Ozone

User Guide & Reference Manual

Document: UM08025
Software Version: 3.40
Revision: 4
Date: February 12, 2026

|
/ SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

https://www.segger.com/ozone
http://www.segger.com
http://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2013-2026 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173 993120
Fax. +49 2173 99312 28
E-mail: support @egger.com

Internet: WWW. segger. com

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please report it to us and we will try to assist you as soon as possible.

Contact us for further information on topics or functions that are not yet documented.
Print date: February 12, 2026

\I)/Iea;r;iuoarll Revision| Date By Description
3.40 4 260212 SB | Added description of Project.SetSWO.
3.40 3 260129 | AD | Added RISC-V instruction set extensions Zcmt, Zcmp and Zcb.
3.40 2 251216 | AD | Added SmartView plugin for uKOS-X.
3.40 2 251120 AD | Added GDB server types.
3.40 1 250911 AD | Updated Debug Settings Dialog.

Removed background memory access emulation (BMA emulation).
3.40 0 250828 | AD | Updated visibility of some elements in the View Menu.
Added GDB Client and Debugging via GDB Server.

Removed section DLL Plugins.

3.38 / 250730 B Marked emulated BMA as deprecated in Data Sampling Window.
3.38 6 250711 SB | Added Automation Socket Interface section.
Updated section System Variable Identifiers and description of Code Pane
3.38 > 250514 AD in secttion Timeline Window
3.38 4 250523 SB | Added Available RTOS Plugins to RTOS Window, updated related sections.
3.38 3 250410 | AD | Added command to Semihosting.
3.38 2 250304 SB | Fixed identifiers in TargetInterface Class.
Added description of Symbol or PC to Stop Target during Startup.
3.38 1 241212 AD Added project script function OnDebugSt art Br eakSynReached.
3.38 0 240927 | AD | Added support for Rust programming language.
3.36 1 240904 AD | Reworked handling of escaped quotes.

Added description for Interworking with External Applications
3.36 0 240822 AD | Reworked section Terminal Window, in particular added description of Ansi
Escape Sequences

Added Instruction Based Call Stack Unwinding to section Call Stack Win-
dow

3.34 0 240516 | AD | Added description for Custom Toolbar

Reworked section Incorporating a Bootloader into Ozone’s Startup Se-
quence

Added description for Context Aware Stepping
Added EBREAK instruction for RISC-V semihosting

Added *.asm and *.arm files to list of assembly code files

Added description of option allowing to download programs into virtual ad-
3.30c 3 231201 AD | dresses rather than physical addresses (see Target Download Addresses)
Fixed numbers in tables in section Errors and Warnings

Updated Trace Settings Dialog

3.32 0 240222 | AD

3.30b 2 230915 AD | Added description for disassembler flag for Zfinx extension

3.30a 1 230628 AD | Add hints that toolbars may be shown/hidden via context menu

updated section Memory Dialog

updated section Target Actions

added target action Target.FillMemoryEx
updated section Timeline Window

3.30 0 230605 | AD

updated section Installation.
updated section Timeline Window

3.28 3 230119 AD | Added description of Set Offset To Code feature.

Updated Find In Files Dialog.

Updated Find In Trace Dialog.

Updated Quick Find Widget.

Added string display limit to Table Window Settings.

3.28 4 230328 | AD

3.28 2 221129 | AD

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

Manual

; Revision| Date By Description
version

Added desription of semihosting configuration parameter ExitMode in
Project.ConfigSemihosting

Added notes on breakpoint callback functions not being supported for data

3.28 1 221102 | AD breakpoints.

Added documentation of SmartView Window and SmartView Plugin-scripts
Added documentation for new TargetInterface Class methods.

Added description of Project.SetFlashLoader

Updated section Project Wizard

3.28 0 221007 | AD

3.26 4 220912 AD | Chapter Directory Macros updated, added macros for date and time.

Chapter Terminal Window updated
3.26 3 220707 AD | Updated context menu description of break point window
Added command Exec.AddCommandOnOpen

Chapter Terminal Window updated

3.26 2 220314 AD Updated context menu description of some windows

3.26 1 220125 | AD | Chapter ElIf.GetFileClass added

Updated to revision 3.26.

Chapter Minidumps updated.

Chapter Disassembly Plugin updated.

Chapter RTOS Awareness Plugins updated.

3.26 0 211129 AD | Chapter Compatibility with Embedded Studio updated.
Chapter Event Handler Functions updated.

Chapter getInstInfo updated.

Updated context menu description in chapter Source Viewer.
Updated context menu description in chapter Console Window.

Added NuttX to list of supported RTOSes in chapter RTOS Awareness.

3.24 2 210913 AD Chapter Targetlnterface.peekByt es updated.

Chapter Sampling Frequency updated.

3.24 1 210701 AD Chapter Timeline Window updated.

3.24 0 210617 | AD | Updated to revision 3.24.

3.22 0 201204 JD | Updated to revision 3.22.

3.20 1 200901 JD | Updated chapters Appendix and Support.

Section Project Load Diagnostics Dialog added.
Section Project Files updated.
Chapter Graphical User Interface updated.

3.20 0 200518 D Chapter Debug Information Windows updated.
Chapter Debugging With Ozone updated.
Chapter Appendix updated.

3.11 3 200326 JD | Broken document references fixed.
Section Find In Trace Dialog added.

3.11 2 200320 1D Chapter Graphical User Interface updated.

Chapter Debug Information Windows updated.
Chapter Appendix updated.

3.11 1 200204 JD | Chapter Appendix updated.

Section Startup Completion Point added.
Section Export Actions added.

Section Instruction Trace Window updated.
Section Registers Window updated.
Section Table Windows updated.

Chapter Appendix updated.

3.11 0 200203 JD

Chapter Scripting Interface updated.
Chapter Appendix updated.

Multiple images updated.

Multiple text improvements.

3.10 0 191206 | 1D

Chapter Disassembly Plugin added.

Chapter Disassembly Window updated.

Chapter Timeline Window rewritten.

Chapter Appendix updated.

Chapter Data Graph Window renamed Data Sampling Window.
Chapter Power Graph Window renamed Power Sampling Window.

2.71 1 191029 JD

2.71 0 191007 JD | Chapter Appendix updated.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

Manual
version

Revision

Date

By

Description

2.70

190923

D

Section Register Initialization updated.

2.70

190830

JD

Section Quick Watch Dialog added.
Section Project File updated.
Section Project Script updated.
Chapter Appendix updated.

2.63

190819

D

Section Semihosting added.
Section Semihosting Settings Dialog added.
Chapter Appendix updated.

2.63

190808

D

Section J-Link Control Panel removed.
Chapter Appendix updated.

2.63

190718

D

Section Debug Snapshots added.

Section Snapshot Programming added.
Section Snapshot Dialog added.

Section Minidumps added.

Chapter Debug Information Windows updated.
Chapter Graphical User Interface updated.
Chapter Appendix updated.

2.62

190409

JD

Section Appendix updated.

2.62

190405

D

Section RTOS Window added.

Section RTOS Awareness Plugin added.
Section JavaScript Classes added.

Section Quick Find Widget added.

Section Features of Ozone updated.
Section Timeline Window updated.

Section Project Files updated.

Section Working With Expressions updated.
Section Find Dialog renamed Find In Files Dialog
Chapter Appendix updated.

Contact information updated.

2.61

181207

D

Renamed user action category “View” to “Show”.
Section File Path Resolution Sequence updated.
Chapter Appendix updated.

2.61

181026

D

Version number updated.

