
AppWizard
Wizard for creating ready-
to-use emWin applications

User Guide & Reference Manual

Document: UM03003
Software Version: 1.56

Revision: 0
Date: December 18, 2024

A product of SEGGER Microcontroller GmbH

www.segger.com

https://www.segger.com/products/user-interface/emwin/tools/tools-overview/#appwizard
https://www.segger.com
https://www.segger.com

2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2024 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: December 18, 2024

Software Revision Date By Description

1.56 0 241219 JE
Chapter Objects updated.
 • Opaque property added to SCREEN to be able to increase perfor-
mance.

1.54 0 241011 JE

Chapter Interactions updated.
 • New job ACTUATE added to be able to generate PID input and circular
or linear animations.
 • New job SCREENSHOT added to be able to take a screenshot.
 • New job EXIT added to be able to close the application via interaction.

1.52 0 240827 JE

Chapter Interactions updated.
 • New job SETFONT added to BUTTON, CHECKBOX, DROPDOWN, EDIT,
LISTBOX, LISTVIEW, MULTIEDIT, RADIO, SWITCH and TEXT.
 • New signal LANGCHANGED added to SCREEN.

1.50 0 240724 JE

Chapter Drawings updated.
 • New option ’Active’ element added to simplify the creation of drawing
objects.
 • New geometric properties ’xCenter’ and ’yCenter’ added.
Chapter User Code updated.
 • Warning added that user code must not be located outside the ’User-
Code’ subfolder.
Chapter Options / Preferences updated.
 • Selection of Visual Studio version removed.

1.48 0 240312 JE
Chapter Interactions updated.
 • Job SETCOLOR added to CHECKBBOX, DROPDOWN, KEYBOARD, LIST-
BOX, LISTVIEW, MOVIE, PROGBAR, RADIO and SWITCH.

1.46 0 240503 JE
Chapter Resource management updated.
 • New alpha image format A8 added.
 • Image management dialog now supports multiple selections.

1.44 0 240312 JE

Chapter Interactions updated.
 • Job SETCOLOR added to GAUGE and MULTIEDIT.
 • Job SETBKCOLOR added to EDIT, GAUGE, MULTIEDIT and WINDOW.
Chapter User Code updated.
 • New function APPW_CalcVar() added.
 • New functions APPW_SetStreamedBitmap() and APPW_SetStreamed-
BitmapEx() added.

1.42 0 231219 JE

New chapter Options / Preferences added.
 • Option ’Use static memory devices’ added in order to improve perfor-
mance on systems with a lot of RAM.
 • Option ’Run script’ added.
 • Option ’Stay alive loop’ added.
 • Option ’Enable simulation’ added.

1.40 1 231030 JE Chapter Interactions updated.
 • Tools for large projects added.

1.40 0 230705 JE
Chapter Objects updated.
 • New Checkbox object added.
 • New Radio object added.

1.38 0 230512 JE

Chapter Resource management updated.
 • Font management completely reworked.
 • Option for merging fonts added.
 • Option for height- and baseline modification added.
 • Option for font renaming added.
 • Detailed example and explanation how to merge fonts added.

1.36a 0 230228 JE Chapter Objects updated.
 • Decimal mode reworked.

1.36 0 230113 JE

Chapter Directory structure updated.
 • New folder “Keyboard” added.
 • New folder “Movie” added.
Chapter Interactions updated.
 • New signal STARTED added.
 • New signal STOPPED added.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

4

Software Revision Date By Description
Chapter Objects updated.
 • New Movie object added.
 • New Movie property added.
 • Bitmap property reworked.
 • Colors property reworked.
Chapter Resource management updated.
 • New Movie resources added.
Chapter User interface updated.
 • “Show missing characters” added to project options.
 • “Minimum time per frame” added to project options.
 • “Enable scroller support” added to project options.
 • Movie button added to quick access buttons.
Chapter Variables updated.
 • “Operands” reworked.

1.34 0 221121 FO

Chapter Board support packages (BSPs) updated.
 • Sub-section “Creating custom BSPs” updated.
Chapter Objects updated.
 • CCW mode property added to Gauge.

1.32 0 220909 FO Chapter Objects updated.
 • Sub-section “Object scrollers” added.

1.30 0 220804 JE
Chapter Interactions updated.
 • New job ROTATEDISPLAY added.
 • New job SETRANGE added.

1.28 1 220601
JE
FO

Chapter User interface updated.
 • Section “Importing and exporting of content” added.

1.28 0 220428 FO

Chapter User interface updated.
 • Quick access button section enhanced.
Chapter Objects updated.
 • New Wheel object added.
 • The following object property descriptions were moved to the objects
they are used in: Auto repeat, Blend colors, Disable animation, Error cor-
rection level, Fade mode, Gradient, Keyboard layout, JPEG/GIF/BMP, Line
width, Maximum length, Offset, Password mode, Persistent mode, Pixel-
size, Rotate marker, Rounded value/ends, Snap position, Start/end angle,
Version
 • Added “Untouchable” property to the objects Image, Text and Box.
Chapter Interactions updated.
 • Jobs SETPERIOD, MOVETO, SETALPHA, SETSCALE, SETANGLE, IN-
VALIDATE added.
Chapter Command line usage added.

1.26 0 220113 JE

Chapter Objects updated.
 • New Dropdown object added.
 • New Listbox object added.
 • New Listview object added.
 • New property ’Content’ added.
Chapter Interactions updated.
 • New job ADDITEM added.
 • New job DELITEM added.
 • New job INSITEM added.
 • New job SETITEM added.
Chapter Resource management updated.
 • Introduction updated.
 • Stock fonts updated.
 • Explanation for use of alpha channel images added.
Chapter User interface updated.
 • Workspace directory added to preferences.
Chapter Animations updated.
 • More information about autostart option added.

1.24 0 211116 FO Chapter Drawings added.
 • New feature allowing custom drawings in an application.

1.22 0 210608 JE

Chapter User interface updated.
 • Sample browser added to file options.
Chapter Objects updated.
 • New property ’Motion support’ added.
Chapter Interactions
 • New job SETSTART added.
 • New job SETEND added.

1.20 0 210308 FO Chapter User interface updated.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

5

Software Revision Date By Description
 • Multibuffering option added to project options.
Chapter Objects updated.
 • New property ’Stay on top’ added.
 • New property ’Untouchable’ added.
 • Vertical mode: Default bitmaps are switched automatically.
Chapter Interactions
 • New signal PIDPRESSED added.
 • New signal PIDRELEASED added.
 • New signal UNPINNED added.
 • New signal FIXED added.
 • New job SETBITMAP added.
 • New job SHIFTWINDOW added.
 • New job ANIMCREATE added.
 • New job ANIMSTART added.
 • New job ANIMSTOP added.
 • “Index” parameter added to job SETCOLOR.
 • Jobs ANIMCOORD, ANIMVALUE, ANIMRANGE and CASCADECOORD re-
moved.
 • Signal ANIMCOORD removed.
New chapter Animations added.
Chapter User Code updated.
 • Added custom user code section.
Chapter Board support packages (BSPs) updated.
 • Added “MultibufAvail” option.

1.14 0 210108 FO

Various screenshots updated.
Chapter Resource management updated.
 • Sub-chapter ’Variable management’ moved to dedicated ’Variables’
chapter.
Chapter Objects updated.
 • Hexadecimal mode added to Text object.
 • New Color property added to Image object.
Chapter Interactions updated.
 • Job SETFOCUS added to Button, Multiedit, Rotary, Slider and Switch
 • New job CALC added.
 • New job MODALMESSAGE added.
Chapter Variables added.
Chapter AppWizard SPY updated.
 • Requirements added.

1.12 0 201106 FO

Chapter Directory structure updated.
 • SPY directory added.
Chapter User interface updated.
 • AppWizard Spy window added.
 • Menu bar section enhanced.
 • Object IDs can be edited from within the hierarchic tree view.
 • By activating the option in the preferences dialog, object IDs can now
be shown in the editor window.
Chapter Objects updated.
 • Object focus section added.
 • Focus options property added.
 • Opaque property added.
 • Radius property added to Box and Button objects.
 • Object example screenshots updated.
New chapter AppWizard SPY added.
Chapter Glossary updated.

1.10 0 200824 FO

Chapter Objects updated.
 • Multiedit object added.
 • Timer object added.
 • Password mode property added.
Chapter Interactions
 • New signal TIMER added.
 • New job START added.
 • New job STOP added.

1.08 0 200805
FO
SC

Fixed several typos.
Chapter Objects updated.
 • New object Progbar added.
 • Added ’Frame color’ property to Text object.
Chapter Interactions updated.
 • New signal ENTER_PRESSED added.
 • New job SETX0 added.
 • New job SETY0 added.
 • New job SETX1 added.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

6

Software Revision Date By Description
 • New job SETY1 added.
Chapter User Code updated.
 • Function APPW_GetText() added.
 • Function APPW_GetValue() added.
 • Function APPW_SetText() added.
 • Function APPW_SetValue() added.

1.06 2 200626 FO Chapter Interactions updated.
 • Added section about conditions.

1.06 1 200605 FO
Chapter Objects updated.
 • Added KEYBOARD_ARA layout for Arabic.
 • Added additional information about Keyboard object.

1.06 0 200602 FO

Chapter Getting started updated.
 • AppWizard version section added.
Chapter Objects updated.
 • Added Keyboard object.
 • Space property added.
 • Keyboard layout property added.
 • Text rotation property added.
 • Text wrapping property added.
 • Object properties reworked.
Chapter Interactions updated.
 • Job ENABLEPID added.
 • Job SETFOCUS added.
Chapter User Code updated.
 • Function APPW_SetCustCallback() added.

1.04 0 200408 FO

Chapter User interface updated.
 • Interaction window section enhanced.
 • Screenshots for positioning logic updated.
Chapter Objects updated.
 • Added Gauge object.
 • Added QRCode object.
 • Error correction level property added.
 • Pixelsize property added.
 • Version property added.
 • Line width property added.
 • Rounded value/ends property added.
 • Start/end angle property added.
Chapter Interactions updated.
 • Signal TEXT_CHANGED added.
 • Job SETLANG added.
 • Names of signals and slots have been shortened.

1.02 2 200323 FO Chapter Board support packages (BSPs) updated.
 • Section ’Importing a custom BSP’ updated.

1.02 1 200318 FO
Chapter User interface updated.
 • Screenshots updated.
 • Added information about Thai support.

1.02 0 200313 FO

Chapter User Code added.
 • Sub-chapter Slot routines merged.
 • Sub-chapter Screen callback routines added.
 • Sub-chapter Fonts added.
 • Sub-chapter Variables merged.

1.00 1 200306 FO

Chapter Interactions updated.
 • ’Slot routines’ section updated.
 • ’Custom user code’ section added.
Chapter Board support packages (BSPs) updated.
 • Examples updated.

1.00 0 200226
JE
FO

Initial release.
Chapter Board support packages (BSPs) updated.
 • Section ’Preconfigured BSPs included in the shipment’ updated.
 • Section ’Creating custom BSPs’ updated.
 • Section ’Importing a custom BSP’ added.

0.90 1 200221 FO

Chapter Getting Started updated.
 • Added note about the AppWizard Quick Start Guide.
Chapter Interactions updated.
 • ’Slot routines’ section updated.
 • Added job-specific parameters to each job.

0.90 0 200102 FO Initial beta version.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

7

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend C: A Reference Manual by
Harbison and Steele (ISBN 0--13--089592X). This book provides a complete description of the
C language, the run-time libraries, and a style of C programming that emphasizes correctness,
portability, and maintainability.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.
Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.
User Input Text entered at the keyboard by a user in a session transcript.

Secret Input
Text entered at the keyboard by a user, but not echoed (e.g.
password entry), in a session transcript.

Reference Reference to chapters, sections, tables and figures.
Emphasis Very important sections.
SEGGER home page A hyperlink to an external document or web site.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

https://www.segger.com

8

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

9

Table of contents

1 Introduction ..16

1.1 What is the AppWizard? ..17
1.2 Features ..18
1.3 Requirements .. 20

1.3.1 Host system ... 20
1.3.2 Target system ...20
1.3.3 Development environment ..20
1.3.4 Additional software libraries ..20
1.3.5 AppWizard projects in multitasking environments 20

2 Installation ... 21

2.1 Microsoft Windows ... 22

3 Getting started .. 23

3.1 Starting the tool .. 24
3.2 AppWizard version ... 24
3.3 Creating a new project ... 25
3.4 Opening existing projects ..28

4 Directory structure ...29

4.1 Root folder .. 30
4.1.1 /Source ..30

4.1.1.1 /Source/Config ...30
4.1.1.2 /Source/Generated ... 30
4.1.1.3 /Source/CustomCode .. 31

4.1.2 /Resource ...31
4.1.2.1 /Resource/Font .. 31
4.1.2.2 /Resource/Image ..31
4.1.2.3 /Resource/Keyboard ... 31
4.1.2.4 /Resource/Movie .. 31
4.1.2.5 /Resource/Text ...32

5 User interface ..33

5.1 Menu bar .. 34
5.1.1 File menu ...34
5.1.2 Edit menu .. 36
5.1.3 Project menu ..36

5.2 Editor window ..37
5.3 Property window .. 39

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

10

5.3.1 Id, position and size ..39
5.3.2 Positioning logic .. 39
5.3.3 Positioning details ... 41
5.3.4 Object dependent details ... 42

5.4 Hierarchic tree view ... 43
5.5 Play window .. 44
5.6 Interaction window ...45
5.7 Quick access buttons ..46

5.7.1 Text resource window .. 47
5.7.1.1 Export and import texts in the CSV format 47

5.7.2 Font resource window ..49
5.7.3 Image resource window ... 51
5.7.4 Variable resource window ...52
5.7.5 Movie resource window ..53
5.7.6 Drawings window .. 54
5.7.7 Lists window ...55

5.7.7.1 Importing and exporting of content .. 56
5.7.8 Tables window .. 57

5.8 Starting the simulation project .. 58
5.9 AppWizard SPY window ...59

6 Resource management ...60

6.1 Stock resources ... 61
6.2 Outsourcing resource data to SD card .. 62
6.3 Text management .. 63
6.4 Font management .. 64

6.4.1 Available information ... 64
6.4.2 Available operations .. 65

6.4.2.1 'Create new...' ... 65
6.4.2.2 'Add existing...' ..65
6.4.2.3 'Font codepoint range...' ... 65
6.4.2.4 'Delete from project' ...67
6.4.2.5 'Cleanup' ...67
6.4.2.6 'Modify font height...' ... 67
6.4.2.7 'Merge...' ...67
6.4.2.8 'Default codepoint range...' ... 68

6.4.3 Example how to use merged fonts .. 69
6.4.3.1 Setting up the project to be able to use Thai and Arabic 69
6.4.3.2 Selecting the fonts to be merged together69
6.4.3.3 Generating the font files to be merged69
6.4.3.4 Make the new fonts 'mergeable' ...71
6.4.3.5 Include only the codepoints used in the project72
6.4.3.6 Show result on the screen ...72

6.5 Image management ... 73
6.6 Movie management .. 75

6.6.0.1 Pitfalls with large files ...77
6.7 Locating image data to individual memory sections .. 78

7 Options / Preferences ... 79

7.1 Options ... 80
7.1.1 Enable simulation ..81
7.1.2 Stay alive loop ... 81
7.1.3 Working with persistent screens ..81
7.1.4 Use of static memory devices ...81

7.1.4.1 Requirements .. 82
7.1.4.2 How it works ... 82
7.1.4.3 Performance .. 82

7.1.5 Run script .. 82
7.2 Preferences ... 83

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

11

8 Objects .. 85

8.1 Introduction ...86
8.2 Object properties ... 89

8.2.1 Alignment ...91
8.2.2 Bitmap ...92
8.2.3 Border size ...94
8.2.4 Colors ..95
8.2.5 Content ..97
8.2.6 Cursor inversion .. 100
8.2.7 Decimal mode ...101
8.2.8 Focus options ..102
8.2.9 Font ...103
8.2.10 Frame radius ...104
8.2.11 Frame size ..105
8.2.12 Hexadecimal mode .. 106
8.2.13 Horizontal mode .. 107
8.2.14 ID ..108
8.2.15 Initial value .. 109
8.2.16 Invert direction ... 110
8.2.17 Motion partner .. 111
8.2.18 Motion support .. 112
8.2.19 Movie ... 113
8.2.20 Opaque mode ... 114
8.2.21 Overwrite mode ...115
8.2.22 Period .. 116
8.2.23 Position and size ... 117
8.2.24 Radius ..118
8.2.25 Range .. 119
8.2.26 Space ...120
8.2.27 Space between items ... 121
8.2.28 Span of values .. 122
8.2.29 Stay on top .. 123
8.2.30 Text ... 124
8.2.31 Text rotation ... 125
8.2.32 Text wrapping ... 126
8.2.33 Tiling ..127
8.2.34 Untouchable ..128
8.2.35 Vertical mode ..129

8.3 Object focus .. 130
8.4 Object scrollers .. 131
8.5 Box ...134
8.6 Button ...136
8.7 Checkbox .. 137
8.8 Dropdown ..138
8.9 Edit .. 139
8.10 Gauge ... 141
8.11 Image ... 143
8.12 Keyboard ... 145
8.13 Listbox .. 147
8.14 Listview ... 148
8.15 Movie .. 151
8.16 Multiedit .. 153
8.17 Progbar ... 155
8.18 QRCode ... 156
8.19 Radio .. 157
8.20 Rotary ... 158
8.21 Screen .. 159
8.22 Slider .. 160
8.23 Switch ...161

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

12

8.24 Text .. 162
8.25 Timer .. 163
8.26 Wheel ... 164
8.27 Window ... 167

9 Interactions ..168

9.1 Introduction ...169
9.2 Tools for large projects ... 171

9.2.1 Using the filter ..171
9.2.2 Deactivating interactions .. 171

9.3 List of signals .. 172
9.3.1 ANIMEND ... 173
9.3.2 ANIMSTART ...174
9.3.3 CLICKED .. 175
9.3.4 CREATE .. 176
9.3.5 DELETE .. 177
9.3.6 ENTER_PRESSED ... 178
9.3.7 FIXED .. 179
9.3.8 GOT_FOCUS ..180
9.3.9 INITDIALOG ..181
9.3.10 LANGCHANGED ..182
9.3.11 LOST_FOCUS .. 183
9.3.12 MOTION ..184
9.3.13 MOTION_STOPPED ... 185
9.3.14 PIDPRESSED ... 186
9.3.15 PIDRELEASED ..187
9.3.16 RELEASED .. 188
9.3.17 ROTATED .. 189
9.3.18 STARTED .. 190
9.3.19 STOPPED .. 191
9.3.20 TEXT_CHANGED .. 192
9.3.21 TIMER .. 193
9.3.22 UNPINNED .. 194
9.3.23 VALUE_CHANGED .. 195

9.4 List of jobs ..196
9.4.1 ACTUATE .. 198
9.4.2 ADDVALUE ..200
9.4.3 ADDITEM ..201
9.4.4 ANIMCREATE ...202
9.4.5 ANIMSTART ...203
9.4.6 ANIMSTOP .. 204
9.4.7 CALC ... 205
9.4.8 CLEAR ..206
9.4.9 CLOSESCREEN .. 207
9.4.10 DELITEM ...208
9.4.11 ENABLEPID ... 209
9.4.12 EXIT ...210
9.4.13 INSITEM ... 211
9.4.14 INVALIDATE .. 212
9.4.15 MODALMESSAGE ..213
9.4.16 MOVETO ... 214
9.4.17 ROTATEDISPLAY ...215
9.4.18 SCREENSHOT .. 216
9.4.19 SET ..217
9.4.20 SETALPHA ...218
9.4.21 SETANGLE ...219
9.4.22 SETBITMAP ... 220
9.4.23 SETBKCOLOR .. 221
9.4.24 SETCOLOR .. 222

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

13

9.4.25 SETCOORD ... 225
9.4.26 SETENABLE ...226
9.4.27 SETEND ..227
9.4.28 SETFOCUS .. 228
9.4.29 SETFONT .. 229
9.4.30 SETITEM ...230
9.4.31 SETLANG .. 232
9.4.32 SETPERIOD ... 233
9.4.33 SETRANGE .. 234
9.4.34 SETSCALE ...235
9.4.35 SETSIZE ... 236
9.4.36 SETSTART ...237
9.4.37 SETTEXT ...238
9.4.38 SETVALUE ...239
9.4.39 SETVIS ...240
9.4.40 SETX0 .. 241
9.4.41 SETY0 .. 241
9.4.42 SETX1 .. 241
9.4.43 SETY1 .. 241
9.4.44 SHIFTSCREEN ... 242
9.4.45 SHIFTWINDOW ..243
9.4.46 SHOWSCREEN ... 244
9.4.47 START .. 245
9.4.48 STOP ..246
9.4.49 TOGGLE ..247
9.4.50 NULL ..248

9.5 Conditions ... 249
9.5.1 Introduction ..249
9.5.2 Terms and operands .. 249

10 Variables ... 252

10.1 Variable management ... 253
10.2 Calculations ... 254

10.2.1 Terms and operands .. 254
10.2.1.1 Operands ...254
10.2.1.2 Operators .. 255
10.2.1.3 Creating a term ..256
10.2.1.4 Calculating a variable ..256

10.3 Manipulating variables from user code ...257

11 Animations ...258

11.1 Pre-defining animation IDs .. 259
11.2 Edit animations .. 260

11.2.1 Animation properties ..260
11.2.2 Start and end time of animation items ... 260
11.2.3 Animation values ... 261
11.2.4 Animation ease ... 261

11.3 Running animations .. 262

12 Drawings ... 263

12.1 Creating a drawing object ..264
12.2 Defining a drawing ... 265

12.2.1 Editing a drawing .. 265
12.2.2 Adding functions ..265
12.2.3 Setting the parameters .. 266

12.3 Displaying a drawing ...267
12.3.1 Examples ..267

12.4 Available drawing functions ..268

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

14

13 User Code ...270

13.1 Location of custom code ..271
13.2 Slot routines .. 272

13.2.1 APPW_ACTION_ITEM ..273
13.2.2 Custom user code ..274

13.3 Screen callback routines ..275
13.4 General AppWizard API ... 276

13.4.1 APPW_CalcVar() ...277
13.4.2 APPW_DoJob() .. 278
13.4.3 APPW_Exec() .. 279
13.4.4 APPW_GetText() .. 280
13.4.5 APPW_GetValue() .. 281
13.4.6 APPW_SetCustCallback() ...282
13.4.7 APPW_SetPos() ..283
13.4.8 APPW_SetScreenshotFunc() .. 284
13.4.9 APPW_SetStreamedBitmap() ... 285
13.4.10 APPW_SetStreamedBitmapEx() .. 286
13.4.11 APPW_SetText() ...287
13.4.12 APPW_SetValue() ... 288

13.5 Fonts ...289
13.5.1 How to use fonts ...289
13.5.2 Font API ... 290

13.5.2.1 APPW_GetFont() ... 291
13.6 Variables ... 292

13.6.1 How to use variables ... 292
13.6.2 Variables API ...292

13.6.2.1 APPW_GetVarData() .. 293
13.6.2.2 APPW_SetVarData() .. 294

14 Board support packages (BSPs) .. 295

14.1 Preconfigured BSPs included in the shipment ... 296
14.1.1 Example ... 296

14.1.1.1 Step 1: Select BSP ... 296
14.1.1.2 Step 2: Generate code .. 296
14.1.1.3 Step 3: Run SEGGER Embedded Studio Project297
14.1.1.4 Step 4: Compile and run on target 297

14.2 Creating custom BSPs ... 298
14.2.1 Example ... 298

14.2.1.1 Step 1: Create a project with AppWizard 298
14.2.1.2 Step 2: Create some elements ... 298
14.2.1.3 Step 3: Export & Save .. 298
14.2.1.4 Step 4: Copy evaluation software package into project folder 299
14.2.1.5 Step 5: Exchange libraries ... 299
14.2.1.6 Step 6: Add file access routines ... 300
14.2.1.7 Step 7: Add library to project .. 301
14.2.1.8 Step 8: Add file access routines to the project301
14.2.1.9 Step 9: Adjust include files .. 301
14.2.1.10 Step 10: Adjust data alignment .. 301
14.2.1.11 Step 11: Add support for run-time display rotation (optional) .. 302
14.2.1.12 Step 12: Add application to project 304
14.2.1.13 Step 13: Compile and run on target 305

14.3 Importing a custom BSP ..306
14.3.1 Step 1: Create BSP folder .. 306
14.3.2 Step 2: Copy project into BSP folder ..306
14.3.3 Step 3: Add an image ..306
14.3.4 Step 4: Add information file ..306
14.3.5 Step 5: Import the BSP into AppWizard ..307

14.4 Using the emWin source code .. 308
14.4.1 Step 1: Remove the pre-compiled static libraries 308

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

15

14.4.2 Step 2: Add the source code to the project directory308
14.4.3 Step 3: Add the source code to the project308
14.4.4 Step 4: Set include paths ...309

15 AppWizard SPY .. 310

15.1 Requirements ... 311
15.2 Opening the SPY dialog ...312
15.3 Building a project ... 313
15.4 Running a project ...314
15.5 Recording .. 316
15.6 Playing a recording ... 318

16 Command line usage ..319

16.1 Command format ... 320
16.2 Command line options ...320

17 Glossary .. 321

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 1

Introduction

This introduction gives some information about this document. It also gives an overview of
the AppWizard’s features and its requirements.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

17 CHAPTER 1 What is the AppWizard?

1.1 What is the AppWizard?
The AppWizard is a tool for creating complete and ready-to-use emWin applications con-
sisting of a number of screens.

Each screen consists of its own graphical control elements like buttons, sliders, images,
text, child windows and so on. Applications are generated as a bundle of C files. Those C
files are included automatically by the BSPs shipped with the AppWizard or can be used
by a custom defined project.

Resources can be compiled and linked with the application code or stored externally on an
SD card. Using resources at runtime from SD card is supported by the AppWizard without
any additional configuration or code.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

18 CHAPTER 1 Features

1.2 Features
Interactions

Interactions define the application behavior in case of user input. Several methods, ani-
mations or swiping can be used to switch between the application screens. To be able to
extend the applications behavior user defined code can be invoked on interactions which
can be edited within the AppWizard.

Conditions

A condition can be added to an interaction to determine precisely, under which circum-
stances an action should be executed. Conditions allow to implement a complex program
logic into the application using the AppWizard.

Positioning

Positioning of objects can be done by specifying absolute coordinates or relative to already
existing elements. Zooming can be used to be able to place small elements.

Resources

Resources like fonts, text and images are managed completely by the AppWizard. That
means the application designer gets completely rid of resource management. Resources can
be part of the created application code or generated as binary files to be stored on external
media. The behavior ’intern’ or ’extern’ can be specified for each resource separately. That
makes it possible to have frequently used resources directly in the addressable ROM area
and rarely used resource components on external media. The content of the resource folder
is automatically managed by the AppWizard.

Variables and calculations

The user may also add variables to the project which can be manipulated from outside of
the application. Variables are mostly used for interactions. For example, an interaction can
be set for a variable that will be triggered after its value has changed. An interaction can
also change the value of a variable.

Any form of calculation can be done using variables, just like in a C program. This provides
even more opportunities for creating AppWizard applications.

Animations

Animations enable the user to animate objects in the application. Since most values within
an application can be animated, such as object position and size, variables and object
values, there are almost no limits to animations.

Drawings

Drawings allow to utilize a wide array of emWin’s 2D graphic drawing functions and add
custom drawings to any widget object in the project. The drawing functions include e.g.
standard geometric shapes such as rectangles, circles, arcs, and much more. A widget can
draw the defined drawing before its standard appearance is drawn (pre-draw) or afterwards
(post-draw).

Multiple languages

Multiple languages can be defined in the integrated multilingual text management system.
Text can also be part of the application code or located on external media.

Font management

To be able to display the text with the right font the AppWizard contains its own font
management system which is used to create emWin-fonts. The range of included codepoints
can be specified for each font separately. It can be specified by custom defined pattern
files, custom defined ranges or automatically by the range of characters resulting from

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

19 CHAPTER 1 Features

the application defined text. Fonts can also be located on an SD card or as part of the
application code.

Integrated play mode

The internal play mode can be used for a quick check of the application’s behavior without
the need of compiling. Display size and color management can be changed on demand
within the AppWizard.

BSPs (Board Support Packages)

The AppWizard comes with a set of BSPs which may also include precompiled libraries of
emFile and embOS. In case of using a BSP the possibility of changing the color format and
display size are restricted. Those ready-to-use and preconfigured BSPs make it possible to
write and execute applications without any knowledge of writing applications in C code. All
BSPs automatically include the generated application code, which means nothing needs to
be changed or configured to be able to run the application on the target. Of course it is also
possible to use custom defined BSPs with the AppWizard.

Simulation

Projects generated by the AppWizard also contain a simulation project for Microsoft Visual
Studio. The difference between the integrated play mode and the simulation is that appli-
cation defined code is not compiled and executed by the play mode. The simulation on the
other hand also runs application defined code.

AppWizard SPY

The emWin SPY tool is fully integrated into AppWizard as AppWizard SPY. This tool allows
the monitoring of memory usage in the application, as well as properties of the widgets
that are present. The tool also has a logging feature and a recording feature so that certain
debug cases can be rerun.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

20 CHAPTER 1 Requirements

1.3 Requirements

1.3.1 Host system
The first version is available for Windows systems only, requiring Windows 7 or newer.

The recommended screen resolution is at least full HD (1920 * 1080).

1.3.2 Target system
To be able to use applications generated by the AppWizard we recommend that the target
at least fulfills the following requirements:
• At least 256 KBytes of flash. *1

• At least 130 KBytes of RAM. *2

• At least a 32 bit CPU running at 100 MHz or more. *3

At the end RAM and ROM requirement depends on the application built with the AppWizard.

Note

*1 256 KBytes of flash memory are required for emWin and the AppWizard library.
Additional flash memory or external storage is required for resources like fonts, images
and text.
*2 130 KBytes are required for emWin including 100 KByte of working RAM. This does
not include memory required for a framebuffer.
*3 Ideal would be a device with a hardware accelerator such as D/AVE 2D by Renesas
or Chrom-ART Accelerator by ST.

