP backgrounds on page 415 in the
description of the DHCP client.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

449 CHAPTER 10 API functions

10.2 API functions

Function Description
| P_DHCPS Conf i gDNSAddr () Configures one or more DNS addr.

Configures the default gateway to be assign to

| P_DHCPS_Conf i gGMAddr () dients

Configures the maximum lease time that a
| P_DHCPS Confi gMaxLeaseTi ne() client will be granted to use the achieved
configuration.

Configures the IP address pool that can be

| P_DHCPS_Conf i gPool () assigned to DHCP clients.

Stops DHCP server activity for the passed

| P_DHCPS Hal t () interface.

Initializes the DHCP server for the specified

I'P_DHCPS_I nit () interface.

Sets a configuration for IP addresses to reserve
| P_DHCPS Set Reser vedAddr esses() for specific MAC addresses or HostNames (or
both).

This function sets a callback that is executed
then sending response to a client and the

lient has sent a vendor class identifier (DHCP
option 60).

Starts the DHCP server for the specified
interface.

| P_DHCPS_Set Vendor Opti onsCal | back

| P_DHCPS Start ()

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

450 CHAPTER 10 API functions

10.2.1 IP_DHCPS_ConfigDNSAddr()

Description

Configures one or more DNS addr. to assign to clients.

Prototype
i nt | P_DHCPS_Confi gDNSAddr (unsi gned | FI ndex,
u32 * paDNSAddr,
us Nunter vers) ;
Parameters
Parameter Description
| Fl ndex Zero-based interface index of the server to configure.
paDNSAddr Array of U32 IPv4 addresses of DNS servers to use (host
order).
NunSer ver s Number of DNS servers in array.

Return value

0 O.K.
| P_ERR M SC Error, server already started.
| P_ERR PARAM Error, wrong interface.

Additional information

Configuring DNS server settings is optional. If no DNS servers are configured no DNS
servers will be assigned to clients.

Needs to be called before activating the DHCP server for this interface with
| P_DHCPS Start ().

Example

U32 aDNSAddr[2] ;

I

/1 Setup DNS addr. as needed.

I

aDNSAddr [0] | P_BYTES2ADDR(192, 168, 12, 1);

aDNSAddr [1] | P_BYTES2ADDR(192, 168, 12, 2);

| P_DHCPS_Conf i gDNSAddr (0, &aDNSAddr[0], 2);

| P_DHCPS_Confi gPool (0, |P_BYTES2ADDR(192, 168, 12, 11), OxFFFF0000, 20);
| P_DHCPS_I nit (0);

| P_DHCPS _Start(0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

451 CHAPTER 10 API functions

10.2.2 IP_DHCPS_ConfigGWAddr()

Description

Configures the default gateway to be assign to clients.

Prototype
i nt | P_DHCPS Confi gGMddr (unsi gned | Fl ndex,
u32 GMAddr) ;
Parameters
Parameter Description
| Fl ndex Zero-based interface index of the server to configure.
GWAddr Default gateway IP address in host order.

Return value

0 O.K.
| P_ERR M SC Error, server already started.
| P_ERR PARAM Error, wrong interface.

Additional information

Configuring a gateway setting is optional. If no gateway is configured no gateway will be
assigned to clients.

Needs to be called before activating the DHCP server for this interface with
| P_DHCPS Start ().

Example

| P_DHCPS_Confi gGMddr (0, | P_BYTES2ADDR(192, 168, 12, 1));

| P_DHCPS_Confi gPool (0, |P_BYTES2ADDR(192, 168, 12, 11), OxFFFF0000, 20);
| P_DHCPS_I nit (0);

| P_DHCPS _Start(0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

452 CHAPTER 10 API functions

10.2.3 IP_DHCPS_ConfigMaxLeaseTime()

Description

Configures the maximum lease time that a client will be granted to use the achieved
configuration.

Prototype
int | P_DHCPS_Confi gMaxLeaseTi ne(unsi gned | Fl ndex,
u32 Seconds) ;
Parameters
Parameter Description

| Fl ndex Zero-based interface index.
Maximum lease time in seconds. Default 7200s => 2h. Up

Seconds to 4294967 seconds, converted into ms this is the maximum
we can store in an U32. OXxFFFFFFFF to grant infinite if asked
for.

Return value

0 O.K.
| P_ERR M SC Error, server already started.
| P_ERR PARAM Error, wrong interface or value for lease time invalid.

Additional information

Optional. Needs to be called before activating the DHCP server for this interface with
| P_DHCPS Start ().

Example

| P_DHCPS_Confi gvaxLeaseTi me(0, 7200);

| P_DHCPS_Confi gPool (0, |P_BYTES2ADDR(192, 168, 12, 11), OxFFFF0000, 20);
| P_DHCPS_I nit (0);

| P_DHCPS _Start(0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

453 CHAPTER 10 API functions

10.2.4 IP_DHCPS_ConfigPool()

Description

Configures the IP address pool that can be assigned to DHCP clients.

Prototype
int | P_DHCPS_Confi gPool (unsi gned | Fl ndex,

u32 Start | PAddr,

u32 SNMasKk,

u32 Pool Si ze) ;
Parameters

Parameter Description
| FI ndex Zero-based interface index of the server to configure.
Start | PAddr First IP address of the pool in host order.
SNVask Subnet mask in host order.
. Number of addresses in the pool starting from St ar t | PAddr .
Pool Si ze .
The pool size has to be at least 1.

Return value

0 O.K.
| P_ERR_M SC Error, server already started.
| P_ERR_PARAM Error, wrong interface.

Additional information

Optional. Needs to be called before activating the DHCP server for this interface with
| P_DHCPS_Start ().

Example

| P_DHCPS_Confi gPool (0, | P_BYTES2ADDR(192, 168, 12, 11), OxFFFF0000, 20);
| P_DHCPS_ I nit(0);
| P_DHCPS Start(0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

454 CHAPTER 10 API functions

10.2.5 IP_DHCPS_Halt()

Description

Stops DHCP server activity for the passed interface.

Prototype
voi d | P_DHCPS Hal t (unsi gned | FI ndex);
Parameters
Parameter Description
| FI ndex Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

455 CHAPTER 10 API functions

10.2.6 IP_DHCPS_Init()

Description

Initializes the DHCP server for the specified interface.

Prototype
int | P_DHCPS I nit(unsigned |IFlndex);
Parameters
Parameter Description
| FI ndex Zero-based interface index.

Return value

0 0.K.

| P_ERR M SC Error, server already initialized.
| P_ERR_NOVEM Error, not enough memory.

| P_ERR_PARAM Error, wrong interface.

Additional information

This function is obsolete. Its functionality has been implemented into
| P_DHCPS Conf i gPool () as this needs to be called anyhow. This function is a dummy for
the moment, so it does not hurt to call it like before.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

456 CHAPTER 10 API functions

10.2.7 IP_DHCPS_SetReservedAddresses()

Description
Sets a configuration for IP addresses to reserve for specific MAC addresses or HostNames
(or both).
Prototype
i nt | P_DHCPS Set ReservedAddr esses(unsi gned | FI ndex,
const | P_DHCPS RESERVE_ADDR * paAddr,
unsi gned NumAddr) ;
Parameters
Parameter Description
| Fl ndex Zero-based interface index.
paAddr Pointer to array of | P_DHCPS RESERVE ADDR addresses.
NumAddr Number of addresses at paAddr .

Return value

<0 Error
=0 O.K.
Additional information

For the moment the global configuration for subnet mask, gateway and DNS for the server
on this interface is used.

IP addresses to be reserved are not limited to addresses of the configured pool. Of course
addresses need to be within the configured subnet to work as expected.

Example
const | P_DHCPS_RESERVE_ADDR _aReserved[] = {
/'l HW addr . , I'P addr., , Host Nanme
{(const U8*)"\ x00\ x0C\ x29\ x76\ xE7\ x0B", | P_BYTES2ADDR(192, 168, 12, 20), NULL}, /1l Reserve by HWaddr. only.

{(const U8*)"\ x00\ x22\ xC7\ xAF\ xFQ\ x25", | P_BYTES2ADDR(192, 168, 12, 16), "oliver"}, // Reserve by HWaddr. AND Hostnanme
(both have to match).

{NULL , | P_BYTES2ADDR(192, 168, 12, 17), "sven"}, /| Reserve by Hostnanme first
(or only).

{(const U8*)"\ x00\ x22\ xC7\ xAF\ xFCQ\ x30", | P_BYTES2ADDR(192, 168, 12, 17), NULL}, /1 Reserve by HWaddr. second.

{(const U8*)"\ xB8\ x27\ xEB\ xC7\ x96\ x5F", | P_BYTES2ADDR(192, 168, 20, 55), NULL}, /'l Reserve by HWaddr. only.

static void _StartServer(void) {
| P_DHCPS_Conf i gPool (0, | P_BYTES2ADDR(192, 168, 12, 11), |P_BYTES2ADDR(255, 255, 0, 0), 20);
| P_DHCPS_I ni t (0);
| P_DHCPS_Set Reser vedAddr esses(0, _aReserved, SEGGER COUNTOF(_aReserved));
| P_DHCPS_Start (0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

457

10.2.8

CHAPTER 10

API functions

IP_DHCPS_ SetVendorOptionsCallback()

Description

This function sets a callback that is executed when sending response to a client and the
client has sent a vendor class identifier (DHCP option 60). It can be used to add vendor
specific options to a DHCP response to a client.

Prototype

voi d | P_DHCPS_Set Vendor Opt i onsCal | back(| P_DHCPS_GET_VENDOR_OPTI ON_FUNC * pf);

Parameters

Parameter

Description

pf

Callback of type | P_DHCPS GET_ VENDOR CPTI ON_FUNC that is
asked for vendor specific options.

Example

R R R E LT T T T T PSP

Aok ok k% E E o E % % A %

/

static void _chDHCPs_AddVendor Opti ons(unsi gned | Faceld,

us*
us*

_CchDHCPs_AddVendor Opt i ons()

Function description
Adds DHCP vendor specific options to our server replies.

Paranmeters
| Faceld : Zero-based interface index.
plnfo : Further information about the vendor of the client.
ppOption: Pointer to the pointer where to add further options.

The dereferenced pointer needs to be increnented
by the nunmber of bytes added. Type and | ength bytes
need to be added by the cal |l back as well.

NunBytes: Nunber of free bytes that can be used to store

options fromthe call back.

pVendor O assl d;
pOpti on;

unsi gned Vendor d assl dLen;

| P_USE_PARA(| Facel d);

| P_DHCPS_VENDOR_OPTI ON_I NFO* plnfo, UB** ppOption, unsigned NunBytes) {

pOption = *ppOption; // Get the location where to add our options aka borrow the pointer.
11

Il Parse the vendor class id.

pVendor d assl d = pl nfo->pVendor O assl d; Il Points to the type which should al ways be DHCP option 60.
pVendor O assl d++; /1 proceed to the length field.
Vendor O assl dLen = (unsigned)*pVendord assld++; // Get the length byte and proceed to the actual non-term nated vendor string.

11

Il Check if the vendor class identifier is known to us.

11

if ((IP_MEMCMP(pVendor O assld, "MSFT 5.0", Vendord assldLen) == 0) &&

(NunmBytes >= 8u)) {

/1 Al'so check if we have enough space to add the option.

11

/1 ldentified a Mcrosoft device that supports vendor-specific options.

/1 More information about this can be found at the follow ng |ocation:

11 * https://msdn. mcrosoft.confen-us/library/cc227279. aspx

11

/1 Information about the vendor-specific options supported for M crosoft

Il devices can be found here:

11 * [1] https://msdn. nicrosoft.confen-us/library/cc227275. aspx

11 * [2] https://msdn.nicrosoft.confen-us/library/cc227276. aspx

11

/1 A common task is to disable NetBIOS (over TCP/IP) via DHCP

/1 if your clients primarily use other techniques and you want

/1 to speed up discovery of themby nane. Typically one nethod

Il will be tested after each other which means that each nethod

/1 used costs additional tine before your desired discovery

/1 method finally might be used.

11

*pOption++ = 43u; /1 Add an option field of type 43 "Vendor-Specific Information".
*pOption++ = 6u; /1 Add length field with value 6 for the actual 6 bytes vendor-specific content.
*pOption++ = 0x01; /1 [1] "Mcrosoft Disable NetBIOS Option (section 2.2.2.1)"
*pOption++ = 0x04; /1 [2] "Vendor-specific Option Length"

| P_St or eU32BE(pOpt i on, 0x00000002uL); // [2

pOpti on += 4;

}
*ppOption = pOpti on;

}

voi d mai n(void) {

| P_DHCPS_Set Vendor Opt i onsCal | back(_cbDHCPs_AddVendor Opti ons) ;

}

emNet User Guide & Reference Manual

/1 Wite back the borrowed pointer so the DHCP server internal

"Vendor - speci fic Option Data" "Disables NetBlOS over TCP/IP for that network interface."

code knows where to continue.

© 2010-2025 SEGGER Microcontroller GmbH

458

CHAPTER 10 API functions

10.2.9 IP_DHCPS_Start()

Description

Starts the DHCP server for the specified interface.

Prototype
int | P_DHCPS Start(unsigned | Flndex);
Parameters
Parameter Description
| FI ndex Zero-based interface index.

Return value

0 O.K.

| P_ERR_ M SC Error, server already started or not initialized/configured.
| P_ERR_NOVEM Error, not enough memory.
| P_ERR_PARAM Error, wrong interface.

Additional information

| P_DHCPS I nit() and | P_DHCPS Confi gPool () needs to be called before activating the
DHCP server for an interface in order to set at least the minimum configurations.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

459

CHAPTER 10 Data structures

10.3 Data structures

10.3.1 IP_DHCPS_RESERVE_ADDR

Description

Reserves a DHCP IPv4 address via HW address, hostname or both.

Type definition

typedef struct {

const U8

us2

Structure members

* pHWAddr ;
| PAddr ;
const char * sHost Nane;
} | P_DHCPS_RESERVE_ADDR;

Member Description
pHWAddr Client HW/MAC address to reserve to. Can be NULL.
| PAddr IPv4 address to reserve in_host endianness. Does not need
to be from the DHCP pool itself.
sHost Nanme Client hostname to reserve to. Can be NULL.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

460 CHAPTER 10 Data structures

10.3.2 IP_DHCPS_GET_VENDOR_OPTION_INFO

Description

Returns information about the vendor specific identifier received with DHCP option 60.
Type definition

typedef struct {

Us * pVendor d assl d;
} | P_DHCPS_GET_VENDOR_OPTI ON_I NFQ,

Structure members

Member Description

Pointer to the DHCP option 60 field received from a client
including type and length bytes. A typical example would
pVendor d assl d be Type: 60, Len: 8 and Value: 'M"'S" 'F' 'T" " " ’'5" " "0’ for a
Microsoft client that supports vendor specific DHCP option 43
commands.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

461

CHAPTER 10 Data structures

10.3.3 IP_DHCPS_GET_VENDOR_OPTION_FUNC

Description
Inserts a vendor specific configuration for DHCP option 43.
Type definition

typedef void (I P_DHCPS_GET_VENDOR OPTI ON_FUNC)

(unsi gned | Facel d,
| P_DHCPS_GET_VENDOR_OPTI ON_I NFO * pl nfo,
us ** ppOption,
unsi gned NurmByt es) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
Further information of type
pl nfo | P_DHCPS_GET_VENDOR _OPTI ON_I NFO about the vendor of the
client.
Pointer to the pointer where to add further options. The
Opti on dereferenced pointer needs to be incremented by the
PP number of bytes added. Type and length bytes need to be
added by the callback as well.
Number of free bytes that can be used to store options from
NunByt es
the callback.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

462

10.4 Resource usage

CHAPTER 10 Resource usage

The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the DHCP server modules presented in the tables below have
been measured on an ARM7 and a Cortex-M3 system. Details about the further configuration
can be found in the sections of the specific example.

10.4.1 ROM usage on an ARM7 system

The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon

ROM

emNet DHCP server

approximately 2.0 kByte

10.4.2 ROM usage on a Cortex-M3 system

The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon

ROM

emNet DHCP server

approximately 2.0 kByte

10.4.3 RAM usage

Addon

RAM

emNet DHCP server

approximately 200 bytes

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

Chapter 11

MDNS Server (Add-on)

The emNet implementation of mDNS server which stands for multicast DNS server is an

optional extension to emNet. It makes your target easily discoverable and advertising
services available throughout your network.

For the target IP address identification, this add-on also replies to Microsoft LLMNR requests.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

464 CHAPTER 11 emNet mDNS

11.1 emNet mDNS

The emNet mDNS implementation is an optional extension which can be seamlessly
integrated into your TCP/IP application. It allows your target to be easily identified with a
small memory footprint.

The mDNS server module implements the relevant parts of the following RFCs.

Document Download

Direct download:
ftp://ftp.rfc-editor.org/in-notes/rfc6762.txt

Link-Local Multicast Name Direct download:
Resolution (LLMNR) ftp://ftp.rfc-editor.org/in-notes/rfc4795.txt

Direct download:
ftp://ftp.rfc-editor.org/in-notes/rfc6763.txt

A DNS RR for specifying the Direct download:
location of services (DNS SRV) ftp://ftp.rfc-editor.org/in-notes/rfc2782.txt

Multicast DNS

DNS-Based Service Discovery

The following table shows the contents of the emNet root directory:

Directory Content
. . Contains an example application that run’s a simple
Appl i cation mMDNS server example.
I P Contains the mDNS server file, | P_DI SCOVER. c.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

465 CHAPTER 11 Feature list

11.2 Feature list

e Low memory footprint.
e Makes your target easily discoverable.

e Easy to implement.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

466 CHAPTER 11 Requirements

11.3 Requirements

TCP/IP stack

The emNet mDNS server implementation requires the emNet TCP/IP stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

467 CHAPTER 11 Multicast DNS background

11.4 Multicast DNS background

Multicast DNS allows to find devices in an environment without the support of an actual
DNS server. A DNS request is sent to a specific multicast address on a specific port. Servers
are listening on this multicast address and handling the requests.

Multicast DNS handles only local systems and doen’t replace a real DNS for request outside
the local network.

11.4.1 Hostname resolution

In order to get the IP address of a target by its name, two records could be sent:

e A: To get the IPv4 address.
e AAAA: To get the IPv6 address.

Apple and Microsoft are both proposing a similar solution but using different multicast IP
addresses and ports. The Add-on is handling both specifications for A and AAAA requests.

The hostname is set in the configuration structure:

static const | P_DNS SERVER CONFI G _Config ={
. SHostname = "nmytarget.|ocal",
.TTL = 120,
.NumConfig = 3, /1 Could be 0 for nane resolution only
.apSDConfig = _SDConfig, // DNS-SD config, could be NULL.