2.60

181023

JD

Moved Section Expressions to Chapter Debugging With Ozone.
Moved Section File Path Resolution to Chapter Debugging With Ozone.
Chapter Appendix updated.

2.60

181019

JD

Chapter Appendix updated.

2.60

181008

D

Section Instruction Trace Export Dialog added.
Chapter Appendix updated.

2.57

180830

D

Chapter Appendix updated.

2.57

180830

JD

Section Setting Up Trace added.

Section Power Graph Window added.

Section J-Link Control Panel added.

Section Data Breakpoints added.

Chapter Debugging With Ozone restructured.
Section Timeline Window updated.

Section Instruction Trace Window updated.
Section Call Stack Window updated.

Section Data Graph Window updated.
Section Trace Settings Dialog updated.
Section File Path Resolution Sequence updated.
Section Features of Ozone updated.

Section View Menu updated.

Chapter Appendix updated.

2.57

180711

JD

Section Trace Settings Dialog updated.
Chapter Appendix updated.

2.57

180227

JD

Section Trace Cache renamed to Setting Up The Instruction Cache.
Section Trace.ExportCSV added.
Section Errors and Warnings added.

2.57

Ozone User Guide & Reference Manual (UM08025)

180227

D

Section Selective Tracing added.

Section Environment Variables added.
Section Working With Expressions updated.
Chapter Appendix updated.

© 2013-2026 SEGGER Microcontroller GmbH

Manual _ -
; Revision Date By Description
version
The user manual was ported to emDoc.
Section Downloading Program Files added.
Section Register Initialization added.
2.36 1 180227 D Section Incorporating a Bootloader into Ozone’s Startup Sequence added.
Chapter Appendix updated.
Removed suffix "Co KG” from the company name.
2.56 0 180214 JD | Section Memory Window updated.
Section Tools Menu updated.
Added a new user action category Tools Actions.
2.55 1 180129 1D Updated the description of user action Script.Exec.
Section Supported Target Devices updated.
Section Target Support Plugins added.
2.55 0 180122 D Documented breakpoint callback functions.
Section Action Tables updated.
2.54 0 171205 JD | Section Memory Usage Window updated.
2.53 1 171121 JD | Section Memory Usage Window added.
Section File.OpenRecent added.
Section Type Casts added.
2.53 0 171113 1D Section Supported Target Devices updated.
Section System Register Descriptor updated.
2.52 1 171029 JD | Improved the layour and readability of multiple sections.
Chapter Appendix updated.
Section Newline Formats added.
2.52 0 171022 JD | Section Code Profile Export Formats added.
Section Memory Window updated.
Section Terminal Window updated.
2.50 1 170918 JD | Section Supported Programming Languages added.
2.50 0 170911 JD | Updated the version number to 2.50.
Sections 4.1.12, 7.8.9.9 added.
2.47 0 170905 JD | Sections 1.2, 3.9.7, 3.11.10, 4.7.13, 5.13.1.1, 7.3.1, 7.7.13 updated.
Sections 3.11.11, 7.7.2, 7.8.2.3 removed.
2.46 0 170817 JD | Updated the version number to 2.46
2.45 1 170810 JD | Section Command Line Arguments updated.
Section Trace Cache added.
2.45 0 170808 1D Section Filter Bar added.
Section Command Line Arguments added.
2.44 0 170712 JD | Section User Files added.
Chapter Appendix updated.
2.42 0 170621 JD | Updated multiple figures and sections.
2.40 0 170515 JD | Updated multiple figures and sections.
Corrected spelling errors.
2.32 0 170410 JD | Section Call Frames updated.
Chapter Appendix updated.
Section Timeline Window added.
2.31 0 170404 D Section Project.RelocateSymbols added.
2.30 0 170313 JD | Updated the version number to 2.30.
2.29 1 170306 | JD | Added system variable VAR TRACE_PORT_W DTH.
2.29 0 170129 JD | Section Call Graph Window added.
2.22 3 170118 JD | Section Project.AddRootPath updated.
2.22 2 161123 JD | Section Advanced Program Analysis And Optimization Hints added.
Section Data Graph Settings Dialog added.
2.22 1 161111 D Section User Actions updated.
2.22 0 161031 JD | Updated the version number to 2.22.
2.20 1 160928 JD | Section Project.SetJLinkLogFile added.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

Manual . o
version Revision| Date By Description
2.20 0 160915 JD | Updated the version number to 2.20.
2.18 0 160802 JD | Section Data Graph Window updated.
2.17 6 160718 JD | Renamed “User Guide” to “User Manual”.
2.17 5 160623 JD | Correct spelling errors.
Integrated documentation about editable data breakpoints.
2.17 4 160622 JD | Updated all content menu graphics and hotkey descriptions.
Removed obsolete user actions.
2.17 3 160616 JD | Removed obsolete user actions.
2.17 2 160613 JD | Fixed spelling and grammatical errors.
2.17 1 160606 JD | Section System Register Descriptor added.
2.17 0 160520 D g:i:gﬂ \I/DVaotrakii;a\F/)\?it\rlmviI?f;rvgsZ?odnesdﬂpdated.
2.15 1 160427 . g:iﬂgg b&\éerkﬁzt(\:/cﬁsh ?Eil(?;)erg.ssions added.
2.15 0 160324 JD | Changed the product name to “Ozone - the J-Link Debugger”.
2.12 2 160225 JD | Moved sections.
212 | 1| seoass | oo | SEchon Pl Feth Resaution seduerce aaded
Section Code Profile Window added.
212 | o | aeorz2 | o | SEhen inatcton Tece vindow Updted
Section Source Viewer updated.
2.10 2 160115 JD | Fixed a typo in section Target Actions.
2.10 1 151208 JD | Section Directory Macros added.
2.10 0 151203 JD | Update the version number to 2.10.
179 |0 | usiis | o | e e e
1.72 0 150505 JD | Original version.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

The target processor.

DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Ritchie (ISBN 0-13-1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

10

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

11

Ozone User Guide & Reference Manual (UM08025)

Table of contents

A [011 (0T [1 T 1 o] IR PSPPSRIt 22
3 R A o T Y o FoR O 7o o L= 7 Y 23
I =Y Y =Tl o) H @ o] o [T RN 24

1.2.1 Fully Customizable User Interfaceccoiviiiiiiiiiiiiiiiici i 24
1.2.2 Scripting Interface cooiiiiiii i e 24
1.2.3 RTOS AWAIENESS ttiiiiitttttiinteesiateestanteestasnteseaantessaannessaarnrssaannneseanneess 24
1.2.4 Code Profiling oo 24
1.2.5 PoWer Profiling oo e 24
1.2.6 SYMDOl TracCe i 24
3 720 A 1 o [o ¥ [t o o] o T 1 = ol 24
1.2.8 Unlimited Flash Breakpointsciiiiiiiiiiiiiii i aea 24
1.2.9 Wide Range of Supported File FOrmatscccoiiiiiiiiiiiiiiiic i 24
1.2.10 Peripheral and System Register Supportccooiiiiiiiiiiiiiiii 25
1.2.11 EXtensive Printf-SuUpPPOrtoiiiiiiii i e 25
1.2.12 SNAPSNOTS it 25
1.2.13 Custom INStruction SUPPOrt ..o i s v aaaes 25
1.2.14 Instruction Set Simulation ... 25
1.2.15 OMaAr VW oot 25
R T €1 1 B G =T o | 25
B T =T U 1T =T o 1= P 26
1.4 Supported Operating Systems ...t e 27
1.5 Supported Targel DeVICES ..ciiiiiiiii i i i e e e 28
T Y o PP 28
T 0 S Y P 28
1.5.3 Target Support PIUGINSuiiiiiiiiii i 28
1.6 Supported Debug INterfaCesoiviiiiiiiiii i i 29
1.7 Supported Programming LangUagesc.ciiiiiiiiiiiiiiiiie it i s sniee e aaieeanns 30