1.3.3 Development environment
The AppWizard can be used with any IDE and any ANSI C compiler complying with at least
one of the following international standards:
• ISO/IEC/ANSI 9899:1990 (C90) with support for C++ style comments (//)
• ISO/IEC 9899:1999 (C99)
• ISO/IEC 14882:1998 (C++)

1.3.4 Additional software libraries
No additional software library is required to be able to use the AppWizard. The AppWizard
optionally supports resource (fonts, images and text) management from external storage.
If external storage should be used for resource management a file system for reading
operations is required. Any file system can be used.

1.3.5 AppWizard projects in multitasking environments
Please note that the AppWizard is only capable of limited multitasking. Please note the
following:
• Only one AppWizard project can be executed.
• Only one task should access AppWizard functions.

Note

AppWizard functions must not be called from another task. This can lead to undefined
behavior.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 2

Installation

The following chapter describes how to install the AppWizard.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

22 CHAPTER 2 Microsoft Windows

2.1 Microsoft Windows
Installing the AppWizard

To install the AppWizard, simply run the setup wizard which will guide you through the
installation. It comes with all required components without use of downloading and installing
further tools.

Uninstalling the AppWizard

To uninstall the AppWizard, simply run the uninstaller which is located in the program
directory.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 3

Getting started

The following chapter will provide an overview on how to get started with the AppWizard
right after the installation has finished.

Note

The shipment also includes a Quick Start Guide to the AppWizard which provides
step-by-step guides for creating example projects or performing simple actions (e.g.
adding objects to the screen).

The guide is located in the directory and named AN03003_AppWizard_QuickS-
tartGuide.pdf.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

24 CHAPTER 3 Starting the tool

3.1 Starting the tool
The AppWizard application (AppWizard.exe) can be started from the Windows Start menu
or the installation directory.

3.2 AppWizard version
The current version of the AppWizard can be read in the top bar of the program. The version
number contains the AppWizard version and the emWin version that is used.

In the above example, AppWizard version 1.12 is used in conjunction with emWin version
6.16a.

APP_Version.h

The current version of AppWizard is defined in the file APP_Version.h. The example below
equals V1.04.

#define APPW_VERSION 10400

GUI_Version.h

The current emWin version is defined in GUI_Version.h. The example below equals V6.12.

#define GUI_VERSION 61200

Note

The used emWin libraries/code must match the corresponding emWin and AppWizard
versions.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

25 CHAPTER 3 Creating a new project

3.3 Creating a new project
The following section will guide you through the entire process of creating and running a
project with the AppWizard.

 Create a new project

The initial step is to create a new project. Right after opening the AppWizard, the user has
the option to either create a new project or open an existing one.

When creating a new project, the user can choose the project path, a name for the project,
specify the target’s display size and pick a color format. Alternatively a BSP can be selected,
which already includes the respective display size and color format. The user also has the
option to enable extern storage mode by ticking the checkbox next to the SD card image.
Other options are to enable support of Thai script or bi-directional text.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

26 CHAPTER 3 Creating a new project

When generating a project, the AppWizard also generates a simulation project in the folder
\Simulation located in the project directory.

 Build up a structure

After the project has been created, the user can start to build their application by dragging
objects onto the screen, adding interactions to the objects, or adding their resources to
the project like bitmaps.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

27 CHAPTER 3 Creating a new project

The first thing to add to an empty application is a screen object. This object serves as a
parent object for all other objects to be added. Window objects may be added to the screen
object to divide the screen into different sections, enhancing the application structure.

Objects like buttons can be placed into the screens or windows and the object’s properties
can be edited in the ’Properties’ window to the right.

A more detailed explanation on how the user interfaces work can be found in the chapter
User interface on page 33. To learn more about objects, see the chapter Objects on
page 85.

 Run and test the application

As the user is building their application, they can run their application during this entire
process of building. This makes it very easy to test the application. The application can be
run by entering play mode which is done by clicking the play button in the top right corner of
the editor window. More information about this can be found in Play window on page 44.

 Export and save the project

The option “File è Save” (<CTRL>+S) simply saves the project file. If the user wants to
save their application as C files, they are able to save and export their project by clicking
“File è Export & Save” (<CTRL>+<SHIFT>+E). By doing this, the AppWizard generates C
files from this project.

 Run the simulation project

Once the project has been exported, the AppWizard generated C sources with runnable
emWin code. The source files are located in the \Source directory. To run the generated
code, the simulation project can be used which the AppWizard generated after the creation
of the project. The exported source files are automatically linked to the simulation project,
which means it is ready to be run.

 Compile and run on target

The chapter Board support packages (BSPs) on page 295 explains how to run a project
on a hardware target.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

28 CHAPTER 3 Opening existing projects

3.4 Opening existing projects
The user may open existing projects either on start-up of the AppWizard by clicking the
button “Open existing project” or by using the command “File è Open” (<CTRL>+O).

The only files applicable for opening are AppWizard project files that have a .AppWizard
extension. When opening an existing project, the project settings may be changed by se-
lecting a different BSP, if needed.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 4

Directory structure

This chapter gives an overview on how the structure of an AppWizard project looks like.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

30 CHAPTER 4 Root folder

4.1 Root folder
The root folder contains the project file <PROJECT_NAME>.AppWizard. It also contains the
following sub-folders:

Folder Description

/Source Root directory for the generated application source code.

/Source/CustomCode
Directory for application source code which the user is al-
lowed to extend by custom code.

/Source/Generated
Directory for fixed application code which should not be edit-
ed.

/Resource Root directory for resource files.

/Resource/Font
Fonts created or referred by the project including generated
C files.

/Resource/Image
Images used by the project including generated C and DTA
files.

/Resource/Keyboard
Keyboard layouts used by the project including generated C
files.

/Resource/Movie Movies used by the project including generated C files.
/Resource/Text Text defined in the multilingual text editor.
/Target Selected board support package for target hardware.
/Simulation Simulation project.
/Spy AppWizard SPY related files.

4.1.1 /Source
The folder /Source contains the file with the application entry point. The file is named
<PROJECT_NAME>.c.

4.1.1.1 /Source/Config
The sub-folder /Config contains the following files intended to be changed/enhanced by
the user:

File Description

Application.h Header file to be used by user defined code.

<SCREEN_ID>_Slots.c
Interaction slots to be used to invoke user defined code on
interactions.

When opening a project, the AppWizard reads the user defined slot code. It can be edited
within the AppWizard.

4.1.1.2 /Source/Generated
The sub-folder /Generated contains the following files not intended to be modified by the
user.

File Description

APPWConf.c Configuration file (text and driver initialization).
Application.h Header file to be used by user defined code.
<SCREEN_ID>.c Screen definition(s).
Resource.c Resource and screen information.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

31 CHAPTER 4 Root folder

File Description

Resource.h Prototypes of resource and screen information elements.

4.1.1.3 /Source/CustomCode
This sub-folder is intended to place custom code in it. That includes all code and data,
which should be part of the AppWizard project. Please do not place any code or data into
other folders.

Note

When executing ’Export & Save’ the content of all other sub-folders will be (re)gen-
erated. That means that all files of these sub folders will be deleted and the contend
will be generated new upon the project data.

4.1.2 /Resource
The folder /Resource is the root directory for text, font and image resources:

4.1.2.1 /Resource/Font
The sub-folder /Font contains all font files referenced by the project:

File Description

<FONTNAME>.xbf Binary file of font in XBF format.

<FONTNAME>.c
Simple C arrays of XBF font files which are not managed on
external memory.

4.1.2.2 /Resource/Image
The sub-folder Image contains all image files referenced by the project:

File Description

<IMAGENAME>.<SUFFIX> Image file referenced by the project.
<IMAGENAME>.dta Streamed image.

<IMAGENAME>.c
Simple C arrays of streamed image files which are not
managed on external memory.

4.1.2.3 /Resource/Keyboard
The sub-folder Keyboard contains all keyboard layout files referenced by the project:

File Description

<KEYBOARD_LAYOUT>.skbd Streamed keyboard layout.
<KEYBOARD_LAYOUT>.c Simple C arrays of streamed keyboard layout.

4.1.2.4 /Resource/Movie
The sub-folder Movie contains all movie files referenced by the project:

File Description

<MOVIE>.emf emWin movie file.
<MOVIE>.avi Movie file in ’Audio Video Interleave’ format.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

32 CHAPTER 4 Root folder

File Description

<MOVIE>.c
Simple C arrays of movie files which are not managed
on external memory.

4.1.2.5 /Resource/Text
The sub-folder Text contains all text defined in the project:

File Description

APPW_Language_<n>.txt Text file(s), one for each language.

APPW_Language_<n>.c
Simple C arrays of text file(s) if not managed on external
memory.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 5

User interface

The following chapter will give an overview on the user interface of the AppWizard. The
user interface of the AppWizard consists of a menu bar and a couple of windows.

The following windows exist:
• ’Editor’ window (center/top)
• ’Interactions’ window (center/bottom)
• ’Add objects’ window (left/top)
• ’Hierarchic tree view’ window (left/bottom)
• ’Properties’ window (right)
• Quick access buttons for text, fonts, images and variables at the lower left edge

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

34 CHAPTER 5 Menu bar

5.1 Menu bar
Only the non-obvious commands are explained below. We think that simple things like
’Copy’ or ’Paste’ do not need to be explained here.

5.1.1 File menu

Clean up and close project

This command removes all generated code from the ’Resource’ and ’Source’ subdirectories
and closes the current project.

'Empty project dialog'

After ’Clean up and close project’ or ’Close project’ the AppWizard is ’empty’ and shows a
menu with the following options:

One of the given options has to be used because the AppWizard can not be used without
data.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

35 CHAPTER 5 Menu bar

Export & Save

Creates all code required for compiling and saves the project.

Export external data

Some items like fonts, images or movies can optionally be used from an external locations
like an SD card. This command generates the content of the ’Media path’ which can be set
in the Preferences on page 83 dialog.

Export libraries

The AppWizard comes with a bunch of BSPs. To be able to use the libraries separately this
command makes it possible get all libraries which are used in those BSPs in a separate
folder. After the export operation the given directory will contain a couple of subdirectories
with the libraries.

Open example

The example browser allows browsing through the available example projects. On the left
side it shows a tree with the available examples and a short description. When selecting
an example it shows a screenshot and a more detailed description on the right side. When
clicking the ’Ok’-button a dialog for selecting the parent folder for the sample is shown.
After selecting the parent folder the example will be extracted and immediately loaded into
the AppWizard.

In case of containing user code some examples can not be executed in play mode. A red
clue is shown if that is the case. Those examples can be compiled with the simulation or
with the target compiler.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

36 CHAPTER 5 Menu bar

5.1.2 Edit menu

Preferences

Details can be found under Preferences on page 83.

5.1.3 Project menu

Edit options

Details can be found under Options on page 80.

Play

This command opens the play window. It allows a quick check of the current application.

More information about this window can be found in the chapter Play window on page 44.

Start Simulation

Starts automatically the simulation project which is placed within the AppWizard project di-
rectory. Depending on the selection made under ’Preferences’ either the VS2013 or VS2015
project gets started.

Start Spy

Starts the AppWizard SPY window.

More details about the features and usage of AppWizard SPY can be read in the chapter
AppWizard SPY on page 310.

Open containing folder

It opens the project directory in the windows explorer window.

Copy path to clipboard

Copies the project directory into the clipboard.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

37 CHAPTER 5 Editor window

5.2 Editor window
The editor window shows the currently selected screen by drawing it directly with emWin.
That makes sure that “what you see is what you get”. Additionally each object has a slight-
ly semi-transparent frame which ensures that also invisible objects give a slight optical
feedback.

To be able to place graphical objects a screen has to be created at first. That is done by
clicking on the screen icon in the ’Add Object’ window left to the editor window. Placing
controls is done in the same way. Simply drag an element from the ’Add Object’ window
onto an existing screen or window object in the editor window.

Independent horizontal and vertical placing

Horizontal and vertical placement of an object can be defined independently. The behavior
of each axis can be defined by either a relative position and a size or two relative positions.
’Relative’ means relative to its parent or relative to a sibling. That makes it possible to
create screens or windows which are self-adjusting when changing the parent’s or sibling’s
placement.

Hierarchical structure

Window elements are used to achieve a hierarchic object structure. They can be placed
within a screen or an already existing window. When placing objects on a window the
position of those objects can be changed by simply moving or animating the window.

Snapping

Snapping is used when moving objects with the mouse. Edges and center points of existing
objects are used for snapping. When aligned with other objects the editor generates optical
feedback by highlighting the according object and/or center line.

Selecting objects

Left-clicking selects the first object under the clicked coordinate. A selected object has nine
drag points for modifying the coordinates, one on each edge, one on each corner and one
in the center point.

With the <CTRL> key pressed multiple objects can be selected. Selected objects are get-
ting joint into a selection group. In that case the drag points are getting placed on to the
rectangle surrounding the selection group. Rectangle selection can be done by clicking with
the left button in an empty area of the editor window, holding the button pressed and
dragging the rectangle with the mouse. When releasing the button the objects within the
rectangle will be selected.

Positioning

Objects and groups can be positioned by dragging them with the mouse. The drag points
are used to modify the geometry of an object. The property window on the right hand side
can also be used to modify the size, coordinates and relations of objects.

Concatenating object positions

To concatenate object coordinates, one of the edge drag points of an object has to be
connected to the edge of another object using the right mouse button. This will result in
when moving the object the other object was connected to, both objects will be moved
synchronous on the axis of the drag point.

A concatenated object position can be cleared by selecting any of the nine positioning
options. These options are explained under Positioning logic on page 39.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

38 CHAPTER 5 Editor window

Copy/Paste

Single objects, groups or complete screens can be copied and pasted by either using the
keyboard or the menu bar. IDs of copied objects are extended with the suffix ’_Copy’. The
AppWizard makes sure that the generated Ids are unique within the current screen.

Zooming and panning

The content of the editor window can be easily zoomed by using the ’+’ or ’-’ button, the
’+’ or ’-’ key or the mouse wheel in combination with the <CTRL> key.

The zoom level can be reset by pressing the ’1:1’ button.

The content of the editor window can be moved by panning, which is done by pressing the
<SPACE> bar and moving the mouse while pressing the left mouse button.

Play mode

The play button in the upper right corner of the editor window opens the play window,
which allows a quick check of the current application.

More information about this window can be found in the chapter Play window on page 44.

Object IDs

As mentioned earlier in this chapter, when the option is activated in the Preferences dialog,
the object IDs can be shown in the editor window.

The ID is displayed in the upper right corner of an object. The IDs of objects are only shown
when any of them is selected and is not shown at all in Play mode.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

39 CHAPTER 5 Property window

5.3 Property window
The window on the right shows the object specific properties. It consists of four areas (top
to bottom):
• Id, position and size
• Positioning logic
• Coordinate and size modification
• Object specific area

5.3.1 Id, position and size
The top area shows the selected object’s Id, which can be edited. Below that it shows the
coordinates and size of the object.

Placing details can be modified in the ’Positioning details’ area below.

5.3.2 Positioning logic
The rectangle of a simple emWin window is defined by its upper left position and its X- and
Y-size. To be more flexible with this, the AppWizard supports more options.

One option for example is specifying the coordinates of one of the edges and the objects
X- and Y-size. That is similar to a normal emWin window except the option of using any
edge and not only the top/left coordinates.

Each coordinate can be relative to an existing edge of the parent or any other sibling. For
example, the top coordinate can be relative to the parent, the Y-size fixed and right and
left coordinates relative to the parent.
The Y-position of the next object can then be relative to the object above and so on.
This mechanism makes it possible to generate screens which are self-adjusting when the
parent’s size or orientation changes.
To remove a concatenated positioning logic, one of the nine options for positioning logic
has to be clicked.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

40 CHAPTER 5 Property window

The top of the area shows the positioning logic of the selected object. Dimension lines are
used to show coordinate and size definitions. In case of coordinates relative to existing
siblings it shows the Id of the according sibling.

There are nine positioning options to choose from:

Positioning
option

Description

Top and left coordinate relative to parent. Width and height defined
by given value.

Top and right coordinate relative to parent. Width and height defined
by given value.

Bottom and right coordinate relative to parent. Width and height de-
fined by given value.

Bottom and left coordinate relative to parent. Width and height de-
fined by given value.

Top, left, bottom and right coordinate relative to parent.

Top, left and bottom coordinate relative to parent. Width defined by
given value.

Top, left and right coordinate relative to parent. Height defined by
given value.

Top, right and bottom coordinate relative to parent. Width defined by
given value.

Left, bottom and right coordinate relative to parent. Height defined by
given value.

Note

The positioning logic can be changed at anytime.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

41 CHAPTER 5 Property window

Example

In this example, the Text object’s X-position shall be relative to the X-position of the Button
object. To do that, one of the Text object’s contact points on the X-axis has to be right-
clicked. After clicking, a line appears that has to be moved to the Button’s X-axis contact
point.

When the line appears in a green color, the operation is valid and will be applied when
releasing the right mouse button.

When selecting the Text object, the positioning logic property shows that its X-axis is de-
pendent on the Button object.

To remove this positioning property, the user simply has to select one of the nine positioning
options that are explained above.

5.3.3 Positioning details
This section allows setting up top, left, bottom and right coordinates and X/Y size by spin
boxes, depending on the selected positioning option.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

42 CHAPTER 5 Property window

5.3.4 Object dependent details
Each object has its own properties that can be edited, they are located below the ’positioning
details’ section in the ’object dependent details’ section.

Depending on which object is selected, its properties are shown. To see a list of all existing
object properties, see the chapter Object properties on page 89.

Editing properties

Each property is shown with a text and an arrow button to the left.

To set or define a property, the arrow button should be clicked.

It opens a configuration area to be able to specify the property details. An exist-
ing property can be closed with the arrow button.
To delete an existing property, the X button on the right side has to be clicked.

Clicking the arrow button of an existing property opens and closes the according property
definition area. The preferences dialog (Edit è Preferences) allows the option to open all
existing property areas per default.

Properties like text, fonts or images open the according resource management and selection
dialog.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

43 CHAPTER 5 Hierarchic tree view

5.4 Hierarchic tree view
The hierarchic tree view gives a quick overview about the currently existing objects. It
allows changing the relative position of siblings per drag and drop. Selecting an object
within the tree view also selects the object in the editor window.

Duplicating objects

When clicking the duplicate object button, a copy of the selected object
is inserted into the same level of the hierarchic tree.

Moving objects

Clicking the ’Move up’ button will move the currently selected object
upwards.

Clicking the ’Move down’ button will move the currently selected object
downwards.

Note

The ’Move up’ and ’Move down’ buttons can only move an object within their level
of the hierarchic tree. This means an object can not be moved to another parent. To
move an object to another level/parent, it has to be cut out and pasted to the new
location by right-clicking it.

Editing object IDs

The ID of a selected object can be edited when the ENTER key is pressed.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

44 CHAPTER 5 Play window

5.5 Play window
The play window shows the user a ’running’ version of the current project application.

It can be opened by clicking on the play button in the upper right corner of
the editor window and closed by pressing the escape key. It may also be
opened and closed by pressing the <F5> key.

When opening the play window, a modal dialog with the resulting interactive application
will be shown.

Screenshots

Screenshots can simply be taken by pressing the <F11> key. The screenshots can be found
in the project folder.

Limitations

There is one limitation to the play mode, as the AppWizard does not compile any C code,
the play mode does not include any code by the user added to interactions.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

45 CHAPTER 5 Interaction window

5.6 Interaction window
The interaction window shows a list of all interactions associated with the selected screen.
Each interaction has its own emitter, signal, job and receiver.

Creating a new interaction

Creating a new interaction is done by pressing the + button at the end of the list. To
learn more details on how to create new interactions, see the Introduction section of the
Interaction chapter.

After specifying the receiver a dialog occurs which allows it to specify job dependent data
and/or user defined code of the interaction slot. Clicking the pen opens a dialog for editing
those parameters.

Removing an interaction is done by clicking the X button in the first column.

Grouping interactions

Interactions may also be grouped together. This makes sense if there is a large number of
interactions present in the application and a more overseeable structure is desired. Grouped
interactions are marked via the line in the “[” column.

To group interactions, select the interactions, right click them and select “Add to group”.
As demonstrated below, after a group has been created, all the interactions between the
start and end of the line are in that group.

Now, when one item of the group is clicked, all group items are selected. To delete the
group, right click and select “Clear group”.

Adding a comment

A comment can be added for each interaction. To do so, simply double click the empty area
next to the interaction in the “Comment” column.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

46 CHAPTER 5 Quick access buttons

5.7 Quick access buttons
In the lower left corner there are six quick access buttons. Clicking on one of the buttons
will open the corresponding window that allows management of either texts, fonts, images,
variables, animations or drawings.

For more information about managing resources, see the chapter Resource management
on page 60.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

47 CHAPTER 5 Quick access buttons

5.7.1 Text resource window
The text resource window makes it possible to save texts in multiple
languages. The order of the languages may be changed by using drag
and drop on the column header.

Each text has its own ID, that can be assigned to objects. The Ref column states how often
the text is referenced in any objects.

Add texts or languages

Before adding texts, you need to have added at least one language first. New lan-
guages/columns are added via the New language button.

New texts are added via the Add text or Insert text buttons. They can be edited by
clicking on the corresponding field.

Texts can be deleted via the Delete text button, but only when they are not being refer-
enced by any objects.

5.7.1.1 Export and import texts in the CSV format
It is also possible to export the texts to a CSV file or import a CSV file.

CSV file rules

In order for the import of a CSV file to work, the following rules have to be observed:
1. The file must be UTF-8 encoded.
2. The first row has to contain the names of languages.
3. Each following row contains a text item in the given number of languages.
4. Each language string must be enclosed by quotes, e.g. “pineapple”.
5. All values are to be separated by commas.
6. After the last value there should be no comma.
7. Optional: A desired ID can be added before the first value in a row. The ID is to be

separated with a comma from the values, but it must not be enclosed by quotes.

An example CSV file with all the rules applied could look like this:

"DE","EN","FR"

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

48 CHAPTER 5 Quick access buttons

ID_RTEXT_0,"German text 0","English text 0","French text 0"
ID_RTEXT_1,"German text 1","English text 1","French text 1"
ID_RTEXT_2,"German text 2","English text 2","French text 2"
ID_RTEXT_3,"German text 3","English text 3","French text 3"

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

49 CHAPTER 5 Quick access buttons

5.7.2 Font resource window
The font resource window allows the user to manage fonts.

The table shows whether the font is a stock font and/or is used in the project. It also shows
how often fonts are referenced in any objects and the height of the font. By ticking the
checkbox next to the SD card, the font can be marked as an external resource.

Note

Only XBF files created with the AppWizard can be used!

Create new fonts

Clicking on Create new… allows the user to add a new font from the local installed fonts.
When clicking the button, a window similar to that in the FontConverter is opened. The
user has to select which font should be added, in which style and height and also select
the anti-aliasing level.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

50 CHAPTER 5 Quick access buttons

To optimize memory footprint, the user may define which characters should be present in
the font. This can be done by clicking on Codepoint range… and either selecting a range
of characters, keeping only the characters that are used in all project’s texts or by parsing
a pattern file.

By default, a range of characters is used for creating a font. The default range of enabled
characters is:

0x0000 to 0x007F
0x0100 to 0x017F
0x0180 to 0x024F

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

51 CHAPTER 5 Quick access buttons

5.7.3 Image resource window
The image resource window allows the user to manage images.

The window gives an overview of all the images used in the project, showing also their
dimensions, the bitmap format applied to the image and how often it is referenced in other
objects.

As in the other management windows, the user can choose if the image should be marked
as an external resource. The Import into project button can be used to add further images
into the project. Extended selection is available which allows changing the format or the
’ext’-status of multiple images simultaneously.

The Cleanup button can be used to remove all images which are not referenced by the
project. But be carefully: The references do not observe images referenced by interactions
like SETBITMAP. This command can not be undone.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

52 CHAPTER 5 Quick access buttons

5.7.4 Variable resource window
The variable window lets the user add or remove variables. More expla-
nation on what variables are used for can be read in the chapter Vari-
ables on page 252.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

53 CHAPTER 5 Quick access buttons

5.7.5 Movie resource window
The movie resource window allows the user to manage movies. A de-
tailed explanation about movie management can be found under Movie
management on page 75.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

54 CHAPTER 5 Quick access buttons

5.7.6 Drawings window
The drawing window allows the user to define custom drawings that
can be used in the application.

More detail about drawings can be found in the chapter Drawings on page 263.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

55 CHAPTER 5 Quick access buttons

5.7.7 Lists window
The list window allows the user to add content objects in the form of
lists. These lists can be used in the application by list-based objects
such as Listbox, Dropdown or Wheel.

When clicking the edit button, the list can be edited and rows can be added, deleted or
moved.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

56 CHAPTER 5 Quick access buttons

5.7.7.1 Importing and exporting of content
To import and export .txt or .csv files as lists or tables, click the corresponding quick
access button and click on the (Import… or Export… button. Note that for importing,
multiple files can be selected and imported at once.

TXT file import and export

The TXT format is only available for lists and the format being applied is one line in the
file equals one row in the final list.

CSV file import and export

The import and export of .csv files is available for lists and tables. Below an example that
demonstrates the CSV format being applied:

"Header column 0","Header column 1","Header column 2"
"Row 0, Column 0","Row 0, Column 1","Row 0, Column 2"
"Row 1, Column 0","Row 1, Column 1","Row 1, Column 2"
"Row 2, Column 0","Row 2, Column 1","Row 2, Column 2"

The following CSV rules are observed:
• Each string is encapsuled by quotes.
• Each value is separated by a comma, except at the end of a line.
• Each line in the text file represents a row in the table.
• The first line in the CSV file is always the header line (this is applied to lists as well).

Note

The CSV import and export is intended to only be used for the texts of a table. This
means the tables’ properties, such as column widths or alignments will not be written
to the CSV file. These properties are only imported when importing a table from an
existing project (see below).

Importing tables and list from other projects

To import lists or tables from other projects, click the button Import from existing
project….

If a suitable project file has been selected, the IDs of the existing content objects will be
shown. Multiple content objects can be selected for importing.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

57 CHAPTER 5 Quick access buttons

5.7.8 Tables window
The table window allows the user to add content objects in the form of
tables. Tables can be used in the application by table-based objects. As
of now, the only table-based object is the Listview.

The table window allows the definition of the actual table of data, but also the column sizes
and alignment and the content of the header line of the table.

A more detailed explanation on how the table window works can be found under Content
on page 97.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

58 CHAPTER 5 Starting the simulation project

5.8 Starting the simulation project
By selecting menu entry Project è Start Simulation or by pressing F6 the AppWizard
starts automatically the simulation project which is placed within the AppWizard project di-
rectory. Depending on the selection made under ’Preferences’ either the VS2013 or VS2015
project gets started.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

59 CHAPTER 5 AppWizard SPY window

5.9 AppWizard SPY window
The AppWizard SPY window can be opened through the menu entry Project è Start
Spy. Alternatively, the F7 key can be pressed to open the window.

More details about the features and usage of AppWizard SPY can be read in the chapter
AppWizard SPY on page 310.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 6

Resource management

The AppWizard manages all text, fonts, images and movies required for the application. The
user gets completely rid of additional resource management like creating font files with the
font converter, image files with the bitmap converter, movie files with the movie converter
or text data to be used in the project.

Per default resources are compiled and linked into the application. For systems short on
ROM, large resources or resource data which should be changeable at runtime, those re-
sources can be managed from SD card with the file system included in the BSP.

Optionally the AppWizard manages the content of the SD card which needs to be available
at runtime.

Please refer to the Creating custom BSPs example to learn how BSPs with or without a file
system can be used.

Furthermore, there are other types of data that can also be seen as kind of ’resources’ in
a broader sense. These are:
• Tables and lists
• Animations
• Variables
• Drawings

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

61 CHAPTER 6 Stock resources

6.1 Stock resources
The AppWizard comes with a bunch of different stock fonts and images that are ready for
use for any application.

Note

Note that as with any resources, any stock resources that have been used are saved
in the exported project as well!

Stock fonts

The AppWizard by default supplies a few fonts, each in different sizes. All stock fonts use
4bpp anti-aliasing.
• NettoOT_16_Normal_EXT_AA4
• NettoOT_24_Normal_EXT_AA4
• NettoOT_32_Normal_EXT_AA4
• NettoOT_40_Normal_EXT_AA4
• NotoSans_16_Normal_EXT_AA4
• NotoSans_24_Normal_EXT_AA4
• NotoSans_32_Normal_EXT_AA4
• NotoSans_40_Normal_EXT_AA4
• Roboto_16_Normal_EXT_AA4
• Roboto_24_Normal_EXT_AA4
• Roboto_32_Normal_EXT_AA4
• Roboto_40_Normal_EXT_AA4

Stock images

For each object which can make use of a bitmap, the AppWizard offers a set of images. For
example, bitmaps for a Rotary and its marker, or a thumb and shaft bitmap for a Slider
object.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

62 CHAPTER 6 Outsourcing resource data to SD card

6.2 Outsourcing resource data to SD card
Per default resource data is compiled into the project as const data. In case of an existing
file system on the target hardware resource data can be ’outsourced’ to SD card. All kind of
resource data (images, fonts, text, movies) can simply outsourced to SD card by activating
the SD card symbol for the according item:

Media path

Outsourcing resource data requires a valid media path. The most easy way to get the data
to SD card is setting the media path to the CD-card path of the host system. When exporting
the code all resource data will be automatically saved under that media path. If a file system
is available on the target hardware simply move the SD-card to the BSP.

Note

Please note that accessing data via the file system can have an impact on performance
compared to data located in directly addressable memory areas.

Setting the media path can be done in the preferences dialog explained in the chapter
Preferences on page 83.

File system

Per default the AppWizard comes for different BSPs with a ready to use file system. How to
setup a different file system please refer to chapter Add file access routines on page 300.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

63 CHAPTER 6 Text management

6.3 Text management
A text input dialog allows entering text in multiple languages. Text usage is based on using
IDs instead of using strings directly. Text access within the application is realized by using
text IDs. In combination with emWin’s language module it becomes quite easy to switch
between languages. More details about editing text can be found under Text resource win-
dow on page 47.

Linebreaks

Linebreaks in text can be achieved with the sequence \n in the text strings. A \n will be
replaced by the AppWizard with a newline.

Managing text from SD card

The project property dialog has the option to enable text management directly from SD
card. In that case the text is not compiled and linked with the application code.