H

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

468 CHAPTER 11 Multicast DNS background

11.4.2 Service discovery (IMDNS-SD)

The add-on also provides the definition of some services through additional records:

e PTR: Pointer record.
SRV: Service record.
e TXT: Text record.

The service discovery is only available through the Apple multicast address (use of Bonjour),
or equivalent on linux machines (like avahi).

For example, if a target runs a web server, a possible configuration is:

static const |P_DNS SERVER SD CONFIG _SDConfig[] = {
{
. Type = | P_DNS_SERVER TYPE_PTR, (1]
. Fl ags = | P_DNS_SERVER FLAG FLUSH,
. TTL = 0,
.Config = {
.PTR ={
. SNanme =" http. _tcp.local",
. sDomai nNane = "nyserver. http. tcp.local"
}
}
}
{
. Type = | P_DNS_SERVER TYPE_SRV, (2]
. Fl ags = | P_DNS_SERVER FLAG FLUSH,
. TTL = 0,
.Config = {
.SRv. ={
. sNanme = "myserver._http._tcp.local",
.Priority =0,
. Wi ght =0,
. Port = 80,
. sTar get = "mytarget.local"
}
}
Jio
{
. Type = | P_DNS_SERVER TYPE_TXT, (3]
FI ags = | P_DNS_SERVER FLAG FLUSH,
.TTL = 0,
Config = {
LIXT =
. sName = "nyserver. _http._tcp.local",
. STXT = "PATH=/"
}
}
}

¥

O PTRrecord
: The PTR record indicates that an HTTP server runs at “nyserver. http. _tcp.local”

® SRVrecord

: The SRV record gives indication on the port number (80) and the actual local target name
(mytarget)

©® TXTrecord
: The TXT record gives additional information, for example the path to the web server.

It is possible to add A and AAAA records, but they are not needed if the target name
corresponds to the target host name.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

469 CHAPTER 11 API functions

11.5 API functions

Function Description

Starts the LLMNR/mDNS DNS-SD
discovery service.

Stops the LLMNR/mDNS DNS-SD discovery
service.

| P_VDNS_SERVER Start ()

| P_VDNS_SERVER St op()

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

470 CHAPTER 11 API functions

11.5.1 IP_MDNS_SERVER_Start()

Description
Starts the LLMNR/mDNS DNS-SD discovery service.

Prototype
int | P_VDNS_SERVER Start(const | P_DNS SERVER CONFI G * pConfig);
Parameters

Parameter Description
pConfi g Pointer to the configuration array.

Return value

=0 O.K.
<0 Error
Example

Configuration should define local names.

static const | P_DNS SERVER CONFIG Config = {

. SHostname = "mytarget.|ocal",

.TTL = 120,

.NumConfig = 0, /1 No DNS-SD configuration.
.apSDConfig = NULL

I
| P_VMDNS_SERVER Start (& Config);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

471 CHAPTER 11 API functions

11.5.2 IP_MDNS_SERVER_Stop()

Description
Stops the LLMNR/mDNS DNS-SD discovery service.

Prototype

int | P_VMDNS_SERVER_St op(voi d);
Return value

0 OK.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

472 CHAPTER 11 Data structures

11.6 Data structures

11.6.1 Structure IP_DNS_SERVER_CONFIG

Description

This is the main configuration of the mDNS server.

Prototype
typedef struct {
const char* sHost nane;
u32 TTL;
unsi gned NuntConfi g;

const | P_DNS_SERVER SD CONFI Gt apSDConfi g;
} | P_DNS_SERVER CONFI G,

Member Description

Pointer on a null terminated string corresponding to the host

sHost nane n "
name (for example “mytarget.local”)

Time to live in seconds. If set to 0 a default value defined in

T DNS TTL_ I NI T is used.
NunConf i Number of mMDNS-SD configuration pointed by apSDConfi g.
g Could be 0.
apSDConf i g érray of MDNS-SD configuration. Could be NULL if NunConfi g is

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

473 CHAPTER 11 Data structures

11.6.2 Structure IP_DNS_SERVER_SD_CONFIG

Description
Configuration of a mDNS-SD entry.

Prototype
typedef struct {
u32 TTL;
uni on {
| P_DNS_SERVER A A
#if 1 P_SUPPORT_I PV6
| P_DNS_SERVER_AAAA AAAA;
#endi f
| P_DNS_SERVER _PTR PTR;
| P_DNS_SERVER_SRV SRV;
| P_DNS_SERVER_TXT TXT;
} Config;
us Type;
us Fl ags;

} | P_DNS_SERVER SD CONFI G

Member Description

Time to live in seconds for this entry. If set to 0 the main TTL

T value from the structure | P_DNS_SERVER CONFI Gis used.
A A record description. Not needed for the hosthame. See

| P_DNS_SERVER A .

AAA record description. Not needed for the hostname. See
AARR | P_DNS_SERVER_AAAA .
PTR Pointer record description. See | P_DNS_SERVER PTR.
SRV Service record description. See | P_DNS_SERVER SRV .
TXT Text record description. See | P_DNS_SERVER TXT .

This is the type of the entry:

- 1 P_DNS_SERVER TYPE_A

S | P_DNS_SERVER TYPE_PTR
| P_DNS_SERVER TYPE_TXT

| P_DNS_SERVER_TYPE_SRV

| P_DNS_SERVER TYPE_AAAA

Fl ags Optional configuration flags for this entry.

Flags Description

Sets the FLUSH bit when sending a response that
contains this entry.

The FLUSH bit should be set on all unique resources
like the primary host name or in general A and AAAA

| P_DNS SERVER FLAG FLUSH | records. Unique entries in repsonses are meant to
FLUSH all previously returned configurations.

We do not set this flag automatically for ANY entry (not
even A and AAAA) to allow maximum freedom in your
configuration.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

474 CHAPTER 11 Data structures

11.6.3 Structure IP_DNS_SERVER A

Description

Description of a A record entry (IPv4 IP address). This is not needed to have an entry for the
host name. An ‘A’ request with the host nhame gets automatically a reply with the current
IP address of the interface on which the request is received.

If the field | PAddr is set to 0, the IP address of the host will be used automatically.

Prototype
typedef struct {
char* sNane;
| P_ADDR | PAddr ;

} | P_DNS_SERVER A

Member Description
sNanme Null terminated string of the server name.
| PAddr IPv4 address of the server name.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

475 CHAPTER 11 Data structures

11.6.4 Structure IP_DNS_SERVER_AAAA

Description

Description of a AAAA record entry (IPv6 IP address). This is not needed to have an entry
for the host name. An 'AAAA’ request with the host name gets automatically a reply with
the current IP address of the interface on which the request is received.

If the field al PAddr V6 is completely set to 0 (the 16 bytes are all 0), the IP address of the
host will be used automatically.

Prototype
typedef struct {
char* sNane;
us al PAddr V6[| PV6_ADDR_LEN] ;

} | P_DNS_SERVER AAAA;

Member Description
sNanme Null terminated string of the server name.
al PAddr V6 IPv6 address of the server name.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

476 CHAPTER 11 Data structures

11.6.5 Structure IP_DNS_SERVER PTR

Description

Description of a PTR record entry. This could either convert an IP address into a server
name, for example 1.0.168.192.in-addr.arpa into myserver.local. Or this could be used to
indicate the server that provides a service (like _http. tcp.local).

Prototype

typedef struct {
char* sNane;
char* sDomai nNare;

} | P_DNS_SERVER PTR;

Member Description

Null terminating string defining the entry that is requested. (what
appears in the request).

Null terminating string. This is the reply. If set to NULL, the
sHostname of the main config | P_DNS_SERVER _CONFI Gis used.

sName

sDomai nNane

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

477 CHAPTER 11 Data structures

11.6.6 Structure IP_DNS_SERVER_SRV

Description

Description of a SRV record entry. This describes which server provides a service and
additional information like priority, port, ...

Prototype
typedef struct {
char* sNane;
Ul6 Priority;
Ul6 Wi ght ;
Ul6 Port;
char* sTar get; /1 1f NULL, hostnane wi |l be used.

} | P_DNS_SERVER SRV

Member Description

Null terminating string defining the entry that is requested,
sNane Service, Protocol and Name are concatenated. (what appears in
the request).

Priority Priority value: 0 is the heigher priority.
. Weight to balance between equivalent servers with the same
Wei ght e
priority.
Por t Port providing the service.
Null terminating string. This is the server name. If set to NULL,
sTar get the sHostname of the main config | P_DNS_SERVER CONFI Gis

used.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

478 CHAPTER 11 Data structures

11.6.7 Structure IP_DNS_SERVER TXT

Description

Description of a TXT record entry. This describes some textual parameters. There could be
many TXT records for the same name defining many parameters, but in this case, they
should be placed next to one another in the configuration structure.

Prototype
typedef struct {
char* sNane;
char* STXT;

} | P_DNS_SERVER TXT;

Member Description
Null terminating string defining the entry that is requested. (what
sNanme .
appears in the request).
STXT Null terminating string defining one text entry.

For example “Version=1"

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

479 CHAPTER 11 Resource usage

11.7 Resource usage

The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the CoAP client/server presented in the tables below have
been measured on a Cortex-M4 system with the default configuration.

11.7.1 ROM usage on a Cortex-M4 system

The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio, size optimized.

Addon ROM
emNet mDNS server approximately 3.1 kBytes

11.7.2 RAM usage

The add-on uses a small internal table for the multicast UDP management.

Addon RAM
emNet mDNS server approximately 0.2 kBytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 12
DNS Server (Add-on)

This add-on provides a simple DNS server which allows for a server to handle the DNS

requests it receives. This could be used to gives the IP address of the target as a reply
to a server enquiry.

It is ideally coupled with the DHCP server (Add-on) on page 447.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

481 CHAPTER 12 emNet DNS server

12.1 emNet DNS server

The emNet DNS implementation is an optional extension which can be seamlessly integrated
into your TCP/IP application.

The DNS server module implements the relevant parts of the following RFCs.

Document Download
DOMAIN NAMES - Direct download:
IMPLEMENTATION AND) iy .
SPECIFICATION ftp://ftp.rfc-editor.org/in-notes/rfc1035.txt
. . Direct download:
DNS-Based Service Discovery ftp://ftp.rfc-editor.org/in-notes/rfc6 76 3. txt
A DNS RR for specifying the Direct download:
location of services (DNS SRV) ftp://ftp.rfc-editor.org/in-notes/rfc2782.txt

The following table shows the contents of the emNet root directory:

Directory Content

I P Contains the mDNS server file, | P_DI SCOVER. c.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

482 CHAPTER 12 Feature list

12.2 Feature list

e Low memory footprint.
e Makes your target easily discoverable.

e Easy to implement.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

483 CHAPTER 12 Requirements

12.3 Requirements

TCP/IP stack

The emNet DNS server implementation requires the emNet TCP/IP stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

484 CHAPTER 12 Implementation

12.4 Implementation

The emNet simple DNS server used the same mechanism and configuration as the mDNS
Server (Add-on) on page 463. Thus the structures and parameters won’t be described
further in this chapter.

The only difference is that target name definition are not local anymore since a DNS is
faked. Thus the “.local” extension is not needed anymore.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

485 CHAPTER 12 API functions

12.5 API functions

Function Description
| P_DNS_SERVER Start () Starts the simple DNS service.
| P_DNS_SERVER St op() Stops the simple DNS service.
| P_DNS_Set DNSPor t () \S/ae;cjethe DNS Port to a user-configured

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

486 CHAPTER 12 API functions

12.5.1 IP_DNS_SERVER_Start()

Description

Starts the simple DNS service.

Prototype
int | P_DNS_SERVER Start(const | P_DNS SERVER CONFI G * pConfig);
Parameters

Parameter Description
pConfi g Pointer to the fake DNS configuration.

Return value

0 OK.
-1 Error. Could not open connection(s) or DNS service not supported
(I P_SUPPORT_FAKE_DNS = 0).

Example

Configuration should define local names.

static const | P_DNS SERVER CONFIG Config = {

. SHostname = "mytarget.eth",

.TTL = 120,

.NumConfig = 0, /1 No DNS-SD configuration.
.apSDConfig = NULL

b
| P_DNS_SERVER Start (& Config);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

487 CHAPTER 12 API functions

12.5.2 IP_DNS_SERVER_Stop()
Description
Stops the simple DNS service.

Prototype
int | P_DNS_SERVER St op(void);
Return value

=0 0.K.
<0 Error

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

488

CHAPTER 12

12.5.3 |IP_DNS_SetDNSPort()

Description

Sets the DNS Port to a user-configured value.

API functions

Prototype
int | P_DNS_Set DNSPort (U16 Port);
Parameters
Parameter Description
Por t Port to use for DNS.

Return value

-1 Error.
0 O.K.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

489 CHAPTER 12 Resource usage

12.6 Resource usage

The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the CoAP client/server presented in the tables below have
been measured on a Cortex-M4 system with the default configuration.

In addition to the existing mDNS server add-on, the DNS server add-on adds approximately
0.2 kBytes of ROM.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 13
AutolP

All functions which are required to add AutolIP to your application are described in this
chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

491 CHAPTER 13 emNet AutolP backgrounds

13.1 emNet AutolP backgrounds

The emNet AutoIP module adds the dynamic configuration of IPv4 Link-Local addresses to
emNet. This functionality is better known as AutoIP. Therefore, this term will be used in
this document. The AutoIP implementation covers the relevant parts of the following RFCs:

RFC# Description

Dynamic Configuration of IPv4 Link-Local Addresses.
Direct download: ftp://ftp.rfc-editor.org/in-notes/rfc3972.txt

[RFC 3972]

In general AutolP is a method to negotiate a IPv4 address in a network without the
utilization of a server such as a DHCP server. AutoIP will try to use IPv4 addresses out of
a reserved pool from the addresses 169.254.1.0 to 169.254.254.255 to find a free IP that
is not used by any other network participant at this time.

To achieve this goal AutoIP sends ARP probes into the network to ask if the addr. to be
used is already in use. This is determined by an ARP reply for the requested address. Upon
an address conflict AutoIP will generate a new address to use and will retry to use it by
sending ARP probes again.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

492 CHAPTER 13 API functions

13.2 API functions

Function Description

Activates AutolIP negotiation for the specified
interface.

| P_Autol P_Halt() Stops AutolIP activity for the passed interface.

| P_Aut ol P_Activate()

This function allows the caller to set a callback

| P_Aut ol P_Set User Cal | back() for an interface

Sets the IP address which will be used for the

| P_Autol P_Set Start1P() first configuration try.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

493 CHAPTER 13 API functions

13.2.1 IP_AutolP_Activate()
Description
Activates AutolP negotiation for the specified interface.

Prototype

voi d | P_Autol P_Activate(unsigned | Faceld);

Parameters
Parameter Description
| Facel d Zero based interface index.

Additional information

Activating the dynamic configuration of IPv4 Link-Local addresses means that an additional
timer will be added to the stack. This timer will be called every second to check the status
of the address configuration. With the AutolP activation an IP address for the dynamic
configuration will be created. The IPv4 prefix 169.254/16 is registered with the IANA for this
purpose. This means that the stack will generate an IP address similar to 169.254.xxx.xxX.
The subnet mask of is always 255.255.0.0.

In emNet debug builds terminal I/O output can be enabled. AutolP outputs status
information in the terminal I/O window if the stack is configured to so (I P_MI'YPE_AUTO P
added to the log filter mask). Please refer to I P_SetLogFilter on page 1262 and
| P_AddLogFi | t er on page 1258 for further information about the enabling terminal I/0. If
terminal I/0O is enabled the output of a the program start should be similar to the following

lines:
0: 000 MainTask - INIT: Init started. Version 2.00.06
0: 000 Mai nTask - DRIVER Found PHY with Id 0x2000 at addr Oxl1
0: 000 MainTask - INIT: Link is down
0: 000 MainTask - INIT: Init conpleted
0:000 IP_Task - INIT: IP_Task started
0: 000 IP_RxTask - INIT: IP_RxTask started
3:000 IP_Task - LINK: Link state changed: Full duplex, 100 Mz
9: 000 I P_Task - Autol P: 169. 254. 240. 240 checked, no conflicts
9: 000 IP_Task - AutolP: IFaceld 0: Using IP: 169.254. 240. 240.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

494 CHAPTER 13 API functions

13.2.2 IP_AutolP_Halt()

Description

Stops AutolP activity for the passed interface.

Prototype
int | P_Autol P_Halt(unsigned | Faceld,
char Keepl P) ;
Parameters
Parameter Description

| Facel d Zero-based interface index.
Flag to indicate if the used IP address should be stored

Keepl P for the next start of AutoIP. 0 means do not keep the IP, 1
means keep the IP address for the next AutoIP start.

Return value

0 Ok. AutolP stopped. IP address cleared.
IP Ok. AutolP stopped. The IP address (for example 0xA9FExxxx) has been kept.
-1 Error. Illegal interface number.

Additional information

The function stops the AutoIP module. The IP address which was used during AutoIP was
activated, can be kept to speed up the configuration process after reactivating AutolIP. If
the IP address will not be kept, AutolIP creates a new IP address after the reactivation.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

495 CHAPTER 13 API functions

13.2.3 IP_AutolP_SetUserCallback()

Description

This function allows the caller to set a callback for an interface. The callback is called with
every status change.

Prototype
voi d | P_Aut ol P_Set User Cal | back(unsi gned | Facel d,
| P_AUTO P_I NFORM USER _FUNC * pf I nforniser);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Pointer to a user function of type
pf I nf or mUser | P_AUTO P_I NFORM_USER_FUNC which is called when a status
change occurs.

Additional information

This mechanism is provided so that the caller can do some processing when the interface
is up (like doing initializations or blinking LEDs, etc.).

| P_AUTO P_I NFORM USER FUNC is defined as follows:

typedef void (I P_AUTO P_I NFORM USER FUNC) (U32 | Facel d, U32 Status);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

496 CHAPTER 13 API functions

13.2.4 IP_AutolP_SetStartIP()

Description

Sets the IP address which will be used for the first configuration try.

Prototype
void I P_Autol P_SetStart| P(unsigned | Facel d,
u32 | PAddr) ;
Parameters
Parameter Description
| Facel d Zero based interface index.
| PAddr 4-byte IPv4 address.

Additional information

A call of this function is normally not required, but in some cases it can be useful to set the
IP address which should be used as starting point of the AutoIP functionality.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

497

13.3 Resource usage

CHAPTER 13 Resource usage

The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the AutoIP module presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

13.3.1 ROM usage on an ARM7 system

The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon

ROM

emNet AutoIP module

approximately 1.1 kByte

13.3.2 ROM usage on a Cortex-M3 system

The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon

ROM

emNet AutoIP module

approximately 1.0 kByte

13.3.3 RAM usage

Addon

RAM

emNet AutoIP module

approximately 0.7 kByte

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

Chapter 14

Address Collision Detection
(ACD)

All functions which are required to add Address Collision Detection (ACD) to your application
are described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

499 CHAPTER 14 emNet ACD module

14.1 emNet ACD module

The emNet ACD module allows to detect and react to IPv4 address collisions on the network.
The typical case is that one or more hosts on the network use the same IPv4 address.
To detect other hosts using the same IP address, ACD can use passive listening for ARP
packets sent by hosts as well as active probing for the IP address.