2 GEMliNG STAMEAeiiiiiiiiiiiiiii ettt e e e e e e e e e e e e e e 31

720 R o 1= 1= 1 = o o T 32
2.1.1 Installation on WIindOWSoiiiiiiiiiii i i e e e v eaaeaas 32
2.1.2 Uninstallation on WINAOWS ...oiiiiiiiiiiiii i it i e e as 32
2.1.3 Installation on LiNUX ...coiiiiiiiiii i 32
2.1.4 Uninstallation 0N LiNUX ..oiiiiiiiiiii i i e e et eaaeaas 33
2.1.5 Installation on MacOS ... e 33
2.1.6 Uninstallation on mMacOSciiiiiiii e 34

2.2 Using Ozone for the first time ..ocviiiiii e e 35
2.2.1 ProjeCt Wizard ..ocviiriiiiiiiii i e e e e 35
2.2.2 Starting the Debug SessSioncviiiiiiiiiiiii e 41

© 2013-2026 SEGGER Microcontroller GmbH

12

Ozone User Guide & Reference Manual (UM08025)

3 Graphical User INEIfACEooeuiiiiiiiiiieii e 42
0 R U =1 = s Yo of [0 1= 43
3.1.1 ACiON Tables .iiviiieiii i e 43
3.1.2 EXecuting User ACLIONS ..iiiiiiiiiiiii i i e s rae e s s nne e s s anee e snanneenas 43

G IUC T B T-1 Lo To [Yot To o = 43

G072 \ = 11 o AV o o [1 P 44
GG TR =1 o 11 T = 7 PP 45
3.3.1 File MENU ittt e e 45

GG T VT YA = o 46

G 70 T T o o I 1 = o 1 PP 46
3.3.4 DEDUG MEBNU ittt i i e e 47

G TG T8 T o Yo] F= T =T o U P 47
3.3.6 WINAOW MENU uiiriiiiiii i i s e st ae e s e ran s e sesan e sn e renan s snerneannennenns 48
3.3.7 HeID MENU it e e e 48

G302 S Lo To 5=] o= PP 50
3.4.1 Showing and Hiding Toolbarscciiiiiiiiiiiiiiiii i e 50
3.4.2 Arranging Toolbars ..o 50

3.4.3 Docking and Undocking Toolbarscccciiiiiiiiiiiiici i 50

JC I S S O 1= (o . TN e To' | 5= ol PR 50

T T) =) B 1= = - | 51
3.5.1 StaluS MESSAGE ittt it it e e 51
3.5.2 Window Context INformationcocoviiiiiiii i 51
3.5.3 Connection Stateociiiiiiiiii e 51

3.6 Debug Information WiNAOWS ...ciiiiiiiiii i i e raes 52
G T A @10) /=) o =1 o 1 52
3.6.2 Standard ShOrtCUESviiiiii i e aeaas 52

3.6.3 WiINAOW LayOUl uiiiiiiiiiiii i i e e e 52

G ST S ©o To < 1Y T o o [0)£ PP 52

3.6.5 Table WiNAOWS ..ciiviiiiiiiiiii i i s e s e e e e e s s an e e e e e a e annannes 52

G20 2 @0 Ta 1SV o T Fo 1= P 53
3.7.1 Program EXecution POINt ..o i i i e e 53
3.7.2 Code Line Highlightingccviiiiiiii i e 53
3.7.3 BreaKpoints i e 54
3.7.4 Code Profile Informationccvieiiii i nreaaeans 55
3.7.5 Text Cursor Navigation ShortCutscoooiiiiiiiiiiiii 56

G < T =Y o] (=T LT T o Y= P 58
3.8.1 MemMDEI ROWS .ttt e e e s e a e e e s e e e e e 58

G < T ©o] 18 o] o T o 1= T =T P 58

3.8.3 Display FOrmat ...oiiiiiiii i e 58
3.8.4 Filter and Total Value Barsccioiviiiiiriiiiniiineene i s snnenneeneanes 59

S T T O VA q o Yo PP 59
3.8.6 Change Level Highlightingcccooiiiiiiiii 59
3.8.7 Letter Key Navigationcciiiiiiiiiiiiiii i i i s e e s e nnee e e 60
3.8.8 Table WIindow PreferenCescviiiiiiii i aeneiesnee s snne e ennennens 60

3.9 WiINAOW LayoUl v 61
3.9.1 Opening and Closing WINAOWSiiiiiiiiiiiiiii it ri i nee e 61
3.9.2 UNAOCKING WiNAOWS ..ttt it iiie i a e st ae e st aae e e aaaeaaneans 61

3.9.3 Docking and Stacking WIiNdOWSciiiiiiiiiiiiiii i i i i niae e aes 61

3.10 Change Level Highlighting ..cocoviiiiiiiii i e i 62
0 I T -1 o T £ 63
3.11.1 Breakpoint Properties Dialogccoiiiiiiiiiiiiiiiii i e 63
3.11.2 Code Profile EXport Dialog ..ccoiviiiiiiiiii i 65
3.11.3 Data Breakpoint Dialogccoiiiiiiiiiiiiii i e 67
3.11.4 Debug Settings Dialog ...ccciiiiiiiiiiiiiiiii i e 68
3.11.5 Disassembly EXport Dialogccoviiiiiiiiiiiiii i i 69
3.11.6 Find IN Files Dialog ...cviiiiiiiiiiiiiiiii i s 71
3.11.7 Find In Trace Dialog ..ccviiiiiiiiiiii i i i e e e e e ee s 73
3.11.8 Memory Dialog oo 75
3.11.9 Instruction Trace EXport Dialogccoviiiiiiiiiiiiiii i 77

© 2013-2026 SEGGER Microcontroller GmbH

13

3.11.10 Project Load Diagnostics Dialogccoieieiieiiiiiiii e 78
3.11.11 SNapshot Dialogciuieiiiiie i 79
3.11.12 Semihosting Settings Dialogcciieiiiiiii e 82
3.11.13 System Variable Editorccviiiiiiiiii i e 83
3.11.14 Trace Settings Dialogcoviieiiiiiiii e 84
3.11.15 User Preference Dialogccoeiniiiiieiiiii i et 86
3.11.16 Quick Find Widgetoeiiiiii e 92
3.11.17 Quick Watch Dialog ..oueiniiiieii i 94

4 Debug Information WINAOWSoooiiiiiiiiiiiiii e eee et e e e e e e e e e e eeeeeeaannnes 95
4.1 Breakpoints/Tracepoints WIiNAOWc.ciiiiieiiiiiiiii i s e e reans 96
4.1.1 Breakpoint Propertiesccoiiiiiiiiiiiii i s 96
4.1.2 Breakpoint Dialog ...oceiieiiiiiiiiiii e e 96
4.1.3 Derived Breakpointsociiiiiiiiiii i e e 97
4.1.4 Vector CatChes .o e e 97

L T T T) s N 1= U 97
4.1.6 Editing Breakpoints and Vector Catches Programmatically 98
R =1 o L= AV o o [1 P 98