When exporting the project, the text will then be stored in the specified media path in the
directory <Mediapath>\Resource\Text.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

64 CHAPTER 6 Font management

6.4 Font management
The AppWizard comes with a small set of default fonts in form of XBF font files and the
option for creating new fonts. The resource path contains all fonts referenced by the project.
A font management dialog shows all available fonts in the project.

6.4.1 Available information
The list of available fonts shows the following columns:
• Font family.
• Stock font, means that the font is located in font stock.
• Project font, means that the font is located in resource folder of the project.
• Height in pixels.
• Baseline in pixels.
• Number of references.
• File size of font file.
• Check box to specify SD card management for that font.

Two checkboxes can be used to determine the content:
• Show stock fonts
• Show project specific fonts

SD card management

When compiling the project all referenced fonts are compiled and linked with the application
per default. SD card management excludes the font from compiling and linking with the
application. Those fonts are managed from SD card or similar media directly without using
addressable ROM for the content of the font. When exporting the project, these fonts will
be saved in a directory in the specified media path, that is <Mediapath>\Resource\Fonts.

Font preview

The bottom of the dialog contains a small preview. The characters used for the preview can
be defined here: Font preview string

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

65 CHAPTER 6 Font management

6.4.2 Available operations
The font repository dialog offers the following operations:
• Creating new font files.
• Adding existing files from other projects.
• Modification of the code point range.
• Deleting of (non referenced) fonts.
• Cleanup and remove non referenced fonts.
• Font height modification.
• Merging of font files.
• Modification of default codepoint range.

6.4.2.1 'Create new...'
A new font file will be created with the subsequent shown dialog:

The following types of fonts can be created:
• 4bpp antialiased
• 2bpp antialiased
• 1bpp
• Framed fonts

The resource folder of the project contains all fonts which are used or have been used within
the project. That means the folder can contain fonts which are not currently used. Those
fonts are shown with zero references and can be deleted by pressing the ’Delete’ button
if not planned to be used any longer.

Note

Fonts created with the FontConverter can not be used or imported by the AppWizard!

6.4.2.2 'Add existing...'
This option allows importing font files from already existing projects.

6.4.2.3 'Font codepoint range...'
Each font can have its own range of code points. The font selection dialog has the option
for specifying the desired code point range. Clicking the according button opens a dialog
for setting up the desired range. The following options exist:
• Setting up a list of code point ranges
• Using all code points required to draw the text defined in the application
• Using a custom pattern file which defines the code points to be used

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

66 CHAPTER 6 Font management

Working with dedicated code point ranges

This option offers a convenient way to specify the codepoint ranges to be included in the
font file:

Predefined Unicode ranges or user-defined ranges can be assembled.

Working with project text only

This option offers a way for including only those codepoints in the font which are used in
the project:

Those fonts will be recreated each time the project text changes.

Note

Fonts created with this option always include digits, decimal point, comma and space.

Working with pattern files

A pattern file is a file which contains all codepoints which should be used in the font. The
following dialog is used to specify the pattern file to be used:

After choosing a pattern file it will be copied into the text resource folder of the project.

Note

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

67 CHAPTER 6 Font management

Pattern files must have UTF-16 LE encoding.

6.4.2.4 'Delete from project'
Fonts, which are located in the projects font resource folder and which have no references
can be deleted.

6.4.2.5 'Cleanup'
This option automatically removes all font files from the projects font resource folder which
have no references.

Note

No undo is possible here.

6.4.2.6 'Modify font height...'
This option allows adding or removing pixels to/from bottom/top of a font file. The following
dialog is used:

This option only exists for files which are located in the font resource folder of the project.

6.4.2.7 'Merge...'
Merging of fonts can become very important when creating multilingual applications. Un-
fortunately, most freely available fonts do not contain all characters needed for multilingual
applications. Because of that we added the option for merging font files.

Here are some rules that must be met by the font files that are to be merged:
• All fonts to be merged together have to be of the same type.
• They must have the same height and the same baseline.
• Overlapping code points are not allowed.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

68 CHAPTER 6 Font management

To select the fonts which should be merged together simply select them all in the font repo
dialog.

Note

Please keep in mind that the rules must be fulfilled by all fonts. Multiple font selection
does only work if the rules are fulfilled.

If the height (or baseline) of the fonts to be merged are slightly different ’Modify font
height…’ can be used to adjust height (and baseline).

6.4.2.8 'Default codepoint range...'
Those codepoints are used when creating a new font. Can be changed later with ’Font
codepoint range…’.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

69 CHAPTER 6 Font management

6.4.3 Example how to use merged fonts
To clarify the procedure for merging fonts in more detail, here is an example that shows
how to merge completely different fonts. And how to (optionally) make sure that only those
characters are included in the font files that are actually referenced by the project. In this
example we explain how to compile one font file that supports Thai, Chinese, English
and Arabic by merging 4 fonts.

And we make sure, that this font file is automatically adapted when the project text changes
to mahe sure, that it allways only contains the minimum of codepoints required for
the project.

This example (HowTo_MergeFonts) is available in the examples under ’File/Open exam-
ple…’:

The following steps show how to create the merged font used by this example.

6.4.3.1 Setting up the project to be able to use Thai and Arabic
To be able to show Thai and Arabic text those features need to be enabled in the project
settings. To do so please select ’Project/Edit options’ and activate the corresponding check
boxes:

6.4.3.2 Selecting the fonts to be merged together
First of all, we need fonts containing all the characters we need:
• Itim for Thai.
• Noto Sans SC for Chinese.
• Roboto for English.
• Cairo for Arabic.

To be able to reproduce the example the host system should have installed those fonts.

Note

These fonts can be found freely under fonts.google.com.

6.4.3.3 Generating the font files to be merged
We will create separate font files for the different code point ranges. To do this, we need
to specify the ranges to be used for each individual font file.

For Roboto (used for English) we need to define the the following ranges:

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

70 CHAPTER 6 Font management

Ok, the Latin-extensions are not required for English. But on the other hand it makes things
easy if for example umlauts or similar codepoints are used.

To create the first file use ’Default codepoint range…’ to select the above ranges and then
use ’Create new..’ for creating a new font file. The height should be in our example 32
pixels. ’Style’ should ne ’normal’ and ’Type’ should be ’4bpp antialiased’. Important is that
the other fonts to be merged should use the same presets. After that we should see a new
font file similar to this:

For Cairo (used for Arabic) we need to define the the following ranges:

Please keep in mind that for drawing Arabic text the representation forms are very impor-
tant. Without those representation forms emWin is not able to draw Arabic text. To create
the font file for the AppWizard setup the above ranges with ’Default codepoint range…’ and
then create a new font file with same presets as we used for the first file.

For Noto Sans SC (used for Chinese) we need the following ranges:

Please note that creating the Chinese font file will take a while.

And the last one is Itim. Here we need the following range for Thai:

After creating the font file we should have a collection similar to this:

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

71 CHAPTER 6 Font management

Note

Please keep in mind that the ranges used to create font files are stored within the
font files itself.

The button ’Font codepoint range…’ can be used to show (and change) those codepoint
definitions. Further the codepoint definition dialog contains a button ’Take…’. This button
can be used to take the definitions from an existing font file as default for new font files.

6.4.3.4 Make the new fonts 'mergeable'
Please remember the rules for merging explained above. The fonts to be merged have to
have the same height and the same baseline. But as shown in the font repository the Cairo
font and NotoSansSC have a different baseline than Roboto and Itim. In typography, the
baseline is the imaginary line on which the letters in a font appear to rest. The value is the
distance from the top of the font.

In our case we leave Itim and Roboto as they are and move the baselines from Cairo 3
pixels down and NotoSansSC one pixel up. To do that select the font to be changed and
then use the button ’Modify font height…’. The baseline can be easily moved by adding or
removing the same number of pixels from the top and bottom of the font. Adding 3 pixels
to the top and removing the same amount from the bottom should do the trick and move
the baseline 3 pixels down:

The next step is moving the baseline from NotoSansSC one pixel up. To do so please remove
one pixel from the top and add one pixel to the button.

After that we should be able to (multi)select all 4 font files simultaneously.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

72 CHAPTER 6 Font management

6.4.3.5 Include only the codepoints used in the project
The fonts we have created until here include fixed codepoint ranges. And especially the
Chinese font file is quite big. To make sure that the end result contains only the codepoints
which are used by the text in the project we have to change the default codepoint range
to ’Project text only’. It is important to do that before creating the merged font file:

Now we can multiselect the 4 font files and use the button ’Merge…’ to merge them together.
Immediately after merging the font file it contains all characters of the merged font files
which makes it also quite big:

But each time the text content of the project changes the font file will be (re)assembled,
so that it includes only the characters we need for the text in the project.

Note

Recalculating the content of the font can also be triggered in the font repository directly
by selecting the merged font, clicking on ’Font codepoint range…’ and pressing the
’Ok’ button.

If the project contains Arabic text and ’Project text only’ is used for a font the AppWiz-
ard automatically makes sure, that the representation forms required for drawing the text
are also included in that font automaticaly. If at least one single Arabic character is used
the representation forms will be included automatically. After recalculating the size of the
merged font will be only a fraction of the size before:

Please keep in mind that the font files, which are only used for merging will not part of the
output for the compiler. But each time the project text changes the content of those fonts
will be used to reassemble the merged font.

6.4.3.6 Show result on the screen
To see the result on the screen please enter the text ’Hello World!’ in all 4 languages.

Note

To get the right strings Google Translate (translate.google.com) can be used. Simply
copy and paste the strings into the text editor of the AppWizard.

After entering the text and pressing ’Ok’ the AppWizard recalculates the content of those
fonts which are created with the codepoint option ’Project text only’. Now you can create
4 text objects and select the new font.

Or simply open the example ’HowTo_MergeFonts’ and press <F5>.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

73 CHAPTER 6 Image management

6.5 Image management

Note

Please note the naming rules for image files:
• The name must not start with a digit.
• The only valid characters are letters, numbers and underscores.

The image management dialog shows all images located in the image stock or the resource
folder of the project.

The dialog shows the following columns:
• Image preview
• File name
• Width and height in pixels
• Stock image, means image is located in image stock
• Project image, means image is located in resource folder of the project
• Number of references
• Check box to specify SD card management for that image

The following options exist:
• Show stock images
• Show project specific images

Note

The project folder will contain all images used in the project, this applies to stock
images as well.

Bitmap format

When adding a new image, by default the format is set to ’Auto’. This will automatically
choose the fitting bitmap format depending on which color format has been selected for the
project. But the user may also select a specific bitmap format if the hardware requires it.

Additional to that the user has the option to select a completely different bitmap format by
setting a format which should be used for the ’Auto’ option. This can be done by opening
the ’Default bitmap formats’ dialog through the ’Preferences’ menu.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

74 CHAPTER 6 Image management

Alpha channel bitmaps

These bitmap formats allow bitmaps to be drawn in the current foreground color. With this
format, only the alpha values of the individual pixels are stored. If ROM storage is short
RLE compression can be used. This ensures an optimal use of the memory. The output is
then in the foreground color set for the corresponding object.

Deleting images

Images can be deleted from the project by clicking the Delete from project button, after
selecting the image that should be deleted. Images can only be deleted if the they haven’t
been referenced, that means the reference count shows zero.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

75 CHAPTER 6 Movie management

6.6 Movie management
The movie resource window allows the user to add or remove movie files.

It is important to know that the movie support of AppWizard requires an external tool to
convert movies to an emWin compatible format. That tool is FFmpeg which is free available
under www.ffmpeg.org. If this tool is not yet set up, the ’Create new…’ button is not yet
visible.

Instead of that the button for setting up the FFmpeg location
is shown.

If FFmpeg is not already available on the host PC it needs to be installed first. After that
(or if FFmpeg is already available) the button can be used to open the dialog for setting
up the location of FFmpeg.exe:

Search

This button starts an automatic search for the executable. Please note that the search can
require a while. After an executable has been found that file can be used or the search
can be continued.

Browse

If the location is known the browse button can be used to specify the right location.

Creating a movie file for AppWizard

After FFmpeg location has been set up the ’Create new…’ button can be used to create a
new movie file. It opens the following dialog:

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

76 CHAPTER 6 Movie management

File to be converted

Used to select the soure file to be converted. Any video format supported by FFmpeg can
be used here. No modifications will be done at this file.

Video quality

The quality parameter defines the -q parameter for FFmpeg. The lower the number, the
better the quality of the generated movie and the larger the file size.

Frame rate

Defines the desired number of frames per second of the movie to be generated.

File format to be generated

AVI - Audio Video Interleave format, a multimedia container format. The converted file will
contain a motion JPEG movie.

EMF - emWin Movie Format, a more easy movie format only supported by emWin and the
emWin movie player.

Resolution

The sizes in X and Y axis can be specified independently. Please note that the aspect ratio
fits to the format of the source file which will be scaled to the given parameters.

Presets

Can be used to save the parameters for later operations.

Start conversion

Pressing the ’Ok’ button starts the process of file conversion. A new movie file will be created
in the movie resource folder of the project.

File name of generated file

The file name will be generated automatically:

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

77 CHAPTER 6 Movie management

<Basename of source file>_<X-size>x<Y-size>.<Extension(emf or avi>

Please note that the process of file conversion can take a while.

6.6.0.1 Pitfalls with large files

The column having the SD-card symbol defines how the movie should
be used.

If it is deactivated the movie will be compiled into the code section. Please be aware that
using large movie files without any external media location could cause probems. The re-
sulting C files in that case can become very large. And maybe too large for some compilers.
To inform the user that quite large files will be generated a warning will be generated if one
of the internal movies exceeds the size of 512 KByte:

If one of the internal used movie files exceeds the size of 4 MByte the warning is slightly
stronger:

This warning is required because each byte of the movie file generates 6 bytes of source
code to be compiled. In case of a 4 MByte movie the result would be a more than 24 MByte
large C file which is quite large for some compilers.

We recommend using an SD-card or similar media to store large movie files.

It can be done simply by activating the SD-card check box..

If it is activated the movie will be exported to the external media path when exporting the
project. After setting up the external media path under ’Edit/Preferences/Media path’ all
external media files will be generated automatically in that path. The movies can be found
then in the folder /Resource/Movie.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

78 CHAPTER 6 Locating image data to individual memory
sections

6.7 Locating image data to individual memory
sections

Image data normally is included in the project in form of simple byte arrays. After exporting
the project code the image resource folder contains a couple of *.c files, one for each
image. All those image files look as follows:

#include "AppWizard.h"

#ifndef EMWIN_PREFIX_<XXX>
 #define EMWIN_PREFIX_<XXX>
#endif

#ifndef EMWIN_SUFFIX_<XXX>
 #define EMWIN_SUFFIX_<XXX>
#endif

EMWIN_PREFIX_<XXX> GUI_CONST_STORAGE unsigned char acImage[Size + 1]
 EMWIN_SUFFIX_<XXX> = {
 ...
};

It shows, that each image array is surrounded by a prefix and a suffix. XXX here is a
placeholder for the different kinds of supported images:
• BMP
• DTA
• GIF
• PNG
• JPEG

Under certain circumstances it sometimes could be required to use special memory areas
or a non standard alignment for image data. To realize for example an individual alignment
for JPEG images the JPEG suffix can be used:

#define EMWIN_SUFFIX __attribute__((aligned(8)))

The definitions of the pre- and suffixes should be done in the file GUIConf.h.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 7

Options / Preferences

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

80 CHAPTER 7 Options

7.1 Options
The options dialog is available under Project / Edit options.

The project options dialog has the following options:

BSP
• Selected BSP: Desired BSP for target hardware.

Color scheme and display options
• Display size x: Horizontal display size.
• Display size y: Vertical display size.
• Color format: Desired color format.
• Enable Multibuffering: Option whether or not multi buffering should be enabled in

the project. This option is only available, if the selected BSP supports multi buffering.

Text
• Show text from SD-card: Option to outsource the texts to external media.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

81 CHAPTER 7 Options

• Show missing characters: Shows placeholders for missing characters.
• Enable bi-directional text: Enables support of bi-directional texts.
• Enable Thai support: Enables support of Thai script.

Focus
• Enable focus support: Enables the ability for objects to receive focus.
• Select focus color: Color used for drawing the focus rectangle.
• Set focus radius: Radius used for the corners of the focus rectangle.
• Set focus width: Line width of the focus rectangle.

In case of using a BSP display size and color format are fixed and come from the BSP.

Focus rectangles are explained later on in the chapter Object focus on page 130.

Animations
• Minimum time per frame: Minimum time of one animation slice in ms.

Scroller
• Enable scroller support: Activates automatic use of scroller objects.

7.1.1 Enable simulation
Per default the AppWizard generates a simulation project for Visual Studio.

Under certain circumstances it can be useful to deactivate this option. This can be the case
if the project structure does not allow Visual Studio and/or Windows specific c-files in this
location or if the simulation is simply not required.

Please note that if no simulation project is generated the emWin SPY can not be used.

7.1.2 Stay alive loop
If this option is enabled the AppWizard will generate an endless loop in the function Main-
Task() found in APPW_MainTask.c.

In some cases it may be necessary to disable this option. For example, if there is already
another endless loop in the application which handles other parts of the application.

Please note that if this option is disabled the user has to take care of calling APPW_Exec()
periodically to keep the AppWizard application alive.

7.1.3 Working with persistent screens
In some cases it may be necessary to mark a screen as permanent. At this point we would
like to point out that screens are transparent by default. If there are many transparent
screens on top of each other in memory, this can significantly reduce performance. If trans-
parency is not necessary for a screen, e.g. because the background of the entire screen is
opaque, we recommend switching it off.

Note

Opaque mode can significantly improve performance under certain circumstances..

7.1.4 Use of static memory devices
This is an option to accelerate the process of drawing.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

82 CHAPTER 7 Options

7.1.4.1 Requirements
It makes sense if a hardware acceleration function for drawing 32 bpp memory devices is
available. Further it requires a large amount of RAM, because each window gets its own
memory device with a color depth of 32 bpp.

7.1.4.2 How it works
If a window / object needs to be (re)drawn, emWin first creates a static memory device
with the content of the window. After that the memory device is drawn instead.

When a screen or a window is swiped by the touch screen, the memory device does not
need to be rebuild again. Only the already existing memory device will be drawn at the
new position.

This makes the most sense if the project contains hardware acceleration for drawing 32
bpp memory devices. If the system becomes short of RAM unused memory devices will
be deleted automatically.

7.1.4.3 Performance
Depending on the content of a screen, using static memory devices can improve the per-
formance significantly. The more complicated the drawing of the objects is, the more per-
formance gain can be achieved.

Here are the example screens of the performance test:

We measured the following performance gain for swiping operations when enabling static
memory devices:

CPU-Load Frames per second

Static memory devices disabled 57% 8
Static memory devices enabled 24% 16

We used an iMXRT1060 for this test. It shows clearly that we halved the CPU-load by
doubling the framerate with this option.

7.1.5 Run script
A path can be set which points to a script which will be executed after the Export and save
operation of the AppWizard.

Such a script file can be used to automatically compile the generated output or copy the
output to a specific location.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

83 CHAPTER 7 Preferences

7.2 Preferences
The preferences dialog is available under Edit / Preferences.

The preferences dialog has the following options:
• Load last project on start: Enables loading the last used project after starting the

application.
• Open properties on default: Opens all object properties by default.
• Show Id numbers in hierarchic tree: Shows the Window Manager Id next to the

AppWizard Id.
• Show Ids in editor window: Displays the object’s ID in the editor window.
• Number of most recent projects: Defines the maximum number of projects in the

most recent file list.
• Workspace: Path to be used to open examples.
• Media path: Path to external media.
• BSP stock: Sets a path, where custom BSPs are located.
• MSBuild: MSBuild to be used for AppWizard SPY.
• Edit default codepoints…: Editing the default range of code points to be used for

new fonts.
• Font preview string: This string is used to generate the font preview string.
• Default bitmap formats: Set the default bitmap format to be used when bitmaps use

the ’auto’ format.
• Default scroller: Set the default scroller format to be used when bitmaps use the

’auto’ format.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

84 CHAPTER 7 Preferences

Default codepoints

The user can define which characters should be included in newly created fonts. A more
detailed description and explanation on the codepoint dialog can be found under Font re-
source window on page 49.

Default bitmap formats

The user has the option to select a default bitmap format which will be used by the ’Auto’
format option when a bitmap is added to the project.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 8

Objects

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

86 CHAPTER 8 Introduction

8.1 Introduction
The objects the AppWizard supports are similar to the widgets in emWin. The following
table gives an overview about the currently available objects in the AppWizard.

Note

Some of the objects are based on emWin widgets. For more information refer to the
document UM03001 emWin User Guide & Reference Manual.

Name Symbol Description

Box Box object that can be colored or filled by a gradient and op-
tional drawn with rounded corners.

Button Clickable button object, can also be used as toggle button.

Checkbox Checkbox with up to 3 states.

Dropdown Allows the user to choose one value from a ’drop down’ list.

Edit Edit field for user input. It also supports a decimal mode for
entering numbers.

Gauge Radial progress bar.

Image Object that displays an image. Supports direct drawing of
GIF, BMP, JPEG and Bitmap files.

Keyboard Screen keyboard for entering text or numbers. Various pre-
defined layouts can be used.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

87 CHAPTER 8 Introduction

Name Symbol Description

Listbox Showing and selecting text from simple text lists.

Listview Table view containing multiple columns of text and a header
line.

Movie Movie object for playing movies.

Multiedit Edit field for multiple lines of user input.

Progbar Progressbar to display the progression of a process.

QRCode Displays a QR code.

Radio Radio object.

Rotary Circular object that can be rotated.

Screen A screen serves as a parent for all other objects.

Slider Movable slider.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

88 CHAPTER 8 Introduction

Name Symbol Description

Switch Toggleable switch with two states and an optional fade
mode.

Text An object displaying text. A decimal- and a hexadecimal
mode for showing numbers is also available.

Timer Timer object.

Window
Similar to screen object, serves as a parent object for oth-
er objects. Supports an opaque mode with an optional back-
ground color.

Wheel Swipeable rotating wheel of items with texts and/or bitmaps.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

89 CHAPTER 8 Object properties

8.2 Object properties
Every object has its own properties than can be edited. The following section lists all com-
mon properties that are used in multiple objects. Object-specific properties are explained
in the corresponding object section.

This table lists the common properties and provides links to its corresponding chapter with
more explanation.

Property Description

Alignment Alignment of an object.
Bitmap Bitmap to be shown in an object.
Border size Size of border for an object.

Color and background color
Foreground and background colors for an ob-
ject.

Content List- and table content for text based objects.

Cursor inversion
When disabling cursor inversion, the color for
the cursor isn’t the inverted background color.

Decimal mode Makes an object only eligible for decimal digits.
Focus options Disables the focus for an object or hides it.
Font Font for the object.
Frame radius Radius of frame around an object.
Frame size Pixel-size of frame around an object.

Hexadecimal mode
Makes an object only eligible for hexadecimal
digits.

Horizontal mode Changes an object to be horizontal.
Motion partner Motion settings for swiping between screens.
Motion support Settings for swiping content.
Movie Movie to be shown.
ID ID for the object.
Initial value Initial value for an object.
Invert direction Inverts direction of an object.
Opaque mode Removes the transparency flag of an object.
Overwrite mode Overwrite mode for text cursors of an object.
Period Movement period.
Position and size Position and size of an object.
Radius Radius of an object.
Range Range of position values of an object.
Space Spacing.
Space between items Additional spacing between items.
Span of values Set range of values of an object.

Stay on top
Makes sure a screen is displayed on top of all
other screens.

Text Text to be shown.
Text color Color for text.
Text rotation Rotation mode for text.
Text wrapping Enables text wrapping.
Tiling Tiling mode for bitmaps.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

90 CHAPTER 8 Object properties

Property Description

Untouchable Screen will not be able to receive touch input.
Vertical mode Changes an object to be vertical.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

91 CHAPTER 8 Object properties

8.2.1 Alignment

Description

The alignment property allows to choose a combination of a horizontal alignment and a
vertical alignments. This property can be set for bitmaps and texts.

Available objects

This property can be set for the following objects:
• Button object
• Dropdown object
• Edit object
• Gauge object
• Multiedit object
• Listbox object
• Listview object
• Text object

Usage

Combined with Horizontal left Horizontal center Horizontal right

Vertical
top

Vertical
center

Vertical
bottom

You may also add an x and y offset to the object.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

92 CHAPTER 8 Object properties

8.2.2 Bitmap

Description

The bitmap property allows to set a bitmap to a specific purpose or state of an object.

Available objects

This property can be set for the following objects:
• Button object

• Dropdown object

• Image object

• Listview object

• Movie object

• Progbar object

• Slider object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

93 CHAPTER 8 Object properties

• Switch object

• Rotary object

• Wheel object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

94 CHAPTER 8 Object properties

8.2.3 Border size

Description

This property sets the border size of an object in pixels. The border is the spacing between
the frame and the text.

Available objects

This property can be set for the following objects:
• Edit object
• Multiedit object
• Wheel object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

95 CHAPTER 8 Object properties

8.2.4 Colors

Description

Colors can be set for several individual object properties:
• Text,
• Images (alpha images only),
• Background,
• Frame,
• Gridlines,
• …and more.

Available objects

Color properties can be set for the following objects:
• Box object
• Button object
• Dropdown object
• Edit object
• Gauge object
• Image object
• Keyboard object
• Listbox object
• Listview object
• Movie object
• Multiedit object
• Progbar object
• Wheel object

Usage

When selecting the color, a dialog is opened. This dialog allows to set a specific color by
setting RGB and HSV values, as well as the alpha value.

You may also save custom colors.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

96 CHAPTER 8 Object properties

Related topics
• Text color

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

97 CHAPTER 8 Object properties

8.2.5 Content

Description

The term ’Content’ means lists and tables for text based objects. A ’list’ means a simple
array of strings. A ’table’ consists of multiple columns and a header line. Column size, text
alignment and content of the header line is also part of a table definition.

Available objects

This property can be set for the following objects:
• Dropdown object
• Listbox object
• Listview object
• Wheel object

Usage

When opening the content selection, a dialog with a list of the currently existing content is
shown. It allows selecting existing or creating new content.

In dependence of the underlying object either tables or lists can be selected/created. For
example LISTBOX- and DROPDOWN-objects require lists and the LISTVIEW-object requires
tables. When clicking the edit pen or the ’Add table/list’ button the content definition dialog
opens:

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

98 CHAPTER 8 Object properties

This dialog is used to edit existing content and/or to create new content. Lists consist of
simple text arrays. Tables consist of several columns. For each column the width and the
alignment can be defined as well as the content of the header.

Using text from text resources

The content objects also support using text from the text resources. This can be achieved
by the following mechanism: Simply enter an equal sign followed directly by the name of
the desired text resource.

Example

Assuming the text resources contains an item named ID_RTEXT_4:

To use it in a table, in a list or in the header line of a table, use an equal sign with the
resource name:

Importing and exporting content

A detailed description on how lists and tables can be imported and exported can be found
under Importing and exporting of content on page 56.

Setting table- or list content by custom code

After creating an object containing a list or a table an APPW_MSG_GET_CONTENT message
is send to the screen callback routine. The element ’hWinSrc’ of the message structure is

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

99 CHAPTER 8 Object properties

(ob)used for passing the object id of the object requesting the content. To pass content
to the requesting object simply set Data.p to an APPW_CONTENT structure. Here is a code
excerpt which shows how to realize that:

static const char * ID_CONTENT_Left_Col_0[] = {
 "Left Item 0",
 "Left Item 1",
 "Left Item 2",
 "Left Item 3",
 "Left Item 4",
 "Left Item 5",
 "Left Item 6",
 "Left Item 7",
 "Left Item 8",
 "Left Item 9",
};

static const char ** ID_CONTENT_Left_Text[] = {
 ID_CONTENT_Left_Col_0,
};

const APPW_CONTENT ID_CONTENT_Left_Data = {
 ID_CONTENT_Left_Text,
 GUI_COUNTOF(ID_CONTENT_Left_Col_0)
};

static const char * ID_CONTENT_Right_Col_0[] = {
 "Right Item 0",
 "Right Item 1",
 "Right Item 2",
 "Right Item 3",
 "Right Item 4",
 "Right Item 5",
 "Right Item 6",
 "Right Item 7",
 "Right Item 8",
 "Right Item 9",
};

static const char ** ID_CONTENT_Right_Text[] = {
 ID_CONTENT_Right_Col_0,
};

const APPW_CONTENT ID_CONTENT_Right_Data = {
 ID_CONTENT_Right_Text,
 GUI_COUNTOF(ID_CONTENT_Right_Col_0)
};

void cbID_SCREEN_00(WM_MESSAGE * pMsg) {
 switch (pMsg->MsgId) {
 case APPW_MSG_GET_CONTENT:
 switch (pMsg->hWinSrc) {
 case ID_DROPDOWN_00:
 pMsg->Data.p = &ID_CONTENT_Left_Data;
 break;
 case ID_DROPDOWN_01:
 pMsg->Data.p = &ID_CONTENT_Right_Data;
 break;
 }
 break;
 }
}

The sample library also contains a sample which shows how to set custom dropdown text.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

100 CHAPTER 8 Object properties

8.2.6 Cursor inversion

Description

Cursor inversion defines the drawing behavior of the cursor in an Edit or Multiedit. If cursor
inversion is enabled, the cursor will be drawn by inverting the background and text color
at its position.

If cursor inversion is disabled, the user can pick a custom cursor color instead.

The user can set the color of the cursor with the Background color property under ’Cursor’.

Available objects

This property can be set for the following objects:
• Edit object
• Multiedit object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

101 CHAPTER 8 Object properties

8.2.7 Decimal mode

Description

Using the decimal mode makes it possible to show digits instead of characters. The mask
determines how exactly the digits should be shown. It determines if a sign should be shown
in any case, if leading zeroes should be shown, the number of digits and the location of an
optional decimal point. Also, when using decimal mode, a range property is added to the
object to limit the numbers that can be entered.

Available objects

This property can be set for the following objects:
• Edit object
• Text object

Additional information

The mask being set for an Edit or Text object behaves slightly different.

The Edit object accepts either a single ’0’ or a single ’#’ as mask. A ’0’ shows leading zeros
depending on the range set for this object.

The Text object shows as many leading zeros as ’0’ are being used as mask. The umber of
’#’ used indicates the maximum number of digits.