The ACD module implements the relevant parts of the following Request For Comments

(RFQC).
RFC# Description
[RFC 5227] IPv4 Address Conflict Detection
Direct download: https://datatracker.ietf.org/doc/html/rfc5227

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

500 CHAPTER 14 API functions

14.2 API functions

Function Description

Activates the address conflict detection (ACD)
for the specified interface.

Activates the address conflict detection (ACD)
| P_ACD_Acti vat eEx() for the specified interface and allows extended
configuration.

Configures the address conflict detection (ACD)
behavior for startup and in case of conflicts.

| P_ACD Activate()

| P_ACD Config()

Ends sending further announce messages when
in | P_ACD_STATE_ANNOUNCE_SEND GARP state.

De-Activates the address conflict detection
(ACD) for the specified interface.

Updates the “BackgroundPeriod” when in
| P_ACD_STATE_ACTI VE_* state.

| P_ACD EndAnnounce()

| P_ACD Hal t ()

| P_ACD_Updat eBackgr oundPeri od()

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

501 CHAPTER 14 API functions

14.2.1 IP_ACD_Activate()

Description

Activates the address conflict detection (ACD) for the specified interface.

Prototype
int |P_ACD Activate(unsigned |Faceld);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

0 ACD activated and free IP found (does not mean the initial IP was good).
1 No IP address set when ACD was activated.
0 Error, no memory.

A

Additional information

Activating the address conflict detection module means that a hook into the ARP module
of the stack will be activated that allows the user to take action if an IPv4 address conflict
on the network has been discovered.

When the ACD module is started it will check if the currently used IP address is in conflict
with any other host on the network by sending ARP probes to find hosts with the same
IPv4 address.

It is the responsibility of the application to make sure that ACTIVATE is only called when
the interface is UP. As ACD only makes sense for an interface in state UP, the ACTIVATE call
might actively wait for the interface state to change.

To allow the user to take action on those conflicts it is necessary to use | P_ACD Confi g()
before activating ACD.

In emNet debug builds terminal I/O output can be enabled. ACD outputs status information
in the terminal I/O window if the stack is configured to so (I P_MI'YPE_ACD added to the
log filter mask). Please refer to | P_Set LogFi | t er on page 1262 and | P_AddLogFi | ter on
page 1258 for further information about the enabling terminal I/0.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

502 CHAPTER 14 API functions

14.2.2 IP_ACD_ActivateEx()

Description

Activates the address conflict detection (ACD) for the specified interface and allows
extended configuration.

Prototype
int | P_ACD Acti vat eEx(unsi gned | Facel d,

| P_ACD_ON_I NFO_FUNC * pf Onl nf o,

const | P_ACD_EX_CONFI G * pConfi g,

unsi gned NonBl ocki ng) ;

Parameters
Parameter Description
| Facel d Zero-based interface index.
Callback of type | P_ACD_ON_I NFO_FUNC to be notified about

pf Onl nf o

state changes and events.
pConfi g Pointer to configuration of type | P_ACD EX CONFI G.

e 0: Call is blocking and waits for the operations to finish.
e 1: Call is non-blocking and returns instantly.

NonBlI ocki ng

Return value

0 ACD activated and free IP found (does not mean the initial IP was good).
1 No IP address set when ACD was activated.
0 Error, no memory.

AL

Additional information

Activating the address conflict detection module means that a hook into the ARP module
of the stack will be activated that allows the user to take action if an IPv4 address conflict
on the network has been discovered.

When the ACD module is started it will check if the currently used IP address is in conflict
with any other host on the network by sending ARP probes to find hosts with the same
IPv4 address.

It is the responsibility of the application to make sure that ACTIVATE is only called when
the interface is UP. As ACD only makes sense for an interface in state UP, the ACTIVATE call
might actively wait for the interface state to change.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

503

14.2.3 IP_ACD_Config()

Description

CHAPTER 14 API functions

Configures the address conflict detection (ACD) behavior for startup and in case of conflicts.

Prototype

int | P_ACD _Confi g(

unsi gned
unsi gned
unsi gned

| Facel d,
NunPr obes,
Def endl nt er val ,

const ACD_FUNC * pAPI);

Parameters
Parameter Description
| Facel d Zero-based interface index.
NUITPr obes Number of ARP probes to send upon activating ACD before

declaring the actual used IP address to be free to be used.

Def endl nt er val

Interval [ms] in which the currently active IP address is
being known as defended after taking action.

PAPI

Pointer to callback table of type ACD_FUNC .

Return value
=0 O.K.

<0 Error, no memory.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

504

CHAPTER 14 API functions

14.2.4 IP_ACD_EndAnnounce()

Description

Ends sending further announce messages when in | P_ACD STATE ANNOUNCE_SEND GARP
state.

Prototype
voi d | P_ACD_EndAnnounce(unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Additional information

This routine is designed to be called either from the ACD information callback
or from another place in the application to end an ongoing sending of announce
messages early when in the | P_ACD STATE ANNOUNCE SEND GARP state. Ending the
| P_ACD STATE_ANNOUNCE SEND GARP state early might be necessary for example when
implementing EtherNet/IP “QuickConnect” and communication is established while still
sending announce messages.

At the moment using this routine is limited to the | P_ACD STATE ANNOUNCE_ SEND GARP
state and is internally checked. If important to your application you should ensure that this
is the case in your application as this internal check might be subject to change in the future.

Calling this routine sends the state machine into ACTIVE or PASSIVE mode. In ACTIVE mode
it is possible to influence the time before sending the first probe by overriding the proposed
delay in the info callback for the | P_ACD STATE ACTI VE_WAI T_BEFORE_BG_PROBES state.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

505 CHAPTER 14 API functions

14.2.5 IP_ACD_Halt()

Description

De-Activates the address conflict detection (ACD) for the specified interface.

Prototype
voi d | P_ACD Hal t (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

506 CHAPTER 14 API functions

14.2.6 |IP_ACD_UpdateBackgroundPeriod()

Description
Updates the “Backgr oundPeri od” when in | P_ACD STATE _ACTI VE_* state.

Prototype

voi d | P_ACD_Updat eBackgr oundPeri od(unsi gned | Facel d,
unsi gned Backgr oundPeri od);

Parameters

Parameter Description
| Facel d Zero-based interface index.
Backgr oundPeri od Background period in milliseconds.

Additional information

This routine is designed to be called either from the ACD information callback or from
another place in the application to modify the period used when sending background probes
in ACTIVE mode in the | P_ACD_STATE_ACTI VE_* states.

At the moment using this routine is limited to the | P_ACD STATE ACTI VE_* states and is
internally checked. If important to your application you should ensure that this is the case
in your application as this internal check might be subject to change in the future.

Calling this routine sends the state machine into ACTIVE mode and ends states such as
| P_ACD_STATE_ACTI VE_WAI T_BEFORE_BG_PROBES if the state machine is currently in this
state.

Changing the background probing period can be used to enter or leave the EtherNet/IP
“SemiActiveProbe” mode.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

507 CHAPTER 14 Data structures

14.3 Data structures

14.3.1 Structure ACD_FUNC

Description

Used to store function pointers to the user defined callbacks to take several actions upon
detecting an IP address conflict.

Prototype

typedef struct {
U32 (*pf Renewl PAddr) (unsi gned | Face);

i nt (*pfDefend) (unsi gned | Face) ;
int (*pfRestart) (unsi gned | Face) ;
} ACD_FUNC
Member Description

Function pointer to a user defined routine that is used to generate
pf Renewl PAddr | a new IPv4 address if there is a collision detected during ACD

activation.
f Def end Function pointer to a user defined routine that is used to let the user
P implement his own defend strategy. Can be NULL.
of Rest art Function pointer to a user defined routine that should reconfigure the

IP address used by the stack and optionally re-activates ACD.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

508

CHAPTER 14 Data structures

14.3.2 IP_ACD_EX_ CONFIG

Description

Used to configure the extended ACD functionality.

Type definition

typedef struct {

u32 | PAddr ;

unsi gned Backgr oundPer i od;

unsi gned NunPr obes;

unsi gned Def endl nt er val ;

unsi gned NumAnnouncenent s;

unsi gned Announcel nt erval ;

us Assi gnAddr essManual | y;

| P_ACD_STATE InitState;

} | P_ACD_EX_CONFI G

Structure members

Member

Description

| PAddr

IPv4 start address to use in host endianness.

Backgr oundPer i od

Period [ms] in which ACD will send probes running in the
background.

NunPr obes

Number of ARP probes to send upon activating ACD before
declaring the actual used IP address to be free to be used. 0
to use default.

Def endl nt er val

Interval [ms] in which the currently active IP address is
being known as defended after taking action. 0 to use
default.

NumAnnouncenent s

Number of announcements to send when using a free
address. The address can already be used at this point. 0 to
use default.

Announcel nt er val

Time [ms] between announcements to send. 0 to use
default.

Assi gnAddr essManual | y

Configures if probed address is assigned automatically to the

interface if free.

e 0: Off (default), address is automatically to the interface,
using the existing subnet mask.

o 1: On, address is only reported via
the | P_ACD | NFO. | PAddr member in the
| P_ACD_STATE_| NI T_WAI T_BEFORE_ANNOUNCE state.

The user needs to manually assign it to the interface

along with the desired subnet mask. Assigning an address

manually might affect ACD effectiveness on virtual interfaces

such as being used for multiple addresses on one single
physical interface. ARP/ACD might not be able to correctly
select the virtual interface for some operations until the
address has finally been assigned to the interface.

InitState

Initial state for the ACD state machine upon activating ACD.
The following states are supported:

e | P_ACD STATE DI SABLED

Default behavior starting ACD listening for potential conflicts
at the beginning.

e | P_ACD STATE_ANNOUNCE_SEND GARP

Skips the initial listening phase and starts by directly
sending the first the first announcement. This can be used to
implement EtherNet/IP “QuickConnect” behavior.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

509 CHAPTER 14 Data structures

14.3.3 IP_ACD_ANNOUNCE_INFO

Description

Returns information about the latest ACD announce about using a free and previously
probed address.

Type definition

typedef struct {
unsi gned AnnouncenentslLeft;
} | P_ACD_ANNOUNCE | NFQ

Structure members

Member Description
Announcenent sLef t Number of announements left to send.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

CHAPTER 14

14.3.4 IP_ACD_COLLISION_INFO

Description

Returns information about the latest ACD collision.

Type definition

typedef struct {
| P_PACKET * pPacket ;
u32 Def endTi meout ;
unsi gned ProbesLeft;

} I P_ACD COLLI SI ON_I NFQ,

Structure members

Data structures

Member Description
Pointer to the packet that caused the collision (pPacket -
pPacket >pDat a points to the ARP header).
Def endTi neout System timestamp of when the defend window ends.
ProbesLeft Number of INIT probes left to send.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

511 CHAPTER 14 Data structures

14.3.5 IP_ACD_WAIT_INFO

Description

Returns information about a delay/wait before the next step. This can be a delay before
sending the very first probe for INIT or a delay between each probe sent during the INIT
phase.

Type definition

typedef struct {

unsi gned Wai t M n;
unsi gned vol atile WitTime;
unsi gned Wi t Max;

} | P_ACD WAI T_I NFO

Structure members

Member Description

VWai t M n Suggested minimum wait time [ms].

Wait time before the next state that is used (does not
have to obey min./max. suggestion). This value can be

vai et me overwritten and is evaluated after returning from the
callback.
Wi t Max Suggested maximum wait time [ms]

Additional information

The stack makes suggestions using the structure members as well as presenting the actual
value that will be used in the Wi t Ti me member. You can overwrite the Wi t Ti re member
as it is then evaluated after returning from the callback and its new value value is then used.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

512

14.3.6 IP_ACD_INFO

Description

CHAPTER 14 Data structures

Returns information about the current ACD status. The ACD info callback parameter St at e
has to be evaluated for further information if there is more info about the new state and
what part of the union is the information to look at.

Type definition

typedef struct {
u32
| P_ACD_STATE
| P_ACD_STATE

| PAddr ;
State;
a dst at e;

| P_ACD_LOSE_DEFEND ADDRESS Def end;
| P_ACD_KEEP_DI SCARD _PACKET Di scar dPacket ;

} 1 P_ACD_I NFQO,

Structure members

Member

Description

| PAddr

IPv4 address (in host endianness) that gets assigned
to the interface or would be assigned to the interface
if | P_ACD_EX CONFI G Assi gnAddr essManual | y

is NOT used. Currently only valid with the

| P_ACD_STATE_| NI T_WAI T_BEFORE_ANNOUNCE state.

State

Type of information and what part of the union to look at.

The St at e member is followed by a union that might not be

correctly displayed or completely missing in the manual. The

following information describes this union part:

e | P_ACD _STATE_EVENT_COLLI SI ON: Information about the
latest ACD collision can be found in pl nf o->Data.Collision
in form of | P_ACD_CCOLLI SI ON_I NFO.

A dState

Previous state. Might be the same as new state depending
on actions executed in callbacks. If filtering is needed, this
needs to be implemented in the application. When counting
events like how many announcements have been sent, the
A dSt at e should be used for filtering as this reports the
event handled immediately before or after reporting the
state (change).

Def end

Suggestion from the stack whether to defend the IP address
on a collision after INIT or not. This value is evaluated after
returning from the callback.

e = |P_ACD LOSE_ADDRESS : Lose the address (typically if
this is not the first conflict with a host and is within the
defend window.

e = |P_ACD DEFEND ADDRESS: Defend the address
(anyhow).

Di scar dPacket

Suggestion from the stack whether to keep or discard a

packet contained in the state specific information structure

(e.g. | P_ACD _COLLI SI ON_I NFO). This value is evaluated after

returning from the callback.

e = |P_ACD KEEP_ PACKET : Packet is kept and forwarded to
the ARP module for further handling.

e = | P_ACD DI SCARD PACKET: Packet is discarded (e.g. to
avoid ARP cache poisoning).

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

513

CHAPTER 14 Data structures

14.3.7 IP_ACD_ON_INFO_FUNC

Description

Callback executed whenever updated ACD information is available.

Type definition

typedef void (I P_ACD _ON_| NFO _FUNC) (unsi gned | Facel d,
| P_ACD_I NFO * plnfo);
Parameters
Parameter Description
| Facel d Zero-based interface index.
Info Further information of type | P_ACD | NFO about the actual
P information available.

Additional information

Calling API like an ACTIVATE from the callback might produce another callback message. It
is the responsibility of the application to avoid infinite recursion. Typically this is no problem
as calling ACTIVATE again from the callback reporting the ACTIVATE state makes no sense.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

514 CHAPTER 14 EtherNet/IP usage

14.4 EtherNet/IP usage

The standard ACD behavior and timers are typically sufficient to raise notifications in a
regular network and detect configuration problems in non critical environments. Other
environments and protocols used might be subject to more strict parameters to detect
configuration problems faster and allow to react to them in a more prioritized way than just
notifying about the potential problem on the network.

EtherNet/IP is such an environment/protocol that in its basic principles makes use of ACD
as is but extends it by some specific behavior here and there. This section explains how to
configure the ACD module for some of these EtherNet/IP specific requirements.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

515 CHAPTER 14 EtherNet/IP usage

14.4.1 EtherNet/IP QuickConnect

QuickConnect capable devices power up in less than 300 ms and are able to establish a
network connection in less than 200 ms. A QuickConnect is for example used when replacing
tools in an EtherNet/IP network that need to be back to production basically instantaneous.

In QuickConnect mode ACD is not started in its slow probing initial state but shall be
doing quick negotions with the network to decide if there is a collision or not. A typical
configuration is to directly start announcing the IP that is to be used to the network in a
quick paced manner to make sure this is received as early as possible by other hosts that
might be subject to collision with the QuickConnect device entering the network.

The rapid announcing of its address is stopped early when detecting I/O communication
with the device, confirming that based on network topology and switch ARP tables,
communication ends up with this device after all.

EtherNet/IP QuickConnect example

QuickConnect configuration example sending 40 ARP announcements with a period of 25
ms before switching into active background probing with a period of 1 second.

static unsi gned _ACD _| Faceld = Ou;
static | P_ACD _STATE _ACD State;

/***

*

& ACD configuration
*/
static | P_ACD EX CONFI G _ACD Config = {

. Backgr oundPeri od
. NumAnnouncenent s
. Announcel nt er val
.InitState

1000u,

40u,

25u,

| P_ACD_STATE_ANNOUNCE_SEND_GARP,

by

/***

_cbOnl nfo()
Function description
Cal | back execut ed whenever updated ACD i nfornmation is avail abl e.
Par aneters
| Facel d : Zero-based interface index.
pl nfo . Further information of type |P_ACD | NFO about the actual

i nformati on avail abl e.

Addi tional infornation
Calling APl like an ACTIVATE fromthe call back m ght produce
anot her cal | back nessage. It is the responsibility of the application
to avoid infinite recursion. Typically this is no problemas calling
ACTI VATE again fromthe call back reporting the ACTI VATE state nakes
no sense.

E I R R S SRk T B S R N R N S T

~

static void _ACD cbOnl nfo(unsigned | Faceld, |P_ACD INFO: plnfo) {
| P_USE_PARA(| Facel d);

_ACD State = plnfo->State;
}

/***

*

* _EIP_cbOnl ()

Functi on description

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

516 CHAPTER 14 EtherNet/IP usage

Cal | back executed upon EtherNet/IP |/O comuni cati on.

*
*
* Additional information
* This cal |l back is executed when detecting |I/O comunication and
* is used to end the Qui ckConnect rapid announcenent phase early.
*/
static void _ElIP_cbOnl (void) {

if (_ACD State == | P_ACD_STATE_ANNOUNCE_SEND GARP) {

| P_ACD_EndAnnounce(_ACD | Facel d);

}

}

/***

*

* Mai nTask

vé)i d Mai nTask(void) {
1P Init():;
n
;; Wait for Link-UP.

| P_ACD ActivateEx(_ACD | Faceld, _ACD cbOnlnfo, & ACD Config, Ou);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

517 CHAPTER 14 EtherNet/IP usage

14.4.2 EtherNet/IP SemiActiveProbe

If an interface is already successfully established and doing its background probing and
another interface of this device reaches link-UP state, the device shall enter the so called
Semi Act i vePr obe state. As the device has the same IP address for its multiple EtherNet/
IP interfaces, it shall probe if it sees itself due to a wrong network topology.

A typical probing algorithm is to send two ARP probes with a period of 200 ms in the form
of DELAY => PROBE => DELAY => PROBE . Once done, the device shall return to its regular
ACD background probing cycle.