4.2 Call Graph WIiNAOW ...ciiiieiiiiiii i e e e s st rr s e reanesaneeness 99
N R O 1V = oY1= P 99
L S = U1 o R 99
4.2.3 Table ColUMNS e 99
4.2.4 Uncertain ValUES ..oviiiiiiiii i s 100
4.2.5 Recursive Call Paths ..o e 100
4.2.6 Function Pointer Callscviiiiiiiiii i e 100
L A -1 o L= AV o o [1 100
4.2.8 ConteXt MENU ..oiuiiiiiiiii i s e 100
4.2.9 Call Graph WIindow PreferencCesvceviiiiiiiiiiiiii i eneneneaaens 101

LG B - || o) =T~ LT T (o PP 102
LG T R O 1V = oY 1= P 102

LG 0 -1 o L= @0 18]] 1= 102
4.3.3 Call Site Parameter Valuescviiiiiiiiiiiiii i e es 102
4.3.4 Instruction Based Call Stack Unwindingccooiiiiiiiiiiiiiiieeeee 103
4.3.5 Unwinding StOP REASONS ...uiiiiiiiiiiiiiii i e s ae e 103
4.3.6 Active Call Framie ...ooviiiiiiii i s 104
4.3.7 ConteXt MENU ..ot e e 104
4.3.8 SHINGS oot e 104

LG s T =1 o L= AV o o [1 P 105

4.4 Code Profile WiNAOW ..eiiieiiii it e e e r e e aeanans 106
L Y < | o 106
L O 1V = oY1= P 106
G B @ Yo [T o) V7= =T [P 106
4.4.4 Program LOad ...ooviiiiiiiiiiiiii e 107
4.4.5 EXecUution COUNTEIS vttt s e e as 108
O G 1 =T ol 108
4.4.7 CONEEXE MENU ittt s 109
4.4.8 User Preference Settingsooiiiiiiiiiiii i 110
4.4.9 Selective TraCing ..ooceiiiiiiiiii i rr e e e anens 110
4.4.10 Table WINAOW .uiiiiiiiiiiiii s e s e e e e e e e e enes 110

N o o F=o] T T T o 1P 111
4.5.1 Command Prompt ... e 111
4.5.2 MESSAGE TYPES tiuiinriiniiiiite it iatsatestaataanerar et s et e 111
4.5.3 MeSSAGE COlOrS .uiiiiiiiiiiii i e 112
4.5.4 CoNEXt MENU .ottt 112
4.5.5 Command Help .o e 112
4.5.6 Console WIindOW PreferEnCeSovvviiiiiiiiiiiiiii i e e ae e 113

4.6 Data Sampling WINAOWuiiiiiiiiiiii it aas s e s s e e serneeaneaness 114
4.6.1 Hardware ReqUIrEMENTS ...iiviiiiiiiiii i e e raeeanernens 114
4.6.2 Sampling Fr@QUENCY ..oiiiieiiiiiieeiiiiieeae it ats e saesane st sneeanernnaanss 114

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

14

Ozone User Guide & Reference Manual (UM08025)

4.7

4.8

4.9

4.10

4.11

4.12

4.13

T T B Y- 1 = I o] PP 114
4.6.4 WiINAOW LayOUL ..oiiviiiiiiii i s s e s e e r e s r e a e enans 114
T T Y = o U o O V=Y P 114
4.6.6 SAMPIES VIBW vttt it ae e e s e s e e 116
R [0 0 T=1 1o = 116
4.6.8 Data Sampling Window Preferencescoooviiiiiiiiiiiii e 116
Disassembly WIiNAOWiiuiiiiiiiii i e s e r e e e e e ne e 117
4.7.1 ASSEMDBIY COUE ..iiiriiiiiiiii e e 117
4.7.2 EXECULION COUNLEIS .ttt e e r e e n e s e e nnneenes 117
4.7.3 KeY BiNAINGS ..ueuiiniiiiii it 117
4.7.4 ConteXt MENU ittt i i i e e e 118
4.7.5 Disassembly PlUGIN ..o e 119
4.7.6 Offline Disassembly ...c.ciiiiiiiiiii i 120
4.7.7 Code WIiNAOW .iuviiiiiiiiii it s e s e sase s san e s e e sasssne e aanssneanneaneannans 120
4.7.8 Disassembler OptionNS ..icviiiiiiiiiii i i 120
4.7.9 Appearance SettiNgs ...cccviiiiiiiiiiiii i 120
FiNd ReSUIES WINAOW .iiviiieiiiiiiiis i s e aae s e e e s e e s e s e s e e nesae e nn e neaneanes 121
4.8.1 Find ReSUIL Tabs ..iiviiiiiiiiii i s e e e e enes 121
4.8.2 Supported Text Search LOCationscocoviiiiiiiiiiiii e 121
4.8.3 Match Highlightingccoiniimii e 121
4.8.4 ConteXt MENU ittt i e i e e 121
FUNCEIONS WIiNAOW .uuiiiiiii i s v e s e s e e e e e rn e nneeneanes 123
T2 T N o U1 [t o o I o o o= of =1 PP 123
4.9.2 Inline Expanded FUNCHIONS ...c.iiiiiiiiii i v s e e reennenaea 123
L T T o = g o\ 1= o | P 124
4.9.4 Breakpoint INdiCators ...ciiiviiiiiii i e 124
4.9.5 Function Display Namesciiiiiiiiiiiiiiiiiir i i saneaneeneaaeas 124
L I -1 o L= AV [Vo [11 P 125

Global Data WinNAOW ...uiiiiriiiiiii i s s s r e s s e e se s e e a e aeannenneannans 126
4.10.1 Table WiNAOW .iiueiiriiiiiii e ae e s s e a e e s e a e e e nnenneenes 126
4.10.2 Data Breakpoint INdiCatorooiiiiiiiiii i i e ee e 126
L 0 G T ©1o] o) of = o 1 = o 1 P 126

InStruction Trace WINAOW ..oueiiriiiiieii e ese e s e e r e a e e e aneaneaneanes 128
e Y < | o PP 128
4.11.2 INSErUCLION ROW it s e s e s e s e e s e e s nnernneennes 128
4.11.3 INStruction SEaCK ..oivviiriiiiii i e e 128
4.11.4 Trace BlOCKS ..uiiiiiiiiii it e e e e 128
T O 1 I = o 1= P 129
4.11.6 Backtrace Highlightingcooiiiiii e 129
4.11.7 TeXt S AT i 129
I S R (= VA = 11 o o 1 T 1= PP 130
L I S T @10 o) of = o = o 1 P 130
4.11.10 Instruction Trace Window Preferencesccvvviiiiiiiiiiiiiiiinnnennennns 131
4.11.11 SeleCtiVe TraCing ..ocieeeie et e ae e e e e e e aee e enenns 131
4.11.12 Limitations uiieiiieii i e 131

(o Tor=Y I B T = IV T Lo PP 132
A R ©)V =T oV 11 PR 132
4.12.2 AUEO MOGE ittt et 132
4.12.3 Data Breakpoint INdiCatorooiiiiiiiiii i s 132
4.12.4 ConteXt MeNU .riiiiiii i s e e e 132
4.12.5 Table WiNAOW ..iiiiriiiiiii i s e s s e e er e e e anenne s 134

1 =T Yo o VA1V T o o [0) PP 135
4.13.1 WINdOW LayouULl .iviiiiiii i e e e s s e e e e re e anans 135
4.13.2 BasSe AdAIrESS ..viiiiiriiiiiiiiie i e ar e e 135
4.13.3 Drag & DrOpP ciieiiiiiiiiiiiiiiiii e 136
4.13.4 TOO0IDAr .ot s 136
4.13.5 MemOry Dialog .ucuiiii i e 137
4.13.6 Change Level Highlightingccoiiiii i 137
4.13.7 PeriodiCc Update ...iiviiiiiii i i e 137
G S T U £ =T o 1 o o 11 | 137