Examples (Text object)

The following table shows some examples with mask, value to be shown and drawing
restult:

Mask Value Result

+00.00 987 +09.87
+00.00 0 00.00
+00.00 -100 -01.00
+00 -1 -01
+00 1 +01
00 -1 -1
00 1 01

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

102 CHAPTER 8 Object properties

8.2.8 Focus options

Description

Focus options for an individual object. The focus rectangle can be shown or hidden or the
ability to receive input focus can be disabled altogether.

Available objects

This property can be set for the following objects:
• Button object
• Dropdown object
• Edit object
• Listbox object
• Listview object
• Multiedit object
• Rotary object
• Slider object
• Switch object

Additional information

Focus support has to be enabled in the project options. More information about input focus
can be read under Object focus on page 130.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

103 CHAPTER 8 Object properties

8.2.9 Font

Description

The font property allows to set a font to an object.

Available objects

This property can be set for the following objects:
• Button object
• Dropdown object
• Edit object
• Keyboard object
• Multiedit object
• Switch object
• Text object
• Wheel object

Usage

Choosing a font will open a dialog showing all fonts available in the project.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

104 CHAPTER 8 Object properties

8.2.10 Frame radius

Description

This property sets the radius of the frame drawn around a given object.

Available objects

This property can be set for the following objects:
• Edit object
• Listview object
• Multiedit object
• Wheel object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

105 CHAPTER 8 Object properties

8.2.11 Frame size

Description

This property sets the width of an object’s frame in pixels.

Available objects

This property can be set for the following objects:
• Dropdown object
• Edit object
• Listbox object
• Listview object
• Multiedit object
• Progbar object
• Wheel object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

106 CHAPTER 8 Object properties

8.2.12 Hexadecimal mode

Description

Hexadecimal mode makes an object only eligible for hexadecimal digits. The number of
shown digits has to be set via the property.

Available objects

This property can be set for the following objects:
• Text object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

107 CHAPTER 8 Object properties

8.2.13 Horizontal mode

Description

The horizontal mode property changes the orientation of an object to be horizontal. By
default it is vertical.

Available objects

This property can be set for the following objects:
• Wheel object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

108 CHAPTER 8 Object properties

8.2.14 ID

Description

Every object has an ID that can be set in order to identify that object.

Available objects

This property can be set for all objects.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

109 CHAPTER 8 Object properties

8.2.15 Initial value

Description

This property sets the initial value of an object.

Available objects

This property can be set for the following objects:
• Gauge object
• Progbar object
• Rotary object
• Slider object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

110 CHAPTER 8 Object properties

8.2.16 Invert direction

Description

This property inverts the direction of an object, meaning it lowest value and initial position
will be on the right instead of the left.

Available objects

This property can be set for the following objects:
• Slider object
• Progbar object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

111 CHAPTER 8 Object properties

8.2.17 Motion partner

Description

Horizontal and vertical motion allow swiping between different screens or windows.

Available objects

This property can be set for the following objects:
• Screen object
• Window object

Horizontal motion properties

Property Description

Left partner Screen/window that should be located left from the screen/
window.

Mode left Mode that should be applied to the left partner. Either ’dis-
close’ or ’replace’.

Right partner Screen/window that should be located right from the screen/
window.

Mode right Mode that should be applied to the left partner. Either ’dis-
close’ or ’replace’.

Period Period to be used until motion stops.

Vertical motion properties

Property Description

Upper partner Screen/window that should be located above the screen/win-
dow.

Mode up Mode that should be applied to the upper partner. Either
’disclose’ or ’replace’.

Lower partner Screen/window that should be located below the screen/win-
dow.

Mode down Mode that should be applied to the lower partner. Either ’dis-
close’ or ’replace’.

Period Period to be used until motion stops.

Disclose mode

In ’disclose mode’ the window that the user is swiping to will be disclosed. This means only
the window that is swiped away moves, the other window does not.

Replace mode

In ’replace mode’ the window that the user is swiping to replaces the old window as the
user is swiping.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

112 CHAPTER 8 Object properties

8.2.18 Motion support

Description

Horizontal and vertical motion allow swiping the content of the widget.

Available objects

This property can be set for the following objects:
• Multiedit object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

113 CHAPTER 8 Object properties

8.2.19 Movie

Description

The movie property allows to set a movie to be used in a movie object.

Available objects

This property can be set for the following objects:
• Movie object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

114 CHAPTER 8 Object properties

8.2.20 Opaque mode

Description

This property removes the transparency flag of an object. For example, when a transparent
button is pressed, not only the button is redrawn, but also the window that is behind the
button.

When an opaque button is pressed, only the button itself is redrawn, not the window that
is behind the button.

Note

This property should only be used, if the entire area of the object is drawn. For ex-
ample, if an opaque button has rounded corners, the corners of the button will not be
redrawn and corrupted pixels will appear on the screen.

Available objects

This property can be set for the following objects:
• Button object
• Image object
• Screen object
• Window object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

115 CHAPTER 8 Object properties

8.2.21 Overwrite mode

Description

This property sets the mode of a possible cursor to overwrite. The default mode is insert.

Available objects

This property can be set for the following objects:
• Edit object
• Multiedit object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

116 CHAPTER 8 Object properties

8.2.22 Period

Description

This property sets a time period in ms how long the related operation should take until
it is finished.

Available objects

This property can be set for the following objects:
• Keyboard object
• Multiedit object
• Progbar object
• Rotary object
• Switch object
• Timer object
• Wheel object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

117 CHAPTER 8 Object properties

8.2.23 Position and size

Description

Every object has its position and its size.

Available objects

These properties can be set for every object.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

118 CHAPTER 8 Object properties

8.2.24 Radius

Description

This property sets the radius of an object or a specific part of an object. For the Rotary
object, it depends on this radius where the marker bitmap will be positioned.

Available objects

This property can be set for the following objects:
• Box object
• Button object
• Gauge object
• Keyboard object
• Progbar object
• Rotary object

Rounded corners

For the Box and Button objects, this property defines the radius of rounded corners.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

119 CHAPTER 8 Object properties

8.2.25 Range

Description

This property allows to define a range for an object.

Available objects

This property can be set for the following objects:
• Edit object (in decimal mode)
• Progbar object
• Rotary object
• Slider object
• Text object (in decimal mode)

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

120 CHAPTER 8 Object properties

8.2.26 Space

Description

This property defines the spacing. For instance, spacing in X- and Y-axis can be set between
each key on a Keyboard object.

Available objects

This property can be set for the following objects:
• Edit object
• Keyboard object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

121 CHAPTER 8 Object properties

8.2.27 Space between items

Description

This property defines an additional spacing between the items. For instance, additional
spacing in Y-axis can be set between each item on a Listbox object.

Available objects

This property can be set for the following objects:
• Listbox object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

122 CHAPTER 8 Object properties

8.2.28 Span of values

Description

This property defines the range of numbers an object should return.

Available objects

This property can be set for the following objects:
• Gauge object
• Rotary object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

123 CHAPTER 8 Object properties

8.2.29 Stay on top

Description

This property allows a screen to be shown on top of all other screens. In order for the
screen to be visible, Persistent mode also has to be enabled.

If multiple screens are marked to stay on top, their order in the hierarchic tree will determine
in what order they are shown.

Available objects

This property can be set for the following objects:
• Screen object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

124 CHAPTER 8 Object properties

8.2.30 Text

Description

The text property allows to select a text to be shown from the text window. Only a text
from the text window can be selected. For more information about the text window and
how to add texts, refer to Text resource window on page 47.

Available objects

This property can be set for the following objects:
• Button object
• Edit object
• Multiedit object
• QRCode object
• Switch object
• Text object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

125 CHAPTER 8 Object properties

8.2.31 Text rotation

Description

Rotates the text in an object.

Available objects

This property can be set for the following objects:
• Text object

Available rotation modes

Rotation Description

CCW Counter-clockwise rotation (210°).
CW Clockwise rotation (90°).
180° 180° rotation.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

126 CHAPTER 8 Object properties

8.2.32 Text wrapping

Description

Text wrapping for text in an object.

Available objects

This property can be set for the following objects:
• Multiedit object
• Text object

Comparison

No text wrapping Text wrapping

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

127 CHAPTER 8 Object properties

8.2.33 Tiling

Description

Tiling mode will fill the entirety of the Image object with the selected image.

It can also be used for Progbar objects to fill the entire Progbar with a narrow bitmap
(usually 1 px wide).

Available objects

This property can be set for the following objects:
• Image object
• Progbar object

Example

See chapter Image on page 143 for an example.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

128 CHAPTER 8 Object properties

8.2.34 Untouchable

Description

An untouchable screen is not able to receive touch input.

Available objects

This property can be set for the following objects:
• Screen object
• Box object
• Image object
• Text object
• Movie object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

129 CHAPTER 8 Object properties

8.2.35 Vertical mode

Description

The vertical mode property changes the orientation of an object to be vertical. By default
it is horizontal.

Changing a Progbar or Slider to horizontal or vertical mode will automatically change the
default bitmaps accordingly.

Available objects

This property can be set for the following objects:
• Progbar object
• Slider object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

130 CHAPTER 8 Object focus

8.3 Object focus
Since V1.12, objects are able to receive input focus. The ability for objects to receive focus
must be enabled in the project options, as described earlier in the chapter User interface
on page 33.

Enabling focus support

The user can define show the focus rectangle should be drawn by setting the line width,
line color and corner radius in the project options.

How it works

If an object has the input focus, all key inputs are sent to the object. Using the tab key sets
the focus to the next object, according to the hierarchic object tree.

Optionally, the ability of an object to receive focus or visibility of it can be modified for
individual objects through the use of the Focus options property.

The objects that are able to receive focus are listed under the signal GOT_FOCUS on
page 180.

Example

Below is an example Edit object that has the focus:

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

131 CHAPTER 8 Object scrollers

8.4 Object scrollers
Since V1.32, objects are able to show scroll bars by the use of emWin’s SCROLLER widget.

The scrollers can either be used only as a scrolling indicator or as an active scroll bar that
can be moved by touch (see “Interactive” property below).

Note

For more detailed guide about SCROLLER properties, please have a look at the guide
UM03001 emWin User Guide & Reference Manual.

Supported objects

The following objects support the use of scrollers:
• Dropdown
• Listbox
• Listview
• Multiedit

Enabling scroller support

First, scrollers have to be enabled in the project properties. When this is done, all scrollable
widgets (mentioned above) will have a scroller attached when they are being created.

The scroller will be made visible when the size of the content allows scrolling and it will be
hidden when the user cannot scroll.

Scroller appearance and properties

When added, scrollers will first have the default appearance defined in the default scroller
properties in the AppWizard preferences.

The appearance of individual scrollers can be defined in the project properties. Clicking
“Edit scroller definitions…” will open a window for defining multiple custom scrollers.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

132 CHAPTER 8 Object scrollers

Property Default value Description

Color active 0x50606060
Color of the thumb rectangle when the scroller is
moving (active state).

Color inactive GUI_TRANSPAR-
ENT

Color of the thumb rectangle when the scroller is
not moving (inactive state).

Period fade in 200 Period in ms for fading the color from the inactive
state to the active state.

Period fade out 200 Period in ms for fading the color from the active
state to the inactive state.

Period inactive 800
Period in ms it should take for the scroller to be
faded into the inactive state after it has stopped
moving.

Size 6 Breadth of the thumb rectangle.
Spacing 24 Spacing surrounding the thumb rectangle.
Radius 3 Radius of the thumb rectangle.
Offset -3 Offset added to the thumb rectangle’s position.
Minimum length 20 Minimum length of the thumb rectangle.

Interactive No Option if scroller should be able to be moved by
touch or if it should be only a scrolling indicator.

These custom defined scrollers can then be set to individual widgets in the widget’s prop-
erties.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

133 CHAPTER 8 Object scrollers

The default scroller properties can be changed in the AppWizard preferences (Edit è Pref-
erences).

Examples

No scroller Default scroller Custom scroller

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

134 CHAPTER 8 Box

8.5 Box
A box object can be placed as the first object in a window/screen and simply serves for
specifying a background color or a gradient. Horizontal and vertical gradients are supported.
A gradient can have an unlimited number of colors. For each color the pixel position can be
defined. Semi-transparent gradients are also supported.

Symbol Example

Note

Semi-transparency is only recommended if a hardware is used which either has an
accelerator for semi-transparent filling operations or is fast enough to mix up the
colors per software.

Properties

Property Description

Color Color to be shown in the box.
Horizontal gradient Horizontal gradient to be shown in the box.
Vertical gradient Vertical gradient to be shown in the box.
Radius Radius of the rounded corners.

Untouchable
Sets the box object as untouchable and sends any
touch input to the object below.

Gradients

Horizontal and vertical gradients can be defined using two colors or more.

Gradient colors may be added via the Add color button. A gradient must contain at least
two colors. The colors can be changed when the corresponding marker has been clicked.
They can be edited using the Set color button and deleted via the Delete button.

The position of each color can be changed by specifying the position in the spinbox or by
moving the markers.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

135 CHAPTER 8 Box

The result of the above specified gradient looks like this below:

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

136 CHAPTER 8 Button

8.6 Button
The button object is very similar to its emWin counterpart. It is an object that can be clicked,
so that its input may be processed by the application.

Symbol Example

Properties

Property Description

Text colors
• Unpressed: Text color for unpressed state.
• Pressed: Text color for pressed state.
• Disabled: Text color for disabled state.

Background colors
• Unpressed: Background color for unpressed state.
• Pressed: Background color for pressed state.
• Disabled: Background color for disabled state.

Bitmaps
• Unpressed: Bitmap for unpressed state.
• Pressed: Bitmap for pressed state.
• Disabled: Bitmap for disabled state.

Bitmap alignment
• Alignment: Bitmap alignment.
• Offset x: Additional x-offset.
• Offset y: Additional y-offset.

Auto repeat
• Start time: Starting time of auto repeating after button press.
• Interval: Repeating time.

Toggle mode
By clicking the button its state is toggled between pressed and
unpressed.

Text Text to be shown.

Text alignment
• Alignment: Text alignment.
• Offset x: Additional x-offset.
• Offset y: Additional y-offset.

Font Font to be used for the text.
Focus options Disables the focus for the button or hides it.

Radius
Radius for rounded corners if the button is drawn without
bitmaps.

Opaque mode Sets the button to opaque and removes its transparency flag.

Auto repeat mode

The Button also offers an auto repeat mode. When holding the button pressed, it begins
sending clicked events after the start time period in the given interval.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

137 CHAPTER 8 Checkbox

8.7 Checkbox
The checkbox object is very similar to its emWin counterpart. A check box may be checked
or unchecked by the user, and any number of boxes may be checked at one time.

Symbol Example

Properties

Property Description

Bitmaps

• Unchecked: Bitmap for unchecked state.
• Checked: Bitmap for checked state.
• ThirdState: Bitmap for (optional) third state.
• Unchecked (disabled): Bitmap for unchecked state in disabled

mode.
• Checked (disabled): Bitmap for checked state in disabled mode.
• ThirdState (disabled): Bitmap for (optional) third state in dis-

abled mode.

Colors

• Text: Text color for unpressed state.
• Bitmaps: Bitmap color for all images. (Works only with alpha

images)
• Disabled: Text color for disabled state.

Font Font to be used for the text.
Text Text to be shown.
Text offset Additional horizontal spacing between image and text.
3 state mode Activates the third state.

3 state mode

The Checkbox also offers an optional third state. It can be activated on demand.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

138 CHAPTER 8 Dropdown

8.8 Dropdown
The Dropdown object is a control that allows a user to select a value from a given list of
values. In inactive state it shows the currently selected item. When activating it via PID
or keyboard, a ’drop-down’ (or even ’drop-up’) list pops with the selectable items. The list
automatically disappears after selecting an item or when clicking elsewhere on the display.

Symbol Example

Properties

Property Description

Bitmaps
• Down: Down arrow to be shown.
• Up: Down arrow to be shown.

Content Content to be shown.

Text colors
• Enabled: Text color for enabled state.
• Disabled: Text color for disabled state.
• Cursor: Color of cursor.

Colors
• Enabled: Background color for enabled state.
• Disabled: Background color for disabled state.
• Cursor: Background color of cursor.

Font Font to be used.

Text alignment
• Alignment: Text alignment.
• Offset x: Additional x-offset.
• Offset y: Additional y-offset.

Opening upwards Changes the dropDOWN to a dropUP.
Height of list Height in pixels of the list.
Frame color Color of frame of object.
Frame radius Radius of rounded corners of the frame.
Frame size Width of frame around object.
Inner gap Border size between frame and text.
Focus options Disables the focus for the object or hides it.

Vertical scroller

Custom scroller definition to be used on the vertical
axis. If this is left empty and scrollers are enabled
for the project, the default scroller properties will be
used instead.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

139 CHAPTER 8 Edit

8.9 Edit
An Edit object provides, like the emWin EDIT widget, a box where the user can type text
in, or numbers if decimal mode is activated.

Symbol Example

Properties

Property Description

Text Text to be displayed initially.
Decimal mode Mask to be used for decimal mode.
Overwrite mode Set the cursor mode to overwrite.

Text colors
• Enabled: Text color for enabled state.
• Disabled: Text color for disabled state.
• Cursor: Color of cursor.

Background colors
• Enabled: Background color for enabled state.
• Disabled: Background color for disabled state.
• Cursor: Background color of cursor.

Frame color Color of frame of Edit.
Cursor inversion Disables cursor inversion mode.
Blink period Blinking period of cursor.
Font Font to be used.

Text alignment
• Alignment: Text alignment.
• Offset x: Additional x-offset.
• Offset y: Additional y-offset.

Inner gap Spacing between frame and text.
Frame radius Radius of rounded corners of the Edit’s frame.
Frame size Line size of frame around Edit.

Password mode
Enables password mode. See below for additional
information.

Maximum length
Maximum length of characters that can be entered
into the Edit.

Focus options Disables the focus for the Edit or hides it.

Decimal mode

With decimal mode, the Edit object is only eligible of holding digits instead of characters.
For this mode, a mask of zeros has to be specified which determines how many digits are
shown by the object. More details about the usage of the mask is explained under Decimal
mode on page 101.

Also, when using decimal mode, a range property is added to the object to limit the numbers
that can be entered. More on the range property can be found under Range on page 119.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

140 CHAPTER 8 Edit

During runtime, the cursor is highlighting the currently selected digit. When the user types
in a number, the cursor will move from its current position to the right until the last digit
has been reached. If the entered number exceeds the maximum, the maximum number
is put in.

The number can be increased using the <UP> and decreased using the <DOWN> key,
whereas the cursor can be moved using the <LEFT> and <RIGHT> arrow keys.

Password mode

The password mode displays the text of the Edit as asterisks.

Password mode disabled Password mode enabled

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

141 CHAPTER 8 Gauge

8.10 Gauge
A Gauge object is similar to a progress bar, although the progress is displayed in a radial
manner. The object consists of two arcs that are drawn. The relation between these two
arc lines shows the progress.

Two colors can be set for a Gauge object, for the background and and foreground line.

Symbol Example

Properties

Property Description

Center alignment

• Alignment: Alignment of the Gauge within the ob-
ject frame.

• Offset x: Additional x-offset of the Gauge.
• Offset y: Additional y-offset of the Gauge.

Initial value Initial value of the Gauge.

Start/end angle
• Angle 0: Start angle in 10th of degrees.
• Angle 1: End angle in 10th of degrees.

Span of values
• Min: Lowest value the object should return.
• Max: Highest value the object should return.

Radius Radius of the Gauge.

Colors
• Item 0: Color of the background curve.
• Item 1: Color of the foreground curve.

Line width
• Width 0: Width of the background curve.
• Width 1: Width of the foreground curve.

Rounded value
Enables rounded ends of the foreground (value)
curve.

Rounded ends Enables rounded ends of the background curve.
Background color Background color of the object.

CCW mode
Enable counter-clockwise mode which inverts the
direction the gauge will fill.

Rounded value/ends

With this property, the ends of the value or end arc of a Gauge object can be set to have
rounded edges.

Default Rounded value Rounded ends

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

142 CHAPTER 8 Gauge

Start/end angle

This property defines the angles, where the arc of a Gauge object should start and end.
The values to be entered should be 10th of degrees (1800 = 180°).

The entered degree values are based off the standard angle measurement.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

143 CHAPTER 8 Image

8.11 Image
An Image object is similar to emWin’s IMAGE widget. It can be used to display any images
of the file types JPEG, GIF or BMP. Alternatively, a bitmap can be chosen as well.

Symbol Example

Properties

Property Description

Bitmap Sets a bitmap to the object.
Color Sets the color to be used for an alpha bitmap.
JPEG Sets a JPEG image to the object.
GIF Sets a GIF image to the object.
BMP Sets a BMP image to the object.
Tiling Enables tiling mode for the object.

Opaque mode
Sets the image to opaque and removes its trans-
parency flag.

Bitmap alignment Alignment of the bitmap within the object.

Angle
Angle in 1000th of degrees to rotate the image
counter-clockwise (1000 = 1°).

Scale Image scale factor in promille (1000 = 100%).

Alpha
Alpha value (0-255) to be used to draw the image
with semi-transparency.

Fast mode
Speeds up rotation, scaling and alpha blending op-
erations but the result will have a lower quality.

Untouchable
Sets the image object as untouchable and sends
any touch input to the object below.

Difference between bitmaps and images

In contrast to bitmaps, JPEG, GIF and BMP images are always displayed natively. Therefore
JPEGs and GIFs are always decompressed before being displayed. This can lead to a notable
difference in performance compared to bitmaps.

Tiling mode

Tiling mode will fill the entirety of the Image object with the selected image. In this example
the purple frame surrounds the Image object.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

144 CHAPTER 8 Image

Tiling mode disabled Tiling mode enabled

GIF support

Any GIF images are supported for this object, this includes animated GIFs.

Alpha bitmaps

To create an alpha bitmap to use it for an Image object, click the “Set bitmap” property
of the Image. Then, add a new bitmap by opening the desired image. Now, select Alpha
channel, compr. in the “Format” column to declare it as an alpha bitmap. Finally, select
the bitmap for the Image.

For the alpha bitmap, a desired color can now be selected. The color can also be set to the
Image by an interaction, using the SETCOLOR job.

In the example shown above R, G and B values can be entered via the slider. These three
values are put together by a variable calculation to form the RGB value. Finally the RGB
value can be set to the alpha bitmap via an interaction.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

145 CHAPTER 8 Keyboard

8.12 Keyboard
A Keyboard object can be used to enter text or numbers.

Symbol Example

Properties

Property Description

Font for codes Font used for keys.
Font for longpress codes Font used for longpress characters on keys.
Keyboard layout Keyboard layout used for the object.

Colors

• Code: Color used for text shown on keys.
• Long: Color used for longpress characters shown

on keys.
• Mark: Color used for selected character in long

press dialog and locked shift key.

Background colors

• Key: Background color for keys.
• F-Key: Background color for function keys.
• Pressed: Background color for pressed keys.
• BG: Background color of Keyboard object.

Periods for backspace key

• Start time: Period between the press of back-
space and deletion of the characters.

• Interval: Interval between each character deleted
when holding backspace.

Radius for key outline Radius used for rounded corners or the keys.

Space between keys

• Space (X-axis): Space between each key on X-
axis.

• Space (Y-axis): Space between each key on Y-
axis.

Keyboard layout

The following layouts are available per default and can be set to a Keyboard object:

Layout Description

SKEYBOARD_ARA Layout for Arabic.
SKEYBOARD_DEU QWERTZ layout, used for German.
SKEYBOARD_DEU_LP QWERTZ layout with extra longpress characters.
SKEYBOARD_ENG QWERTY layout, used for English.
SKEYBOARD_ENG_LP QWERTY layout with extra longpress characters.
SKEYBOARD_FRA_LP AZERTY layout, used for French.
SKEYBOARD_NUMPAD Numpad layout.

SKEYBOARD_RUS
JCUKEN/ЙЦУКЕН layout, main Cyrillic keyboard layout for
the Russian language.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

146 CHAPTER 8 Keyboard

Files for streamed layout files are located in the project directory under Resource\Key-
board. The pattern files needed for specific layouts are located in the ProgramData direc-
tory of the AppWizard installation.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

147 CHAPTER 8 Listbox

8.13 Listbox
A list box allows selecting an item from a multiple line text box.

Symbol Example

Properties

Property Description

Text colors

• Unselected: Text color for unselected state.
• Selected: Text color for selected state.
• Focused: Color of cursor.
• Disabled: Text color for disabled state.

Background colors

• Unselected: Background color for unselected
state.

• Selected: Background color for selected state.
• Focused: Background color of cursor.
• Disabled: Background color for disabled state.

Font Font to be used.
Content Content to be shown.

Text alignment
• Alignment: Text alignment.
• Offset x: Additional x-offset.
• Offset y: Additional y-offset.

Frame color Color of frame of object.
Frame size Width of frame around object.
Focus options Disables the focus for the object or hides it.
Space between items Defines additional space between the items.

Vertical scroller

Custom scroller definition to be used on the vertical
axis. If this is left empty and scrollers are enabled
for the project, the default scroller properties will be
used instead.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

148 CHAPTER 8 Listview

8.14 Listview
A Listview object allows selecting one line of of a list with several columns. Each column
has its own width and text alignment.

Symbol Example

Properties

Property Description

Text colors

• Unselected: Text color for unselected state.
• Selected: Text color for selected state.
• Focused: Color of cursor.
• Disabled: Text color for disabled state.

Background colors

• Unselected: Background color for unselected
state.

• Selected: Background color for selected state.
• Focused: Background color of cursor.
• Disabled: Background color for disabled state.

Header colors
• Text: Color for header text.
• Background: Color for header background.
• Frame: Color for header frame.

Colors
• Grid: Color for grid lines.
• Focus: Color for the optional focus rectangle.
• Frame: Frame color of list.

Bitmaps
• Down: Optional descending indicator to be

shown.
• Up: Optional ascending indicator to be shown.

Font Font to be used for content.

Header font
Font to be used for header. This is optional, if left
empty, the same font set to the LISTVIEW is used.

Content Content to be shown.
Row height Row height be used for content.
Header height Row height be used for header.
Header radius Radius to be used for the header frame.
Frame size Width of frame around the list.
Focus rectangle width Width of the optional focus rectangle.
Show header grid Show vertical grid lines in header.
Show horizontal grid lines Show horizontal grid lines.
Show vertical grid lines Show vertical grid lines.

Enable cell selection
Enables single cell selection instead of line selec-
tion.

Fixed columns Sets the number of fixed columns.
Column sorting Enables column sorting.
Inner gap Horizontal border between text and cell.
Focus options Disables the focus for the object or hides it.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

149 CHAPTER 8 Listview

Property Description

Vertical scroller

Custom scroller definition to be used on the vertical
axis. If this is left empty and scrollers are enabled
for the project, the default scroller properties will be
used instead.

Horizontal scroller

Custom scroller definition to be used on the hor-
izontal axis. If this is left empty and scrollers are
enabled for the project, the default scroller proper-
ties will be used instead.

Header radius

The upper corners of the header can be rounded with a separate radius. Further there are
options for setting a separate color for frame of the header line:

Focus rectangle width

The focus rectangle width (and color) allows showing a separate focus rectangle surrounding
the currently selected row or cell:

Enable cell selection

Cell selection allows selecting single cells:

Fixed columns

Fixes the given number of columns at their horizontal positions.

Column sorting

When selecting this option a dialog occurs. It allows setting sorting options for each column:

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

150 CHAPTER 8 Listview

Sorting then can be initiated by touching the header of the desired column. After touching
the header a sort indicator becomes visible:

Touching the header again inverts the sorting order:

The AppWizard provides a convenient option for showing the indicators with the same color
as used for the text. This can be achieved with monochrome images only. To use that
feature select ’Alpha channel, compr.’ instead of the ’Auto’-option in the image dialog:

Inner gap

It defines the number of pixels between text and border of the cell. Makes sense with left
or right alignment only.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

151 CHAPTER 8 Movie

8.15 Movie
The Movie object offers capability to display movie files while also providing basic controls
like pause, play and a progress bar.

Symbol Example

Properties

Property Description

Bitmaps

• Center: Bitmap to be shown in the center when
movie is stopped.

• Play: Panel bitmap for ’Start’ button.
• Pause: Panel bitmap for ’Stop’ button.
• Begin: Panel bitmap for ’Begin’ button.

Colors

• Center: Color of center bitmap (works only with
alpha image).

• Panel: Color of panel bitmaps (works only with
alpha image).

• Background: Used to fill the space between movie
and border if the movie does not fill the complete
area of the object.

• Progress bar left Color of progress bar left.
• Progress bar right: Color of progress bar right.

Period for shifting in Period for shifting in the panel.
Period for shifting out Period for shifting out the panel.

Inactivity period
Inactivity period, panel will be shifted out after that
period.

Bar height Height of the progress bar.

Panel height
Height of the panel including the progress bar.
Should be greater than bar height.

Endless loop Plays the movie in endless loop.
Do not react on touch input Movie does not react on touch input.

Play and pause

The widget can be paused and played by tapping anywhere inside the widget area.

If the control panel is not shown, the first tap will open the panel and a second tap will
pause the video.

Center play button

While the video is paused, it shows a play symbol if a center bitmap has been set.

Control panel

When the widget is clicked, the control panel will move in with an animation. The periods
for moving in and out can be set with the period properties. If the panel is already visible,
it will start shifting out after the inactivity period is expired.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

152 CHAPTER 8 Movie

Progress bar

The lower part of the control panel contains a progress bar which displays the current frame
position of the movie.

Colors can be set for the left and for the right part of the progress bar with the color
properties.

By touching the progress bar or within the control panel, the user can move the current
frame to a desired position, just like in commonly known video players or apps.

Control buttons

Control buttons can be added to the control panel. A button is added by setting the corre-
sponding bitmap(s). We recommend to use alpha bitmaps. In this case the colors for the
alpha bitmaps can be set with the color properties.

Button name Example Description

Pause/play button Pauses or plays the video.

Begin button Jumps to the beginning of the video.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

153 CHAPTER 8 Multiedit

8.16 Multiedit
The Multiedit object is a multi-line text input widget.

Symbol Example

Properties

Property Description

Text Text to be displayed initially.
Overwrite mode Set the cursor mode to overwrite.

Text colors
• Enabled: Text color for enabled state.
• Disabled: Text color for disabled state.
• Cursor: Color of cursor.

Background colors
• Enabled: Background color for enabled state.
• Disabled: Background color for disabled state.
• Cursor: Background color of cursor.