EtherNet/IP SemiActiveProbe example

SemiActiveProbe example sending two short probes with a period of 200 ms before
returning back to its original background probing with a period of 1 second.

static unsi gned _ACD _| Faceld = Ou;

static unsigned _ACD_Sem Acti veProbesLeft;
static | P_HOOK ON_LI NK_CHANGE _ACD Li nkChangeHook;
static | P_ACD_STATE _ACD_St ate;

/***

*

& ACD configuration

*/

static | P_ACD EX CONFI G _ACD Config = {
. Backgr oundPeri od = 1000u,

by

/***

_cbOnl nfo()
Function description
Cal | back execut ed whenever updated ACD i nfornmation is avail abl e.
Par aneters
| Facel d : Zero-based interface index.
pl nfo . Further information of type |P_ACD | NFO about the actual

i nformati on avail abl e.

Addi tional infornation
Calling APl like an ACTIVATE fromthe call back m ght produce
anot her cal | back nessage. It is the responsibility of the application
to avoid infinite recursion. Typically this is no problemas calling
ACTI VATE again fromthe call back reporting the ACTI VATE state nakes
no sense.

E I R S S T I S R N R S I

~

static void _ACD cbOnl nfo(unsigned | Faceld, |P_ACD INFO: plnfo) {
| P_USE_PARA(| Facel d);

_ACD State = plnfo->State;

I

/| Handl e Semi Acti veProbe node.

/1 Use the O dState to avoid reacting to the transition into
/'l the Sem ActiveProbe node. Reacting to the O dState neans
/1 to react to the end of the first 200 ns del ay and sendi ng
/1l the first Sem ActiveProbe .

/1

if (plnfo->0dState == | P_ACD STATE_ACTI VE_SEND BG PROBES) {
/1
/1 Are we in Sem ActiveProbe npde ?
/1

if (_ACD_Sem ActiveProbesLeft !'= 0u) {
_ACD_Sem Acti veProbesLeft--;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

518 CHAPTER 14 EtherNet/IP usage

;; Is this the last probe to send with Sem ActiveProbe |ong period ?
{1{ (_ACD_Semi Acti veProbesLeft == 0u) {

;; Return back to the regul ar background probing period.
} {/P_ACD_Updat eBackgr oundPeri od(_ACD I Facel d, 1000u);

}
}
}

/***

_ACD_cbOnLi nkChange()

Function description
Cal | back executed whenever the link state of an interface changes.

Par aneters

| Facel d : Zero-based interface index.

Dupl ex : Link duplex:
* 0: Dupl ex unknown or Auto-Neg. inconplete.
* 1. Hal f - Dupl ex.
* 2. Full - Dupl ex

Speed . Link speed:
* == 0: Unknown, typically Iink-DOM.
* > 0: Speeds of up to one gigabit are returned in Hertz.

EE I I S N . S B N N R S

~

static void _ACD cbOnLi nkChange(unsi gned | Facel d, U32 Dupl ex, U32 Speed) {
| P_USE_PARA(Dupl ex) ;

I
/1 This is NOT our prinmary ACD nonitored interface ?
I
if (IFaceld '= _ACD | Faceld) {
I
/1 This is a |link-UP event ?
I
if (Speed != Ou) {
I
/1l Qur ACD nonitored interface is in background probi ng node ?
I
if (_ACD State == | P_ACD STATE_ACTI VE_SEND BG PROBES) {
I
/'l Prepare to execute Sem ActiveProbe
I - 200ns
/1 - Probe
I - 200ns
/1 - Probe
/1 - Back to background probing.
I
_ACD_Semi Acti veProbesLeft = 2u;
| P_ACD_Updat eBackgr oundPeri od(_ACD | Faceld, 200u);
}
}
}

}

/***

*

* Mai nTask
*/
voi d Mai nTask(voi d) {
IP_Init();
| P_AddLi nkChangeHook(& ACD Li nkChangeHook, _ACD cbOnLi nkChange);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

519 CHAPTER 14 EtherNet/IP usage

n
/1 Wait for Link-UP.
I

| P_ACD ActivateEx(_ACD | Faceld, _ACD cbOnlnfo, & ACD Config, Ou);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

520

14.5 Resource usage

CHAPTER 14 Resource usage

The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the AutoIP module presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

14.5.1 ROM usage on an ARM7 system

The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon

ROM

emNet ACD module

approximately 0.4 kByte

14.5.2 ROM usage on a Cortex-M3 system

The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon

ROM

emNet ACD module

approximately 0.4 kByte

14.5.3 RAM usage

Addon

RAM

emNet ACD module

approximately 50 Bytes

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

Chapter 15
UPNnP (Add-on)

The emNet implementation of UPnP which stand for Universal Plug and Play is an optional
extension to emNet. It allows making your target easily discoverable and advertising
services available on your target throughout your network.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

522 CHAPTER 15 emNet UPnP

15.1 emNet UPnP

The emNet UPnP implementation is an optional extension which can be seamlessly
integrated into your TCP/IP application. It combines the possibility to implemented UPnP
services in a most flexible way by allowing to specify content to be sent upon UPnP requests
completely generated by the application with a small memory footprint.

The UPnP module implements the relevant parts of the UPnP documentation released by
the UPnP Forum.

Document Download

Direct download:
UPNnP Device Architecture 1.0 http://upnp.org/specs/arch/UPnP-arch-
DeviceArchitecture-v1.0.pdf

The following table shows the contents of the emNet root directory:

Directory Content
Contains the example application to run the UPnP
Appl i cation implementation with emNet and emNet Web server
add-on.
I P Contains the UPnP source file, | P_UPnP. c.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

523 CHAPTER 15 Feature list

15.2 Feature list

e Low memory footprint.
e Advertising your services on the network

e Easy to implement

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

524 CHAPTER 15 Requirements

15.3 Requirements

TCP/IP stack

The emNet UPnP implementation requires the emNet TCP/IP stack and is designed to be
used with the emNet Web server add-on.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

525 CHAPTER 15 Backgrounds

15.4 Backgrounds

UPNP is designed to provide services throughout a network without interaction of the user.
It is designed to use standardized protocols such as IP, TCP, UDP, Multicast, HTTP and XML
for communication and to distribute services provided by a device.

UPNP can be used to advertise services provided by a device across the network such as
where to find the web interface for the device advertising. Newer operating systems support
UPNP from scratch and will show UPnP devices available across a network and may provide
easy access to a device by simply selecting the discovered UPnP device.

A typical usage would be to advertise media accessible on a media storage on the network
and opening a file browser window to the resource upon opening the UPnP entry discovered.

15.4.1 Using UPnP to advertise your service in the network

The default UPnP XML file advertised is upnp. xm . A solution providing UPnP content has to
serve a file called upnp. xm containing valid UPnP descriptors via a web server. The sample
OS | P_Webserver _UPnP. ¢ provides a sample configuration for advertising a web server
page that will open if the UPnP client clicks on the discovered UPnP device.

A discovered UPnP device will typically be shown in the network neighborhood of your
operating system. A discovered device found by a Windows OS is shown in the picture
below:

+ Other Devices (2)

[

SEGGER. UPnP Demo
S’

The example below shows the most important excerpts from the S | P_Webserver _UPnP. c
sample that are necessary to setup a UPnP device in your network.

/* Excerpt from OCS_| P_Webserver_UPnP.c */
/11

/'l UPnP

/11

#defi ne UPNP_FRI ENDLY_NAME " SEGGER UPnP Denp"

#def i ne UPNP_MANUFACTURER "SEGGER M crocontrol |l er GrbH'
#defi ne UPNP_MANUFACTURER URL "http://wwmv. segger. cont

#defi ne UPNP_MODEL_DESC "SEGGER emAéb server with UPnP"
#def i ne UPNP_MODEL_NAME "SEGGER UPnP Denp"

#defi ne UPNP_MODEL_URL "http://ww. segger.conl emneb"

The sample uses VFile hooks as described in | P_WEBS_AddVFi |l eHook() to provide
dynamically serving the necessary XML files for UPnP without the need for a real file system
or further processing through the web server.

/* Excerpt from OS_| P_Wbserver_UPnP.c */

/***
*

*

Types

*

R S S R R
*/

typedef struct {

const char * sFi |l eNang;
const char * pDat a;
unsi gned NunByt es;
} VFILE_LI ST;

/* Excerpt from OS_| P_Webserver_UPnP.c */

AR R R R R EEEEEEEEEEEEEREEEEEEREEEEEEEEEEEEEREEEEEEEEEEEE R

*

* Static const

*

R R R R R R R

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

526 CHAPTER 15 Backgrounds

*/

/1
/1 UPnP, virtual files
/1
static const char _acFile_dumy_xm[] =
"<?xm version=\"1.0\" encodi ng=\"utf-8\"?>\r\n"
"<scpd xm ns=\"urn: schemas-upnp-org: service-1-0\">\r\n"
"<specVersion>\r\n"
"<maj or >1</ maj or>\r\n"
"<m nor >0</ m nor>\r\n"
"</ specVersion>\r\n"
"<serviceStateTabl e>\r\n"
"<stateVariabl e>\r\n"
" <nane>Dumy</ nane>\r\n"
"<dat aType>i 1</ dat aType>\r\n"
"</stateVariabl e>\r\n"
"</ serviceStateTabl e>\r\n"

"</ scpd>";
/1
/1 UPnP, virtual files list
/1

static const VFILE_LIST _VFileList[] = {
"/dumy. xm ", _acFile_dumy_xm, sizeof(_acFile_dummy_xm) - 1,
/1 Do not count in the null term nator of the string

NULL , NULL , NULL
b
/* Excerpt from OS_|I P_Webserver_UPnP.c */
/1
/1 UPnP webserver VFile hook
/1

static WEBS_VFI LE_HOOK _UPnP_VFi | eHook;

Several helper functions are provided in the sample to easily generate a valid XML file for
advertising a service using UPnP.

/* Excerpt from Webserver_DynContent.c */

/1

/1 UPnP

/1

#defi ne UPNP_FRI ENDLY_NAME " SEGGER UPnP Denp"

#def i ne UPNP_MANUFACTURER "SEGGER M crocontrol |l er GrbH!
#defi ne UPNP_MANUFACTURER URL "http://ww. segger. cont

#defi ne UPNP_MODEL_DESC "SEGGER emA¢b server with UPnP"
#defi ne UPNP_MODEL_NANME " SEGGER UPnP Denp"

#defi ne UPNP_MODEL_URL "http://ww. segger.conl emneb”

/* Excerpt from OS_| P_Webserver_UPnP.c */

[R R Kk kK K ok ok kK Kk kK R Rk Rk R R Rk Rk kR R Rk kR kR R Rk Rk kR R Rk kR kR R Rk kR kR Rk ok ok

*

* Static code

*

khkhhkhkhhhhhhhhhhhkhhhhhhhhhhhhhh bk hhhkhhhhkhhhkhhkhhkhhhkhhkhhkhhhkhkhhkhhkhkkkkk
*/

[FR KK Kk kK Kk Kk kR R Rk Kk kR R Rk kR kR R Rk kR kR R Rk ok ok kR R Rk ok ok kR R Rk ok ok ok R R Rk ok ok kR Rk ok ok

Return val ue
Pointer to the start of the buffer used for storage.

*

* _UPnP_Cet URLBase

*

* Function description

* This function copies the informati on needed for the URLBase paraneter
* into the given buffer and returns a pointer to the start of the buffer
* for easy readabl e code.

*

* Paraneters

* | Facel d - Zero-based interface index.

* pBuf f er - Pointer to the buffer that can be tenporarily used to
* store the requested data.

* NunByt es - Size of the given buffer used for checks

*

*

*

*

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

527 CHAPTER 15 Backgrounds

static const char* _UPnP_Get URLBase(unsi gned | Faceld, char* pBuffer, unsigned NunBytes) {
#define URL_BASE PREFI X "http://"

char * p;

p = pBuffer;

*p = '\0"; // Just to be on the safe if the buffer is too snall
strncpy(pBuffer, URL_BASE_PREFI X, NumBytes);

p += (si zeof (URL_BASE_PREFI X) - 1);

NunByt es -= (sizeof (URL_BASE_PREFI X) - 1);
| P_PrintlPAddr(p, |P_GetlPAddr(IFaceld), NunBytes);
return pBuffer;

}

/***

Return val ue
Pointer to the start of the buffer used for storage.

*

* _UPnP_Cet Model Nunber

*

* Function description

* This function copies the information needed for the Mdel Nunber paraneter
* into the given buffer and returns a pointer to the start of the buffer
* for easy readabl e code.

*

* Paraneters

* | Facel d - Zero-based interface index.

* pBuf f er - Pointer to the buffer that can be tenporarily used to
* store the requested data.

* NunByt es - Size of the given buffer used for checks

*

*

*

*

/

static const char* _UPnP_GCet Model Nunmber (unsi gned | Facel d, char* pBuffer,
unsi gned NunBytes) {

U8 aHWAddr [6] ;

if (NunBytes <= 12) {
*pBuffer = "\0'; // Just to be on the safe if the buffer is too snall
} else {
| P_Get HWAddr (| Facel d, aHWAddr, si zeof (aHWAddr));
SEGGER snprintf (pBuffer,
NunByt es,
" YD2XYO2XYO2XYO2 XY 2 X902 X" ,
aHWAddr [0] ,
aHWAddr [1],
aHWAddr [2] ,
aHWAddr [3],
aHWAddr [4],
aHWAddr [5]) ;
}

return pBuffer;
}

/***

Return val ue
Pointer to the start of the buffer used for storage.

*

* _UPnP_Cet SN

*

* Function description

* This function copies the informati on needed for the Serial Nunber paraneter
* into the given buffer and returns a pointer to the start of the buffer
* for easy readabl e code.

*

* Paraneters

* | Facel d - Zero-based interface index.

* pBuf f er - Pointer to the buffer that can be tenporarily used to
* store the requested data.

* NunByt es - Size of the given buffer used for checks

*

*

*

*

/
static const char * _UPnP_Get SN(unsi gned | Faceld, char * pBuffer, unsigned NumBytes) {
U8 aHWAddr[6] ;

if (NunBytes <= 12) {
*pBuffer = "\0'; // Just to be on the safe if the buffer is too snall

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

528 CHAPTER 15 Backgrounds

} else {
| P_Get HWAddr (| Facel d, aHWAddr, si zeof (aHWAddr));
SEGGER snprintf (pBuffer,
NunByt es,
" YD2XYO2XYO2XYO2XYD2XYO2X" ,
aHWAddr [0] ,
aHWAddr [1],
aHWAddr [2],
aHWAddr [3],
aHWAddr [4],
aHWAddr [5]) ;
}

return pBuffer;

}

/***

Return val ue
Pointer to the start of the buffer used for storage.

*

* _UPnP_Get UDN

*

* Function description

* This function copies the information needed for the UDN paraneter

* into the given buffer and returns a pointer to the start of the buffer
* for easy readabl e code.

*

* Paraneters

* | Facel d - Zero-based interface index.

* pBuf f er - Pointer to the buffer that can be tenporarily used to
* store the requested data.

* NunByt es - Size of the given buffer used for checks

*

*

*

*

/
static const char * _UPnP_Get UDN(unsi gned | Faceld, char * pBuffer, unsigned NunBytes) {
#def i ne UDN_PREFI X "uui d: 95232DEO- 3AF7- 11E2- 81C1-"

char * p;

us aHWAddr [6] ;

p = pBuffer;

*pBuffer = "\0'; // Just to be on the safe if the buffer is too snall
strncpy(pBuffer, UDN_PREFI X, NumBytes);

p += (si zeof (UDN_PREFI X) - 1);

NunByt es -= (sizeof (UDN_PREFIX) - 1);
if (NunBytes > 12) {
| P_Get HWAddr (| Facel d, aHWAddr, si zeof (aHWAddr));
SEGGER snprintf(p,
NunByt es,
" YD2XYO2XYO2XYO2 XY 2 X902 X" ,
aHWAddr [0] ,
aHWAddr [1],
aHWAddr [2],
aHWAddr [3],
aHWAddr [4],
aHWAddr [5]) ;
}

return pBuffer;

}

/***

Return val ue
Pointer to the start of the buffer used for storage.

*

* _UPnP_GCet Present ati onURL

*

* Function description

* This function copies the information needed for the presentation URL paraneter
* into the given buffer and returns a pointer to the start of the buffer
* for easy readabl e code.

*

* Paraneters

* | Facel d - Zero-based interface index.

* pBuf f er - Pointer to the buffer that can be tenporarily used to
* store the requested data.

* NunByt es - Size of the given buffer used for checks

*

*

*

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

529

CHAPTER 15 Backgrounds

*/
static const char* _UPnP_Get Presentati onURL(unsigned | Faceld,
char* pBuffer,
unsi gned NunBytes) {
#def i ne PRESENTATI ON_URL_PREFI X "http://"
#def i ne PRESENTATI ON_URL_POSTFI X "/i ndex. ht ni'

char * p;

int [

p = pBuffer;

*p = '\0"; // Just to be on the safe if the buffer is too snall
strncpy(pBuffer, PRESENTATI ON_URL_PREFI X, NunBytes);

p += (si zeof (PRESENTATI ON_URL_PREFI X) - 1);

NunBytes -= (sizeof (PRESENTATI ON_URL_PREFI X) - 1);

i = I P_PrintlPAddr(p, |P_GetlPAddr(IFaceld), NumBytes);
p += | :

NunBytes -=i;

strncat (pBuffer, PRESENTATI ON_URL_POSTFI X, NumBytes);
return pBuffer;

}

/***

_UPnP_GCener at eSend_upnp_xm

Function description
Send the content for the requested file using the callback provided.

Par anet er s

| Facel d - Zero-based interface index.
pContext | n - Send context of the connection processed for
forwarding it to the callback used for output.
pf - Function pointer to the callback that has to be
for sending the content of the VFile.
pCont ext Qut - Qut context of the connection processed.
pDat a - Pointer to the data that will be sent
NunByt es - Nunber of bytes to send frompData. |If NunBytes
is passed as 0 the send function will run a strlen()

on pData expecting a string.

Not es
(1) The data does not need to be sent in one call of the call back
routine. The data can be sent in blocks of data and will be
flushed out automatically at |east once returning fromthis
routine.