© 2013-2026 SEGGER Microcontroller GmbH

15

Ozone User Guide & Reference Manual (UM08025)

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.13.9 CopY @nd Paste ..icviiiiiiiiiiii i e 137
4.13.10 ConteXt MeNU oottt i i e e e e e 137
4.13.11 MuUltiple INStANCES .iuviiriiiiieiie i s r e e e e e e ananes 138

Memory Usage WINAOWi.eiiiiiii et et et e e e e e e e e eaeaaes 139
4.14.1 WINdOW LayoOUL .iviiiiiiii i e s e e e s s e s e seran e an e enaanans 139
O Y o[1 o 140
0 I NG T N 0 =] = [t o o] [PP 140
O S @To]) o= (o = o 1 141

SMArTVIEW WiNAOW ittt e et e e ra e aa e aaneeaaneas 143
4.15.1 SmartView Plugin ConCeptcoiiiiiiiiiii e 143
4.15.2 Selecting Pagesooviiiii i 144
o TG T O1o] o) f = o 1 =1 o 1 144

Power Sampling WINAOW ... et e eeeaeans 145
4.16.1 Hardware RequUIiremMentsuiiiiiiiiiriieiirieeineirsase e rnesanssnesnnaaneaneans 145
T Y o[1 o 145
4.16.3 Sampling FreqUENCY ..cvviiiiiii i e e v ae e neea e e e nneanens 145
4.16.4 Data Limit .ooiiiiiiii i e 146
4.16.5 TIMEINE 1iiriiitii i s 146
4.16.6 CoNteXt MENU .viiiiii i e e 146
4.16.7 Power Sampling Window Preferencesccooiiiiiiiiiiiiiieieae e 146

T o 1= =T ST T [0 1 PP 147
L s R X VI B | =T PP 147
N 0 1= T =] /=Y gl] o 11 o1 148
4.17.3 Bil FIElds coriiiiiiii i e 148
4.17.4 Processor Operating MOoiviiiiiiiiiiiii e 149
4.17.5 Register Display ..iiiiiiiiiiiiiiii i i 149
o A SO0 o) o= o = o 1 P 149
4.17.7 Table WiNAOW ...uiiiiiiii i e 150
4.17.8 Multiple INSTaNCES ..iiiviiiii i i e 150

2@ T4 T 0T (o 1 151
4.18.1 RTOS PlUGIN triiiiitiiiii i s e e e s e e s e an e aeanreaneannans 151
4.18.2 RTOS Informational VIEWSciiiiiiiiiiiii s i ane e eanneenes 151
4.18.3 Task Context Activationoiiiiiiiii e 152
L S @To] o) of = ol =1 o 1 152
4.18.5 Available RTOS PIUGINS ...ouuiiiiiiiii e e 152

SoUrCe FIles WiNAOW ..uuiiiiiiii i i i e e aaaeaas 154
4.19.1 Source File INformationccviiiiiiiii i e 154
4.19.2 Unresolved SoUrCe FileS ...uiiiiiiiiiiii i i e eaneeaeas 154
= G SO0 o) f = (o 1 =1 o 1 P 155
4.19.4 Table WIiNAOW ..iiiiriiiiiii i re s s s e e r e a e e e nnenneenes 155

S To U] ol I AT 1Y =T o 156
4.20.1 Supported File TYPeS uiiiiiiriiiiiii i i ra s i e e nn e aneaneans 156
4.20.2 EXeCULiON COUNEEIS .ottt r e s e e s e e saneenneenes 156
4.20.3 Opening and Closing DOCUMENESoieiiiiiiiii e 156
4.20.4 Editing DOCUMENES .. .oiuiiiiii ittt e e e e e e eneaes 156
4.20.5 DoCUMENE Tab Bar .iicviiriiiiiniieiieiieeiaeeae e rane s saneseraneaneaeannenes 156
4.20.6 Document Header Bar ...cciviieiiiiiiiiiiieiieiesaae s saesans e snnssnesneanneanens 157
L2300 BN 3V 1 0] o To] B Lo o L 1 o =3P 157
4.20.8 EXPression TOOIIPS vvvieiiriiiiiii i i s e e e 157
4.20.9 Expandable Source LiNEScviiiiiiiiiiiii i i e ae e 158
4.20.10 Key BindinNgs ..couiiniiiiiiiiii e 158
4.20.11 Syntax Highlighting ... 158
4.20.12 Source Line NUMDEIS ..uiiviiiiiii i i ree e s s e s e anneanens 158
4.20.13 CoNteXt MeNU oot i i i e e 158
4.20.14 FONE cotiiiiiii i 160
4.20.15 Code WINAOW ..uviiriiiiieiie i saeeseaesasesesaessnesesanesnesaraansrneenneaneannans 161
4.20.16 Source VieWer PreferenCeSiiiiiiiiiiii i it raee e 161

Terminal WindOW ..o e r e e e r e e e e anraes 162
4.21.1 Supported IO TeChNIQUES ...ivviieiiriii i i are e 162
4.21.2 Terminal INPUL .ooiiiiiii i e e 162

© 2013-2026 SEGGER Microcontroller GmbH

16

4.21.3 ANSi ESCAPe SEQUENCES ..viiiuiiiieiiieiie st raneesanesaeesaneesanrraneeraneaanness 162
S I o T o | [0T 163
4.21.5 Control Character Handlingooieiiiiiiii e 163
4.21.6 Terminal WIindow Limit ...coiriiiiiii i v e e anenaeas 163
N R A O1o] o) /= o 1 =1 o 1 163
4.21.8 Terminal WindOW PreferencCesccovieiiiiiiiii e 164

L A 10 o 1= 1 o T AT Ua 1 1 P 165
2 T © AV = oY T 1 PP 165
4.22.2 Navigating the Window with the Mouse ... 166
4.22.3 Hardware RequUIiremMentsciiiiiiiiiiniieeiieiieeaeaesane e rnesnnssnernnsaneaneans 166
Y= o[| o 167
4.22.5 €0 Pane ...viiiiiiiiiii i e 167
T2 TS Y- 0 41 o (=T G0 [=Yool P 168
L A [0 V=T ol O [=] 169
4.22.8 Time Reference POINES ..o e 169
4.22.9 Graph LegeNAS ...couiiiiiiii i e 169
4.22.10 TOOI DA tuiiieiii i e 170
L T R @ 1 =g ol =T 1 170
4.22.12 SEEEINGS oeiieiii i 173
4.22.13 Clear EVENE ..ot 173
4.22.14 Set OffSel TO COAE ..nriiiiii e e e 173

4.23 Watched Data WindoWoieiiiiiiiiii i re e e s sr e e s nnenneannans 176
4.23.1 Adding EXPreSSIONS ...cuieieie ettt e e e e e 176
4.23.2 Local Variablesccviiiiiiii i e 176
4.23.3 LIVe WatChes vttt e e 176
4.23.4 QUICK WatChes ...viiiiiiiiiii i e e eaeans 177
4.23.5 ConteXt MENU vt e 177
4.23.6 Multiple INSTAaNCES ..iivviiriii i e 178
4.23.7 Table WIiNAOW ..iuiiiriiiiiii i e s e e e s e r e e e e e anes 178