Frame color Color of frame of Multiedit.
Cursor inversion Disables cursor inversion mode.
Blink period Blinking period of cursor.
Font Font to be used.

Text alignment
Text alignment, only left and right alignment can be
set to the Multiedit.

Text wrapping Enables text wrapping.
Inner gap Border size between frame and text.
Frame radius Radius of rounded corners of the Multiedit’s frame.
Frame size Line size of frame around Multiedit.

Password mode
Enables password mode. See below for additional
information.

Read only mode Enables read only mode.
Focus options Disables the focus for the Multiedit or hides it.
Motion support Enables horizontal and/or vertical motion scrolling.

Vertical scroller

Custom scroller definition to be used on the vertical
axis. If this is left empty and scrollers are enabled
for the project, the default scroller properties will be
used instead.

Horizontal scroller

Custom scroller definition to be used on the hor-
izontal axis. If this is left empty and scrollers are
enabled for the project, the default scroller proper-
ties will be used instead.

Password mode

The password mode displays the text of the Multiedit as asterisks.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

154 CHAPTER 8 Multiedit

Password mode disabled Password mode enabled

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

155 CHAPTER 8 Progbar

8.17 Progbar
A Progbar object visualizes the progression of an operation.

Symbol Example

Properties

Property Description

Bitmap
Bitmap for the “filling” and the “empty” part of the
Progbar.

Tiling
Uses tiling for the given bitmaps. The bitmaps
should be 1 pixel wide.

Bitmap alignment Alignment of the set bitmaps.

Colors
Bitmap for the “filling” and the “empty” part of the
Progbar.

Frame size
Size of the frame of the Progbar. If 0 no frame is
displayed.

Initial value Sets the initial value for the Progbar.

Invert direction
Inverts the direction of the Progbar (left to right or
right to left).

Period
Sets a period which describes the duration it takes
to move a Bitmap through the object.

Radius
Sets the radius of the edges of the Progbar. Affects
also the radius of the frame. Has no effect on gradi-
ents.

Range Sets the range of the Progbar.

Vertical mode
Changes the direction of the Progbar from horizon-
tal to vertical.

Additional information

The period is used to animate the “filling” bitmap of the progress bar. This way it is possible
to indicate a state where the progress bar is waiting for data. The user has to make sure
that the bitmap has the size of the Progbar object and the left and right endings of the
bitmap match each other.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

156 CHAPTER 8 QRCode

8.18 QRCode
A QRCode object displays a QR code. A custom text can be set which will then be converted
into a QR code.

Symbol Example

Properties

Property Description

Error correction level Error correction level for QR code.
Pixelsize Size in pixels of one module for QR code.
Text Text used to be encoded in QR code.
Version Dimensions of the code.

Error correction level

The error correction level is a specific parameter of a QR code. The higher the error correc-
tion level, the more information is saved redundantly in the QR code in order to increase
the chance to be read without errors.

emWin QR codes offer four error correction levels.

Error correction level Description

GUI_QR_ECLEVEL_L About 7% or less errors can be corrected.
GUI_QR_ECLEVEL_M About 15% or less errors can be corrected.
GUI_QR_ECLEVEL_Q About 25% or less errors can be corrected.
GUI_QR_ECLEVEL_H About 30% or less errors can be corrected.

Pixelsize

The pixelsize property defines the size in pixels of one module in a QR code.

Version

The version of a QR code indicates the overall dimensions of the code. The entered value
has to be between 0 and 40. If 0 is entered, the appropriate version is chosen automatically.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

157 CHAPTER 8 Radio

8.19 Radio
A radio button is a graphical element that allows users to choose only one option from a
set of choices.

Symbol Example

Properties

Property Description

Bitmaps

• Unchecked: Bitmap for unchecked state.
• Checked: Bitmap for checked state.
• Unchecked (disabled): Bitmap for unchecked state in disabled

mode.
• Checked (disabled): Bitmap for checked state in disabled mode.

Colors

• Text: Text color for selected and unselected state.
• Bitmaps: Bitmap color for all images. (Works only with alpha

images)
• Disabled: Text color for disabled state.

Font Font to be used for the text.
Content Content to be shown.
Spacing Vertical distance between the radio items.
Group Id Id for combining multiple radio objects to one group.
Text offset Additional horizontal spacing between image and text.

Group Id

If more than one column is required multiple objects have to be used:

Simply assign the same group ID to the desired radio objects. Radio objects with the same
group ID then behave like one single radio object.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

158 CHAPTER 8 Rotary

8.20 Rotary
A rotary object is similar to its emWin counterpart. A Rotary object is a circular object that
can be rotated. The object consists of a background and a marker, both which make use
of a bitmap. When rotating the object, the marker moves along the rotary axis. Depending
on how the user set the scale, values are returned for the rotated degree.

Symbol Example

Properties

Property Description

Bitmaps
• Background: Bitmap used for background of Ro-

tary.
• Marker: Bitmap used for marker of Rotary.

Initial value Initial value of Rotary.

Range
• Positive: Rotation angle CCW in 10th of degrees.
• Negative: Rotation angle CW in 10th of degrees.

Span of values
• Min: Value the object return at CCW limit.
• Max: Value the object return at CW limit.

Offset
This offset angle will make the Rotary appear rotat-
ed by that angle from the beginning. The offset is
measured in 10th of degrees (3600 = 360°).

Radius Radius of the Rotary.
Rotate marker Enables marker rotation.

Marker alignment
Sets an alignment and additional offset to the
marker bitmap.

Period Period how long the marker moves when released.

Snap position
Sets snap positions on the Rotary (in 10th of de-
grees).

Focus options Disables the focus for the Rotary or hides it.

Rotate marker

When activated the marker bitmap is rotated when the Rotary is moved.

Without marker rotation With marker rotation

Snap position

This property sets a position on the Rotary object at which it should snap in place. The snap
position is specified in 10ths of degrees (1800 = 180°).

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

159 CHAPTER 8 Screen

8.21 Screen
A screen is an invisible parent object for all other objects. An application consists of one or
more screens. Interactions are also assigned to one screen.

Symbol Example

Properties

Property Description

Horizontal motion Horizontal motion screen/window partner.
Vertical motion Vertical motion screen/window partner.
Persistent mode Enables persistent mode for screen.
Opaque mode Enables opaque mode for screen.

Horizontal / vertical motion

In case of enabling motion without specifying a partner, the window is simply movable
(horizontal and/or vertical) within the range of the parent window.

Right before a “motion partner” of the screen becomes visible it will be created. As soon as
the partner becomes invisible it will be deleted if not marked as persistent.

Persistent mode

The persistent mode property allows a screen to be persistent, so it does not get deleted
during runtime when it is not visible anymore. It makes sense to use this mode, when the
widgets in a screen are showing values which should not get deleted.

Note

All screens that are in persistent mode are created on start-up of the application.

Opaque mode

Screens are transparent by default. It is important to note that multiple transparent screens
on top of each other that are actually opaque can significantly reduce performance.

Note

Setting a screen to opaque when transparency is not required can significantly improve
performance.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

160 CHAPTER 8 Slider

8.22 Slider
A Slider object is, like the emWin SLIDER widget, a movable thumb on a shaft. By moving
the thumb on the shaft, values can be selected.

Symbol Example

Properties

Property Description

Vertical mode Enables vertical mode.
Invert direction Inverts direction of slider.

Bitmaps

• Shaft left: Bitmap of left part of the shaft.
• Shaft right: Bitmap of right part of the shaft.
• Thumb up: Bitmap of unpressed thumb.
• Thumb down: Bitmap of pressed thumb.

Blend colors

• Shaft left: Color on left part of the shaft to be
blended in.

• Shaft right: Color on right part of the shaft to be
blended in.

Range
• Min: Minimum value of slider.
• Max: Maximum value of slider.

Focus options Disables the focus for the Slider or hides it.

Blend colors

The blend colors setting makes it possible to choose a color for the left and/or right side of
the shaft to blended into the corresponding bitmap.

The below example uses the green shaft bitmaps provided as stock images by the AppWiz-
ard and has the color red set as the blend color for the right side of the shaft.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

161 CHAPTER 8 Switch

8.23 Switch
A switch object works like a switch present on most modern smartphones. It has two states
and can be toggled by clicking on it.

Symbol Example

Properties

Property Description

Bitmaps

• BG-Left: Background bitmap for left state.
• BG-Right: Background bitmap for right state.
• BG-Disabled: Background bitmap for disabled

state.
• Thumb-Left: Thumb bitmap for left state.
• Thumb-Right: Thumb bitmap for right state.
• Thumb-Disabled: Thumb bitmap for disabled

state.
Left text Text displayed in left state.
Right text Text displayed in right state.

Text colors
• Text left: Text color in left state.
• Text right: Text color in right state.

Disable animation
Disables the animation when toggling between the
states.

Font Font to be used for the object.
Period Animation period when clicking the switch.

Fade mode
Enables fade mode which fades the background
bitmaps when switching from right to left state.

Focus options Disables the focus for the Switch or hides it.

Fade mode and disclose mode

By default, a Switch object uses the disclose mode, which means that
when the switch animation is performed or when the thumb is moved, the
old state bitmap will disappear while the new state bitmap will be disclosed.

When set to fade mode, while the switch animation is performed or when
the thumb is moved, the old state bitmap will fade into the new state
bitmap.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

162 CHAPTER 8 Text

8.24 Text
A text object is similar to its emWin counterpart, it is an object displaying a text resource
or a decimal value at a specified position.

Symbol Example

Properties

Property Description

Text color Text color to be used.
Background color Background color of the object.
Framed font color Color of the object used for framed fonts.
Text Text to be displayed.
Decimal mode Enables decimal mode.
Hexadecimal mode Enables hexadecimal mode.
Text alignment Text alignment.
Font Font to be used.
Text wrapping Enables text wrapping.
Text rotation Text rotation mode.

Untouchable
Sets the text object as untouchable and sends any
touch input to the object below.

Decimal mode

Just as decimal mode for the Edit object, with this setting the Text object is only eligible
of holding digits instead of characters. For this mode, a mask of zeros has to be specified
which determines how many digits are shown by the object. More details about the usage
of the mask is explained under Decimal mode on page 101.

Also, when using decimal mode, a range property is added to the object to limit the numbers
that can be entered. More on the range property can be found under Range on page 119.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

163 CHAPTER 8 Timer

8.25 Timer
A timer object represents a GUI_TIMER that can be set to a custom time period and optionally
restarted.

The timer is an object, although unlike the other objects that represent widgets, the timer
object does not have window-specific properties such as position and size. Because of that,
it is also not visible on the screen.

However, it is visible in the hierarchical object tree on the left side of the AppWizard.

Properties

Property Description

Timer period Period of timer.

Auto-restart mode
When this mode is activated, the timer will be
restarted again when it run out using the same time
period.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

164 CHAPTER 8 Wheel

8.26 Wheel
The Wheel object is a swipeable rotating list of items that can show multiple lists of texts
and/or bitmaps.

There are two ways of how the Wheel can be created: morph mode and plain mode.
Examples for each mode can be found further below.

Symbol Example

Properties

Property Description

Morph mode Toggles between morph mode and plain mode.
Endless mode Toggles between endless mode and stop mode.

Horizontal mode
Sets the orientation of the widget to horizontal or
vertical.

Period until stop
Period in ms it takes until the motion movement of
the widget stops.

Cell- and center size
• Cell: Width/height of non-center cells.
• Center: Width/height of center cells.

Colors

• Background Cell: Background color of non-center
cells.

• Background Center: Background color of center
cells.

• Background: Background color used for the wid-
get.

Text Allows for adding lists of texts to the Wheel.
Images Allows for adding lists of bitmaps to the Wheel.

Border
Horizontal/vertical border that can be used to re-
duce the cells in horizontal/vertical size.

Overlay bitmaps
Optional bitmaps that are drawn above the Wheel.
A maximum of three overlay bitmaps can be added.

Overlay alignment Alignment of the overlay bitmaps.

Overlay colors
Colors to be used for the overlay bitmaps (alpha
bitmaps only).

Center frame

• Center frame size: Frame width in pixels of the
frame drawn around the center cell.

• Center frame radius: Frame radius in pixels of the
frame drawn around the center cell.

Color of center frame
Color used to draw the frame around the center
cell.

“Morph mode”-only properties

Size of cutaway
Amount of pixels that are “cut away” (used as spac-
ing) from the non-center cells.

Alignment of cutaway Alignment of the cutaway.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

165 CHAPTER 8 Wheel

Morph mode and plain mode

In plain mode, when a cell is moving into the center, its properties are clipped from the
non-center properties to the center properties.

In morph mode, while a cell is moving into the center, its properties (like text position,
bitmaps, frame radius, …) are morphed into the different center properties.

Plain mode Morph mode

Endless mode

If endless mode is active, the Wheel will not stop at the first or last cell when the user is
swiping through the cells. Instead, it will scroll through the cells continuously.

If endless mode is toggled off, stop mode will be active which means that the Wheel will
stop at the first and last item of the Wheel.

Text

All previously defined content objects defined in the lists window (see Lists window on
page 55) can be added as text to the Wheel. It is possible to add multiple lists of text.

Based on whether the Wheel is in morph or plain mode, the following properties can be
set to the text:

Cell type Plain mode Morph mode

Non-center cell

• Text alignment
• Text alignment offset
• Text color
• Font

• Text alignment
• Text alignment
• Text color
• Font

Center cell

• Text alignment
• Text alignment offset
• Text color
• Font

• Text alignment
• Text color

Images

Similarly to the text lists, multiple lists of bitmaps can also be added to the Wheel.

Bitmaps can be added to the non-center cells and/or the center cells.

The following properties can be set to center and non-center bitmaps:
• Bitmap alignment
• Bitmap alignment offset
• Bitmap color (only for alpha bitmaps)

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

166 CHAPTER 8 Wheel

Overlay

The overlay feature allows a maximum of three bitmaps to be added to the Wheel. These
overlay bitmaps are drawn at a certain position above the Wheel items.

This can be used to create certain visual effects, e.g. a semi-transparent bitmap can be
used as an overlay to highlight the center cell, as shown below.

Without overlay With overlay

Cutaway

Cutaway is the distance that is removed from the non-center cells in morph mode. The
cutaway alignment can be used to define how the cutaway distance should be distributed.

Cutaway options Output

No cutaway

Cutaway of 25px, top aligned

Cutaway of 25px, center aligned

Cutaway of 25px, bottom aligned

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

167 CHAPTER 8 Window

8.27 Window
A window works similar to a screen. It is also invisible and serves as parent object for
objects. Moving/animating the window also moves its objects. A window can have further
child windows. That makes it possible to achieve a hierarchic structure for complex dialogs.

Symbol Example

Properties

Property Description

Horizontal motion Horizontal motion screen/window partner.
Vertical motion Vertical motion screen/window partner.

Opaque mode
Sets the button to opaque and removes its trans-
parency flag.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 9

Interactions

The AppWizard’s interaction window makes it possible to define the application’s behavior
on certain actions. Interactions are always assigned to a screen, meaning two different
screens have different interactions.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

169 CHAPTER 9 Introduction

9.1 Introduction
This section will explain how to set up interactions and describe the terms.

 Select an emitter

First, an emitter for a signal has to be selected. The emitter specifies the ID of the widget
or variable that has to send out a certain signal in order for the interaction’s job to be
executed.

 Select the signal

The second step is to select the signal. The signal is the event that has to occur for the
job to be executed. This could be e.g. WM_NOTIFICATION_CLICKED, which occurs when a
widget was clicked.

For a list of all available signals, see the chapter List of signals on page 172.

 Select the job

The third step is to select a job for this interaction. The job specifies a certain action that
will be done when the above mentioned signal has occurred. This could for example be
SETTEXT to set the text of an Edit object.

For a list of all available jobs, see the chapter List of jobs on page 196.

 Select the receiver

The last step is to select is a receiver for the interaction. The receiver specifies the ID of
the widget or variable the job will be executed for. For example, if the job is SETTEXT, the
receiver has to be an Edit object, whose text will then be set.

 Set up interaction parameters

The final step is to define what the action/job should do with the receiver. This can be done
by clicking on the ’Edit’ symbol of an interaction to set up interaction-specific parameters.
For example for the job ADDVALUE, the user has to specify the value that will be added
to the receiver.

Instead of a permanent value, the user is also able to select a
variable. To do this, click the Set variable button and select a
variable from the dropdown menu.

In the ’Slot’ field, the user can see and may change the name of the slot routine. The slot
routine is the routine, that will be executed for this interaction.

Note

The name of the slot routine must be unique! Otherwise the user code won’t compile.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

170 CHAPTER 9 Introduction

 Add a condition to the interaction (optional)

Optionally, a condition can be set up for the interaction. This condition determines whether
or not the job of the interaction will be executed.

To add a condition to an interaction, click the plus symbol in the condition column. More
information about conditions can be read under Conditions on page 249.

 Add custom user code to the interaction (optional)

The user may edit/insert C code that will be executed upon this interaction. The code may
be added via the “Edit code” dialog or externally via an editor or IDE. More information
about slot routines and where they are located can be read in the chapter Slot routines
on page 272.

Note

The user must not add custom routines to the C files that contain the generated slot
routines! More information about how the user can properly add their own code can
be read under Custom user code on page 274.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

171 CHAPTER 9 Tools for large projects

9.2 Tools for large projects
When creating screens with a large number of interactions, it can be very tedious to find
a specific interaction. For this reason, we have added a filter to the Interactions window
that makes it easy to reduce the number of visible interactions. We have also added the
possibility to disable interactions. This can be useful for testing purposes, for example.

9.2.1 Using the filter
To opening the filter the filter button needs to be pressed:

This opens the filter:

It shows the following fields:
• Emitter
• Signal
• Job
• Receiver
• Comment

Entering text in one or more of them will reduce the shown interactions to those which
include the given text. Please note that this is not case sensitive. Interactions that are
hidden by the filter still remain active and are still executed and saved.

9.2.2 Deactivating interactions
For test purposes it could be helpful to be able to deactivate one or more interactions.
This can be done by selecting them and then open the context window by right clicking
the selection:

Deactivated interactions are shown in gray:

Deactivated interactions remain in the project but they will be ignored when executing the
application.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

172 CHAPTER 9 List of signals

9.3 List of signals
The following section will provide a list of all available signals the user can choose from
for an interaction.

Signal Description

ANIMEND Emitted when an animation has ended.
ANIMSTART Emitted when an animation has started.
CLICKED When the user clicks on an object.
CREATE Emitted when an object was created.
DELETE Emitted when an object was deleted.
ENTER_PRESSED Emitted when ENTER key is pressed.

FIXED
Emitted by a screen or window when a shifting opera-
tion has ended.

GOT_FOCUS When an object gets the focus.
INITDIALOG Emitted right after the application has started.
LANGCHANGED Emitted by the screen when language has changed.
LOST_FOCUS When an object lost its focus.
MOTION Emitted when a user moves a screen by dragging it.
MOTION_STOPPED When the motion of a Rotary object has stopped.
PIDPRESSED Screen received touch input (pressed).
PIDRELEASED Screen lost touch input (released).
RELEASED Once a click on an object has been released.

ROTATED
Emitted by screens after the display orientation has
been changed.

STARTED Emitted after a movie begins playing.
STOPPED Emitted after a movie has stopped playing.
TEXT_CHANGED Emitted when the text of an object has changed.
TIMER Emitted when a given timer has run out.

UNPINNED
Emitted by a screen or window when a shifting opera-
tion has started.

VALUE_CHANGED If the value of an object has changed.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

173 CHAPTER 9 List of signals

9.3.1 ANIMEND

Description

This signal is emitted by an object after an animation paired to the object has ended.

Emitting objects
• Box object
• Button object
• Edit object
• Gauge object
• Image object
• Progbar object
• Rotary object
• Slider object
• Switch object
• Text object
• Window object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

174 CHAPTER 9 List of signals

9.3.2 ANIMSTART

Description

This signal is emitted by an object after an animation paired to the object has started.

Emitting objects
• Box object
• Button object
• Edit object
• Gauge object
• Image object
• Progbar object
• Slider object
• Switch object
• Text object
• Window object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

175 CHAPTER 9 List of signals

9.3.3 CLICKED

Description

This signal is emitted when the user clicks on an object.

Emitting objects
• Box object
• Button object
• Checkbox object
• Dropdown object
• Edit object
• Listbox object
• Listview object
• Movie object
• Multiedit object
• Radio object
• Rotary object
• Slider object
• Switch object
• Wheel object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

176 CHAPTER 9 List of signals

9.3.4 CREATE

Description

This signal is emitted right after an object has been created. The Window Manager equiv-
alent is WM_CREATE.

Emitting objects
• Screen object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

177 CHAPTER 9 List of signals

9.3.5 DELETE

Description

This signal is emitted right after an object has been deleted. The Window Manager equiv-
alent is WM_DELETE.

Emitting objects
• Screen object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

178 CHAPTER 9 List of signals

9.3.6 ENTER_PRESSED

Description

This signal is emitted when the ENTER key is pressed.

Emitting objects
• Edit object
• Multiedit object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

179 CHAPTER 9 List of signals

9.3.7 FIXED

Description

This signal is emitted by screens or windows when a shifting operation has ended.

Emitting objects
• Screen object
• Window object

See also
• UNPINNED
• SHIFTSCREEN
• SHIFTWINDOW

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

180 CHAPTER 9 List of signals

9.3.8 GOT_FOCUS

Description

This signal is emitted when an object has gotten the focus.

Emitting objects
• Button object
• Checkbox object
• Dropdown object
• Edit object
• Listbox object
• Listview object
• Multiedit object
• Radio object
• Rotary object
• Slider object
• Switch object
• Wheel object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

181 CHAPTER 9 List of signals

9.3.9 INITDIALOG

Description

This signal is emitted right after the application has started. The Window Manager equiv-
alent is WM_INIT_DIALOG.

Emitting objects
• Screen object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

182 CHAPTER 9 List of signals

9.3.10 LANGCHANGED

Description

This signal is emitted by the screens after the language has been changed.

Emitting objects
• Screen object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

183 CHAPTER 9 List of signals

9.3.11 LOST_FOCUS

Description

This signal is emitted when an object lost its focus.

Emitting objects
• Button object
• Checkbox object
• Dropdown object
• Edit object
• Listbox object
• Listview object
• Multiedit object
• Radio object
• Rotary object
• Slider object
• Switch object
• Wheel object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

184 CHAPTER 9 List of signals

9.3.12 MOTION

Description

This signal is emitted when a screen object has been moved by the user dragging it. The
Window Manager equivalent is WM_MOTION.

Emitting objects
• Screen object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

185 CHAPTER 9 List of signals

9.3.13 MOTION_STOPPED

Description

This signal is emitted when the motion of a Rotary object has stopped.

Emitting objects
• Rotary object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

186 CHAPTER 9 List of signals

9.3.14 PIDPRESSED

Description

This signal is emitted by screens when PID is pressed. The signal is sent to all existing
screens in the project.

Emitting objects
• Screen object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

187 CHAPTER 9 List of signals

9.3.15 PIDRELEASED

Description

This signal is emitted by screens when PID is released. The signal is sent to all existing
screens in the project.

Emitting objects
• Screen object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

188 CHAPTER 9 List of signals

9.3.16 RELEASED

Description

This signal is emitted once a click on an object has been released.

Emitting objects
• Box object
• Button object
• Checkbox object
• Dropdown object
• Edit object
• Listbox object
• Listview object
• Movie object
• Multiedit object
• Radio object
• Rotary object
• Slider object
• Switch object
• Wheel object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

189 CHAPTER 9 List of signals

9.3.17 ROTATED

Description

This signal is emitted by screens after the display orientation has been changed. The signal
is sent to all existing screens in the project.

Emitting objects
• Screen object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

190 CHAPTER 9 List of signals

9.3.18 STARTED

Description

This signal is emitted by a movie after it has been started.

Emitting objects
• Movie object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

191 CHAPTER 9 List of signals

9.3.19 STOPPED

Description

This signal is emitted by a movie after it has been stopped.

Emitting objects
• Movie object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

192 CHAPTER 9 List of signals

9.3.20 TEXT_CHANGED

Description

This signal is emitted when the text of an object has been changed.

Emitting objects
• Edit object
• QRCode object
• Text object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

193 CHAPTER 9 List of signals

9.3.21 TIMER

Description

This signal is emitted when a given timer has run out. To run a timer, a timer object has
to be created and started using the job START.

Emitting objects
• Timer object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

194 CHAPTER 9 List of signals

9.3.22 UNPINNED

Description

This signal is emitted by screens or windows when a shifting operation has started.

Emitting objects
• Screen object
• Window object

See also
• FIXED
• SHIFTSCREEN
• SHIFTWINDOW

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

195 CHAPTER 9 List of signals

9.3.23 VALUE_CHANGED

Description

This signal is emitted when the value of an object has changed.

Emitting objects
• Button object
• Edit object
• Gauge object
• Progbar object
• Rotary object
• Slider object
• Switch object
• Text object
• Variables
• Wheel object

Additional information

By default, the custom value option is disabled. This means, the value of the emitting object
will be directly passed to the receiver and process the value depending on the selected job.
This can be useful for jobs like SETVALUE, but it certainly does not work for all jobs.

When clicking the button Use custom defined value, a custom value can be entered,
which will be sent to the receiver.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

196 CHAPTER 9 List of jobs

9.4 List of jobs
The table below shows all jobs available for interactions. These jobs can either be used
within the AppWizard tool in the interaction window or executed by user code with the
function APPW_DoJob().

Job Description

ACTUATE Generates PID events in order to actuate objects.
ADDVALUE Adds a given increment to the given object.
ADDITEM Appends text from object/resource to a given object.
ANIMCREATE Creates an animation.
ANIMSTART Starts an animation.
ANIMSTOP Stops a running animation.
CALC Calculates the value of a variable using the given term.
CLEAR Clears the state of the given object.

CLOSESCREEN
Closes a given screen to go back to the screen that is be-
hind.

DELITEM Deletes the specified item from the given object.
ENABLEPID Enables or disables PID input.
EXIT Stops the application.
INSITEM Insert text to a given object.
INVALIDATE Invalidates a given object.
MODALMESSAGE Creates and shows a modal dialog.

MOVETO
Moves an object’s selection to a given value with an anima-
tion.

ROTATEDISPLAY Rotates the display to the desired orientation.
SCREENSHOT Takes a screenshot of the display.
SET Sets the state of the given object.
SETALPHA Sets the alpha value of an object.
SETANGLE Sets the rotation angle of an object.
SETBITMAP Sets a bitmap to an object.
SETBKCOLOR Sets the background color of the given object.
SETCOLOR Sets the color of the given object.
SETCOORD Sets a coordinate.
SETENABLE Enables the given object.
SETEND Sets the end value/angle of the given object.
SETFOCUS Sets focus to a given object.

SETFONT
Sets one of the given fonts depending on the current lan-
guage.

SETITEM Text transfer from/to a given object.
SETLANG Sets the language index of an object.
SETPERIOD Sets the period of an object.
SETRANGE Sets the range of the given object.
SETSCALE Sets a scaling value to an object.
SETSIZE Sets the size of the given object.
SETSTART Sets the start value/angle of the given object.
SETTEXT Sets the text of the given object.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

197 CHAPTER 9 List of jobs

Job Description

SETVALUE Sets a value.
SETVIS Makes the given object visible.
SETX0 Sets the x0-coordinate of an object.
SETY0 Sets the y0-coordinate of an object.
SETX1 Sets the x1-coordinate of an object.
SETY1 Sets the y1-coordinate of an object.
SHIFTSCREEN Shifts into the given screen using the given method.
SHIFTWINDOW Shifts in a window using the given method.
SHOWSCREEN Makes the given screen visible.
START Starts a given timer object.
STOP Stops a given timer object.
TOGGLE Toggles the state of the given object.
NULL Used for only executing custom user code.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

198 CHAPTER 9 List of jobs

9.4.1 ACTUATE

Description

This job generates PID events in order to actuate existing objects on the screen. It is able
to generate simple up/down-events as well as linear and circular dragging operations on
the screen by selecting the desired actuation mode. That makes it possible to actuate for
example sliders with linear dragging operatins as well as rotaries with circular dragging
operatins. The specified object only serves as a basis for the coordinates. The parameters
differ depending on the mode selected.

Interaction parameters of dialog

Parameter Description

Object id Id of object to be used for coordinate calculation.
Desired actuation Drag linear, Drag CCW, Drag CW, Down & Up, Down or Up.
Ease Ease func (Dragging only).
Period Period for whole dragging operation (Dragging only).

Interaction parameters for mode 'Drag linear'

Parameter Description

First position (x / y) Start position relative to the selected object.
Last position (x / y) End position relative to the selected object.

Interaction parameters for mode 'Drag CCW' and 'Drag CW'

Parameter Description

Start/End angle (10th) Start- and end angle in 10th of degrees.
Radius / - Radius to be used.

(Center point for rotation is the center point of the selected object)

Interaction parameters for mode 'Down & Up'

Parameter Description

Down position (x / y) Position for down event relative to the selected object.
Up position (x / y) Position for up event relative to the selected object.

Interaction parameters for mode 'Down'

Parameter Description

Down position (x / y) Position for down event relative to the selected object.

Interaction parameters for mode 'Up'

Parameter Description

Up position (x / y) Position for up event relative to the selected object.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

199 CHAPTER 9 List of jobs

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v ID of the object used for coordinate calculation.

aPara[1].v

Drag linear: xPos0 (LWord) yPos0 (HWord), Drag CCW/Drag
CW: start angle (LWord) end angle (HWord), Down & Up: xPos
down (LWord) yPos down (HWord), Down/Up: xPos (LWord) yPos
(HWord).

aPara[2].v
Drag linear: xPos1 (LWord) yPos1 (HWord), Drag CCW/Drag CW:
radius (LWord), Down & Up: xPos up (LWord) yPos up (HWord)

aPara[3].v
Actuation mode: 0 - Drag linear, 1 - Drag CCW, 2 - Drag CW, 3 -
Down & Up, 4 - Down, 5 - Up

aPara[4].v Drag linear/Drag CCW/Drag CW: Pointer to ease fnuc
aPara[5].v Drag linear/Drag CCW/Drag CW: Period for whole operation

Additional information

Similar effects can be achieved with this interaction as with animations. But with the dif-
ference that PID animations are much simpler than animations. Furthermore, it is possible
to react to events such as PRESSED or RELEASED, which is unfortunately not possible with
a SETVALUE interaction.