L I T . T IR R R I

/
static void _UPnP_Generat eSend_upnp_xm (unsi gned | Facel d,
void * pContextln,
void (*pf) (void * pContextCQut,
const char * pData,
unsi gned NunBytes)) {
char ac[128];

pf (pContextln, "<?xm version=\"1.0\"?>\r\n"
"<root xm ns=\"urn:schenmas-upnp-org: devi ce-1-0\">\r\n"
"<specVersion>\r\n"
"<maj or >1</ maj or>\r\n"
"<m nor >0</ m nor>\r\n"
"</ specVersion>\r\n", 0);

pf (pCont ext I n, "<URLBase>", 0);

pf (pCont ext I n, _UPnP_Get URLBase(| Facel d, ac, sizeof(ac)), 0);

pf (pCont ext I n, "</ URLBase>\r\n", 0);

pf (pCont ext I n, "<device>\r\n"

"<devi ceType>ur n: schemas- upnp- or g: devi ce: Basi c: 1</ devi ceType>

\r\n", 0);

pf (pCont ext I n, "<friendl yNane>", 0);

pf (pCont ext I n, _UPnP_GCet Fri endl yNane(| Faceld, ac, sizeof(ac)), 0);

pf (pCont ext I n, "</friendl yName>\r\n", 0);

pf (pCont ext I n, "<manuf act urer >" UPNP_MANUFACTURER "</ manuf acturer>\r\n", 0);

pf (pCont ext I n, "<manuf act urer URL>" UPNP_MANUFACTURER _URL "</ manuf act ur er URL>
\r\n", 0);

pf (pCont ext I n, "<nmodel Descri ption>" UPNP_MODEL_DESC "</ nodel Descri pti on>
\r\n", 0);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

530 CHAPTER 15

pf (pCont ext I n,

pf (pCont ext I n,
pf (pCont ext I n,
pf (pCont ext I n,

"<nodel Nunber >", 0);

"</ nodel Nunber>\r\n", 0);
pf (pContextIn,
pf (pContext I n,

pf (pCont ext I n,
pf (pCont ext I n,

"<seri al Nunber>", 0);
"</serial Nunber>\r\n", 0);
pf (pCont ext I n,

pf (pCont ext I n,
pf (pCont ext I n,

"<UDN>", 0);
"</UDNS\r\n", 0);

"<serviceList>\r\n"
"<service>\r\n"

pf (pCont ext I n,

_UPnP_Get Model Nunber (| Facel d,

Backgrounds

"<nmodel Nane>" UPNP_MODEL_NAME "</ nodel Name>\r\n", 0);

ac, sizeof(ac)), 0);

"<nmodel URL>" UPNP_MODEL_URL "</nodel URL>\r\n", 0);

_UPnP_Get SN(| Facel d, ac, sizeof(ac)), 0);

_UPnP_Get UDN(| Facel d, ac, sizeof(ac)), 0);

"<servi ceType>urn: schenas- upnp-or g: servi ce: Dumy: 1

</serviceType>\r\n"

"<servi cel d>urn: upnp-org: servicel d: Dummy</servi celd>\r\n"
" <SCPDURL>/ dumy. xm </ SCPDURL>\r\ n"

"<control URL>/ </ control URL>\r\n"

"<event SUbURL></ event SUbURL>\r\ n"

"</service>\r\n"
"</serviceList>\r\n", 0);

pf (pCont ext I n,
pf (pCont ext I n,
pf (pCont ext I n,

"<presentationURL>", 0);
"</ presentati onURL>\r\n", 0);

"</ device>\r\n"
"</root>", 0);

pf (pCont ext I n,

_UPnP_GCet Present ati onURL(| Facel d, ac, sizeof(ac)), 0);

The callbacks for providing a virtual file using a VFile hook allow providing dynamically
created content for every file requested from the web server as soon as possible. A file
served from a VFile hook will not be processed further by the web server code.

/* Excerpt from Webserver_DynContent.c */

[KKKk ko kK Kk ko R R Rk Rk kR R Rk Rk kR R Rk kR kR R Rk kR kR R Rk Rk kR R Rk Rk kR Rk kR ok kR Rk ok ok

*

* Static code

*

khkhhkhkhhkhhhhhhhhhkhhhhhhhhhhhhhhhhkhhhhhkhhkhhhkhhkhhkhhhkhhkhhkhhhkhkhhkhhkhkhkkk

*/

[FR KK Kk kK Kk Kk kR R Kk kR kR R Rk Rk kR R Rk kR kR R Rk kR kR R Rk kR kR R Rk kR kR R Rk ok ok kR Rk ok

_UPnP_CheckVFi |l e
Function description
file using the VFile hook system

Par anet er s

fil ename<=>content |ist.

Return val ue

a file fromthe web server.

o R R T R R R

hook system
/
static int _UPnP_CheckVFil e(const char * sFil eNaneg,
unsi gned i;

/1

emNet User Guide & Reference Manual

sFi | eNane - Nane of the file that is requested
pl ndex - Pointer to a variable that has to be filled with
the index of the entry found in case of using a

Check if we have content that we can deliver for the requested

Alternative all conparisons can be done using the
filename. In this case the index is neaningless
and does not need to be returned by this routine.

0 - W do not have content to send for this filenang,
fall back to the typical nethods for retrieving

1 - W have content that can be sent using the VFile

unsi gned * plndex) {

© 2010-2025 SEGGER Microcontroller GmbH

531 CHAPTER 15 Backgrounds

/1l Generated VFiles

/1

if (strcenp(sFileName, "/upnp.xm") == 0) {
return 1;

}

/1

/1 Static VFiles

/1

for (i =0; i < SEGGER _COUNTOR(_VFileList); i++) {
if (strcnp(sFileName, _VFilelList[i].sFileNanme) == 0) {
*plndex = i;
return 1;

}
}

return O;

}

/***

_UPnP_SendVFi | e

Function description
Send the content for the requested file using the callback provided.

Par anet er s

pContext|n - Send context of the connection processed for
forwarding it to the callback used for output.
I ndex - Index of the entry of a fil ename<=>content |i st

if used. Alternative all conparisons can be done
using the filenane. In this case the index is
neani ngl ess. |If using a fil ename<=>content |i st
this is faster than searching again.

sFi | eNane - Nane of the file that is requested. In case of
working with the Index this is meaningless.
pf - Function pointer to the callback that has to be
for sending the content of the VFile.
pCont ext Qut - Qut context of the connection processed.
pDat a - Pointer to the data that will be sent
NunByt es - Nunber of bytes to send frompData. |If NunBytes
is passed as 0 the send function will run a strlen()

on pData expecting a string.

L I T . T IR R R I

/
static void _UPnP_SendVFil e(void * pContextln,
unsi gned | ndex,
const char * sFil eNane,
void (*pf) (void * pContextCut,
const char * pData,
unsi gned NunBytes)) {
struct sockaddr _in Local Addr;

u32 | PAddr ;
| ong hSock;
int | Facel d;
int Len;

(voi d) sFi | eNane;

/1
/'l Cenerated VFiles
/1
if (strcnp(sFileName, "/upnp.xm") == 0) {
/1
/'l Retrieve socket that is used by connection.
/1
hSock = (long) | P_VEBS_GCet Connect | nf o((WEBS_OUTPUT*) pCont ext | n);
Len = si zeof (Local Addr);
get socknane(hSock, (struct sockaddr*)&Local Addr, &lLen);
| PAddr = ntohl (Local Addr. si n_addr. s_addr);
| Faceld = | P_Fi ndl FaceByl P(& PAddr, sizeof (1 PAddr));
if (IFaceld >= 0) { // Only send back if we have found the interface.
_UPnP_Cener at eSend_upnp_xm (| Facel d, pContextln, pf);
}
return;
}
/1
/1 Static VFiles
/1

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

532 CHAPTER 15 Backgrounds

pf (pContextIn, _VFileList[lndex].pData, _VFileList[lndex].NunBytes);
}

All that is needed to be added to your application in order to provide the necessary XML
files through emNet Web server and starting UPnP advertising are the following lines:

/* Excerpt from OS_| P_Webserver_UPnP.c */

/11

/1 Activate UPnP with VFile hook for needed XM. files

/1

| P_VEBS_AddVFi | eHook(& UPnP_VFi | eHook, & UPNnP_VFil eAPl);
| P_UPNP_Act i vat e(| NTERFACE, NULL);

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

533 CHAPTER 15 API functions

15.5 API functions

Function Description
Activates UPnP by joining an IGMP group and
| P_UPNP_Acti vat e() advertising that we are now available with
services.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

534 CHAPTER 15 API functions

15.5.1 IP_UPNP_Activate()

Description
Activates UPnP by joining an IGMP group and advertising that we are now available with
services.
Prototype
int | P_UPNP_Acti vate(unsi gned | Facel d,
const char * sUDN) ;
Parameters
Parameter Description
| Facel d Zero-base interface index.
SUDN String containing a unique descriptor name. (Optional, can
be NULL.)
Return value
=0 O.K.
=0 Error, UPnP not started.

Additional information

If sUDN is NULL, the unique descriptor name will be generated from the HW address of the
interface.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

535

15.6 Resource usage

CHAPTER 15

Resource usage

The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the AutoIP module presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

The pure size of the UPnP add-on has been measured as the size of the services provided

may vary.

15.6.1 ROM usage on an ARM7 system

The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon

ROM

emNet UPnP

approximately 2.2 kByte

15.6.2 ROM usage on a Cortex-M3 system

The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon

ROM

emNet UPnP

approximately 2.0 kByte

15.6.3 RAM usage

Addon

RAM

emNet UPnP

approximately 170 Bytes

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

Chapter 16
VLAN

The emNet implementation of VLAN which stand for Virtual LAN allows separating your
network into multiple networks without the need to separate it physically. This chapter will
show you how easily VLAN access can be setup on your target.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

537 CHAPTER 16 emNet VLAN

16.1 emNet VLAN

The emNet VLAN implementation allows a fast and easy implement of VLAN on your target.
emNet VLAN support supports a basic VLAN tag specifying only a VLAN ID (802.1q) or QinQ
VLAN (802.1ad).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

538 CHAPTER 16 Feature list

16.2 Feature list

e Low memory footprint.

e Easy to implement.
Software based solution without the need for a driver to support VLAN tags.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

539 CHAPTER 16 Backgrounds

16.3 Backgrounds

VLAN technology can be used to separate multiple devices operating on the same physical
network into completely separated networks without seeing each other.

A typical usage would be to have 2 departments separated from each other but using the
same infrastructure such as a shared switch or router. Only devices using the same VLAN
ID will be able to see each other.

For this to happen 4 bytes are added in front of the packet type field in the Ethernet frame
pushing the original packet type field back by 4 bytes. The Ethernet frame will still be of a
maximum length 1518 bytes including CRC what means that instead of a maximum of 1500
bytes that can be transferred the amount of bytes that can be transferred per Ethernet
frame will shrink to 1496 bytes per packet. VLAN tagged packets are typically forwarded
by any switch as they are as the type field has been simply replaced and in most cases
only the destination MAC, source MAC and packet type is checked. In this case the packet
is simply of an unknown protocol and will be forwarded by the switch.

The picture below shows the structure of an Ethernet frame once without using a VLAN tag
and once with using a VLAN tag being assigned to VLAN ID #2.

Ethernet frame of max. 1518 bytes

Dest Src Packet Packet
MAC MAC Type Data
IP Packet
00:23:C7:FF:FF:FF | 00:23:C7:FF:EE:EE 0x0800 Max. 1500 bytes data + 4 bytes CRC
Dest Src VLAN Packet Packet
MAC MAC TAG Type Data
TPI 16 bit TCI
(12 bit VLAN ID)
VLAN ID #2 1P Packet Max. 1496 bytes data + 4 bytes
00:23:C7:FF:FF:FF | 00:23:C7:FF:EE:EE | pxg8100 0x0002 0x0800 CRC

Ethernet frame of max. 1518 bytes

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

540 CHAPTER 16 API functions

16.4 API functions

Function Description
| P_VLAN_AddI nterface() Adds a VLAN interface to the stack.
| P_VLAN Add8021adl nterface() Adds a VLAN interface to the stack.

Data structures

Structure which stores information about the

| P_VLAN_| NI T_DATA VLAN.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

541 CHAPTER 16 API functions

16.4.1 IP_VLAN_AddInterface()

Description
Adds a VLAN interface to the stack.

Prototype
int | P_VLAN Addl nterface(unsigned HW Face,
u16 VLANI d) ;
Parameters
Parameter Description
MW Face Zero-based index of an available network interface to be
used as physical interface for the VLAN pseudo interface.
12 bits VLAN ID that the new interface will recognize. The
VLANI d priority bits can be set here as well. They will be included
when sending packets on this interface. The priority bits for
received packets are ignored.

Return value

=20 Zero-based interface index of the newly created interface.
<0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using | P_Confi gVaxl Faces() needs to be done before adding any interface and
must not be changed later.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

542 CHAPTER 16 API functions

16.4.2 IP_VLAN_Add802ladInterface()

Description
Adds a VLAN interface to the stack.

Prototype
int | P_VLAN Add8021adl nterface(unsi gned HW Face,
uie VLAN_STAG,
uie VLAN_CTAG,
const | P_VLAN_| NI T_DATA * plnitData);
Parameters
Parameter Description

MW Face Zero-based index of an available network interface to be
used as physical interface for the VLAN pseudo interface.
12 bits VLAN ID that the new interface will recognize. The

VLAN STAG priority bits can be set here as well. They will be included

- when sending packets on this interface. The priority bits for

received packets are ignored.
12 bits VLAN ID that the new interface will recognize. The

VLAN CTAG priority bits can be set here as well. They will be included

- when sending packets on this interface. The priority bits for

received packets are ignored.
Pointer to a | P_VLAN_|I NI T_DATA structure containing

pl ni t Dat a settings for the VLAN interface. Can be NULL, in this case
defaults are used.

Return value

>0 Zero-based interface index of the newly created interface.
<0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using | P_Confi gMaxl Faces() needs to be done before adding any interface and
must not be changed later.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

543 CHAPTER 16 API functions

16.4.3 Data structures

16.4.3.1 IP_VLAN_INIT_DATA

Description

Structure which stores information about the VLAN.
Type definition

typedef struct {

U8 Use8100Et her Type;
} | P_VLAN_ | NI T_DATA;

Structure members

Member Description
By default the interface will use EtherType of 0x88A8 (TPID)
Use8100Et her Type for the STAG, when this is set to 1 0x8100 is used instead
(the CTAG always uses 0x8100).

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

544

16.5 Resource usage

CHAPTER 16 Resource usage

The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the AutoIP module presented in the tables below have been
measured on an ARM7 and a Cortex-M3 system. Details about the further configuration can
be found in the sections of the specific example.

16.5.1 ROM usage on an ARM7 system

The following resource usage has been measured on an ARM7 system using IAR Embedded
Workbench V6.30.6, Thumb mode, no interwork, size optimization.

Addon

ROM

emNet VLAN

approximately 1.2 kByte

16.5.2 ROM usage on a Cortex-M3 system

The following resource usage has been measured on a Cortex-M3 system using IAR
Embedded Workbench V6.30.6, size optimization.

Addon

ROM

emNet VLAN

approximately 1.0 kByte

16.5.3 RAM usage

Addon

RAM

emNet VLAN

approximately 16 Bytes

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

Chapter 17

Tail Tagging (Add-on)

The emNet support for the Micrel Tail Tagging feature that is available in many Micrel Switch
PHYs is an optional extension to emNet. It can be used to extend a typical single Ethernet
port CPU with more full featured ports without having to redesign a complete hardware or
even changing to a completely other CPU with more Ethernet ports. This chapter contains
information about Tail Tagging and how to add it to your hardware and software.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

546 CHAPTER 17 emNet Tail Tagging support

17.1 emNet Tail Tagging support

The emNet Tail Tagging implementation is an optional extension which can be easily added
to extend your hardware using a Micrel Switch PHY with Tail Tagging support instead of
a single port PHY. It allows you to extend your single Ethernet port (also single Ethernet
controller) CPU to as many ports that can be managed like a real network interface (Ethernet
controller) in emNet even with different hardware addresses.

The following table shows the contents of the emNet root directory:

Directory Content

Contains sample configurations for
BSP hardware that already uses emNet Tail
Tagging support.

Contains the Tail Tagging sources,

P | P_M CREL_TAI L_TAGG NG ¢ and the
PHY driver for various Micrel Switch PHYs
| P_PHY_M CREL_SW TCH. c.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

547 CHAPTER 17 Feature list

17.2 Feature list

e Extend virtually any single port CPU to n manageable interfaces at low cost.

Use the fast MII/RMII interface of your CPU and internal Ethernet controller instead of
slower interfaces like SPI with external Ethernet controllers.

Link status of each port can be monitored independent.

Keep your existing design and known and preferred CPU.

Each Tail Tagging interface can have its own hardware address.

Low memory footprint.

Seamless integration with the emNet stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

548 CHAPTER 17 Use cases

17.3 Use cases

The benefits of Tail Tagging are that it can be used to extend a single port Ethernet CPU to
multiple, manageable physical ports where each port can be managed independently and
can even have its own hardware address assign.

This can be used for various purposes when building hardware and software with special
requirements. Some use cases are:

e Building a multhoming hardware that shall be fail safe on the network by providing
multiple network paths that at the same time shall act as completely independent
interfaces with full control.

e Building a low cost Router, Gateway or Bridge device interfacing multiple networks.

e Building a device that requires network separation features and at the same time is
still able to use other techniques like VLAN/prioritizing via VLAN. VLAN can be used
in a similar way than Tail Tagging but can not provide both features (VLAN and port
separation) at the same time.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

549 CHAPTER 17 Requirements

17.4 Requirements

The following requirements regarding software and hardware need to be met.

17.4.1 Software requirements

The emNet Tail Tagging implementation requires the emNet TCP/IP stack and a PHY driver
for a Micrel Switch PHY that supports the Tail Tagging feature.

17.4.2 Hardware requirements

Of course a Micrel Switch PHY supporting Tail Tagging needs to be present on your hardware
as well. The big advantage of using Tail Tagging instead of other methods like adding
external Ethernet controllers is its simplicity that comes without any known downsides.

Single MAC unit CPU, single port design

The typical hardware design for an Ethernet capable hardware with the MAC unit inside the
CPU is shown below. It consists of a CPU with a single internal MAC unit connected to an
external single port PHY that can interface one port to the network.

The Ethernet data is transferred between MAC and PHY while the MDIO interface (typically
also accessed via registers of the MAC) is used to access the PHY to configure it and
periodically check the link status.

Embedded System

Ethernet

Connector

Single PHY

Single MAC unit CPU, switch PHY with Tail Tagging design

For Tail Tagging only a few simple changes to the hardware are necessary. The main
difference is that configuration is no longer done via the MDIO interface but instead is done
using an extra interface like SPI or SMI. This is due to a restricted set of registers that are
available via the MDIO standard.

Typically the same registers that can be accessed via MDIO can be accessed via SPI or SMI
as well, along many other registers not available via MDIO.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

550 CHAPTER 17 Requirements

Embedded System

Ethernet

— BTN

Configuration

Using a Switch PHY with Tail Tagging not only allows you to connect multiple hosts but
also allows you to fully control each external port/connector like it would be an additional
expensive and external Ethernet controller.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

551 CHAPTER 17 Backgrounds

17.5 Backgrounds

The Tail Tagging feature available in many Micrel Switch PHYs is a clever way to pass
information between the PHY and the TCP/IP stack on which port of the Switch a packet
has been received or to which port(s) it should be delivered when the TCP/IP stack sends
data to the network.