5 Debugging WIth OZONEcccoiiiiieeeec e e e e e e e e e e e e e 179
o N o /o) =T w1 =T PP 180
5.1.1 Project File EXample ..o e 180
5.1.2 0Opening Project Files ...coiiiiiiiii i e e 180
5.1.3 Creating Project Filescviiiiiiiiiii e 180
5.1.4 Programmabilityccoiiiiiiii i e 180
5.1.5 Project Setlings ..ccviiiiiiiiii e 180
5.1.6 Project Load DiagnoStiCSciiiiiiiiiiiiiiiiiiiiiiie i ae e ree e e 181
5.1.7 USEI FIlES ot e e s 181

5.2 Program Files ..o e 183
5.2.1 Supported Program File TYPES ...civiiiiiiiiiiiiiii i aae e e 183
5.2.2 Symbol Informationccoeiriiiiiii e 183
5.2.3 0Opening Program FileScciiiiiiiiiii i e e 183
T2 S D T-) - I = o Ve To | o e 1 183

5.3 Starting the Debug Sessioncccoiiiiiiiiii 184
5.3.1 Connection MOe ..o s 184
5.3.2 Initial Program Operationccoviiiiiiiiiiii i 184
5.3.3 Reprogramming the Startup Sequencecccviiiiiiiiiiiii i 185

5.4 Register Initializationocviiiiii e 186
o R @ V=T oY1= R 186
5.4.2 Register Reset Valuescoiiiiiiiiiiiii i e e 186

5.4.3 Manual Register Initializationcoiiiiiiiii 186

5.4.4 Project-Default Register Initializationccocoviiiiiiiiiiiiiiie e 186

5.5 Startup Completion POINT ... e 188
5.5.1 Specifying the Startup Completion Pointccccoiiiiiiiiiiiiii 188

5.6 Symbol or PC to Stop Target during Startupccoooiiiiiiiiiiiiiii i 189
5.6.1 Specifying the Symbol or PC to Stop Target during Startup 189

5.7 Debugging ControlS ..o e 190
o R U= = = 190

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

17

Ozone User Guide & Reference Manual (UM08025)

5.8

5.9

U1 U

.10

A1

12

.13

.14

.15

.16
17

N A =T o TP 190
TN T U= 0 1= 191
5,74 Hall e e 191
o8 T U5 1 [TN 191
5.7.6 Set Next Statementoooiiiiii i 191
5.7.7 St NeXE Pl i e e et e 191
ST =T=1 4o 1] L= PP 192
5.8.1 Source Breakpointsciiciiiiiiiiiii i 192
5.8.2 Instruction Breakpoints ...icviiiiiiiiiiii i i 192
5.8.3 Derived Breakpoints ...cciiiiiiiiiii i e 192
5.8.4 Advanced Breakpoint Propertiesc.coviiiiiiiiiiiiiii i 192
5.8.5 Permitted Implementation TYPES ...ccviiiiiiiiii i i ea s 192
5.8.6 Flash Breakpoints ...iiiiiiiiiiiiiii i e r e e e e e 193
5.8.7 Breakpoint Callback FUNCLIONScciiviiiiiiii i e aeas 193
5.8.8 Offline Breakpoint Modificationcccoviiiiiiiiii 193
D= = I =T =T=1 q o 1| L o PP 194
5.9.1 Data Breakpoint Attributescoviiiiii 194
5.9.2 Editing Data Breakpointscoooiiiiiiiii e 194

Program INSPECLION ...iuviiiiiiiiii i e 195
5.10.1 EXecution POINtiieiiiiiiiiii i e 195
5.10.2 Static Program ENtitiesc.ocoiiiiiiiiiii e 195
5.10.3 Data SymbolS oot e 195
5.10.4 Symbol TOOIIPS +iuviiriiiiiiii i s e 195
5.10.5 Call StacK .uiiiiiiiiiii i i e 196
5.10.6 Target ReGiStersciiiiiiiiiiiii 196
5.10.7 Target MEMOIY .iuiiiiiiiiiiiiii e 196
5.10.8 Inspecting @ RUNNING Programccciiiiiiiiiiiiiii i sas e 196

Downloading Program Files ..o e 198
5.11.1 Download Behavior COmMPAariSONvveiiriirernerirrinsiiernesnneriernrsaeaneanns 198
5.11.2 Script Callback Behavior CoOompariSONccvvviriiiiiiniiiiiieieiieennennenns 198
5.11.3 Avoiding Script Function RECUISIONScciiiiiiiiii e 198
5.11.4 Downloading Bootloaders ..o 199
5.11.5 Target Download AdAreSSESceieiiiiiiiiii i eees 199
Terminal TO .. e 200
5.12.1 Real-Time Transfer ..o 200
5.12.2 SO ittt e 200
5.12.3 Semihosting ...coiiiiii e 200

SEMINOSEING et e 201
5.13.1 Supported ArchiteCturesociiiiiiiii i e 201
5.13.2 Enabling SemihoStingcouiiiiiiii i 201
5.13.3 Supported Operations ...cciieiiiiiiiiiie i ar s sare e aneaanans 201
5.13.4 InpUL Operations ..oeiiiiiiii i i e e 202
5.13.5 Unsafe Operationscciiviiiiiiiiiiii i i ae e e snne e e e neenes 203
5.13.6 Semihosting Configurationccoio i 203
5.13.7 Starting and Stopping Semihostingccooiiiiiiiii 203
5.13.8 Generic SemIhOStiNG ..ot s 203

Working With EXPreSSIONS ...ttt e e e e e e enees 205
5.14.1 Areas of Application ...cciiiiiiiii i e 205
o A O 0T = Lo = PP 205
oI T T O o = = o] = 205
5.14.4 TYPE CaAStS ottt i e e 205

Locating Missing SOUICE FileSueiiiii i e 207
5.15.1 Causes for Missing Source Filesccoiiiiiiiiiii e 207
5.15.2 Missing File INIiCatorscoiieiiiiii e 207
5.15.3 File Path Resolution SEqUENCEicviiiiiiiiiii i ea e 207
5.15.4 Operating System SpecCifiCsiiiiiiriiiiiii i e 208

Setting Up The Instruction Cache ..o e 209

A o [e [0 o T I = ol 210
5.17.1 Trace Features OVEIVIEWiceiiiiiiieiiiierissieeraeasneesanesanreanneeanneannes 210
5.17.2 Target ReqUIrEmMENES ...c.iiiiiiiiiii i s 210

© 2013-2026 SEGGER Microcontroller GmbH

18

5.17.3 Debug Probe Requirementsccooiiiiiiiiiii e 210
5.17.4 Trace Settingsoiiiiiiiiiiiiii e 210

5.18 Selective TraCing ...occouiieiiiii i e 212
5.18.1 OVEIVIEW ittt s 212
5.18.2 Hardware ReqUIr€mMENTS ...iviiiriieiiiiieii s riesare e rnneanesesnneaneenes 212
5.18.3 TraCePOINES 1ttt e 212

oI S T S Y ol o 1= PP 212

5.19 Advanced Program Analysis And Optimization Hintscccooviiiiiiiiiiiiiciies 213
5.19.1 Program Performance Optimization ..o 213

5.20 Debug SNapshoOlS ..o e 215
5.20.1 USE CASES .uiiuiiiiiiitiiiiiitiiis sttt i sas et e 215
5.20.2 Supported ArchiteCturesociiiiiii i e 215
5.20.3 Default System ResStoreciiviiiiiiiii i e 215
5.20.4 Advanced System ReStOreciiiviiiiiiiiiiiiii i i e 215
5.20.5 The Scope of SNapshots ...cviiiiiiiii e 216