Note

It is not possible to execute more than one PID-actuation simultaneous. During a PID-
actuation the touch screen is blocked and does not react on input.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

200 CHAPTER 9 List of jobs

9.4.2 ADDVALUE

Description

Adds a given increment to the given object.

Receiving objects
• Text object
• Progbar object
• Rotary object

Interaction parameters of dialog

Parameter Description

Value Value to be added.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Value to be added.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

201 CHAPTER 9 List of jobs

9.4.3 ADDITEM

Description

This job is used for the transaction of text. The source of the text to be added can be either
a text from the text resources or a text-based object from any screen. It should be noted
that the corresponding object must be in memory. The object specified as ’Receiver’ serves
as the target of the transaction. The following dialog is used to specify the job:

The fields ’Source row’ and ’Source column’ are not used in any case. If the source is an
object with only one field, such as an EDIT or a TEXT object, both specifications are ignored.
If the source is a LISTBOX or a DROPDOWN object, only ’Source row’ is used. Only with a
LISTVIEW object both specifications are used. The same applies to the target object. The
’Destination column’ field is only needed if the target object is a LISTVIEW object.

Receiving objects
• Dropdown object
• Listbox object
• Listview object
• Wheel object

Interaction parameters of dialog

Parameter Description

Type of resource Determines if an object or a text resource should be used.
Text/object id Screen- and object id of object or resource id of text.
Source row Used in case of a source object with multiple rows.
Source column Used in case of a source object with multiple columns.
Destination col-
umn

Column to add the text to. Only used if target object is a
LISTVIEW.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Type: 0 = text resource, 1 = object
aPara[1].v 0: text resource Id, 1: HB/LB: Screen Id/Object Id
aPara[2].v Source: Row index (Listview, Dropdown, Listbox)
aPara[3].v Source: Column index (Listview only)
aPara[4].v Destination: Column index (Listview only)

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

202 CHAPTER 9 List of jobs

9.4.4 ANIMCREATE

Description

Creates an animation that has previously been defined in the animation interface.

Interaction parameters of dialog

Parameter Description

Animation Id ID of the predefined animation.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v ID of the predefined animation.

Additional information

More information about how animations can be created can be read under Animations on
page 258.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

203 CHAPTER 9 List of jobs

9.4.5 ANIMSTART

Description

Starts an animation that has been previously defined and created with the job ANIMCREATE.

Interaction parameters of dialog

Parameter Description

Animation Id ID of the animation.

Number of loops
Number of loops the animation should run. -1 if it should run
endlessly.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v ID of the animation.

aPara[1].v
Number of loops the animation should run. -1 if it should run
endlessly.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

204 CHAPTER 9 List of jobs

9.4.6 ANIMSTOP

Description

Creates an animation that has previously been defined in the animation interface.

Interaction parameters of dialog

Parameter Description

Animation Id ID of the animation.
Delete animation If the animation should be deleted after it has been stopped.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v ID of the animation.

aPara[1].v
1 if the animation should be deleted after stopping, 0 if it should
remain.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

205 CHAPTER 9 List of jobs

9.4.7 CALC

Description

Calculates the new value of a variable using the set term. If this results in a changed value,
the variable will emit a VALUE_CHANGED signal.

Receiving objects
• Variables

Term calculation

A detailed description on how a calculation term can be added to a variable can be found
under Calculations.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

206 CHAPTER 9 List of jobs

9.4.8 CLEAR

Description

Sets the state of the given object to its default state. For example, when executing this job
on a Switch object, it will be set to the ’left state’.

Receiving objects
• Button object
• Switch object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

207 CHAPTER 9 List of jobs

9.4.9 CLOSESCREEN

Description

Closes a given screen. When the screen is closed, the screen that was behind is shown
again.

Interaction parameters of dialog

Parameter Description

Screen ID ID of the screen to be closed.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Screen Id.

Additional information

It should be made sure of that there is another screen behind the screen to be deleted,
otherwise nothing will be shown. Therefore, the screen opening the screen that performs
the CLOSESCREEN job should not be moved out via SHIFTSCREEN. Rather, the other screen
should be shown using SHOWSCREEN.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

208 CHAPTER 9 List of jobs

9.4.10 DELITEM

Description

Deletes the given row from the given object.

Receiving objects
• Dropdown object
• Listbox object
• Listview object
• Wheel object

Interaction parameters of dialog

Parameter Description

Row index Index of row to be deleted.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Item index to be deleted.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

209 CHAPTER 9 List of jobs

9.4.11 ENABLEPID

Description

Enables, disables or toggles PID input for the application. This job has no receiving object,
since it will alter the state of PID input for the entire application.

Interaction parameters of dialog

Parameter Description

Enabled state State of PID input for the job: On, Off or Toggle.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v PID input. 1 = On, 0 = Off.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

210 CHAPTER 9 List of jobs

9.4.12 EXIT

Description

Stops the application by jumping out of the applications super loop.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

211 CHAPTER 9 List of jobs

9.4.13 INSITEM

Description

This job is used to insert text into the given object. The source of the text to be set can be
either a text from the text resources or a text-based object from any screen. It should be
noted that the corresponding object must be in memory. The object specified as ’Receiver’
serves as the target of the transaction. The following dialog is used to specify the job:

The fields ’Source row’ and ’Source column’ are not used in any case. If the source is an
object with only one field, such as an EDIT or a TEXT object, both specifications are ignored.
If the source is a LISTBOX or a DROPDOWN object, only ’Source row’ is used. Only with a
LISTVIEW object both specifications are used. The same applies to the target object.

Receiving objects
• Dropdown object
• Listbox object
• Listview object
• Wheel object

Interaction parameters of dialog

Parameter Description

Type of resource Determines if an object or a text resource should be used.
Text/object id Screen- and object id of object or resource id of text.
Source row Used in case of a source object with multiple rows
Source column Used in case of a source object with multiple columns
Destination row Used in case of a destination object with multiple rows
Destination col-
umn

Used in case of a destination object with multiple columns

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Type: 0 = Text resource, 1 = Object
aPara[1].v 0: Text resource Id, 1: HB/LB: Screen Id/Object Id
aPara[2].v Source: Row index (Listview, Dropdown, Listbox)
aPara[3].v Source: Column index (Listview only)
aPara[4].v Destination: Row index (Listview, Dropdown, Listbox)
aPara[5].v Destination: Column index (Listview only)

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

212 CHAPTER 9 List of jobs

9.4.14 INVALIDATE

Description

Triggers a redraw (invalidates) the given object.

Receiving objects

This job can be executed for all objects.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

213 CHAPTER 9 List of jobs

9.4.15 MODALMESSAGE

Description

Shows a given screen above the current screen as a modal message dialog. To hide the
modal screen, the job CLOSESCREEN has to be executed on the modal screen.

Receiving objects
• Screen object

Interaction parameters of dialog

Parameter Description

Screen ID ID of the screen to be shown as a modal message.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Screen ID.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

214 CHAPTER 9 List of jobs

9.4.16 MOVETO

Description

Moves an object’s selection to a given value with an animation.

Receiving objects
• Wheel object

Interaction parameters of dialog

Parameter Description

Value New index.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v New index.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

215 CHAPTER 9 List of jobs

9.4.17 ROTATEDISPLAY

Description

Rotates the display to the desired orientation.

The field ’Set desired orientation’ allows to set a specific orientation or turn to the display
clockwise (right) or counterclockwise (left).

Interaction parameters of dialog

Parameter Description

Rotation Rotation command.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Rotation command

Rotation command

The following table shows the available commands:

Command Description

GUI_ROTATION_0 Default orientation
GUI_ROTATION_CW Clockwise rotation 90°
GUI_ROTATION_180 Upside down 180°
GUI_ROTATION_CCW Counterclockwise rotation 90°
GUI_ROTATION_LEFT Counterclockwise rotation to the left by 90°
GUI_ROTATION_RIGHT Clockwise rotation to the right by 90°

Additional information

Note that in case of using hardware accelleration like D/AVE 2D or Chrom-ART the hardware
accelleration will be disabled in other rotation modes than the default orientation.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

216 CHAPTER 9 List of jobs

9.4.18 SCREENSHOT

Description

Takes a screenshot of the current screen.

Playmode & Simulation

In play mode and simulation the screenshots are saved in the ’Screenshots’ sub folder of
the project.

Screenshots on target hardware

If screenshots on the target hardware are required, a screenshot function needs to be set
with APPW_SetScreenshotFunc(). In this case, it is up to the user to decide how and where
to save the screenshots.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

217 CHAPTER 9 List of jobs

9.4.19 SET

Description

Sets the state of the given object to its “pressed” state. This means, e.g. when executed
on a Button object, it will be in its pressed state and when executed on a Switch object
it will be in its ’right state’.

Receiving objects
• Button object
• Switch object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

218 CHAPTER 9 List of jobs

9.4.20 SETALPHA

Description

Sets the alpha value of an Image object. This job only has an effect if an alpha bitmap is
set to the Image object.

Receiving objects
• Image object

Interaction parameters of dialog

Parameter Description

Alpha New alpha value to be set.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v New alpha value to be set.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

219 CHAPTER 9 List of jobs

9.4.21 SETANGLE

Description

Sets the rotation angle of an Image object.

Receiving objects
• Image object

Interaction parameters of dialog

Parameter Description

Angle
New rotation angle to be set, angle in degrees * 1000 (e.g.
45000 equals 45°).

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v New rotation angle to be set.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

220 CHAPTER 9 List of jobs

9.4.22 SETBITMAP

Description

Sets a bitmap to an image or button object.

Receiving objects
• Button object
• Image object

Interaction parameters of dialog

Parameter Description

Bitmap New bitmap to be set.
Index Index of button bitmap. See below for more information.

Bitmap index

The bitmap index parameter is only used if the receiving object is a Button. The index is
used to determine the state the bitmap is used for.

Index Bitmap

0 Bitmap for unpressed state.
1 Bitmap for pressed state.
2 Bitmap for disabled state.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

221 CHAPTER 9 List of jobs

9.4.23 SETBKCOLOR

Description

Sets the background color of the given object.

Receiving objects
• Button object

Interaction parameters of dialog

Parameter Description

Background color New background color to be used.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Background color to be used.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

222 CHAPTER 9 List of jobs

9.4.24 SETCOLOR

Description

Sets the color of the given object.

Receiving objects
• Box object
• Button object
• CheckbBox object
• Dropdown object
• Edit object
• Gauge object
• Image object
• Keyboard object
• Listbox object
• Listview object
• Movie object
• Multiedit object
• Progbar object
• Radio object
• Switch object
• Text object

Interaction parameters of dialog

Parameter Description

Color New color to be used.
Index Index of color. See table below.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Color to be used.
aPara[1].v Index of state.

Setting the color of alpha bitmaps

If an alpha bitmap is added to an Image object, the color used for drawing the bitmap can
be changed using this job. More information can be found under Image.

Color index

The color index parameter depends on the receiving object. Independent of the color index
parameter it changes the foreground/text color oft the following objects:
• BOX (Without gradient)
• EDIT
• IMAGE (Alpha channel bitmaps only)
• TEXT
• RADIO
• CHECKBOX

BOX

Index Color

- Without gradient
0-n With gradient: Index of color

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

223 CHAPTER 9 List of jobs

BUTTON

Index Color

0 Color for unpressed state.
1 Color for pressed state.
2 Color for disabled state.

DROPDOWN

Index Color

0 Unselected element.
1 Selected element, without focus.
2 Selected element, with focus.

GAUGE

Index Color

0 Color for background line.
1 Color for foreground line.

KEYBOARD

Index Color

0 Color of key.
1 Color of function key, such as shift.
2 Pressed color of a key.
3 Text color of character on a key.
4 Text color of long press character on a key.
5 Background color of widget.
6 Color of shift-lock symbol.

LISTBOX

Index Color

0 Color of unselected element.
1 Color of selected element, without focus.
2 Color of selected element, with focus.
3 Color of disabled element.

LISTVIEW

Index Color

0 Color of unselected element.
1 Color of selected element, without focus.
2 Color of selected element, with focus.
3 Color of disabled element.

MOVIE

Index Color

0 Color for center bitmap.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

224 CHAPTER 9 List of jobs

Index Color

1 Color for panel bitmaps.
2 Color for background if MOVIE does not fill the complete widget area.
3 Color for progress bar (left).
4 Color for progress bar (right).

MULTIEDIT

Index Color

0 Color for text in normal mode.
1 Color for text in read only mode.

PROGBAR

Index Color

0 Color for left part.
1 Color for right part.
2 Color for frame.

SWITCH

Index Color

0 Color for left text.
1 Color for right text.
2 Text color for disabled state.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

225 CHAPTER 9 List of jobs

9.4.25 SETCOORD

Description

Sets a coordinate of an object.

Receiving objects
• Box object
• Button object
• Edit object
• Image object
• Progbar object
• Rotary object
• Slider object
• Switch object
• Text object
• Window object

Interaction parameters of dialog

Parameter Description

Value New coordinate of the object.
Coordinate Axis of the coordinate to be set.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Value.

aPara[1].v
Index of coordinate. See Dispose indexes on page for a list
of legal values.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

226 CHAPTER 9 List of jobs

9.4.26 SETENABLE

Description

Sets the ’enabled’ state of a given object. The receiving object will be either enabled or
disabled, depending which ’enabled’ state was specified in the interaction parameters.

Receiving objects
• Button object
• Edit object
• Rotary object
• Slider object
• Switch object

Interaction parameters of dialog

Parameter Description

Enable state
New enable state of the object. This can be set to either on, off
or toggled.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Enable state. 1 = on, 0 = off.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

227 CHAPTER 9 List of jobs

9.4.27 SETEND

Description

Sets the end angle of a given object.

Receiving objects
• Gauge object

Interaction parameters of dialog

Parameter Description

Ang1 End angle.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v End angle in 10th of degrees.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

228 CHAPTER 9 List of jobs

9.4.28 SETFOCUS

Description

Sets the focus onto a given object.

Receiving objects
• Button object
• Edit object
• Multiedit object
• Rotary object
• Slider object
• Switch object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

229 CHAPTER 9 List of jobs

9.4.29 SETFONT

Description

When defining a SETFONT job a list of fonts can be passed to the given object. Ideally the
command passes one font for each language. The object then automatically takes the font
with the index of the current language:

When clicking on the list of fonts a dialog for composing a set of fonts appears:

This list of fonts then is used to select the right font depending on the current language.

Receiving objects
• Button object
• Checkbox object
• Dropdown object
• Edit object
• Listbox object
• Listview object
• Multiedit object
• Radio object
• Switch object
• Text object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

230 CHAPTER 9 List of jobs

9.4.30 SETITEM

Description

This job is used for the transaction of text. The source of the text to be set can be either
a text from the text resources or a text-based object from any screen. It should be noted
that the corresponding object must be in memory. The object specified as ’Receiver’ serves
as the target of the transaction. The following dialog is used to specify the job:

The fields ’Source row’ and ’Source column’ are not used in any case. If the source is an
object with only one field, such as an EDIT or a TEXT object, both specifications are ignored.
If the source is a LISTBOX or a DROPDOWN object, only ’Source row’ is used. Only with a
LISTVIEW object both specifications are used. The same applies to the target object.

Receiving objects
• Button object
• Edit object
• Dropdown object
• Listbox object
• Listview object
• Multiedit object
• QRCode object
• Text object
• Wheel object

Interaction parameters of dialog

Parameter Description

Type of resource Determines if an object or a text resource should be used.
Text/object id Screen- and object id of object or resource id of text.
Source row Used in case of a source object with multiple rows
Source column Used in case of a source object with multiple columns
Destination row Used in case of a destination object with multiple rows
Destination col-
umn

Used in case of a destination object with multiple columns

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Type: 0 = Text resource, 1 = Object
aPara[1].v 0: Text resource Id, 1: HB/LB: Screen Id/Object Id
aPara[2].v Source: Row index (Listview, Dropdown, Listbox)

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

231 CHAPTER 9 List of jobs

Parameter Description

aPara[3].v Source: Column index (Listview only)
aPara[4].v Destination: Row index (Listview, Dropdown, Listbox)
aPara[5].v Destination: Column index (Listview only)

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

232 CHAPTER 9 List of jobs

9.4.31 SETLANG

Description

Sets the language of the application to the given index.

Interaction parameters of dialog

Parameter Description

Language index
Index of the new language to be set. The index is the zero-based
column number of the language seen in the text management di-
alog.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Index of language.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

233 CHAPTER 9 List of jobs

9.4.32 SETPERIOD

Description

Sets the period of an object.

Receiving objects
• Wheel object

Interaction parameters of dialog

Parameter Description

Period New period to be set.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v New period to be set.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

234 CHAPTER 9 List of jobs

9.4.33 SETRANGE

Description

Sets the range to be used for the given object.

Receiving objects
• Edit object
• Gauge object
• Progbar object
• Rotary object
• Slider object

Interaction parameters of dialog

Parameter Description

Start Start value to be used.
End End value to be used.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Start value.
aPara[1].v End value.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

235 CHAPTER 9 List of jobs

9.4.34 SETSCALE

Description

Sets a scaling value to an Image object.

Receiving objects
• Image object

Interaction parameters of dialog

Parameter Description

Value
New scaling value to be set, scaling factor * 1000 (e.g. 2000
equals 200% scale).

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v New scaling value to be set.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

236 CHAPTER 9 List of jobs

9.4.35 SETSIZE

Description

Sets the size of the given object.

Receiving objects
• Box object
• Button object
• Edit object
• Image object
• Progbar object
• Rotary object
• Slider object
• Switch object
• Text object
• Window object

Interaction parameters of dialog

Parameter Description

Value New size value.

Dimension
Either X- or Y-axis where the new size value should be applied
to.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Value to be used.
aPara[1].v Index of axis.

Additional information

In order for this job to work, the size of the object must be editable. If all coordinates are
relative, there is no size to be edited.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

237 CHAPTER 9 List of jobs

9.4.36 SETSTART

Description

Sets the start angle of a given object.

Receiving objects
• Gauge object

Interaction parameters of dialog

Parameter Description

Ang0 Start angle.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Start angle in 10th of degrees.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

238 CHAPTER 9 List of jobs

9.4.37 SETTEXT

Description

Sets the text of a given object.

Receiving objects
• Text object
• Button object

Interaction parameters of dialog

Parameter Description

Text ID of the text to be used.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Text Id. Only if aPara[0].p = NULL.
aPara[0].p Handle. Only if aPara[0].v < 0.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

239 CHAPTER 9 List of jobs

9.4.38 SETVALUE

Description

With this job the value of an object can be set. For most objects, this is a numerical value,
except for the Text and Edit objects, where this job sets the corresponding text.

Receiving objects
• Button object
• Edit object
• Gauge object
• Progbar object
• Rotary object
• Slider object
• Switch object
• Text object
• Variables
• Wheel object

Interaction parameters of dialog

Parameter Description

Value New value or text to be set to the object.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Value to be set.

Additional information

Instead of a permanent value, the user can also choose a variable.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

240 CHAPTER 9 List of jobs

9.4.39 SETVIS

Description

Sets the visibility of the given object to either on or off.

Receiving objects
• Box object
• Button object
• Edit object
• Image object
• Progbar object
• Rotary object
• Slider object
• Switch object
• Text object
• Window object

Interaction parameters of dialog

Parameter Description

Visibility
New visibility of the object. This can be either set to on, off or
toggled.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Visibility flag. 1 = on, 0 = off.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

241 CHAPTER 9 List of jobs

9.4.40 SETX0

9.4.41 SETY0

9.4.42 SETX1

9.4.43 SETY1

Description

Sets the corresponding coordinate of an object.

Interaction parameters of dialog

Parameter Description

Value Value to be set.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Value to be set.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

242 CHAPTER 9 List of jobs

9.4.44 SHIFTSCREEN

Description

Shifts into the given screen with an animation that the user defines.

Receiving objects
• Screen object

Interaction parameters of dialog

Parameter Description

Screen ID ID of the screen to be shifted in.
Edge Edge the old screen should be moved to.

Ease
Animation style to be used. See the chapter ’Animations’ in the
emWin manual for reference.

Period Period in ms how long the animation will last.
Disclose If disclose mode should be used.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Screen Id.
aPara[1].v Index of edge.
aPara[2].pFunc Pointer to ease function.
aPara[3].v Animation period.
aPara[4].v If 1, disclose mode is used.

Additional information

Note that screens which are not being marked as persistent (see explanation in sub-chapter
Screen on page 159) will be deleted after they have been shifted out of the display area.

Please note that this job requires a motion partner for the screen to work. A motion partner
can be defined in the property Motion partner on page 111.

Example

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

243 CHAPTER 9 List of jobs

9.4.45 SHIFTWINDOW

Description

Shifts a window in with a user-defined animation. This job is similar to SHIFTSCREEN.

Interaction parameters of dialog

Parameter Description

Window ID ID of the window to be shifted in.
Edge Edge of the screen the window should be moved to.

Ease
Animation style to be used. See the chapter ’Animations’ in the
emWin manual for reference.

Period Period in ms how long the animation will last.
Disclose If disclose mode should be used.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Window Id.
aPara[1].v Index of edge.
aPara[2].pFunc Pointer to ease function.
aPara[3].v Animation period.
aPara[4].v If 1, disclose mode is used.

Additional information

Please note that this job requires a motion partner for the window to work. A motion partner
can be defined in the property Motion partner on page 111.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

244 CHAPTER 9 List of jobs

9.4.46 SHOWSCREEN

Description

This job makes the given screen instantly visible. There are no animation options for this
job.

Receiving objects
• Screen object

Interaction parameters of dialog

Parameter Description

Screen ID ID of the screen to be shown.

Job-specific parameters passed to slot-routine

Parameter Description

aPara[0].v Screen Id.

Additional information

After the new screen is visible the AppWizard tries to check which screen is ’behind’ the
new one. This is done by checking which screen is visible at the midpoint ’behind’ the new
screen. If there is a screen which is not marked as persistent (see explanation in sub-
chapter Screen on page 159) it will be deleted.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

245 CHAPTER 9 List of jobs

9.4.47 START

Description

This job starts a given timer with the set period.

Receiving objects
• Timer object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

246 CHAPTER 9 List of jobs

9.4.48 STOP

Description

This job stops a given timer.

Receiving objects
• Timer object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

247 CHAPTER 9 List of jobs

9.4.49 TOGGLE

Description

Toggles the ’pressed’ state of the given object. For example, when executing this job on
a Switch it will toggle between its left and right state and when executing on a Button, it
will toggle between its pressed and unpressed state.

Receiving objects
• Button object
• Switch object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

248 CHAPTER 9 List of jobs

9.4.50 NULL

Description

Specifying a job to NULL gives the user the option to simply add custom code to the inter-
action and do nothing else.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

249 CHAPTER 9 Conditions

9.5 Conditions

9.5.1 Introduction
A condition can be optionally added to an interaction. When a condition is added, the job
of the interaction will only be executed, if the term of the condition is true. This allows the
user to even add complex logic to the application.

Adding a condition

As hinted before, a condition can only be added to an existing interaction. A condition can
be added by clicking the plus symbol in the condition column in the interaction window.

Editing or deleting a condition

A condition can be edited or removed from an interaction by clicking on the pen icon in the
condition column in the interaction window.

9.5.2 Terms and operands
A term is made up from operands (such as A, B, C, …) and logical operators.

Comparisons and operands

Each operand is a validation of a comparison between two values. The values to be com-
pared can be:
• constants,
• variables and
• objects (meaning objects that have a value, such as sliders, gauges, edits in decimal

mode, …).

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

250 CHAPTER 9 Conditions

The operators for comparison are:

• < (less than)
• <= (less than or equal)
• = (equal)
• >= (greater than or equal)
• > (greater than)
• != (not equal)

Note

For each comparison, an operand is added. The operand is named by a letter of the
alphabet, starting with A. This means, the maximum number of operands to be added
for a condition is limited to 26.

Term

When the operands have been added, a term can be set up. The term consists of the added
operands and logical operators. the logical operators that can be used are:

• & (AND)
• | (OR)
• ^ (XOR)
• ! (NOT)

Furthermore, brackets (and) can be used.

The interface allows the user to enter the term using the buttons or manually enter it via
the keyboard. For each operand, an individual button is added.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

251 CHAPTER 9 Conditions

The four left-most buttons are used for moving the cursor, deleting characters and inserting
spaces. Buttons with operators or operands that may not be inserted at the current position
appear grayed out.

When using the keyboard to enter the term, any operators or operands not currently ap-
plicable to the term are ignored.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 10

Variables

The user can add variables to the project which can be processed by the application. Vari-
ables can also be manipulated from outside of the application.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

253 CHAPTER 10 Variable management

10.1 Variable management
The variable window allows the user to manage the variables for the current project. The
management dialog can be opened by clicking the “Variables” button in the bottom left
corner of AppWizard.

New variables can be added by pressing the Add variable button and they can be deleted
by pressing the Delete variable button.

Using the buttons with the upwards and downwards arrows will move the selected variable
either up or down, depending on the button.

After a variable has been created, it may be used for an interaction or can be manipulated
from user code using APPW_SetValue().

Initial value

The value in the “Value” column of a variable can be edited. This value will be assigned to
the variable upon start of the application.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

254 CHAPTER 10 Calculations

10.2 Calculations
Introduction

By adding a term to a variable, the value of that variable will be calculated using the given
term. A term can be calculated from other variable values, object values or constant values.
This allows for a much more detailed application logic inside AppWizard projects.

Adding a calculation

To add a term to a variable, click the “+” in the “Term” column of the variable management
dialog.

10.2.1 Terms and operands
A term is made up from operands (such as A, B, C, …) and operators.

10.2.1.1 Operands
To create a term, operands have be added in the first place. Operands are values that can
be derived from:
• Object Value
• Variable
• Object Geometry
• Screen Geometry
• Object Property
• Fixed Value

Object Value

They can be used from objects which have a ’value’ available:
• Button object

Returns 1 for pressed and 0 for unpressed state.
• Dropdown object

Returns the index of the currently selected item.
• Text object
• Edit object

If object is in decimal mode the current value is returned.
• Progbar object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

255 CHAPTER 10 Calculations

• Rotary object
• Slider object
• Gauge object

Returns the current value.
• Listbox object
• Wheel object

Returns the index of the currently selected item.
• Listview object

Returns the index of the currently selected row.
• Movie object

Returns the current frame index.
• Switch object

Returns 1 for on and 0 for off.

Variable

Means obviously the current value of the variable.

Object Geometry

The following properties can be used:
• X0
• Y0
• X1
• Y1
• XSize
• YSize

Screen Geometry

The following properties can be used:
• X0
• Y0
• X1
• Y1
• XSize
• YSize

Object Property

Currently only a few objects support properties:
• Listview - Number of columns and number of rows.
• Dropdown - Number of items.
• Listbox - Number of items.
• Movie - Number of frames and current frame.

Fixed Value

Simply a constant value.

Offset

At the end an offset can be added to the operand.

10.2.1.2 Operators
The following operators can be used for a calculation between the operands:

• + (add)

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

256 CHAPTER 10 Calculations

• - (subtract)
• * (multiply)
• / (divide)
• % (modulo)
• & (binary AND)
• | (binary OR)
• ^ (binary XOR)
• ~ (binary one's complement)
• << (binary left-shift)
• >> (binary right-shift)

10.2.1.3 Creating a term

Note

Multiplication and division do not have a higher precedence level than addition and
subtraction! All operations are calculated from left to right, except when brackets are
used. Brackets are mandatory to indicate a higher level of precedence.

Example:
• 1 + 2 * 3 = 9
• 1 + (2 * 3) = 7

When all necessary operands have been added, a calculation between the operators can
be set up. Each operand is equal to a letter (such as A, B, C, …) and the operands are to
be used within the term to be calculated.

Note

Numbers can also be used in the term. It is not mandatory to create an operand for
a constant! Decimals are allowed, as well as hexadecimal numbers (prefixed by 0x).

10.2.1.4 Calculating a variable
In order to calculate the new value of a variable with the term, the job CALC has to be
executed with the desired variable as the receiver.

If this causes a change of the value, the variable will emit a VALUE_CHANGED signal.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

257 CHAPTER 10 Manipulating variables from user code

10.3 Manipulating variables from user code
The routines APPW_SetVarData() and APPW_GetVarData() allow for reading and modifying
variables from a project’s user code. In combination with the signal VALUE_CHANGED, this
feature can be utilized for various use cases.

Example

For example, in a weather forecast application, the temperature values can be stored in
variables. When the user presses a button to refresh the temperature data, new data is
polled and set to the variable using APPW_SetValue().

By reacting on VALUE_CHANGED, the application would know when a temperature value has
changed and if e.g. a different text or bitmap should be displayed.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 11

Animations

AppWizard allows the user to add complex animations to their project.

With AppWizard V1.20, animations have been completely reworked. This has been done
because the previous process of defining complex animations was too complicated and not
intuitive enough. Animations now support IDs which simplifies the use of animations within
AppWizard and the ID makes them addressable.

With this animation rework, a couple of jobs and signals in AppWizard have been marked as
obsolete. We recommend to not use these old mechanisms and to rework existing projects,
eventually. Projects from previous versions with old animation interactions are still fully
functional though.

Note

More information about the basics of emWin animations (such as animation items,
animation ease, etc.) can be read in the document UM03001 emWin User Guide
& Reference Manual.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

259 CHAPTER 11 Pre-defining animation IDs

11.1 Pre-defining animation IDs
The first step to adding animations to an AppWizard project is opening the animation dialog
by clicking the icon in the lower left corner of the tool.

Now, the desired amount of animations can be added by clicking the “Add animation” button.
The table shows the ID of the animation and it’s entire duration in milliseconds.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

260 CHAPTER 11 Edit animations

11.2 Edit animations
To define and edit an animation, click its ID in the animation dialog. Then, the edit dialog
will open.

11.2.1 Animation properties

• Autostart: Automatically starts the animation after executing the job ANIMCREATE.
• Period: Animation duration in ms. Takes effect only after creation with the autostart

option.
• Endless/Loops: The animation runs endlessly until stopped or for a number of loops.

Takes effect only after creation with the autostart option.

11.2.2 Start and end time of animation items

• ts: Start time of item in ms within the animation
• te: End time of item in ms within the animation

The item list shows the start and end time of each item in percent, relative to the duration
of the entire animation.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

261 CHAPTER 11 Edit animations

11.2.3 Animation values

An animation always “animates” a certain value, such as a window position.