Contents of a Tail Tagging frame

The picture below shows the content of a frame that is received from the Switch in the host
or is sent from the host to the Switch.

Frame received/sent from/to the PHY with Tail Tagging

Regular Ethernet data Tail Tagging
(typically up to 1514 bytes) byte

Ethernet frame checksum

When the Switch has the Tail Tagging feature enabled all ports of the Switch will be used
in this mode.

Receiving a frame with Tail Tagging

With Tail Tagging each Ethernet frame that is received will be added with a byte between
the Ethernet data received in the frame and the checksum of the Ethernet frame itself.
This step is unseen by the Ethernet controller as the frame checksum that is built by the
sender above all the Ethernet data in the frame is altered by the PHY as well to represent
the correct checksum of the original Ethernet data in the frame plus the byte that has been
added. Due to the correct checksum the Ethernet controller does not have to be aware of
Tail Tagging at all.

emNet can then extract the information from which port the data has been received from
the Tail Tagging byte and can assign the packet to the correct Tail Tagging interface in the
system. The Tail Tagging byte is stripped in this process leaving only the original data that
can then be transferred to upper layer protocols.

Sending a frame with Tail Tagging

Sending works similar than receiving a frame. Before the Ethernet frame is queued with
the Ethernet controller for transmitting it to the PHY, a Tail Tagging byte is appended at the
end of the data to send (and before the frame checksum if calculated and added by the
Ethernet driver itself). This byte contains the information to which external PHY ports the
packet shall be delivered and sent out to the network.

The whole process is again unseen by the Ethernet controller as it is only aware that the
data to be sent is one byte more in total like if one byte more would be sent by an upper
layer protocol.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

552 CHAPTER 17 Optimal MTU and buffer sizes

17.6 Optimal MTU and buffer sizes

A Tail Tagging interface in emNet is a virtual interface that uses a hardware interface for
data transfer. As Tail Tagging requires to store one additional byte that is unknown to upper
layer protocols the Tail Tagging byte is automatically subtracted from the MTU that has
been configured for the hardware interface.

While simply using the original MTU - 1 is a safe and easy way it has the downside that
the maximum MTU of an Ethernet packet is now 1499 bytes instead of 1500 bytes and
might lead to slight fragmentation and small delays with hardware and other hosts that are
optimized for MTUs of 1500 bytes.

To overcome this effect the MTU (and typically connected with it the size of the big packet
buffers) in | P_X Confi g() should not be configured to 1500 bytes but instead configured
to 1501 bytes if it is known that Tail Tagging will be used.

If a mix of Tail Tagging and non Tail Tagging interfaces will be used (dual Ethernet controller
in CPU, one using only single port and the other connected to a Switch using Tail Tagging)
the MTU should be set accordingly for each of these interfaces using | P_Set MTU() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

553 CHAPTER 17 API functions

17.7 API functions

Function

Description

| P_M CREL_TAI L_TAGGE NG_Addl nterface()

Adds a virtual interface to the stack using
the Micrel Tail Tagging feature to separate
switch ports.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

554 CHAPTER 17 API functions

17.7.1 IP_MICREL_TAIL_TAGGING_AddInterface()

Description
Adds a virtual interface to the stack using the Micrel Tail Tagging feature to separate switch
ports.
Prototype
int | P_M CREL_TAI L_TAGAE NG_Addl nt er f ace(unsi gned HW Facel d,
us I nTag,
us Cut Tag) ;
Parameters
Parameter Description
Zero-based interface index of the interface used as hardware
HW Facel d .
interface.
| nTa Tag byte according to Micrel documentation to compare with
9 an incoming (switch to target) Tail Tagging byte.
Tag byte according to Micrel documentation to append for an
Qut Ta outgoing (target to switch) packet on this interface. Multiple
g bits can be set to allow sending to multiple ports at the same
time.
Return value
=20 Zero-based interface index of the newly created interface.

<0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using | P_Confi gMaxl Faces() needs to be done before adding any interface and
must not be changed later.

Example

/***
* (c) SEGGER M crocontrol | er GrbH *
& The Enbedded Experts *
* WWW. segger . com *

R R R R R R S R R R S R S R S S R R R S Sk R R R Sk Sk R S R Sk S Sk Rk R R Sk R R S Sk R R R R S

-------------------------- BN @ HEAEER coocccoscssacosasaacsaasaanss

Pur pose : Configuration file for TCP/IP with Freescale Kinetis K66
*/

#i ncl ude "I P. h"

#include "I P_NI _KI NETI S. h"

#i ncl ude "BSP_I P. h"

#include "I P_PHY_M CREL_SW TCH. h"

/***

*

* Configuration

*

R R R Sk R R S R R R S kR S S S R R R S Sk R R Sk Sk Sk Sk kS kS S kS R R R R Sk R R S Sk R R S R R R R S

*/

#defi ne DRI VER & P_Driver_K64 /1 Driver used for target.

#define TARGET_NAME "enPowerV2_1" /'l Target name used for DHCP client.
#def i ne HW ADDR "\ x00\ x22\ xC7\ xDD\ xFF\ x22" // MAC addr. used for target.

#defi ne NUM_PORTS 3
/1 Nurmber of switch ports used for Tail-Tagging. 0: Plain sw tch node.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

555 CHAPTER 17 API functions

f (NUM_PORTS == 0) // Keep nenory for one port.

#define ALLOC_SIZE (1 * 0x6000)
/1 Size of menory dedicated to the stack in bytes.
#el se

#define ALLOC SIZE (NUM_PORTS * 0x6000)
/1 Size of menory dedicated to the stack in bytes. Very rough cal cul ati on.
#endi f

/***

*

* Defines, fixed

*

R Sk Sk Sk Sk Sk Sk Sk Sk S S Sk Sk S Sk S S S S Sk Sk Sk S Sk Sk Sk Sk Sk Sk Sk Sk S Sk kS Sk Sk Sk kS S Sk Sk Sk Sk Sk S Sk Sk S S Sk S S kS S S

*/

#define SI M _SCGC5 (*(volatile U32 *)(0x40048038))
/1 System Clock Gating Control Register 5

#define SI M _SCGC6 (*(volatile U32 *)(0x40048030Q))
/1 System Clock Gating Control Register 6

#def i ne SI M_SCGC6_SPI 0_MASK (1luL << 12)

#def i ne SI M_SCGC6_SPI 1_MASK (1luL << 13)

#def i ne SI M_SCGC5_PORTB_MASK (1luL << 10)

#def i ne SI M_SCGC5_PORTC_MASK (1luL << 11)

#def i ne PORTB_BASE_ADDR (0x4004A000)

#defi ne PORTB_PCR10 (*(volatile U32 *)(PORTB_BASE_ADDR + 0x0028))
/1 Pin Control Register 10

#defi ne PORTB_PCR11 (*(volatile U32 *)(PORTB_BASE_ADDR + 0x002C))
/1 Pin Control Register 11

#defi ne PORTB_PCR16 (*(volatile U32 *)(PORTB_BASE_ADDR + 0x0040))
/1 Pin Control Register 16

#define PORTB_PCR17 (*(volatile U32 *)(PORTB_BASE_ADDR + 0x0044))
/1 Pin Control Register 17

#def i ne PORTC_BASE_ADDR (0x4004B000)

#defi ne PORTC_PCR4 (*(volatile U32 *)(PORTC_BASE_ADDR + 0x0010))
// Pin Control Register 4

#defi ne PORTC_PCR5 (*(volatile U32 *)(PORTC_BASE_ADDR + 0x0014))
/1 Pin Control Register 5

#defi ne PORTC_PCR6 (*(volatile U32 *)(PORTC_BASE_ADDR + 0x0018))
/1 Pin Control Register 6

#defi ne PORTC_PCR7 (*(volatile U32 *)(PORTC_BASE_ADDR + 0x001C))
/1 Pin Control Register 7

#def i ne SPI 0_BASE_ADDR (0x4002C000)

#def i ne SPI 1_BASE_ADDR (0x4002D000)

#def i ne SPI _MCR (*(volatile U32 *)(SPlI 1_BASE_ADDR + 0x00))

#define SPlI _CTARO (*(volatile U32 *)(SPl1_BASE_ADDR + 0x00Q))

#define SPlI_SR (*(volatile U32 *)(SPl1_BASE_ADDR + 0x2Q))

#define SPI _PUSHR (*(volatile U32 *)(SPl1_BASE _ADDR + 0x34))

#define SPlI _POPR (*(volatile U32 *)(SPl1_BASE _ADDR + 0x38))

#define SPI _PUSHR _CONT_BI T (1luL << 31)
/1 Continued CS

#def i ne SPI _PUSHR EQQ BI T (1luL << 27)
/1 End of queue

#define SPI _PUSHR PCS_BI T (1luL << 16)
/'l Activate CS#O

#define SPI _MCR_HALT_BIT (1luL << 0)
/1 Halt bit

#define SPI_SR EOQF_BI T (1luL << 28)
/1 End of queue full in SR

#define SPI_SR TCF_BIT (1luL << 31)
/'l Transfer conplete

#define SPI_SR RFDF_BI T (1luL << 17)

/'l RX Fifo drain flag

/~k************************
*

* Static data

*

R Sk Sk Sk Sk Sk Sk Sk Sk Sk S Sk Sk Sk Sk S S S S Sk Sk Sk S Sk R Sk Sk Sk Sk Sk kS Sk Sk S Sk Sk Sk S S Sk Sk Sk Sk Sk S Sk Sk S Sk S S kS S S S S S

*/

#i fdef __| CCARM _
static __no_init U32 _aPool [ALLOC SI ZE / 4];

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

556

#el se
/Il #if (defined(__GNUC)

CHAPTER 17

defined(__SEGGER CC_))

API functions

/1 static U32 _aPool [ALLOC SI ZE / 4]

__attribute__ ((section

("IP_RAM'))); // This is the nenory area used by the stack.
Il #el se
static U32 _aPool [ALLOC SI ZE / 4];
/1 #endif
#endi f

/***

*

* Local functions

*

R Sk Sk Sk Sk Sk Sk Sk Sk Sk S Sk Sk Sk Sk S S Sk Sk Sk S S Sk Sk Sk Sk Sk Sk S S Sk Sk S Sk kS Sk Sk S S Sk R Sk Sk Sk S Sk S S Sk S S S S S S

*/

/***

_I'ni t Phyl F()

Function description
Initializes the interface to the switch.

E

/
static void _I

U32 v;
v = SI M_SCGC5;
v | = SI M_SCGC5_PORTB_MASK; // Enable clock for Port B
SIM SCCC5 = v;
% = S| M_SCGCs6;
% | = SIM SCGC6_SPI 1_MASK; // Enable clock for SPI1
SIM SCCC6 = v;
/1
/1 Set PTB10 (SPI1_PCS0) alternate function 2.
/1
PORTB_PCR10 = 0x00000200;
/1
/1 Set PTB11 (SPI1_SCK) alternate function 2.
/1
PORTB_PCR11 = 0x00000200;
/1
/1 Set PTB16 (SPI1_SOUT) alternate function 2.
/1
PORTB_PCR16 = 0x00000200;
/1
/1 Set PTB17 (SPI1_SIN) alternate function 2.
/1
PORTB_PCR17 = 0x00000200;
/1
/'l Setup SPI paraneters.
/1
SPI _MCR =0
| (luL << 31) // Master node
| (luL << 27) // Freeze in debug node
| (luL << 16) // 1 = The inactive state of Peripheral
| (OuL << 13) // 0 = TX FIFO is enabl ed
| (OuL << 12) // 0 = RX FIFO is enabl ed
| (luL << 0) // O = Start transfer
SPI_CTARO =0
| (OuL << 31) // Double baud rate
| (7uL << 27) [/ Frame size (7 + 1)
| (OuL << 26) // CPOL
| (OuL << 25) // CPHA
| (OuL << 24) // O = MSB first
| (luL << 22) /] PCSSCK
| (luL << 20) // PASC
| (3uL << 12) // CSSCK
| (3uL << 0) // Baud rate scaler
/1
/1l Grant switch sone tinme to conpletely power up.
/1
| P_OS_Del ay(100);

emNet User Guide & Reference Manual

ni t Phyl F(voi d) {

chip select is high

© 2010-2025 SEGGER Microcontroller GmbH

557

CHAPTER 17 API functions

/***

_ReadWiteSPI Byte()

Function description
Wites one byte via SPI and receives one byte in exchange.

Par anet er s
Data: Byte to wite on line + settings.

Return val ue
Byte read fromline.

EE R R R

/
static U8 _ReadWiteSPI (U32 Data) {

Us v;

SPI _PUSHR = SPI _PUSHR_PCS BI T | Data; /1 Push data + activation of CSO

while ((SPI_SR & SPI_SR TCF BIT) == 0x0); // Wit for transfer conplete indication
SPI _SR | = SPI_SR TCF BIT; /'l Reset transfer conplete indication

v = SPI _POPR /'l Pop the read queue

11

return v;

}

/***

_ReadSPI Reg()

Function description
Reads a byte froma register.

Par anet er s
pCont ext: Context of the PHY driver.
Reg : Address of the register to read.

Return val ue
value read fromregister.

EE R

/
static unsigned _ReadSPl Reg(| P_PHY_CONTEXT_EX* pContext, unsigned Reg) {
us v;

| P_USE_PARA(pCont ext) ;

SPI _MCR &= ~SPI _MCR HALT_BI T; /] Activate SPI
while ((SPI_SR & (1uL << 30)) == 0x0); /1 Wait for ready indication
/1
_ReadWi t eSPI (0
| SPI _PUSHR_CONT_BIT /1 Continuous CS signal
| (0x03 << 5)); /'l Read command
_ReadWi t eSPI (0
| SPI _PUSHR_CONT_BIT /1 Continuous CS signal
| (Reg << 1)); /'l Register to read
v = ReadWiteSPI(O
| SPI _PUSHR EOQ BI T /1 End of Queue to transnit
| Oxff); /'l Any val ue
/1
SPI_MCR | = SPI _MCR_HALT_BIT; /] Halt SPI
/1
return (v & OxFF);

}

/***

_WiteSPl Reg()

Function description
Wites a byte to a register.

Par anet er s
pCont ext: Context of the PHY driver.
Reg : Address of the register to read.
% . Data to wite.

L I R N T T R R

/
static void _WiteSPl Reg(|P_PHY_CONTEXT_EX* pContext, unsigned Reg, unsigned v) {
| P_USE_PARA(pCont ext) ;

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

558 CHAPTER 17 API functions

SPI _MCR & ~SPI _MCR HALT BIT; /1 Activate SPI
while ((SPI_SR & (1luL << 30)) == 0x0); /1 Wit for ready indication
/1
_ReadWiteSPI(O
| SPI_PUSHR CONT_BI T /1 Continuous CS signal
| (0x02 << 5)); /1 Wite command
_ReadWiteSPI(O
| SPI_PUSHR CONT_BI T /1 Continuous CS signal
| (Reg << 1)); /| Register to read
_ReadWiteSPI(O
| SPI_PUSHR EOQ BI' T /1 End of Queue to transnit
| (v & OXFF)); /1l Value to wite
/1
SPI_MCR | = SPI _MCR HALT BIT; /1 Halt SPI
}
/***
*
* _Conf i gPHY()
*
* Function description
* Cal | back executed during the PHY init of the stack to configure
* PHY settings once the hardware interface has been initialized.
*
* Paraneters
* | Facel d: Zero-based interface index.
*/

static void _ConfigPHY(unsigned | Faceld) {
f (NUM_PORTS == 0)
| P_USE_PARA(| Facel d);
#el se
if (IFaceld == 0) { // Host interface ?
/1
/1 Activate Tail Taggi ng. Needs to be done for the interface of the
/'l host port. Enabling it nultiple tinmes does not hurt.
/1
| P_PHY_M CREL_SW TCH_Conf i gTai | Taggi ng(| Faceld, 1); // 0: Of, 1. On.
} else {
/1
/'l Configure the physical zero-based port nunber on the switch for this interface.
/1 In this sanple the port nunber is always one |lower than the interface ID.
/'l This should be the first configuration to set as other functions m ght depend
/1 on the port nunmber set here internally.
/1
| P_PHY_M CREL_SW TCH_Assi gnPor t Nunber (| Facel d, |Faceld - 1);
/1
/Il Tx switch functionality and switch address | earning.
/'l For our Tail Tagging inplenmentation for port multiplication we
/1l want to disable the switch functionality for Tx as this would
/'l send back incom ng packets formone port to another creating
/1 an infinite loop if both ports are in the sane network.
/1
| P_PHY_M CREL_SW TCH_Conf i gRxEnabl e(| Facel d, 1);
| P_PHY_M CREL_SW TCH_Conf i gTxEnabl e(| Facel d, 0);
| P_PHY_M CREL_SW TCH_Confi gLear nDi sabl e(| Faceld, 1);
}
#endi f

}

/***
*

* Local APl structures

*

R Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk S Sk Sk Sk S S S Sk Sk S S S Sk Sk Sk Sk Sk Sk Sk S Sk kS Sk kS Sk Sk S S Sk Sk Sk Sk Sk S Sk S S S S S S kS S S S

*/

static const |P_PHY_M CREL_SW TCH _ACCESS PhyAccess = {
_ReadSPI Reg, // pfReadReg
_WiteSPIReg // pfWiteReg

b

/***
*

* d obal functions
*

R Sk Sk Sk Sk Sk Sk Sk Sk Sk S S Sk Sk Sk S S S S Sk Sk S S S Sk Sk Sk Sk Sk Sk kS Sk Sk Sk Sk kS Sk Sk S Sk Sk Sk Sk Sk Sk S Sk Sk S S Sk S Sk kS S S S S

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

559

emNet User Guide & Reference Manual

CHAPTER 17

*/

/***

*

* I P_X_Config()

*

* Function description

* This function is called by the IP stack during IP_Init().

*

* Typi cal nmenory/buffer configurations:

* M crocontrol l er system mininmm size optim zed

* #define ALLOC_SI ZE 0x1000 /| 4KBytes RAM

* ntu = 576; /1 576 is mninum acc.

is max. for Ethernet.

* | P_Set MTU(0, ntu); /1 Maxi mum Transm ssion Unit

for Ethernet by default.
| P_AddBuf fers(4, 256); /1 Small buffers.

* | P_AddBuffers(2, mu + 16); /'l Big buffers. Size should be nmtu +
16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).

* | P_Conf TCPSpace(2 * (mtu - 40), 1 * (mtu - 40)); // Define the TCP Tx and Rx wi ndow
size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.

*

* M crocontrol l er system size optim zed

* #define ALLOC_SI ZE 0x3000 /] 12KBytes RAM

* ntu = 576; /1 576 is mninum acc.

is max. for Ethernet.