5.21 Remote DebUGQiNg ...ciuieiiiii i 217
5.21.1 Remote Debugging Over LAN ...t e 217
5.21.2 Remote Debugging Over The Internet ... 217

5.22 Debugging Via GDB SerVerciiiiiiiiiii it 219
5.22.1 Automatically starting GDB SEerverccooeiiiiiiiiiiiii e 219
5.22.2 3rd Party Debug Probe SUupportcviiiiiiiii i e 220
5.22.3 GDB Remote ProtoCol LOG ...ciuieiiiiiiiiii e 220
5.22.4 GDB SeIVeI fYPOS ittt i i ra et 220

5.23 Messages And NOLIfications ... s 221
5.23.1 Message FOrmat ..o.oiieiiiiiiiiii i 221
5.23.2 MeESSAGE COURS ..ueiiiiiiiiiii ittt ettt 221
5.23.3 LOGQGING SiNKS ..nuiiiii i e 221
5.23.4 Debug CONSOIEuiuiii i et e 221
5.23.5 Application Logfilecciiriiiiiiiii i 221
5.23.6 Other Logfiles ... e 221

5.24 File Path ArgUmeEntS ... e e 222
5.25 Other Debugging ACHIVItIES ..ot e 223
5.25.1 Finding TeXt OCCUITENCEScuuiiiiiiieee et e e e e eaeees 223
5.25.2 Saving And Loading MmOy ..o e 223
5.25.3 Relocating Symbols ... 223
5.25.4 Closing the Debug SeSSIONc.oeiiiiiiiii i 223
5.25.5 Interworking with External Applicationsccoiiiiiiiiiiiiii e 223

6 SCripting INTEITACE ..o e 225
LT R] o =Tt oY of o 1 PP 226
LT A R Yo oo o =T o e T =T P 226
6.1.2 SCHIPL SErUCLUNE .o e e reaees 226
6.1.3 Script FUNCLIONS OVEINVIEW ...uiiiiiiiiiiiie e e e eeneas 227
6.1.4 Event Handler FUNCLIONS ...ooviiiiiiiiiiii i e e e ae e 227
6.1.5 USEr FUNCHIONS .uiiiiiiiiiii e e e e e e s e s e e reaneas 228
6.1.6 Debugger API FUNCHIONS ..iiiiiiiiiiiii i s e e e e e e e 228
6.1.7 Process Replacement FUNCLIONScovviiiiiiiiiiii i 228
6.1.8 Executing Script FUNCLIONSviiiiiiiiiii e e aeas 231

6.2 Disassembly PlUGIN ..o s 232
LT R Yol o o) o =T o e T =T =P 232
6.2.2 Loading the PlUGIN ..o e ee s 232
6.2.3 Script FUNCLIONS OVEIVIEW ...uiiiiiiiiiiii i e e e eeaeas 232
6.2.4 DebUGger AP ..ot 232
6.2.5 Writing the Disassembly PIugin ..o 233
6.2.6 The Flags Parameter ...ccoiiiiiiiiiii i s e e e aeaas 236

6.3 RTOS AWAreness PlUGIN ...ocueiiiiiiiiiiiiiiaeeae it r e s s e e aan s reaneeaneenes 237
(ST T R Yo oo o =T o e T =T =P 237
6.3.2 Loading the PlUGIN ...cociiiii i e ea s 237
6.3.3 Script FUNCLIONS OVEINVIEW ...uiiiiiii i e e e e e e 237

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

19

Ozone User Guide & Reference Manual (UM08025)

6.3.4 DebUGGer APl ..o e 237
6.3.5 Writing the RTOS PlUGIN ...onriiei e 238
6.3.6 Compatibility with Embedded Studioccviiiiiiiiii e 243
6.4 SMartView PlIUGin ... e 244
6.4.1 SCript LANQUAGE ...uiiieiiiiiiiiiiiiiitin s e s s st e s s e e s s e e e e 244
6.4.2 Loading the PlUGIN ... e 244
6.4.3 Script FUNCLIONS OVEIVIEW ..uiiiiii i i e e e raneeranennneenns 244
6.4.4 DebUgger APl ... e 245
6.4.5 Writing the SmartView Plugin ..o e 245
[SHSTNSY o =T o 1] s o] ol o4 e Te [=T a 01 a 11 e 1R PP 255
6.5.1 Snapshot ComMmMaAaNdSiceiiriiiiiiiiie i i re s aa e e raeaanernens 255
6.5.2 ONSNAPShOLSaAVE ..ot 255
6.5.3 ONSNapshotLoadc.ciiiiiiii i e 256
6.6 Incorporating a Bootloader into Ozone's Startup Sequencecovvvevivviiviennnns 259
6.7 Automation Socket Interfaceo 262
Y o] o =1 g o [G USR 263
2 /= | (ST B 1= ol | o) 0 o= 264
7.1.1 Frequency DesCriplor ..o e 264
7.1.2 Source Code Location DesCriPtOr ..c.iiviiiiiiiii i ea s 264
/2% TG T ©'o] [o ol B 1=T=T ol T]] i 264
7.1.4 FONE DESCIIPEOr 1ottt i s e e 264
7.1.5 System Register DesCriptor ..oociiiiiiiiiii e 265
7.2 System CoNSTaNES .ot 266
7.2.1 HOSE INTEIACES ettt ettt e e e e e e e 266
7.2.2 Target INEerfaces ..ovviviiiiii i e 266
7.2.3 Boolean Value Constantscoiiiiiiiiiiiii i e 266
7.2.4 Value Display FOrmats ...ociiiiiiiiiii i e 266
7.2.5 Memory AcCess WiIdthscciiviiiiiiiiii i e 266
7.2.6 ACCESS TYPES tiueiriiniiitinert it eaatranaaeesaetanaanstarrate st e aatsre e aareaneannenes 267
/202 S © o] o] o 1=Toi u [o T 17 [o Yo == 267
7.2.8 RESEL MOUES ..iuiiiiiii it e e e 267
7.2.9 Breakpoint Implementation TYPesScoviiiiiiiiiiiii i 267
7.2.10 Disassembler Option FIagsccvviiiiiiiiiiiii i ee e 268
7.2.11 TrACE SOUICES uviuriiutitiintitsanesansaessaetanaanssanaaessneaanaansrneaanssnerneeanssness 269
7.2.12 Tracepoint Operation TYPES .icviiiiiiiiiiiiii i reaeans 269
7.2.13 Newline FOrmats ..o e 269
7.2.14 Trace Timestamp FOrmats ...cooiiiiiiiiii e 269
7.2.15 Code Profile EXport OptionNsvcvieiiiiiiiiiiii it ae e 270
7.2.16 Disassembly EXpOrt OptionSoiviiiiiiiiiiiiii i 270
7.2.17 SeSSIiON SAVEe FIags .iviiriiiiiiiiiiii i e 270
7.2.18 Snapshot Save FIags ...cocoiiiiiiiiiiiii e e 270
/22 R B =] W ©o] o i [R ol =T [271
7.2.20 Clear EVENES ittt s 271
7.2.21 Destination Address Ranges for Downloadcc.covviviiiiiiiiiiiiiinnennes 271
7.2.22 Unwinding Information SOUICEcciviiiiiiiiiiii i e e e e 271
A B € 1D = S =T o V=T g LV o = 272
7.2.24 FONt Identifiers .ooviieiiiiiiii e 272
7.2.25 Color Identifiers .ovuiui i e 272
7.2.26 User Preference Identifiersccoovviieiiiiiiii i e e 273
7.2.27 System Variable Identifiersooviiiiiiiiiiii 277
7.3 Command Line ArgUmMENTS ..uieiiiiiiiiiiiie e e e 279
7.3.1 Project Generation ...c.oiiiiiiiiiiiii i e 279
7.3.2 Appearance and LOGING ...civeiiiiieiineiiiiieereiaeraneriesaesae s 279
7.3.3 ConfigUIration ..ooeiiiiii e 280
2 S B 1| ¢ =T w0 VA 1 = ol o 1= 281
7.4.1 Environment Variables ... 281
7.5 Startup Sequence FIOW Chartoiiiiiiiiiii i s e ae s 282
/4 S = o] == o Uo L= Yo] e = 283