For an animation item, three values need to be specified:
• Start value: Initial value of the item to be animated.
• End value: Final value of the item, when the animation has ended.
• Item to be animated: Item, that the animated value should be applied to.

The following types of values can be used for animation items:

Type Abbreviated Description

Object value OV Value of an object, such as a slider.
Variable V Value of an AppWizard variable.
Object Geometry OG Coordinate or size of an object.
Screen Geometry SG Coordinate or size of a screen.
Fixed Value C A constant value.

Object value, object geometry and screen geometry allows an additional offset in the low-
ermost field.

Animating object coordinates

Note that when animating object coordinates the animation has to match the anchor point
of the object. For example, when an object has the anchor point in the top left corner (x0,
y0), animating the coordinate x1 will not have an effect.

ANIMSTART and ANIMEND signals

When object coordinates are animated, they emit ANIMSTART and ANIMEND signals when
the associated animation item starts or ends.

11.2.4 Animation ease
The ease function of an animation defines how the animated value will change over time
and thus how the animation will look like. More information about this can be read in the
emWin manual in the chapter Animations.

Ease Description

ANIM_LINEAR Animated is performed linear.
ANIM_ACCEL Animation is accelerating.
ANIM_DECEL Animation is decelerating.
ANIM_ACCELDECEL Animation is accelerating, then decelerating.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

262 CHAPTER 11 Running animations

11.3 Running animations
Starting an animation

Once an animation has been defined, it first has to be created using the interaction job
ANIMCREATE.

Then, the animation can be started using the job ANIMSTART.

Animations have unique IDs only one animation with a specific ID can be started and created
at a time. For example, only one animation with ANIM_ID_000 can be created. A second
attempt to create or start the animation with ANIM_ID_000 will not be ignored.

Note

Animations are only deleted automatically after they have run completely. If you want
to stop and delete them by interaction, you have to activate the remove option in
ANIMSTOP.

Stopping an animation

To stop an animation, the job ANIMSTOP can be used.

Optionally, the job can also remove an animation. To use it again, it would then have to
be created again using ANIMCREATE.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 12

Drawings

AppWizard allows the user to add custom drawings to their application. The feature supports
a wide array of emWin’s drawing routines.

Note

This chapter will only provide information on how to use drawing routines within Ap-
pWizard. To learn more detail about a specific routine, please refer to the document
UM03001 emWin User Guide & Reference Manual.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

264 CHAPTER 12 Creating a drawing object

12.1 Creating a drawing object
Creating a drawing object

Before a drawing can be displayed, the first step is to create a drawing object. To do this,
open the drawings dialog by clicking the quick access button in the lower left corner of
AppWizard.

The dialog allows adding, editing and deleting drawing objects.

After an object has been created, it can be edited by clicking the ’Edit’ icon.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

265 CHAPTER 12 Defining a drawing

12.2 Defining a drawing

12.2.1 Editing a drawing
To edit a drawing, select a drawing object in the above mentioned dialog and click the ’Edit’
icon. A dialog will open, allowing to define what the drawing object should do.

12.2.2 Adding functions

Note

A detailed list of all available functions and parameters can be found under Available
drawing functions.

The left side of the dialog allows selecting the drawing operations that should be performed
and adding them to the object. To do this, select a function under ’Available functions’ and
add it using the ’Add functions’ button.

The function will then appear in the ’Used functions’ section. This shows all the drawing
operations that will be performed chronologically.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

266 CHAPTER 12 Defining a drawing

12.2.3 Setting the parameters
Some functions require parameters, such as coordinates for DRAW_RECT. To set the parame-
ters of a function that has been added to a drawing object, select it under ’Used functions’
and its corresponding parameters will be shown under ’Parameters of selected function’.

A parameter value can either be one of the following:

Active object

Note

This tells the AppWizard, that the active object should be used. Drawings using ’Active
object’ can be (re)used for diffenent objects. The advantage is, that one drawing
can be used for multiple objects.

This option is much easier to use and more flexible than Object- or Screen Geometry. It
can be used in most cases as replacement for those options.

Object value

The current value of AppWizard objects like SLIDER, ROTARY, SWITCH and some other.

Variable

The current value of the variable.

Object geometry

Geometric property of a certain object, such as x0, y0, x1, y1, xSize, ySize, xCenter or
yCenter.

Screen geometry

Geometric property of a certain screen, such as x0, y0, x1, y1, xSize, ySize, xCenter or
yCenter.

Fixed value

Object value, object geometry and screen geometry allows an additional offset in the low-
ermost field.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

267 CHAPTER 12 Displaying a drawing

12.3 Displaying a drawing
A drawing object can be displayed within any given widget of the application. It can either
be drawn before or after WM_PAINT is executed for a given widget.

When a widget is selected, its Predraw and its Postdraw property can be set to display
a given drawing object.

Predraw

The drawing is painted before any detail of the object is drawn. Can be used for an additional
the background of transparent objects.

Postdraw

The drawing is painted after the last detail of the object is drawn. Can be used for an
overlay above any object.

12.3.1 Examples
The AppWizard comes with some examples which shows how to use drawings:
• HowTo_CreateFlipbook
• HowTo_DrawPieChart
• HowTo_RotateAndScaleImage
• TemperatureControl

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

268 CHAPTER 12 Available drawing functions

12.4 Available drawing functions
The following table lists all available drawing functions. The parameters of the functions are
largely identical to the parameters of the analogously existing emWin functions described
in the emWin manual. In order to avoid redundancy, we have therefore dispensed with a
detailed documentation of the drawing functions at this point.

Function Description

CLEAR Clears the area using the background color.
COPY_RECT Copies a rectangular area to a new position.
DRAW_ARC Draws an arc.
DRAW_CIRCLE Draws a circle.
DRAW_ELLIPSE Draws an ellipse.
DRAW_GRADIENT_H Draws a horizontal gradient.
DRAW_GRADIENT_V Draws a vertical gradient.
DRAW_GRADIENT_ROUNDED_H Draws a horizontal gradient with rounded corners.
DRAW_GRADIENT_ROUNDED_V Draws a vertical gradient with rounded corners.
DRAW_HLINE Draws a horizontal line.
DRAW_LINE Draws a line.
DRAW_LINE_REL Draws a relative line from the current position.
DRAW_LINE_TO Draws a line from the current to the new position.
DRAW_PIE Draws a circle section.
DRAW_PIXEL Sets a single pixel.
DRAW_POINT Draws a point.
DRAW_RECT Draws a rectangle.
DRAW_ROUNDED_FRAME Draws a rounded rectangle in the given rectangle.
DRAW_ROUNDED_RECT Draws a rounded rectangle.
DRAW_VLINE Draws a vertical line.
ENABLE_ALPHA Enables or disables alpha drawing mode.
FILL_CIRCLE Fills a circle.
FILL_ELLIPSE Fills an ellipse.
FILL_RECT Fills a rectangle.
FILL_ROUNDED_RECT Fills a rectangle with rounded corners.
INVERT_RECT Inverts the color of a rectangle area.
MOVE_REL Relative move to a new position.
MOVE_TO Move to screen coordinates.
SET_BKCOLOR Sets the background color.
SET_COLOR Sets the foreground color.
SET_PENSIZE Sets the pen size.
SET_LINESTYLE Sets the linestyle.
AA_DISABLE_HIRES Disables high-resolution anti-aliasing.
AA_DRAW_ARC Draws an anti-aliased arc.
AA_DRAW_CIRCLE Draws an anti-aliased circle.
AA_DRAW_LINE Draws an anti-aliased line.
AA_DRAW_PIE Draws an anti-aliased pie.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

269 CHAPTER 12 Available drawing functions

Function Description

AA_DRAW_ROUNDED_FRAME
Draws an anti-aliased rounded rectangle in the giv-
en rectangle.

AA_ENABLE_HIRES Enables high-resolution anti-aliasing.
AA_FILL_CIRCLE Fills an anti-aliased circle.
AA_FILL_ELLIPSE Fills an anti-aliased ellipse.
AA_FILL_ROUNDED_RECT Fills an anti-aliased rounded rectangle.
AA_SET_FACTOR Sets the anti-aliasing factor.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 13

User Code

The following chapter explains how the user may add custom code to their AppWizard
application. It will also be explained how variables and fonts created within AppWizard may
be utilized for custom code and how slot routines can be used.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

271 CHAPTER 13 Location of custom code

13.1 Location of custom code
As also explained in the chapter Directory structure on page 29 custom-code has to be
located in the sub-folder \CustomCode\. This sub-folder is intended to place custom code
in it. That includes all code and data, which should be part of the AppWizard project. Please
do not place any code or data into other folders.

Note

When executing ’Export & Save’ the content of all other sub-folders will be (re)gen-
erated. That means that all files of these sub folders will be deleted and the content
will be generated new upon the project data.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

272 CHAPTER 13 Slot routines

13.2 Slot routines
Slot routines are the routines that are executed with the job of an interaction.

Where to find a slot routine

The name of a slot routine can be accessed and changed in the ’Set interaction parame-
ters’ dialog. This routine is located in the file <ScreenID>_Slots.c in the sub-directory
\CustomCode\.

Prototype

void <ScrID>__<EmitID>__<SignID>__<RecvID>__<JobID>(APPW_ACTION_ITEM * pAction,
 WM_HWIN hScreen,
 WM_MESSAGE * pMsg,
 int * pResult);

ScrID Id of the screen where the objects are on.
EmitID Id of the emitting object.
SignID Id of the signal.
RecvID Id of the receiving object.
JobID Id of the job.

Parameters

Parameter Description

pAction Pointer to an APPW_ACTION_ITEM structure.
hScreen Handle of the screen.

pMsg
Pointer to a WM_MESSAGE structure. pMsg->hWin is the handle to
the receiver while pMsg->hWinSrc is the handle to the emitter.

pResult
Pointer to an int containing the ’result’ value. This value is ex-
plained below.

Additional information

Each interaction has job-specific parameters. The parameters can be accessed via the aPara
element of the APPW_ACTION_ITEM structure which is passed to a slot routine.

The parameter of each interaction is explained under Job-specific parameters passed
to slot-routine for each job under List of jobs on page 196.

The parameter pResult points to an integer which by default is 0. If *pResult = 0, the
interaction will be executed by the AppWizard. If *pResult = 1, only the custom code
is executed.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

273 CHAPTER 13 Slot routines

13.2.1 APPW_ACTION_ITEM

Description

This structure is passed to an interaction slot routine.

Type definition

typedef struct {
 int IdSrc;
 int NCode;
 int IdDst;
 int IdJob;
 void (* pfSlot)(APPW_ACTION_ITEM * pAction,
 WM_HWIN hScreen,
 WM_MESSAGE * pMsg,
 int * pResult);
 APPW_PARA_ITEM aPara[6];
} APPW_ACTION_ITEM;

Structure members

Member Description

IdSrc Id of the emitter.
NCode Id of the signal.
IdDst Id of the receiver.
IdJob Id of the job.

pfSlot
Function pointer to a slot routine. Prototype explained under Slot
routines.

aPara
Optional job specific parameters. The parameter for each job is
explained in the List of jobs on page 196.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

274 CHAPTER 13 Slot routines

13.2.2 Custom user code

Slot routines

As mentioned earlier, the user may add their own code to slot routines, either via the “Edit
code” dialog in the interaction dialog, or even from any editor or IDE.

Any user code within the generated slot routines stays persistent when for example ex-
porting the AppWizard project another time.

Custom routines

If the user wants to add their own custom routines to the application, they should create
a new C file and add it to their project.

AppWizard also adds the automatically generated files Application.c and Application.h
to the simulation project. These files are intended to be used for user code.

Custom routines can also be added to added to a generated slot file, however they must be
within the user code section, otherwise they will be overwritten once the project is exported
again.

/*** Begin of user code area ***/

static void _FooBar(void) {}

/*** End of user code area ***/

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

275 CHAPTER 13 Screen callback routines

13.3 Screen callback routines
Every screen object has its own generated callback routine. This callback will be called
additionally, this means it isn’t a requirement and may be left empty.

Where to find a screen callback

The callback is named after the format cb<ScreenID>, e.g. cbID_SCREEN_00. A screen
callback routine can be found in the slot routine file, located in the project directory under
\Source\CustomCode.

How to use them

Generally, a screen callback is very similar to an emWin window callback. This means, the
callback may react on all types of window messages. To learn more about the different types
of window messages, refer to the document UM03001 emWin User Guide & Reference
Manual.

Note

However, a screen callback must not have a default case that calls WM_Default-
Proc(), as a normal window callback would do.

Example

When reacting on the WM_INIT_DIALOG case, custom windows or widgets can be added to
the application upon creation of the screen object. When creating a window/widget as a
child to the screen, WM_NOTIFY_PARENT messages obviously get sent to the parent callback.

/***
*
* cbID_SCREEN_00
*/
void cbID_SCREEN_00(WM_MESSAGE * pMsg) {
 WM_HWIN hWin;
 int Id, NCode;

 switch (pMsg->MsgId) {
 case WM_INIT_DIALOG:
 hWin = LISTVIEW_CreateEx(10, 10, 300, 200,
 pMsg->hWin, WM_CF_SHOW, 0, GUI_ID_LISTVIEW0);
 break;
 case WM_NOTIFY_PARENT:
 Id = WM_GetId(pMsg->hWinSrc);
 NCode = pMsg->Data.v;
 switch(Id) {
 case GUI_ID_LISTVIEW0:
 switch(NCode) {
 case WM_NOTIFICATION_CLICKED:
 break;
 case WM_NOTIFICATION_RELEASED:
 break;
 case WM_NOTIFICATION_MOVED_OUT:
 break;
 case WM_NOTIFICATION_SCROLL_CHANGED:
 break;
 case WM_NOTIFICATION_SEL_CHANGED:
 break;
 }
 break;
 }
 break;
 }
}

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

276 CHAPTER 13 General AppWizard API

13.4 General AppWizard API
Routine Description

APPW_CalcVar()
This function can be used to calculate a variable
with term.

APPW_DoJob()
This function executes the given job with the given
parameters.

APPW_Exec() Keeps the AppWizard-application alive.

APPW_GetFont()
Fills a font structure using the addressed setup
structure.

APPW_GetText()
This function stores the text of an object in the giv-
en buffer.

APPW_GetValue() This function returns the value of an object.

APPW_SetCustCallback()
Sets a function pointer for a function which is exe-
cuted at the end of APPW_Exec().

APPW_SetPos() Moves the given object to the given position.
APPW_SetScreenshotFunc() Sets a function for taking a screenshot.

APPW_SetStreamedBitmap()
Sets a streamed bitmap located in directly accessi-
ble memory.

APPW_SetStreamedBitmapEx()
Sets a streamed bitmap located in external memo-
ry.

APPW_SetText() This function sets a text to an object.
APPW_SetValue() This function sets the value of an object.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

277 CHAPTER 13 General AppWizard API

13.4.1 APPW_CalcVar()

Description

This function can be used to calculate a variable with term.

Prototype

void APPW_CalcVar(U16 IdVar);

Parameters

Parameter Description

IdVar ID of the variable to be calculated.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

278 CHAPTER 13 General AppWizard API

13.4.2 APPW_DoJob()

Description

This function executes the given job with the given parameters.

Prototype

int APPW_DoJob(U16 IdScreen,
 U16 IdWidget,
 int IdJob,
 APPW_PARA_ITEM * pPara);

Parameters

Parameter Description

IdScreen Screen id of the object.
IdWidget Object id within the screen.
IdJob Id of the job to be executed.
pPara Optional job specific parameters.

Usage

The parameters IdScreen and IdWidget are used to adress the object to be used. A list
of available jobs can be found in the List of jobs on page 196. Important is the parameter
pPara. It points to an array of APPW_PARA_ITEM structures. The required size of that array
depends on the job to be used. Up to 6 elemens can be required. The job descriptions
under the List of jobs on page 196 contains detailed explanations about the parameters
to be used.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

279 CHAPTER 13 General AppWizard API

13.4.3 APPW_Exec()

Description

Keeps the AppWizard-application alive. Needs to be called in the superloop of the applica-
tion. More information can be found under Stay alive loop on page 81.

Prototype

void APPW_Exec(void);

Additional information

Please note that calling this function manually is normally not required. Calling it within the
user code makes only sense if the generation of the ’Stay alive loop’ is suppressed.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

280 CHAPTER 13 General AppWizard API

13.4.4 APPW_GetText()

Description

This function stores the text of an object in the given buffer.

Prototype

int APPW_GetText(U16 IdScreen,
 U16 IdWidget,
 char * pBuffer,
 U32 SizeOfBuffer);

Parameters

Parameter Description

IdScreen ID of the parent screen the object belongs to.
IdWidget ID of the object the text should be retrieved from.
pBuffer Pointer to a buffer the text gets stored in.
SizeOfBuffer The size of the buffer pBuffer points to.

Return value

If the return value is 1 no handle to the object was found.

Additional information

This fuction can be used for all objects which can have a text.

Available objects

This function can be used for the following objects:
• Button object
• Edit object
• Text object
• QRCode object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

281 CHAPTER 13 General AppWizard API

13.4.5 APPW_GetValue()

Description

This function returns the value of an object.

Prototype

int APPW_GetValue(U16 IdScreen,
 U16 IdWidget,
 int * pError);

Parameters

Parameter Description

IdScreen ID of the parent screen the object belongs to.
IdWidget ID of the object the value should be retrieved from.

pError
Out pointer being used to indicate that something went
wrong.

Return value

The current value of the given object.

Additional information

This fuction can be used for all objects which can have a value. If pError is 1 no handle
to the object could be found.

Available objects

This function can be used for the following objects:
• Button object
• Edit object
• Gauge object
• Progbar object
• Slider object
• Switch object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

282 CHAPTER 13 General AppWizard API

13.4.6 APPW_SetCustCallback()

Description

Sets a function pointer for a function which is executed at the end of APPW_Exec().

Prototype

void APPW_SetCustCallback(void (*pFunc)());

Parameters

Parameter Description

pFunc Pointer to the function which should be called.

Additional information

This function allows the user to set a function pointer which is being called from APPW_Ex-
ec(). This allows the user to execute his own code periodically.

Note

It is possible to set further callback and hook functions. Please refer to chapter ’Setting
hook functions’ in the emWin user manual UM03001_emWin.pdf

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

https://www.segger.com/downloads/emwin/UM03001

283 CHAPTER 13 General AppWizard API

13.4.7 APPW_SetPos()

Description

Moves the given object to the given position.

Prototype

void APPW_SetPos(WM_HWIN hItem,
 int xPos,
 int yPos);

Parameters

Parameter Description

hItem Handle of object to be moved.
xPos New x position in pixels relative to parent.
yPos New y position in pixels relative to parent.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

284 CHAPTER 13 General AppWizard API

13.4.8 APPW_SetScreenshotFunc()

Description

Sets a function for taking a screenshot.

Prototype

void APPW_SetScreenshotFunc(void (*pFunc)());

Parameters

Parameter Description

pFunc Function to be called for taking a screenshot.

Additional information

In simulation and play mode screenshots are saved automatically in the ’Screenshots’ sub-
folder of the project.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

285 CHAPTER 13 General AppWizard API

13.4.9 APPW_SetStreamedBitmap()

Description

Sets a streamed bitmap located in directly accessible memory.

Prototype

void APPW_SetStreamedBitmap(U16 IdScreen,
 U16 IdWidget,
 int Index,
 const void * pData);

Parameters

Parameter Description

IdScreen Id of the parent screen.
IdWidget Id of the object.
Index Index the bitmap is used for.
pData Pointer to the streamed bitmap.

Additional information

pData has to remain valid as long as the bitmap is in use.

APPW_SetStreamedBitmapEx() should be used to set bitmaps located in external memory.

Available objects

This function can be used for the following objects:
• Button object
• Image object
• Movie object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

286 CHAPTER 13 General AppWizard API

13.4.10 APPW_SetStreamedBitmapEx()

Description

Sets a streamed bitmap located in external memory.

Prototype

void APPW_SetStreamedBitmapEx(U16 IdScreen,
 U16 IdWidget,
 int Index,
 const char * pFileName);

Parameters

Parameter Description

IdScreen Id of the parent screen.
IdWidget Id of the object.
Index Index the bitmap is used for.
pFileName Pointer to string containing the file name.

Additional information

pFileName has to remain valid as long as the bitmap is in use.

APPW_SetStreamedBitmap() should be used to set bitmaps located in directly accessible
memory.

Available objects

This function can be used for the following objects:
• Button object
• Image object
• Movie object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

287 CHAPTER 13 General AppWizard API

13.4.11 APPW_SetText()

Description

This function sets a text to an object.

Prototype

int APPW_SetText(U16 IdScreen,
 U16 IdWidget,
 char * pText);

Parameters

Parameter Description

IdScreen ID of the parent screen the object belongs to.
IdWidget ID of the object the text should be set to.
pText Pointer to the text which should be set.

Return value

If the return value is 1 no handle to the object was found.

Additional information

This fuction can be used for all objects which can have a text.

Available objects

This function can be used for the following objects:
• Button object
• Text object
• Edit object
• QRCode object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

288 CHAPTER 13 General AppWizard API

13.4.12 APPW_SetValue()

Description

This function sets the value of an object.

Prototype

int APPW_SetValue(U16 IdScreen,
 U16 IdWidget,
 int Value);

Parameters

Parameter Description

IdScreen ID of the parent screen the object belongs to.
IdWidget ID of the object the value should be retrieved from.
Value The value to be set to the object.

Return value

If the return value is 1 no handle to the object was found.

Additional information

This fuction can be used for all objects which can have a value.

Available objects

This function can be used for the following objects:
• Button object
• Edit object
• Gauge object
• Progbar object
• Slider object
• Switch object

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

289 CHAPTER 13 Fonts

13.5 Fonts
This chapter explains how fonts created within AppWizard can be used in custom user code.

Note

The chapter Font management on page 64 explains how fonts can be created using
AppWizard.

13.5.1 How to use fonts
As already explained earlier in this manual, fonts can be easily created with AppWizard and
used as often as the user wants to within a project. The following section will demonstrate,
how these fonts can be accessed within custom C code.

Requirements

In order to be able to use a font in custom C code, it must have been created within the
project. The font also has to have been referenced by an object on a screen, this means
the “Set font” property for an object must be set with the desired font.

How to use a font

The following example will demonstrate, how a font can be used in user code.

The font has to be created using APPW_GetFont(). The ID of the object that references
the font has to be stated as second parameter, the ID of the screen the object is on as
first parameter.

The function will then fill a GUI_FONT and GUI_XBF_DATA structure. The variables that hold
the font data should be located in ROM, so the font data stays persistent.

/***
*
* APP_cbWin
*/
void APP_cbWin(WM_MESSAGE * pMsg) {
 static GUI_FONT Font;
 static GUI_XBF_DATA FontData;

 switch (pMsg->MsgId) {
 case WM_CREATE:
 APPW_GetFont(ID_SCREEN_00, ID_TEXT_00, &Font, &FontData);
 break;
 case WM_PAINT:
 GUI_SetFont(&Font);
 GUI_SetTextMode(GUI_TM_TRANS);
 GUI_DispStringAt("Test", 0, 0);
 break;
 default:
 WM_DefaultProc(pMsg);
 }
}

With the callback above, a window can be created. Custom window or widget callbacks
should be located in the Application.c file and can then be used in a slot routine.

/***
*
* cbID_SCREEN_00
*/
void cbID_SCREEN_00(WM_MESSAGE * pMsg) {
 WM_HWIN hWin;

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

290 CHAPTER 13 Fonts

 switch (pMsg->MsgId) {
 case WM_INIT_DIALOG:
 hWin = WM_CreateWindowAsChild(10, 10, 100, 32, pMsg->hWin,
 WM_CF_SHOW | WM_CF_HASTRANS, APP_cbWin, 0);
 break;
 }
}

Note

To learn more about slot routines and custom user code, refer to Slot routines on
page 272.

13.5.2 Font API
The following table provides an overview of the routines related to fonts.

Routine Description

APPW_GetFont()
Fills a font structure using the addressed setup
structure.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

291 CHAPTER 13 Fonts

13.5.2.1 APPW_GetFont()

Description

Fills a font structure using the addressed setup structure.

Prototype

int APPW_GetFont(U16 IdScreen,
 U16 IdWidget,
 GUI_FONT * pFont,
 GUI_XBF_DATA * pData);

Parameters

Parameter Description

IdScreen ID of the screen.
IdWidget ID of the widget.
pFont GUI_FONT structure to be filled.
pData Pointer to a GUI_XBF_DATA structure

Return value

0 Function has succeeded.
1 Function has failed.

Example

See How to use fonts on page 289 for an example.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

292 CHAPTER 13 Variables

13.6 Variables

13.6.1 How to use variables
Variables in the AppWizard can be used to store a value. They can be accessed and changed
by the application or from outside of the application. The application can react on a change
of a variable using interactions.

Creating variables

The user can manage (add and delete) their variables via the variable resource window.
This window can be accessed by clicking the lower right quick access button, located in the
lower left corner of the AppWizard.

Using variables for interactions

The main purpose for variables is to use them within an interaction, whether as an emitter
or as a receiver.

If the variable is an emitter of an interaction, the signal to be reacted on can be a change
of that variable. If the variable is instead the receiver of a signal, the job can be to change
the value of the variable.

Reading and setting variables from outside of the application

Variables created with the AppWizard can be read from outside of the application via the
method APPW_GetVarData() and set from outside of the application via the method APP-
W_SetVarData().

13.6.2 Variables API
The following table provides an overview of the routines related to variables.

Routine Description

APPW_GetVarData() Returns the value of a variable.
APPW_SetVarData() Sets the value of a variable.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

293 CHAPTER 13 Variables

13.6.2.1 APPW_GetVarData()

Description

Returns the value of a variable.

Prototype

I32 APPW_GetVarData(U16 Id,
 int * pError);

Parameters

Parameter Description

Id ID of the variable.
pError Pointer to integer used to return error on demand.

Return value

Data value of the specified variable.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

294 CHAPTER 13 Variables

13.6.2.2 APPW_SetVarData()

Description

Sets the value of a variable.

Prototype

int APPW_SetVarData(U16 Id,
 I32 Data);

Parameters

Parameter Description

Id ID of the variable.
Data Data value to set.

Return value

0 Function has succeeded.
1 Function has failed.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 14

Board support packages
(BSPs)

As already mentioned in the chapter Requirements on page 20 the AppWizard can be used
with any ANSI C compiler without any additional software library. To make things easy it
comes with a couple of preconfigured BSPs. The following chapter explains in detail which
software components need to be included in a BSP, how to create custom BSPs and how
to import a BSP into the repository of the AppWizard.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

296 CHAPTER 14 Preconfigured BSPs included in the shipment

14.1 Preconfigured BSPs included in the shipment
The AppWizard comes with some ready to use preconfigured BSPs to be used with SEGGER
Embedded Studio, but also with other IDEs. They contain the following:
• A ready-to-use display configuration
• A ready-to-use touch screen configuration (if a touch screen exists)
• A ready-to-use file system configuration (if SD card is accessible)
• A binary version of embOS
• A binary version of emFile (if SD card is accessible)

Why does a BSP include embOS?

embOS is only used to get the CPU initialized and to give emWin a time base. An operating
system is basically not a requirement for AppWizard. But from emWin’s standpoint it makes
more sense to use the embOS code, instead of rewriting it.

The same applies to the time base for emWin. Instead of using embOS a time base can be
achieved with a simple timer interrupt routine.

Why does a BSP include emFile?

A file system is only required if resources should be outsourced to external media, for which
we use the emFile system.

14.1.1 Example
The following example will explain how to open and run a project for a supported BSP on
target hardware with SEGGER Embedded Studio.

14.1.1.1 Step 1: Select BSP
Select Project è Edit Options and click Select BSP. Choose any BSP for Embedded
Studio and click Select. Confirm the selection with Ok.

After the BSP has been selected, a new folder in the project directory named Target will
be created. This folder contains the complete BSP.

14.1.1.2 Step 2: Generate code
Choose File è Export & Save. By doing this the project file will be saved and the code
will be exported to the sub folder Source.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

297 CHAPTER 14 Preconfigured BSPs included in the shipment

14.1.1.3 Step 3: Run SEGGER Embedded Studio Project
The BSP contains a project file for SEGGER Embedded Studio. This project file has the suffix
.emProject and can be found in the sub folder of the selected board under \Target\BSP.

Open the .emProject file with SEGGER Embedded Studio.

14.1.1.4 Step 4: Compile and run on target
The SEGGER Embedded Studio projects include all of the AppWizard code automatically,
meaning normally no files need to be added or changed. Simply compile the project by
pressing F7 and run the project by pressing F5.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

298 CHAPTER 14 Creating custom BSPs

14.2 Creating custom BSPs
The following example shows how to create an AppWizard BSP. To be able to create a BSP for
the AppWizard, we should already have an existing project with the following components:
• A ready-to-use display driver configuration
• A ready-to-use touch input configuration
• A ready-to-use time base for emWin
• A ready-to-use hardware initialization

For the sake of simplicity, we will use an already existing evaluation project for SEGGER
Embedded Studio which is available on www.segger.com. This evaluation project is intended
to be used with ST’s STM32F429I-Discovery board.

Note

Although the example uses SEGGER Embedded Studio for demonstration, the following
steps may also be applied to other IDEs.

14.2.1 Example
The following steps show how to create a reusable BSP for AppWizard based on that project.

14.2.1.1 Step 1: Create a project with AppWizard
After taking a look to the display configuration file of the above mentioned project, we know
the display size and color conversion. Select File è New project and enter the following
data:

Property STM32F429I-Discovery Description

xSize 240 Target display x-size.
ySize 320 Target display y-size.
Color conversion GUICC_M8888I Desired color conversion.
Name STM32F429I-Disco Desired BSP name.
BSP None Must be left empty.

Enable Multibuffering Yes
If the target supports mul-
ti-buffering.

14.2.1.2 Step 2: Create some elements
Fill the project with some elements such as Screen, Box and Button to make sure that there
is something visible on the screen.

14.2.1.3 Step 3: Export & Save

Choose File è Export & Save. After that we should find the following
directory structure in the project directory:

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

https://www.segger.com/evaluate-our-software/st-microelectronics/

299 CHAPTER 14 Creating custom BSPs

14.2.1.4 Step 4: Copy evaluation software package into project folder

By default a BSP is located in a directory named Target parallel to the
directories Resource, Simulation and Source. For now, extract the
evaluation software into the folder SeggerEval. The folder name can be
any name during this step, but it must not be Target.