* | P_Set MTU(0, ntu); /1 Maxi mum Transm ssion Unit

for Ethernet by default.
| P_AddBuf fers(8, 256); /1 Small buffers.

* | P_AddBuffers(4, mu + 16); /1l Big buffers. Size should be nmtu +
16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).

* | P_Conf TCPSpace(2 * (mtu - 40), 2 * (mtu - 40)); // Define the TCP Tx and Rx wi ndow
size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.

*

* M crocontrol |l er system speed optim zed or nmultiple connections

* #define ALLOC_SI ZE 0x6000 /] 24 KBytes RAM

* ntu = 1500; /1 576 is mninum acc.

is max. for Ethernet.

* | P_Set MTU(0, ntu); /1 Maxi mum Transm ssion Unit

for Ethernet by default.
| P_AddBuf fers(12, 256); /1 Small buffers.

* | P_AddBuffers(6, mu + 16); /'l Big buffers. Size should be nmtu +
16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).

* | P_Conf TCPSpace(3 * (nmtu - 40), 3 * (mtu - 40)); // Define the TCP Tx and Rx wi ndow
size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.

*

* Systemwi th |ots of RAM

* #defi ne ALLOC_SI ZE 0x20000 /1 128 KBytes RAM

* ntu = 1500; /1 576 is mninum acc.

is max. for Ethernet.

* | P_Set MTU(0, ntu); /1 Maxi mum Transm ssion Unit
for Ethernet by default.
| P_AddBuf f ers(50, 256); /1 Small buffers.
* | P_AddBuf fers(50, ntu + 16); /1l Big buffers. Size should be nmtu +

16 byte for Ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding).

* | P_Conf TCPSpace(8 * (mtu - 40), 8 * (mtu - 40)); // Define the TCP Tx and Rx wi ndow

size. At least Tx space for 2*(mtu-40) for two full TCP packets is needed.
*/
void | P_X_Config(void) {
int ntu;
int |Faceld;
int HWFacel d;
f (NUM_PORTS != 0)
int i;
#endi f
us abHWAddr [6] ;
char acTar get Nane[si zeof (TARGET_NAME)] ;

_Init Phyl F();

/1 Initialize the interface for the switch configuration.
| P_Assi gnMenory(_aPool , sizeof (_aPool));

/1 Assigning nenory should be the first thing.

| P_Confi gvax| Faces(NUM_PORTS + 1);

/1 Configure nmax. nunber of ports to be avail able.

HW Facel d = | P_AddEt her | nt erface(DRI VER); /1 Add driver for your hardware.

f (NUM_PORTS == 0)

API functions

to RFC, 1500

to RFC, 1500

to RFC, 1500

to RFC, 1500

© 2010-2025 SEGGER Microcontroller GmbH

560 CHAPTER 17 API functions

| Faceld = HW Faceld;
#endi f
| P_BSP_Set API (HW Facel d, &BSP_| P_Api);
/1 Set BSP call backs for hardware access. Only required for HWinterface.
I P_NI _Confi gPHYMbde(HW Facel d, 1); /1 Configure PHY Mode: 0: MI,
1: RMI; For required hardware changes for RMI, please refer to your board nanual
/1
/1 Add PHY driver for the host port of the switch.
/1 The PHY driver for the host port manages gl obal
/'l configurations like filter settings and ot her
/1 things that are not setup for each port separately.
/1
| P_PHY_AddDri ver (HW Facel d, & P_PHY Driver_Mcrel _Swi tch_KSzZ8895 Host Port, &PhyAccess, & Confi gPHY);
/1
/'l Define log and warn filter.
/1 Note: The terminal 1/0O enulation mght affect the timng of your

/1 application, since nost debuggers need to stop the target
/1 for every terminal |/O output unless you use anot her

/1 i mpl enent ati on such as DCC or SWOD

/1

| P_Set War nFi | t er (OXFFFFFFFF) ; /1

OXFFFFFFFF: Do not filter: Qutput all warnings.
| P_Set LogFilter (0

| 1 P_MTYPE_APPLI CATI ON /1 CQutput application nessages.
| IP_MIYPE_INIT /1 Qutput all nessages frominit.
| 1 P_MTYPE_LI NK_CHANGE /1 Qutput a nessage if link status changes.
| 1 P_MIYPE_PPP /1 Qutput all PPP/PPPOE rel ated nessages.
| I P_MTYPE_DHCP /1 CQutput general DHCP status nessages.
#i f | P_SUPPORT_I PV6
| I P_MTYPE_I PV6 /1 CQutput |Pv6 address rel ated nessages
#endi f
/1 | 1 P_MIYPE_DHCP_EXT // Qutput additional DHCP nessages.
/1 | 1 P_MIYPE_CORE /1 Qutput |og nessages from core nodul e.
/1 | I P_MIYPE_ALLOC /1 Qutput |og nessages for nenory allocation.
/1 | 1 P_MIYPE_DRI VER /1 Qutput |og nessages fromdriver.
/1 | 1 P_MIYPE_ARP /1 Qutput |og nessages from ARP | ayer.
/1 | IP_MIYPE_I P /1 Qutput |og nessages fromIP |ayer.
/1 | I'P_MTYPE_TCP_CLCSE
/1 Qutput a |og nmessages if a TCP connection has been cl osed.
/1 | I'P_MIYPE_TCP_OPEN
/1 Qutput a |og nessages if a TCP connection has been opened.
/1 | IP_MIYPE_TCP_I N /1 Qutput TCP input | ogs.
/1 | IP_MIYPE_TCP_OUT /1 Qutput TCP output |ogs.
/1 | IP_MIYPE_TCP_RTT /1 Qutput TCP round trip tine (RTT) |ogs.
/1 | I P_MIYPE_TCP_RXW N /1 Qutput TCP RX wi ndow rel ated | og nessages.
/1 | I P_MIYPE_TCP /1 Qutput all TCP related | og nessages.
/1 | I'P_MIYPE_UDP_I N /1 Qutput UDP input |ogs.
/1 | 1 P_MIYPE_UDP_OUT /1 Qutput UDP output | ogs.
/1 | 1 P_MTYPE_UDP /] Qutput all UDP rel ated nessages.
/1 | 1 P_MTYPE_I CVP /1 Qutput |ICWP related | og nessages.
/1 | I'P_MIYPE_NET_I N /1 Qutput network input related nessages.
/1 | I P_MIYPE_NET_OUT /1 Qutput network output related nessages.
/1 | 1 P_MTYPE_DNS /] Qutput all DNS rel ated nessages.
/1 | 1 P_MIYPE_SOCKET_STATE /1 Qutput socket status nessages.
/1 | 1 P_MIYPE_SOCKET_READ /1 Qutput socket read rel ated nessages.
/1 | 1 P_MIYPE_SOCKET_WRI TE /1 Qutput socket wite related nessages.
/1 | 1 P_MIYPE_SOCKET /1 Qutput all socket related nessages.
)
/1
/1 Add protocols to the stack (that do not require an interface paraneter).
/1
I P_TCP_Add();
I P_UDP_Add();
I P_I CVP_Add();
/1

/1l Run-time configuration that needs to be set as it wll
/'l be passed to virtual interfaces fromthe HWinterface.

/1

mu = 1500; /1 576 is mnimmacc. to RFC, 1500 is max. for Ethernet.

| P_Set MTU (HW Facel d, ntu); // Maxinum Transmi ssion Unit is 1500 for Ethernet by default.
/1

/1 Configure each switch port (not connected to the host CPU).

/1

| P_MEMCPY(&bHWAddr [0], (const U8*) HW ADDR, 6);
| P_MEMCPY(&acTar get Nanme[0], TARGET_NAME, si zeof (TARGET_NAME)) ;
f (NUM_PORTS != 0)

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

561 CHAPTER 17 API functions

for (i =0; i < NUMPORTS; i++) {
| Faceld = | P_M CREL_TAI L_TAGA NG_AddI nter face(HW Faceld, i, (1 << 6) | (1 <<i));
/1 Add Tail Tagging interface for switch port, enable sw tch engine override.
#endi f
| P_Set HWAddr Ex(| Facel d, (const U8*) &bHWAddr[O0], 6);
/1l Set MAC addr. for switch port: Needs to be unique for production units.
f (NUM_PORTS != 0)
abHWAAdr [5] ++;
/'l Increase |ast byte of HWaddr. for next switch port.
acTar get Nanme[si zeof (TARGET_NAME) - 1] ++;
/'l Increase |ast character of the target name for next swtch port.

| P_PHY_AddDri ver (| Facel d, & P_PHY_Driver_M crel _Switch_KSzZ8895, &PhyAccess, & Confi gPHY);
/1 Add PHY driver for Mcrel switch PHY to the interface.
#endi f
| P_DHCPC Acti vat e(| Facel d, TARGET_NAME, NULL, NULL);
/1 Activate DHCP client for this interface.
/1
/1l Add |1 Pv6 support to the stack and enable it for the interface.
/1
#i f | P_SUPPORT_I PV6
| P_I PV6_Add(| Facel d);
#endi f
f (NUM_PORTS != 0)

}
#endi f

/1

/'l Run-time configure buffers.

/1 The default setup will do for npst cases.

/1
f (NUM_PORTS == 0)

| P_AddBuf fers((1 * 12), 256); /1 Small buffers.

| P_AddBuf fers((1 * 6), mu + 16); /1 Big buffers. Size should be ntu +
16 byte for ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding)
#el se

| P_AddBuf f er s((NUM_PORTS * 12), 256); /1 Small buffers.

| P_AddBuf f er s((NUM_PORTS * 6), ntu + 16); /1 Big buffers. Size should be ntu +
16 byte for ethernet header (2 bytes type, 2*6 bytes MAC, 2 bytes padding)
#endi f

| P_Conf TCPSpace(3 * (nmtu - 40), 3 * (ntu - 40)); // Define the TCP Tx and Rx wi ndow si ze
| P_SOCKET_Set Def aul t Opti ons(0
/1 | SO_TI MESTAWP
/1 Send TCP tinmestanp to optimze the round trip tine nmeasurenent. Nornally not used in LAN
| SO _KEEPALI VE
/1 Enabl e keepalives by default for TCP sockets.
)
}

/****** End G Flle ***/

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

562 CHAPTER 17 Resource usage

17.8 Resource usage

The ROM usage depends on the compiler options, the compiler version and the used CPU.
The memory requirements of the Tail Tagging module presented in the tables below have
been measured on a Cortex-M4 system. Details about the further configuration can be
found in the sections of the specific example.

17.8.1 ROM usage on a Cortex-M4 system

The following resource usage has been measured on a Cortex-M4 system using SEGGER
Embedded Studio V2.12, size optimization.

Addon ROM
emNet Tail Tagging approximately 0.4 kByte

17.8.2 RAM usage

All required RAM is taken from the RAM that has been assigned to emNet using
| P_AddMenory() . Only a few bytes are required.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 18

WIFi support

emNet WiFi support is an easy way to add the IEEE 802.11 standard also known as WiFi or
WLAN to your project. It allows not only an easy start using WiFi in a new product but also
allows adding WiFi support to existing projects already using emNet interfaces like LAN,
PPP, USBD RNDIS/ECM or any other in short time.

All functions that are required to add WiFi to your application and some background
information about WiFi hardware that can be used with emNet is described in this chapter.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

564 CHAPTER 18 emNet WiFi support

18.1 emNet WiFi support

The emNet WiFi support allows adding different WiFi hardware in the same way as any other
interface that can be added. The configuration and accessibility is bundled in an easy to
understand API regardless of the underlying API of the WiFi hardware. This not only allows
an easy start for adding WiFi to your project but comes in handy if you plan to exchange
WiFi hardware in the future.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

565 CHAPTER 18 Feature list

18.2 Feature list

Unified API regardless of the WiFi module used.

Easily add WiFi support as another interface to existing emNet LAN solutions.

No need for re-certification by using already WiFi certified modules.

Access Point support (depends on the module).

Protocol support not limited to protocols that are TCP/UDP based.

Support for various host interfaces like UART/SPI/SDIO/RMII (depends on the module).
Low memory footprint (emNet WiFi software components).

Seamless integration with the emNet stack.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

566 CHAPTER 18 Requirements

18.3 Requirements

Software requirements

The emNet WiFi support requires the emNet TCP/IP stack, the emNet module (family)
specific WiFi driver and typically a vendor SDK for the specific WiFi module (family).

The vendor SDK should feature a Hardware Abstraction Layer (HAL) that needs to be filled
in with your interface specific hardware routines.

For WiFi modules that do not need an SDK, a HAL is provided by the emNet WiFi module
specific driver, allowing to interface to various host interfaces supported by the WiFi module.

Hardware requirements

The emNet WiFi support can be used with virtually any module that is able to communicate
with the host MCU and providing full Ethernet packet access. For communication with the
host MCU typically an SPI interface is required. Other interfaces such as UART, SDIO, 12C
or RMII might be supported by the module as well.

Different WiFi add-on boards for easy evaluation on the emPower eval board are available.
The porting of the module specific hardware layer has already been done for these modules
for the emPower eval board and are shipped with the drivers as example, can be found in
the corresponding eval package.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

567 CHAPTER 18 Background information

18.4 Background information

This chapter does not cover the IEEE 802.11 standard as this would be too much information
and required information about the standard itself can be easily found on the Internet.
The background information referenced herein shall help to understand the level of
implementation the emNet WiFi support offers.

18.4.1 Definition of a WiFi module

A WiFi module typically describes a small form factor board that basically consists of two
components:

e An RF (Radio Frequency) module
e A companion MCU

WiFi modules are in fact external (Ethernet) controllers. The companion MCU is used to
interface the RF module to actually establish WiFi communication. This is controlled by
providing vendor specific commands to the companion MCU from the host MCU using one
of the supported host interfaces of the WiFi module.

As each vendor is using its own command set, there is no common API that can be used
across different modules, at least not between different vendors. Typically command sets
are kept compatible within a product family of a vendor. This makes various modules
compatible with the same SDK provided from the vendor.

Typically WiFi modules come with their own TCP/IP stack on board. This makes them
easy to use for smaller projects like a weather station that periodically sends its data to
a server. While these internal TCP/IP stacks might already come with some features like
a small web server, they are also limited to the features of the built-in commands and
protocol s. Benefits of using WiFi modules

18.4.2 Benefits of using WiFi modules

While the WiFi circuitry could be directly integrated with your PCB there are various benefits
from using an available WiFi module instead of your own implementation:

e No re-certification: Typically the WiFi modules available are already certified by the Wi-
Fi Alliance. This saves a lot of time and costs otherwise spent for a certification process
of your own designed WiFi circuitry.

Using a design that has proven to be working.
Easy to evaluate/no need for prototyping in regards to the WiFi circuitry.

e Can easily extend existing solutions using a free standard peripheral interface like SPI
without redesigning the whole hardware.

e Offloading crypto operations necessary for encryption like WPA2 to the companion MCU.

Besides the hardware designing and evaluation aspects, the biggest benefit is without doubt
the elimination of a re-certification process which might be time and cost intensive. Typically
the modules are completely certified when using an integrated antenna or are certified
when being used with a selection of one or more antennas specified by the module vendor.

18.4.3 Module internal vs. external TCP/IP stack

While most WiFi modules come with their own internal TCP/IP stack on the companion
MCU, they are typically limited in usage to their built-in commands. This usually means only
having access to a limited amount of TCP and UDP sockets that can be used to implement
higher level protocols based on these two base protocols.

While only having a limited amount of TCP and UDP sockets might be enough for some small
projects, this concept lacks control and extensibility. To allow more control and extensibility
an external TCP/IP stack like emNet needs to be used. This allows having control over the
complete Ethernet frame of the packet to implement protocols on a lower level such as
ARP or VLAN.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

568

CHAPTER 18 Background information

It is often referred to as pass-t hr ough- node or bypass- node to give an external stack full
control over the whole Ethernet frame. It disables the processing by the module internal
TCP/IP stack and exchanges the complete Ethernet frame with the TCP/IP stack on the
host MCU.

18.4.4 Supported WiFi modules

The intention of WiFi support for emNet is to allow extending an already established product
with WiFi in a flexible and easy way. At the same time it shall be an easy to use solution for
new projects. Features shall not depend on module features in the first place and shall be
extensible at any time. emNet supports only modules that are able to exchange complete
Ethernet frames with the host MCU using a so called pass-t hr ough- node or bypass- node
to fulfill this goal.

Being able to access the whole Ethernet frame, emNet is not only able to use TCP and
UDP based high level protocols but allows low level protocols via WiFi as well. Using this
solution, existing and future add-ons can be used via WiFi the same way they would be
with a cable based solution.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

569 CHAPTER 18 API functions

18.5 API functions

Function Description

Adds a function to the
| P_HOOK_ON_W FI _ASSOCI ATE_CHANGE list.

Removes a function previously added via
| P_W FI _AddAssoci at eChangeHook() .

Adds a function to the
| P_WFI _AddC ientNotificationHook() |IP_HOOK ON W FI _CLI ENT_NOTI FI CATI ON
list.

Removes a function previously added via
I P_WFI_Addd ientNotificationHook().

| P_W FI _AddI nterface() Adds a WiFi interface to the stack.

Adds a callback that gets executed once
the Driver Task handler is done.

Adds a function to the

| P_HOOK_ON_W FI _SI GNAL_CHANGE list.
Removes a function previously added via
| P_WFI_AddSi gnal ChangeHook() .

Configures the channels that are allowed
| P_WFI _Confi gAl | owedChannel s() to be used for network scan and associate
requests.

| P_WFI_AddAssoci at eChangeHook()

| P_W FI _RenmoveAssoci at eChangeHook()

| P WFI_RenmpoveC ientNotificationHook(

| P_DTASK_AddExecDoneHook()

| P_WFI _AddSi gnal ChangeHook()

| P_WFI_RenpveSi gnal ChangeHook()

Keeps the interface in signaled state to be
| P_DTASK_Conf i gAl waysSi gnal ed() polled each time regardless if there really
was a signal or not.

Retrieves the timeout [ms] after which
the Driver Task should polls the driver
interrupt routine even if it has not been
signaled.

| P_DTASK_Get Ti meout ()

Sets the timeout [ms] after which the
| P_DTASK Set Ti meout () Driver Task polls the driver interrupt
routine even if it has not been signaled.

Connects to a selected SSID or starts as

| P_WFI_Connect () access point.

Disconnects from any connected network

I P_WFI _Di sconnect () or stops the access point mode.

Task that polls the handler routine of some
drivers.

| P_DTASK I nit() Initializes the DriverTask context.

Executes the handler routine of the driver
for a specific interface.

| P_DTASK_Task()

| P_DTASK_Exec()

Executes the handler routine of the driver

| P_DTASK_ExecAl | () for all interfaces.

Waits for an event for the DriverTask to be

| P_DTASK_Wai t For Event () signaled

| P_WFI_Scan() Scans for available wireless networks.

Converts the numeric security value to a

| P_WFI_Security2String() readable text

Signals the Driver Task to poll the handler

| P_DTASK_Signal () routine of the driver.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

570 CHAPTER 18 API functions

18.5.1 IP_WIFI_AddAssociateChangeHook()

Description
Adds a function to the | P_HOOK_ON W FI _ ASSOCI ATE_CHANGE list.

Prototype
void | P_WFI _AddAssoci at eChangeHook (| P_HOOK_ON_W FI _ASSOCI ATE_CHANGE * pHook,
| P_W FI _pf OnAssoci at eChange pf);
Parameters
Parameter Description
pHook Pointer to hook structure to link.
pf Pointer to function to call on change.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

571 CHAPTER 18 API functions

18.5.2 IP_WIFI_RemoveAssociateChangeHook()

Description
Removes a function previously added via | P_W FI _AddAssoci at eChangeHook() .

Prototype
voi d | P_WFI_RenpveAssoci at eChangeHook (| P_HOOK_ON_W FI _ASSOCI ATE_CHANGE * pHook);
Parameters
Parameter Description
pHook Pointer to hook structure to link.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

572 CHAPTER 18 API functions

18.5.3 IP_WIFI_AddClientNotificationHook()

Description

Adds a function to the | P_HOOK ON W FI _CLI ENT_NOTI FI CATI ON list. This list is notified
when a client connects or disconnect when in access point mode.

Prototype
voi d | P_WFI_Addd i ent Noti fi cati onHook(| P_HOOK_ON_W FI _CLI ENT_NOTI FI CATI ON * pHook,
IP_WFI_pfOnCientNotification pf);
Parameters
Parameter Description
pHook Pointer to hook structure to link.
pf Pointer to function to call on notification.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

573 CHAPTER 18 API functions

18.5.4 IP_WIFI_RemoveClientNotificationHook()

Description
Removes a function previously added via | P WFI _Addd i ent Noti fi cati onHook() .

Prototype

void | P_WFI_RenmoveC ientNotificationHook
(1 P_HOOK_ON_W FI _CLI ENT_NOTI FI CATI ON * pHook):

Parameters

Parameter Description

pHook Pointer to hook structure to link.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

574 CHAPTER 18 API functions

18.5.5 IP_WIFI_AddInterface()

Description
Adds a WiFi interface to the stack.

Prototype
int |P_WFI_Addlnterface(const | P_HWDRI VER * pDriver);
Parameters

Parameter Description
pDri ver Pointer to | P_HW DRI VER API table.

Return value

>0 Zero-based interface index of the newly created interface.
<0 Error.

Additional information

Optional configuration of the maximum number of interfaces that can be added to the
system using | P_Confi gVaxl Faces() needs to be done before adding any interface and
must not be changed later.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

575 CHAPTER 18 API functions

18.5.6 IP_DTASK_AddExecDoneHook()

Description

Adds a callback that gets executed once the Driver Task handler is done.

Prototype
voi d | P_DTASK_AddExecDoneHook(unsi gned | Facel d,
| P_HOOK_ON_DTASK_EXEC DONE * pHook,
| P_ON_DTASK_EXEC DONE_FUNC * pf);
Parameters
Parameter Description
| Facel d Zero-based interface index.
pHook Pointer to hook structure to link.
pf Pointer to function to call on change.

Additional information

A callback that signals the end of the ISR handler routine is required when using level
sensitive interrupts that only signal a task like the WiFi/DTask ISR task to run. The following
example demonstrates why this is necessary:

1. Interrupt line gets high.

2. Level sensitive interrupt is fired.

3. Signaling the WiFi ISR task to run.

4. Clearing the interrupt pending flag (could have been done before 3. as well).

5. The interrupt is still pending as typically the interrupt line on WiFi modules only gets
low after all messages have been received. For this the WiFi/DTask ISR Task would need
to run but we are stuck at 2. as the level sensitive interrupt constantly fires.

Solution:

After 2. simply disable the interrupt. Once all messages we are aware of have been
processed the WiFi/DTask ISR task will run to wait until it is signaled again. Before actually
waiting the callback gets executed telling us that now is the right moment to clear the
pending interrupt flag and re-enabling the interrupt itself as most likely the interrupt line
is now low and we are not instantly back in the interrupt. Of course it might happen that
we are almost instantly back the interrupt as new messages are ready at the module to
be received.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

576 CHAPTER 18 API functions

18.5.7 IP_WIFI_AddSignalChangeHook()

Description
Adds a function to the | P_HOOK_ON W FI _SI GNAL_CHANGE list.

Prototype
voi d | P_WFI _AddSi gnhal ChangeHook(| P_HOOK_ON W FI _SI GNAL_CHANGE * pHook,
I P_W FI _pf OnSi gnal Change pf);
Parameters
Parameter Description
pHook Pointer to hook structure to link.
pf Pointer to function to call on change.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

577 CHAPTER 18 API functions

18.5.8 IP_WIFI_RemoveSignalChangeHook()

Description
Removes a function previously added via | P_W FI _AddSi gnal ChangeHook() .

Prototype
voi d | P_W FI _RenpveSi ghal ChangeHook (| P_HOOK_ON W FI _SI GNAL_CHANGE * pHook);
Parameters
Parameter Description
pHook Pointer to hook structure to link.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

578 CHAPTER 18 API functions

18.5.9 IP_WIFI_ConfigAllowedChannels()

Description
Configures the channels that are allowed to be used for network scan and associate
requests.
Prototype
int | P_WFI_ConfigAl | owedChannel s(unsi gned | Facel d,
const U8 * paChannel ,
us NumChannel s) ;

Parameters

Parameter Description
| Facel d Zero-based interface index.
paChannel Pointer to a list of allowed channels.
NunmChannel s Number of channels in list.

Return value

=0 0.K.
0 Error.

Additional information

Allowed channels are a subset of the configured regulatory domain.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

579

18.5.10

CHAPTER 18 API functions

IP_DTASK_ ConfigAlwaysSignaled|()

Description

Keeps the interface in signaled state to be polled each time regardless if there really was
a signal or not.

Prototype
voi d | P_DTASK_Confi gAl waysSi gnal ed(unsi gned | Facel d,
char OnOrf);
Parameters
Parameter Description
| Facel d Zero-based interface index.
e 0 : Off.
G e Other: On.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

580 CHAPTER 18 API functions

18.5.11 IP_DTASK_GetTimeout()

Description

Retrieves the timeout [ms] after which the Driver Task should polls the driver interrupt
routine even if it has not been signaled.

Prototype
unsi gned | P_DTASK_Get Ti meout (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

Return value

Previously configured timeout [ms].

Additional information

At the moment the | Facel d parameter is ignored and the timeout value is used for all
interfaces.

This routine can be used to set the timeout in a central place such as from | P_X_Confi g()
and retrieve it wherever necessary.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

581 CHAPTER 18 API functions

18.5.12 IP_DTASK_SetTimeout()

Description

Sets the timeout [ms] after which the Driver Task polls the driver interrupt routine even
if it has not been signaled.

Prototype

voi d | P_DTASK_Set Ti meout (unsi gned | Facel d,
unsi gned Ti nmeout) ;

Parameters

Parameter Description
| Facel d Zero-based interface index.
Ti meout Ti meout [ms].

Additional information

At the moment the | Facel d parameter is ignored and the timeout value is used for all
interfaces.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

582 CHAPTER 18 API functions

18.5.13 IP_WIFI_Connect()

Description

Connects to a selected SSID or starts as access point.

Prototype
int | P_WFI_Connect (unsi gned | Facel d,
const | P_W FI _CONNECT_PARAMS * pPar ans,
u32 Ti meout) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
pPar ans Pointer to structure that contains connection parameters.
Ti meout Ti meout before considering connect attempt failed [ms].

Return value

=0 0.K.
0 Error.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

583

CHAPTER 18 API functions

18.5.14 IP_WIFI_Disconnect()

Description

Disconnects from any connected network or stops the access point mode.

Prototype
int | P_WFI_Di sconnect (unsigned | Facel d,
u32 Ti meout) ;
Parameters
Parameter Description
| Facel d Zero-based interface index.
Ti meout Ti meout before considering disconnect attempt failed [ms].

Return value

=0 0O.K.
0 Error.

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

584

CHAPTER 18 API functions

18.5.15 IP_DTASK_Task()

Description

Task that polls the handler routine of some drivers.

Prototype

voi d | P_DTASK Task(void);

Additional information

This task is required to be implementing into your project for some drivers to work. This is
typically the case for external Ethernet controllers. An example for typical task stack usage
is defined by TASK_STACK_SI ZE_| P_DRI VER _TASK .

For best performance this task should be given a task priority higher than any other IP stack
related application task and even the | P_Task() or its API alternatives | P_TASK | nit(),
| P_TASK Exec() and | P_TASK Wit ForEvent() . It however must not have a higher
or the same priority than the | P_RxTask() or its API alternatives | P_RXTASK Init(),
| P_RXTASK_Exec() and | P_RXTASK Wit For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt usage
on page 48 .

After startup, this routine settles into a loop, handling driver events. This loop sleeps until
signaled by an event. Alternatively it can be configured to wake up and poll the drivers
periodically using | P_DTASK _Conf i gTi meout () and | P_DTASK_ Conf i gAl waysSi gnal ed() .

In case of de-initializing the stack with I P_Delnit(), it is possible to leave the loop
gracefully by using | P_Shut Down() .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

585 CHAPTER 18 API functions

18.5.16 IP_DTASK_Init()

Description

Initializes the DriverTask context.
Prototype
void | P_DTASK | nit(void);

Additional information

Note

This routine is not intended to be used when using | P_DTASK Task() instead. It needs
to be called before | P_DTASK Exec() or | P_DTASK Wi t For Event () is used.

For best performance the | P_DTASK * API should be called with a task priority higher than
any other IP stack related application task and even the | P_Task() or its API alternatives
IP_TASK Init(), | P_TASK Exec() and | P_TASK Wit ForEvent() .

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the | P_RxTask() or its API alternatives
| P_RXTASK I nit(), | P_RXTASK Exec() and | P_RXTASK Wi t For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

Example

/***

_| P_DTASK_Task()

Functi on description
Application specific inplementation of |P_DTASK Task()

Addi ti onal information
Allows to insert your own code |ike feeding a watchdog
i n-between the separate steps that woul d be executed by the
original task APl provided by the stack.

E I I SR S I R B R

~

static void _|I P_DTASK Task(void) {
unsi gned Ti neout ;

/1

/1l Initialize.
/1

| P_DTASK I nit();
/1

/'l Get the timeout configured for exanple during |P_X Config()
/1 If not configured, the default is returned which is 0 and
/1l neans to wait |NFIN TE .
I
Ti meout = | P_DTASK Get Ti neout (Ou); // Get tinmeout for interface #0 .
I
/'l Task-1 oop.
I
for (;;) {

I

/1 Wait with tinmeout [ns] for the next event to be signal ed.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

586 CHAPTER 18 API functions

/1l Typically the signal is triggered by an interrupt from an
/'l external controller that notifies us that the previous
/'l operation is now finished and the next can be started.

/1

| P_DTASK Wi t For Event (Ti neout) ;
/1

/'l Process the event.

/1

| P_DTASK_ExecAl | ();

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

587

CHAPTER 18

18.5.17 IP_DTASK_Exec()

Description

API functions

Executes the handler routine of the driver for a specific interface.

Prototype
voi d | P_DTASK Exec(unsigned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface ID.

Additional information

This routine is an alternative to using the | P_DTASK Task() . It allows finer control over
the internal steps done in | P_DTASK Task() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using | P_DTASK Task() instead.

For best performance the | P_DTASK_* API should be called with a task priority higher than
any other IP stack related application task and even the | P_Task() or its API alternatives
| P_TASK I nit(), | P_TASK Exec() and | P_TASK Wi t For Event () .

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the | P_RxTask() or its API alternatives
| P_RXTASK I nit(), | P_RXTASK Exec() and | P_RXTASK Wi t For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt

usage on page 48 .

emNet User Guide & Reference Manual

© 2010-2025 SEGGER Microcontroller GmbH

588 CHAPTER 18 API functions

18.5.18 IP_DTASK_ExecAll()

Description

Executes the handler routine of the driver for all interfaces.

Prototype

voi d | P_DTASK_ExecAl | (voi d);

Additional information

This routine is an alternative to using the | P_DTASK Task() . It allows finer control over
the internal steps done in | P_DTASK Task() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using | P_DTASK Task() instead.

For best performance the | P_DTASK _* API should be called with a task priority higher than
any other IP stack related application task and even the | P_Task() or its API alternatives
IP_TASK Init(), | P_TASK Exec() and | P_TASK Wit ForEvent() .

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the | P_RxTask() or its API alternatives
| P_RXTASK I nit(), | P_RXTASK Exec() and | P_RXTASK Wit For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

589 CHAPTER 18 API functions

18.5.19 IP_DTASK_WaitForEvent()

Description

Waits for an event for the DriverTask to be signaled.

Prototype
unsi gned | P_DTASK Wi t For Event (unsi gned Ti neout);
Parameters
Parameter Description
Ti meout Ti meout [ms] to wait for an event. 0 for INFINITE .

Return value

=0 An event was signaled.
+0 Ti meout .

Additional information

This routine is an alternative to using the | P_DTASK Task() . It allows finer control over
the internal steps done in | P_DTASK Task() . This can be utilized for example to feed a
watchdog from the same task periodically.

Note

This routine is not intended to be used when using | P_DTASK Task() instead.

For best performance the | P_DTASK_* API should be called with a task priority higher than
any other IP stack related application task and even the | P_Task() or its API alternatives
| P_TASK I nit(), | P_TASK Exec() and | P_TASK Wi t For Event () .

Warning

The task priority from which this routine is executed must not be higher or
the same priority than a task executing the | P_RxTask() or its API alternatives
| P_RXTASK I nit(), | P_RXTASK Exec() and | P_RXTASK Wi t For Event () .

For more information regarding task priorities, please refer to Tasks and interrupt
usage on page 48 .

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

590 CHAPTER 18 API functions

18.5.20 IP_WIFI_Scan()

Description

Scans for available wireless networks.

Prototype
int |P_WFI_Scan(unsi gned | Facel d,

u32 Ti meout ,

| P_W FI _pf ScanResul t pf,

const char * sSSI D,

us Channel) ;

Parameters
Parameter Description

| Facel d Zero-based interface index.
Ti meout Ti meout before aborting the scan [ms].
pf Callback to be used for each single result.
sSSI D SSID to find. May be NULL to scan all available networks.
Channel Selected channel to scan. 0 means all channels.

Return value

=0 O.K.
0 Error.

Additional information

If an SSID to find has been set the result callback will report the connection parameters
only for the selected SSID. Without a given SSID a list of available networks and their
parameters will be returned.

A network scan means that the module needs to set one of its antennas into monitoring
mode, listening for beacon frames with SSIDs regularly sent by Access Points. If a module
has only one antenna, a scan might not be possible while being connected, typically also
returning an error for this API call.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

591 CHAPTER 18 API functions

18.5.21 IP_WIFI_Security2String()

Description

Converts the numeric security value to a readable text.

Prototype
char *IP_WFI_Security2String(U8 Security);
Parameters
Parameter Description
Security Numeric security value.

Return value

Pointer to string of the security.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

592 CHAPTER 18 API functions

18.5.22 IP_DTASK_Signal()

Description

Signals the Driver Task to poll the handler routine of the driver.

Prototype
voi d | P_DTASK Si gnal (unsi gned | Facel d);
Parameters
Parameter Description
| Facel d Zero-based interface index.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

593 CHAPTER 18 Data structures

18.6 Data structures

Structure / Callback Description

Used to configure parameters for
| P_W FI _CONNECT _PARAMS connecting to an Access Point or starting
your own Access Point.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

594 CHAPTER 18 Data structures

18.6.1 Structure IP_WIFI_CONNECT_PARAMS

Description
Used to configure parameters for connecting to an Access Point or starting your own Access
Point.
Prototype
typedef struct {
const char* sSSI D;
const char* SWPAPass;
const | P_WFI_WEP_KEY* paVWEPKey;
us abBSSI O 6] ;
us NumAEPKeys;
us WEPAct i veKeyl ndex;
us Mode;
us Security;
us Channel ;

} I P_W FI _CONNECT PARANE;

Member Description
sSSI D SSID to connect to or to open when in Access point mode.
sWPAPass WPA(2) passphrase to use.
paVEPKey Array of pointers to binary WEP keys.
abBSSI D HW address of the access point to connect to.
NumAEPKey s Number of WEP keys configured in paV\EPKey.

WEPAct i veKeyl nd€x.3: Index of WEP key to be used for sending, typically index O .

| P_W FI _MODE_| NFRASTRUCTURE or | P_W FI _MODE_ACCESS PO NT (if
supported by the driver and moodule).

Mode

Security used or security to use if we are starting an Access Point.

| P_WFI _SECURI TY_OPEN or | P_W FI _SECURI TY_WEP_OPEN or
Security IP_WFI_SECURI TY_WEP_SHARED or | P_W FI _SECURI TY_WPA TKI P or
| P_W FI _SECURI TY_WPA AES or | P_W FI _SECURI TY_WPA WPA2_M XED
or | P_WFI_SECURI TY_WPA2_AES.

Channel to use for connect or starting an Access Point. When
connecting 0 means any.

Channel

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

Chapter 19

Network interface drivers

emNet has been designed to cooperate with any kind of hardware. To use specific hardware
with emNet, a so-called network interface driver for that hardware is required. The network
interface driver consists of basic functions for accessing the hardware and a global table
that holds pointers to these functions.

emNet User Guide & Reference Manual © 2010-2025 SEGGER Microcontroller GmbH

596 CHAPTER 19 Network interface drivers general information

19.1 Network interface drivers general information

To use emNet, a network interface driver matching the target hardware is required. The
code size of a network interface driver depends on the hardware and is typically between
1 and 3 kBytes. The driver handles both the MAC (media access control) unit as well as
the PHY (Physical interface). We recommend using drivers written and tested by SEGGER.
However, it is possible to write your own driver. This is explained in section Writing your
own driver on page 600.

The driver interface has been designed to allow support of internal and external Ethernet
controllers (EMACs). It also allows to take full advantage of hardware features such as MAC
address filtering and checksum computation in hardware.

19.1.1 MAC address filtering

The stack passes a list of MAC addresses to the driver. The driver is responsible for making
sure that all packets from all MAC addresses specified are passed to the stack. It can do
so with “precise filtering” if the hardware has sufficient filters for the given number of
MAC addresses. If more MAC addresses are passed to the driver than hardware filters are
available, the driver can use a hash filter if available in hardware or switch to promiscuous
mode.

This is a very flexible solution w