14.2.1.5 Step 5: Exchange libraries
The emWin libraries of the evaluation software are located in the directories \GUI\Lib and
\GUI\Inc:

Note

The emWin library of the evaluation package is divided into two directories, \GUI\Lib
and \GUI\Inc.

To be able to work with AppWizard, all files (library and header files) have to be located
in a single directory which should be named GUI_Lib.

The directory level of the GUI_Lib folder does not matter, but the name is important.
AppWizard will only update the libraries and header files if the folder name matches.

Deleting the old library and header files

Note

Before you delete the library and header files, check if there are any files prefixed with
BSP_* in the \GUI\Inc folder. If so, make sure to not delete these files during this step.

It makes sense to move these files into the Setup directory. It is important to not
delete these files as they are part of the BSP and not part of the emWin library.

Delete the folders \GUI\Lib and \GUI\Inc after you made sure that there are no BSP
related files in these folders.

Updating the library

AppWizard comes with a couple of precompiled libraries which can be exported from within
the AppWizard. To export the libararies go to “File è Export libraries…” and select a desti-
nation where the libraries should be exported to. The libraries will be exported and placed
in their own directory as shown below.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

300 CHAPTER 14 Creating custom BSPs

Since we are using SEGGER Embedded Studio in this example and the MCU is an ARM
Cortex-M4 device, we can use the library located in GCC_v7em_fpv4_softfp. Copy the
complete content (library and header files) from GCC_v7em_fpv4_softfp archive into the
newly created folder \GUI\GUI_Lib in the evaluation project.

Using a custom-built library

If there is no precompiled library available, which may be the case when working with your
own hardware, you have to create your own library instead. The emWin-documentation
contains a detailed description how this can be done.

Note

The version number of emWin to be used to create the library must not be outdated
and at least ≥ the emWin version number of the AppWizard. Otherwise the AppWizard
assumes that the library of a project using the BSP which we are creating here, needs
to be updated each time we open it.

Removing duplicate headers (SEGGER evaluation projects only)

With any normal project, the step of exchanging the GUI libraries would be finished at this
point. But for this example, we are using an evaluation project containing multiple SEGGER
products. Because of that, the following files located in the \GUI\GUI_Lib directory need
to be deleted, as they are already present in other project folders:
• Global.h
• SEGGER.h
• IP_FS.h

In case these files are not included in your project, do not delete them.

14.2.1.6 Step 6: Add file access routines
The next step is to add the file access routines to the project folder. Depending on whether
you want to use a file system or not, you have to copy one of the ’APPW_X_…’ files located
in the directory to the data directory. The directory can be found in ’C:_<Version>. The
directory contains two ’APPW_X_…’ files:

APPW_X_NoFS.c to be used without a file system.
APPW_X_emFile.c to be used with a file system, in this case emFile.

Because this particular hardware does not have an SD card slot, we will add APPW_X_NoFS.c
to the project. We copy the file over into the folder \GUI\Setup\STM32F429_ST_ST-
M32F429I_Discovery.

Note

If a diffenrent file system should be used it can be done by creating a copy of the
file APPW_X_emFile.c to APPW_X_xxx.c and adapting the routines to the desired file
system. Only 5 routines, _Open(), _Seek(), _Read(), _Close() and _Size() are re-
quired for accessing files. And APPW_X_FS_Init() to get the FS initialized.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

301 CHAPTER 14 Creating custom BSPs

14.2.1.7 Step 7: Add library to project
Now, open the project with SEGGER Embedded Studio. The project file is located under
BSP\ST\STM32F429_STM32F429I_Discovery. Remove the directories Lib and Inc from the
project and create a directory GUI_Lib in the project. Add the library and header files to
this project folder.

è

Note

To remove the files, select them and press DEL. To add the new files, drag them from
your file explorer into the correct folder in Embedded Studio.

14.2.1.8 Step 8: Add file access routines to the project
For the next step, add the file access routines to the project. The file should be located in
GUI\Setup\STM32F429_ST_STM32F429I_Discovery.

è

14.2.1.9 Step 9: Adjust include files
Select the project in the Embedded Studio Project Explorer and press ALT + ENTER to
open the project settings dialog and choose common options:

Go to the preprocessor options…

…and open the include directory dialog. Change GUI\Inc to GUI\GUI_Lib:

$(ProjectDir)/../../../GUI/Inc è $(ProjectDir)/../../../GUI/GUI_Lib

14.2.1.10 Step 10: Adjust data alignment
Please make sure that data alignment for const data is generally set to 4 byte alignment.
In case of using SEGGER Embedded Studio that can be achieved as follows:
• Open the project.
• Open the project properties.
• Select the ’Common’ configuration.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

302 CHAPTER 14 Creating custom BSPs

• Add --min-ro-align=4 to additional linker options.

14.2.1.11 Step 11: Add support for run-time display rotation (optional)
If your hardware supports display rotation and you want your BSP to support run-time
screen rotation through the interaction job ROTATEDISPLAY, you need to make some mod-
ifications in the files LCDConf.c and possibly PIDConf.c.

Note

Example configurations for this step can be viewed in most preconfigured BSPs which
support run-time display rotation, like for instance the BSP STM32F746G_Disco_ES.

How it works

For each desired rotation to be available during run-time, emWin will create an instance of
a rotated driver (a GUI_DEVICE). In the next step, the initialization logic of LCD_X_Config()
is abstracted into a configuration callback. This configuration callback will be called every
time a display driver instance is created.

Once the display is rotated through the job ROTATEDISPLAY, emWin will switch to the
display driver with the desired rotation.

When this feature is used, touch input is also rotated automatically based on the selected
rotation which means that the touch driver interface (PIDConf.c) does not need to rotate
the touch input anymore.

Adapt LCD_X_Config() and create a configuration callback

For the first step, any initialization logic in LCD_X_Config() specific to the driver device
needs to be moved into a new subroutine which we will call _ConfigDriver().

Initialization logic specific to the driver device would be typically all function calls that have
the prefix LCD_, e.g. LCD_SetDevFunc() or LCD_SetVRAMAddrEx(). General hardware ac-
celeration functions that are set can be left in LCD_X_Config(), they only need to be exe-
cuted once on start-up. These would be functions prefixed with GUI_, e.g. GUI_AA_Setpf-
DrawCharAA4().

This routine will also serve as a callback for the LCD_ROTATE module to initialize a driver for
a given orientation. The routine has to match the following prototype:

static void _ConfigDriver(GUI_DEVICE * pDevice, int Index, int LayerIndex);

Parameter Description

pDevice Pointer to GUI_DEVICE. May be ignored.

Index

Index of the rotation in the internal list. Corresponds to the
order in which LCD_ROTATE_AddDriverExOrientation() has
been called. In the below example the first call with GUI_RO-
TATION_CCW would equal Index = 1. Index = 0 is the initial
driver.

LayerIndex Zero-based layer index.

Initialize driver and add orientations

The first driver to be initialized is the displays default orientation, which could be any of
the four available orientations. In this example, it is the non-rotated 32bpp “Lin” driver,
GUIDRV_LIN_32 (see code below).

Then, the configuration callback _ConfigDriver() should be called once.

After that, the other desired orientations paired with their corresponding drivers get added
to an internal list using the routine LCD_ROTATE_AddDriverExOrientation() (see code
below).

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

303 CHAPTER 14 Creating custom BSPs

Finally, the configuration callback is set for the current layer using LCD_ROTATE_SetCall-
back().

When all these steps are done, the routine LCD_X_Config() should have the following
structure:

/***
*
* LCD_X_Config
*
* Purpose:
* Called during the initialization process in order to set up the
* display driver configuration.
*/
void LCD_X_Config(void) {
 //
 // At first initialize use of multiple buffers on demand
 //
 #if (NUM_BUFFERS > 1)
 GUI_MULTIBUF_ConfigEx(0, NUM_BUFFERS);
 #endif
 //
 // Set display driver and color conversion for 1st layer
 //
 GUI_DEVICE_CreateAndLink(GUIDRV_LIN_32, COLOR_CONVERSION_0, 0, 0);
 //
 // Configure the initial driver
 //
 _ConfigDriver(NULL, 0, 0);
 //
 // If screen rotation is not required the following section could be switched
 // off to spare ROM
 //
#if 1
 //
 // Create additional drivers and add them to the display rotation module
 //
 LCD_ROTATE_AddDriverExOrientation(GUIDRV_LIN_OSX_32, 0, GUI_ROTATION_CCW);
 LCD_ROTATE_AddDriverExOrientation(GUIDRV_LIN_OXY_32, 0, GUI_ROTATION_180);
 LCD_ROTATE_AddDriverExOrientation(GUIDRV_LIN_OSY_32, 0, GUI_ROTATION_CW);
 //
 // Set callback function to be used for layer 0
 //
 LCD_ROTATE_SetCallback(_ConfigDriver, 0);
#endif
}

Adapt PID_X_Exec()

Finally, the PID processing routine may also need to be adapted. The routine is typically
called PID_X_Exec() and is reponsible for retrieving the touch state from the hardware and
sending it to emWin using GUI_TOUCH_StoreStateEx().

Quite often, this routine also mirrors and swaps the retrieved touch coordinates before
sending it to emWin. But for projects supporting run-time rotation through the LCD_ROTATE
module the routine PID_X_Exec() must not rotate the retrieved touch coordinates.

Instead, it should pass the coordinates to emWin “unrotated”, meaning that they match
an unrotated driver like e.g. GUIDRV_Lin_32. The LCD_ROTATE module will rotate the touch
input automatically based on the currently selected rotation.

Below is an example of what this routine may look like:

/***
*
* PID_X_Exec
*/

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

304 CHAPTER 14 Creating custom BSPs

static void PID_X_Exec(void) {
 static TOUCH_STATE TouchState;
 static GUI_PID_STATE StatePID;
 static int IsTouched;

 if (_IsInitialized) {
 StatePID.Layer = _LayerIndex;
 _GetTouchState(&TouchState);
 if (TouchState.NumTouch > 0) {
 IsTouched = 1;
 StatePID.Pressed = 1;
 StatePID.x = TouchState.x;
 StatePID.y = TouchState.y;
 //
 // Pass information to emWin
 //
 GUI_TOUCH_StoreStateEx(&StatePID);
 } else {
 if (IsTouched == 1) {
 //
 // Since StatePID is declared as static we use the x/y coordinate
 // from the down event to create an up event.
 //
 IsTouched = 0;
 StatePID.Pressed = 0;
 GUI_TOUCH_StoreStateEx(&StatePID);
 }
 }
 }
}

14.2.1.12 Step 12: Add application to project

Now, you should add your application to the
project. If not already done, the currently
selected program should be moved into the
“Excluded” folder.
Then, the entire folder Excluded may be
deleted, as the examples from the evalu-
ation project are not required for the BSP.
Make sure to leave the file Main.c un-
touched.

Right-click on the “Application” folder and select “New Folder”, name the new folder App-
Wizard.

Add a resource and source directory

We now add two dynamic folders Resource and Source to the project. These folders contain
the exported AppWizard application.
1. Right-click on the newly created folder AppWizard and select “New Folder”.
2. Name the folder Resource and click “Dynamic Folder Options”.
3. Add *.c;*.h to the filter specification.
4. Tick “Recurse into subdirectories”.
5. Click on “Browse” to select a source folder.
6. Navigate to your AppWizard project, select the “Resource” folder and confirm with

“Select Folder”.
7. Click OK.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

305 CHAPTER 14 Creating custom BSPs

Now repeat all these steps but with the folder name Source and by selecting the folder
“Source” from the AppWizard project.

14.2.1.13 Step 13: Compile and run on target
Now, verify that the application successfully compiles and runs on your target hardware. If
the application runs without any problems, you have finished creation your own BSP.

Cleaning up the BSP folder

Finally, call Build è Clean Solution, to remove any unnecessary object code from your
project, otherwise the object files would be part of the BSP and always copied into the
Target folder when the project is exported. The same applies to any other files in the
project that are not required, remove them from your BSP project.

Importing the BSP into AppWizard

Now, you can move on to the following tutorial called Importing a custom BSP on page 306
to add your new BSP to AppWizard.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

306 CHAPTER 14 Importing a custom BSP

14.3 Importing a custom BSP
To be able to have a custom BSP available in AppWizard’s BSP repository, it has to be im-
ported. The location of the repository folder can be found (and changed) under Edit->Pref-
erences->BSP stock. To do that, select File è Import BSP…. But before the above cre-
ated BSP can be included, we have to move it into a different folder and add some further
information and an image. The following steps demonstrate how this can be achieved.

14.3.1 Step 1: Create BSP folder
Create a folder somewhere with the exact name which should be shown into the BSP se-
lection combo box. In this example, the folder is named STM32F429I_Disco_ES.

14.3.2 Step 2: Copy project into BSP folder
Take the folder SeggerEval of the above created project and copy it as a sub folder into
the BSP directory and rename it to exactly the same name as its parent directory, in this
case STM32F429I_Disco_ES\STM32F429I_Disco_ES.

14.3.3 Step 3: Add an image
When selecting a BSP in the AppWizard, an image is shown in the dialog. In this step, such
an image is added to the BSP. The filename of the image must be <Name of BSP>.jpg,
in this case the filename is STM32F429I_Disco_ES\STM32F429I_Disco_ES.jpg. Since the
image shown in the dialog is quite small (80x80 pixels), it is recommended using a small
image with dimensions of at least 80x80 pixels.

14.3.4 Step 4: Add information file
Each BSP contains a .BSPInfo file containing the following information:
• Display size
• Color conversion scheme
• Board name
• IDE
• MCU
• Manufacturer
• Availability of multi-buffering

Take one of the already existing *.BSPInfo files and copy it into the BSP folder. The file
name must be of the format <Name of BSP>.BSPInfo. Open the file in a text editor and
add the required information:

<!DOCTYPE emWin_AppWizard_BSP_Info>
<BSP>
 xSizeDisplay=240
 ySizeDisplay=320
 ColorConv=GUICC_M8888I
 BoardName=STM32F429I-Discovery
 IDE=Embedded Studio
 MCU=STM32F429IIT6U
 Manufacturer=STMicroelectronics
 MultibufAvail=1
 Library=GCC_v7em_fpv4_softfp
</BSP>

Save the file as STM32F429I_Disco_ES\STM32F429I_Disco_ES.BSPInfo.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

307 CHAPTER 14 Importing a custom BSP

MultibufAvail

If MultibufAvail is set to 1 (or missing entirely) the AppWizard knows that the BSP sup-
ports multi buffering. Multi buffering can then be enabled and disabled through the project
options.

If the option is set to 0, the option to toggle multi buffering for a project will not be visible
within AppWizard.

Library

This entry tells the AppWizard the name of the GUI-library used for the project. If this entry
exists, it should be the name of the library from the repository which is required for the
project. After updating the AppWizard to a newer version it checks if the library of a project
needs to be updated after opening the project.

14.3.5 Step 5: Import the BSP into AppWizard
To import the BSP into AppWizard, select File è Import BSP…. Then, select the folder
STM32F429I_Disco_ES (the folder that contains the evaluation project, the image and the
.BSPInfo file).

This process can take a minute or longer. After that, a new BSP should be available within
AppWizard:

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

308 CHAPTER 14 Using the emWin source code

14.4 Using the emWin source code
If you have purchased a emWin PRO you have access to the emWin source code. This
source code can also be used within an AppWizard BSP. Either in a custom one or a BSP
which comes along with the AppWizard. In general description on how to add the source
code to a BSP should work for both cases.

For easiness this description is done by using the BSP for the STM32F746 Discovery which
comes along with the AppWizard.

We assume that you are already familiar in using your IDE. Especially with adding new
folder and setting new include paths.

14.4.1 Step 1: Remove the pre-compiled static libraries
At first delete the ’GUI_Lib’ folder from the ’Target’ directory within the AppWizard project.

14.4.2 Step 2: Add the source code to the project directory
Copy the complete ’GUI’ folder from your emWin shipment (found under emWin_ship) into
the ’Target’ directory. The ’GUI’ folder contains the complete source code of emWin.

If you are using a BSP coming from SEGGER (either directly from the AppWizard or from
our website) you should make sure that the following files in the ’GUI’ directory are not
present multiple times within the project. If they are delte those from the ’’GUI’ directory.
• Global.h
• SEGGER.h
• IP_FS.h

14.4.3 Step 3: Add the source code to the project
Within the Embedded Studio project for the STM32F746 Discovery add a new folder and
name it ’GUI’. Now add all the subdirectories from the ’GUI’ directory on your hard disk
drive to the newly created ’GUI’ folder in your Embedded Studio project. Although, it would
be possible to use a different folder structure we strongly recommend to the structure as
it is. This will make it easier if you intend to update to a newer emWin version.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

309 CHAPTER 14 Using the emWin source code

14.4.4 Step 4: Set include paths
After adding the source code to the Embedded Studio project you have to set the proper
include paths.

Add the include paths to the following directories in the Embedded Studio project.
• GUI\AppWizard
• GUI\Core
• GUI\DisplayDriver
• GUI\Widget
• GUI\WM

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 15

AppWizard SPY

AppWizard SPY is an integration of the emWin SPY tool. This feature makes it possible
to monitor the memory usage of the application, as well as the window properties of the
application’s widgets.

AppWizard SPY also offers the possibility to record any input to the application. A recording
can be run and any findings can be written into a log file.

When recording, screenshots can be taken of the application and the state of variables and
objects can be written to external files.

All SPY related files of a project are located in the project’s Spy directory.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

311 CHAPTER 15 Requirements

15.1 Requirements
Before using AppWizard SPY for the first time, a few requirements should be made sure of.
• The usage of AppWizard SPY requires Microsoft Visual Studio 2013 or later to be

installed.
• The Visual Studio version must be selected in the Preferences dialog.
• The path to MSBuild.exe must be set.

Select Visual Studio version

Open the Preferences dialog by clicking “Edit è Preferences”. Then, select the version that
fits to your installation.

Path to MSBuild.exe

The path to MSBuild.exe must also be set in the Preferences dialog. This is required for
AppWizard to build projects and use SPY.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

312 CHAPTER 15 Opening the SPY dialog

15.2 Opening the SPY dialog
The AppWizard SPY dialog can be opened by clicking Project è Start Spy. Alternatively,
the F7 key can be pressed to open the dialog.

The left side of the dialog shows previously made recordings of the project. When a record-
ing is selected, the associated log files are shown below under Reports.

In case a selected report has associated files, such as screenshots, they are shown under
Files and can be viewed under Content.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

313 CHAPTER 15 Building a project

15.3 Building a project
Before a project can be run with AppWizard SPY, it has to be built. To do this, click the
Build button.

If the project should be rebuilt, the Clean has to be pressed first. Then, the project can
be built again, as described above.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

314 CHAPTER 15 Running a project

15.4 Running a project
When the build process has finished, the Run button can be clicked to start the application.
The built Simulation.exe of the project is opened and the according data is shown in the
SPY window.

Allocated memory

In the upper section of the SPY dialog, the available and allocated memory of the application
is displayed by numbers and by a graph.

Objects

Below the allocated memory, the user finds a detailed tree of objects that are present in
the application. The columns of the table contain the following object information:

Column Description

Object Hierarchical list of each object in the application. Shown is the ID of
the object.

Id AppWizard ID of the object as a hex number.
Handle Window Manager handle number of the object.
x X-position of the object.
y Y-position of the object.
w Width of the object.
h Height of the object.
Visbl. 1 if the object is currently made visible, 0 if not.
Trans. 1 if the object has transparency (WM_CF_HASTRANS flag), 0 if not.
Enbl. 1 if the object is currently enabled, 0 if not.

Input

Any form of input (PID and keys) the application receives is shown here, as well as com-
mands. If recording is active, this input will be saved to a file, so that it can be run at a
later time. A more detailed description on the input and commands can be read further on
under Recording on page 316.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

315 CHAPTER 15 Running a project

Variables

All AppWizard variables are shown in the lower right corner of the dialog and showing their
current value, as the application is running.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

316 CHAPTER 15 Recording

15.5 Recording
The AppWizard SPY makes it possible to record a running AppWizard application. A recording
is saved in the project directory and can be played at a later time.

To start a recording, the application has to be running. A recording can be started by
pressing the Record button.

Logging of user input

The following input information is logged:
• PID information (touch pressed and released)
• Key information (key pressed and released)

Commands during recording

The following commands can be issued while recording an application.

Command Hotkey Description

Request Variables F9
Writes the current state of all project variables into a
dedicated file.

Request Objects F11
Writes the contents of the object table into a dedicat-
ed file.

Request Screenshot F12 Takes a screenshot of the application.

File syntax

Note

The syntax used for .AppRec files is not final and could change in future versions!

Every input the application receives or command that is issued during a recording is saved
in a .AppRec file. The following base syntax is used:

<Ticks>, <Command>(<Params>)

The following commands exist, with their corresponding parameters:

Command Parameters Description

SendPID (x, y, Pressed) PID state at a given position.

SendKEY (Key, Pressed)
A given key has been pressed or re-
leased.

RequestVARIABLES None. Saves the state of all project variables
in a file.

RequestOBJECTS None. Saves the data of the object table in a
file.

RequestSCREEN None. Takes a screenshot of the application.

Directory structure and file naming

All SPY-related files of a project are located in the Spy directory.

Every record file is saved in the following syntax format:

<YYYY>_<MM>_<DD>_<HH>_<MM>_<SS>_<MS>.AppRec

Example:

2020_11_09_10_46_17_862.AppRec

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

317 CHAPTER 15 Recording

For each recording, a directory is created that contains any saved object or variable data,
as well as screenshots of the application.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

318 CHAPTER 15 Playing a recording

15.6 Playing a recording
To play an existing recording of a project, open the main AppWizard SPY dialog.

To play a recording, selected the desired recording and press the Play button.

The application will be executed and all the recorded data, such as PID, pressed keys, etc.
will be applied to the application. Any exported data (e.g. screenshots) will be saved in
a newly generated folder according to the current time in the same format as described
above. This new sub-folder will be located in the main folder of the recording.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 16

Command line usage

AppWizard offers some commands that can be executed via the command prompt.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

320 CHAPTER 16 Command format

16.1 Command format
Commands are entered using the following format:

AppWizard.exe <ProjectName>.AppWizard <-command>

Example

The example below will open a given AppWizard project, export its code and then close
AppWizard once the export is done.

AppWizard.exe ClimateControl.AppWizard -export -exit

16.2 Command line options
Command Description

-export Exports the code of a given AppWizard project.
-exit Closes AppWizard.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

Chapter 17

Glossary

BSP
Board support package.

embOS
Embedded real-time operating system.

emFile
Embedded file system.

emWin
Embedded graphics library.

Hierarchic tree
Widget on the left side of the AppWizard that displays the object hierarchy of the ap-
plication.

MCU
Microcontroller unit.

Object
AppWizard equivalent of an emWin widget.

RAM
Random access memory.

ROM
Read-only memory.

SES
SEGGER Embedded Studio.

SPY
Tool for monitoring memory usage of the application. See AppWizard SPY on page 310.

WM_PAINT
Message sent to a window/widget by emWin’s window manager. This message executes
drawing operations of a window/widget.

WYSIWYG
What You See Is What You Get.

AppWizard User Guide & Reference Manual © 2024 SEGGER Microcontroller GmbH

https://www.segger.com/products/rtos/embos/
https://www.segger.com/products/file-system/emfile/
https://www.segger.com/products/user-interface/emwin/
https://www.segger.com/products/development-tools/embedded-studio/

	About this document
	Table of contents
	Introduction
	What is the AppWizard?
	Features
	Requirements
	Host system
	Target system
	Development environment
	Additional software libraries
	AppWizard projects in multitasking environments

	Installation
	Microsoft Windows

	Getting started
	Starting the tool
	AppWizard version
	Creating a new project
	Opening existing projects

	Directory structure
	Root folder
	/Source
	/Source/Config
	/Source/Generated
	/Source/CustomCode

	/Resource
	/Resource/Font
	/Resource/Image
	/Resource/Keyboard
	/Resource/Movie
	/Resource/Text

	User interface
	Menu bar
	File menu
	Edit menu
	Project menu

	Editor window
	Property window
	Id, position and size
	Positioning logic
	Positioning details
	Object dependent details

	Hierarchic tree view
	Play window
	Interaction window
	Quick access buttons
	Text resource window
	Export and import texts in the CSV format

	Font resource window
	Image resource window
	Variable resource window
	Movie resource window
	Drawings window
	Lists window
	Importing and exporting of content

	Tables window

	Starting the simulation project
	AppWizard SPY window

	Resource management
	Stock resources
	Outsourcing resource data to SD card
	Text management
	Font management
	Available information
	Available operations
	'Create new...'
	'Add existing...'
	'Font codepoint range...'
	'Delete from project'
	'Cleanup'
	'Modify font height...'
	'Merge...'
	'Default codepoint range...'

	Example how to use merged fonts
	Setting up the project to be able to use Thai and Arabic
	Selecting the fonts to be merged together
	Generating the font files to be merged
	Make the new fonts 'mergeable'
	Include only the codepoints used in the project
	Show result on the screen

	Image management
	Movie management
	Pitfalls with large files

	Locating image data to individual memory sections

	Options / Preferences
	Options
	Enable simulation
	Stay alive loop
	Working with persistent screens
	Use of static memory devices
	Requirements
	How it works
	Performance

	Run script

	Preferences

	Objects
	Introduction
	Object properties
	Alignment
	Bitmap
	Border size
	Colors
	Content
	Cursor inversion
	Decimal mode
	Focus options
	Font
	Frame radius
	Frame size
	Hexadecimal mode
	Horizontal mode
	ID
	Initial value
	Invert direction
	Motion partner
	Motion support
	Movie
	Opaque mode
	Overwrite mode
	Period
	Position and size
	Radius
	Range
	Space
	Space between items
	Span of values
	Stay on top
	Text
	Text rotation
	Text wrapping
	Tiling
	Untouchable
	Vertical mode

	Object focus
	Object scrollers
	Box
	Button
	Checkbox
	Dropdown
	Edit
	Gauge
	Image
	Keyboard
	Listbox
	Listview
	Movie
	Multiedit
	Progbar
	QRCode
	Radio
	Rotary
	Screen
	Slider
	Switch
	Text
	Timer
	Wheel
	Window

	Interactions
	Introduction
	Tools for large projects
	Using the filter
	Deactivating interactions

	List of signals
	ANIMEND
	ANIMSTART
	CLICKED
	CREATE
	DELETE
	ENTER_PRESSED
	FIXED
	GOT_FOCUS
	INITDIALOG
	LANGCHANGED
	LOST_FOCUS
	MOTION
	MOTION_STOPPED
	PIDPRESSED
	PIDRELEASED
	RELEASED
	ROTATED
	STARTED
	STOPPED
	TEXT_CHANGED
	TIMER
	UNPINNED
	VALUE_CHANGED

	List of jobs
	ACTUATE
	ADDVALUE
	ADDITEM
	ANIMCREATE
	ANIMSTART
	ANIMSTOP
	CALC
	CLEAR
	CLOSESCREEN
	DELITEM
	ENABLEPID
	EXIT
	INSITEM
	INVALIDATE
	MODALMESSAGE
	MOVETO
	ROTATEDISPLAY
	SCREENSHOT
	SET
	SETALPHA
	SETANGLE
	SETBITMAP
	SETBKCOLOR
	SETCOLOR
	SETCOORD
	SETENABLE
	SETEND
	SETFOCUS
	SETFONT
	SETITEM
	SETLANG
	SETPERIOD
	SETRANGE
	SETSCALE
	SETSIZE
	SETSTART
	SETTEXT
	SETVALUE
	SETVIS
	SETX0
	SETY0
	SETX1
	SETY1
	SHIFTSCREEN
	SHIFTWINDOW
	SHOWSCREEN
	START
	STOP
	TOGGLE
	NULL

	Conditions
	Introduction
	Terms and operands

	Variables
	Variable management
	Calculations
	Terms and operands
	Operands
	Operators
	Creating a term
	Calculating a variable

	Manipulating variables from user code

	Animations
	Pre-defining animation IDs
	Edit animations
	Animation properties
	Start and end time of animation items
	Animation values
	Animation ease

	Running animations

	Drawings
	Creating a drawing object
	Defining a drawing
	Editing a drawing
	Adding functions
	Setting the parameters

	Displaying a drawing
	Examples

	Available drawing functions

	User Code
	Location of custom code
	Slot routines
	APPW_ACTION_ITEM
	Custom user code

	Screen callback routines
	General AppWizard API
	APPW_CalcVar()
	APPW_DoJob()
	APPW_Exec()
	APPW_GetText()
	APPW_GetValue()
	APPW_SetCustCallback()
	APPW_SetPos()
	APPW_SetScreenshotFunc()
	APPW_SetStreamedBitmap()
	APPW_SetStreamedBitmapEx()
	APPW_SetText()
	APPW_SetValue()

	Fonts
	How to use fonts
	Font API
	APPW_GetFont()

	Variables
	How to use variables
	Variables API
	APPW_GetVarData()
	APPW_SetVarData()

	Board support packages (BSPs)
	Preconfigured BSPs included in the shipment
	Example
	Step 1: Select BSP
	Step 2: Generate code
	Step 3: Run SEGGER Embedded Studio Project
	Step 4: Compile and run on target

	Creating custom BSPs
	Example
	Step 1: Create a project with AppWizard
	Step 2: Create some elements
	Step 3: Export & Save
	Step 4: Copy evaluation software package into project folder
	Step 5: Exchange libraries
	Step 6: Add file access routines
	Step 7: Add library to project
	Step 8: Add file access routines to the project
	Step 9: Adjust include files
	Step 10: Adjust data alignment
	Step 11: Add support for run-time display rotation (optional)
	Step 12: Add application to project
	Step 13: Compile and run on target

	Importing a custom BSP
	Step 1: Create BSP folder
	Step 2: Copy project into BSP folder
	Step 3: Add an image
	Step 4: Add information file
	Step 5: Import the BSP into AppWizard

	Using the emWin source code
	Step 1: Remove the pre-compiled static libraries
	Step 2: Add the source code to the project directory
	Step 3: Add the source code to the project
	Step 4: Set include paths

	AppWizard SPY
	Requirements
	Opening the SPY dialog
	Building a project
	Running a project
	Recording
	Playing a recording

	Command line usage
	Command format
	Command line options

	Glossary