© 2013-2026 SEGGER Microcontroller GmbH

20

Ozone User Guide & Reference Manual (UM08025)

NN
0 N

7.9

7.10

T 1T 0] o 13 PP 289
Y 10 o T 7= 0 = 290
7.8.1 Breakpoint ACTiONS ...ciiiiiii i e e 290
7.8.2 Code Profile ACTIONS .uiiiiiiiiiiiii it i i e s i e rrra e 290
7.8.3 DebUgG ACHIONS .o e 291
72 < 2R S o 1 o Yo o o o 1= 291
2% < T T = I A Y o uf 0 1 292
7% X TN =" o 1o |t s Vs] o = 292
2% < 20 R | = X o o] o T 292
2% < 2% T | T o o o o = 293
7.8.9 Help ACLIONS .iiitiiiiii it e 293
7.8.10 J-LinK ACHIONS tiuuiiiiiiiiitiiitteriieeerriaeesraaresraareeraaares st 293
7.8.11 OS ACHIONS ittt i i e 293
7.8.12 ProCESS ACHIONS .ttt it it i itee e et st eataaateeeeerrrraannnnsaerreerreranns 294
7.8.13 Project ACLIONS ..uiuiiiiiiiiiiii i s s 294
7.8.14 Register ACLIONS ...civiiiiiiiiiiii i 295
/2% T S T Y ol | o1 o Y o] 1= PP 295
7.8.16 ShOW ACHIONS uiiiiiiiiiiiiii sttt it arr e r e rs s raaar e s s e e e raaeeerananeeren 295
7.8.17 SNApshot ACLiONS ...iiriiiii i 295
7.8.18 Target ACLIONSiiviiiii i 296
72 < 2 K T 1 1= L TS Yot 1o o 1 296
2% < 28 N o Yo Y 3 ot uf] o 1= 296
2% < 28 R o Yo] | o Y= T i Yot uf o o 1= 297
2 < T | - Tl ST Yo oo o 297
7.8.23 ULility ACTIONS vt e 297
7.8.24 WIiNAOW ACHIONS tiviiiiiiiiiteriiteeriineesritresraisresrrastesrranarerranarsreannnnes 297
7.8.25 WatCh ACHIONS tiiiiiiiiiiiiii i s s e e e s s st a e e rrr e 298
L LY Yot o o] o 1= 299
728 R | T Xt o o o T 299
728 8 A | T Yot o o o = 305
7.9.3 T00IS ACHIONS ittt i e 307
728 R S o 1 o Yo o o o = 308
7.9.5 EXPOrt ACTIONS uviiiiiii it e v 311
7.9.6 WiNAOW ACHIONS iiiiiiiiiiiiii i riiee i sraaee s s raaessranaressanarersannnnres 314
0728 8 B o Yo 1 oY= Yo 1o 1 319
7.9.8 ULIHtY ACHIONS uiiiiiiiiii i s e e e 321
7.9.9 SCHIPE ACHIONS ottt 322
7.9.10 ShOW ACHIONS uiiiiiiiiii ittt it are e aaa e s ranar e s ranaresraaeeerananeernn 323
7.9.11 Snapshot ACtiONS ...iiiiiii i 329
7.9.12 DebUg ACHIONS ... 331
7.9.13 Help ACHIONS .iiriiiiiii i 337
7.9.14 ProCESS ACHIONS .ttt sttt it i ee e ettt eaa s tteeeeerrtraanararrreerreraans 339
7.9.15 Project ACLIONS ..ciiiiiiiiiiiiiii i e 340
7.9.16 Code Profile ACTIONS ..ciiiiiiiii i e e e e 354
7.9.17 Register ACLIONS ...ciiiiiiiiiiiiii i 357
7.9.18 Target ACLIONS ..o 357
728 I R T 1 1= 1 TS Yot 1o 1 363
7.9.20 J-LinK ACHIONS tiuuiiiiiiiiitiiittsriieeeriiaeesraare it e 364
7.9.21 OS ACKIONS ittt i i e 365
7.9.22 Breakpoint ACHIONS .iiviiiii i s 366
7.9.23 ELF ACHIONS 1ttt s it e et et e e e e e 377
7.9.24 TracCe ACHIONS tiiiiiiiiiiiiii i et e st e e et e e e 379
7.9.25 WatCh ACHIONS tiiiiiiiiiiiii it et e e s s e s a e e 381

Y7 Yo o o] A O F= 1Y PP 383
72 O N I] /== T T O 1= T 383
7.10.2 DEDUG ClaSS .euuiiuiiiiiiii ittt 385
7.10.3 TargetInterface Classcoiieiieiiiiii e 386

© 2013-2026 SEGGER Microcontroller GmbH

21

G TS T U] o] o o] o AT UPPPTPP 390
S €110 1157 T o SO 391

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

Chapter 1

Introduction

Ozone is SEGGER'’s user-friendly and high-performance debugger for Arm and RISC-V Mi-
crocontroller programs. This manual explains the debuggers usage and functionality. The
reader is welcome to send feedback about this manual and suggestions for improvement
to support @egger. com

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

23 CHAPTER 1 What is Ozone?

1.1 What is Ozone?

Ozone is a source-level debugger for embedded software applications written in C/C++ or
Rust and running on embedded targets. It was developed with three design goals in mind:
user-friendly, high performance and advanced feature set. Ozone is tightly coupled with
SEGGER'’s set of J-Link and J-Trace debug probes to ensure optimal performance and user
experience.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

24 CHAPTER 1 Features of Ozone

1.2 Features of Ozone

Ozone has a rich set of features and capabilities. The following list gives a quick overview.
Each feature and its usage is explained in more detail in chapter 3 as well as later chapters
of the manual.

1.2.1 Fully Customizable User Interface

Ozone features a fully customizable multi-window user interface. All windows can be un-
docked from the Main Window and freely positioned and resized on the desktop. Fonts,
colors, and toolbars can be adjusted according to the user’s preference. Content can be
moved among windows via Drag&Drop.

1.2.2 Scripting Interface

A C-language scripting interface enables users to reconfigure Ozone’s graphical user inter-
face and most parts of the debugging workflow via script files. All actions that are accessible
via the graphical user interface have an affiliated script command that can be executed
from script code or from the debuggers console window.

1.2.3 RTOS Awareness

Ozone’s RTOS Window displays RTOS-specific debug information and is controlled by a
JavaScript plugin. By implementing new plugins, users are able to add support for any
embedded operating system of their choice. Ozone ships with RTOS-awareness plugins for
embQOS, FreeRTOS, ChibiOS, NuttX and Zephyr out of the box.

1.2.4 Code Profiling

Ozone’s code profiling features assist users in optimizing their code. The Code Profile Win-
dow displays CPU load and code coverage statistics selectively at a file, function or instruc-
tion level. Code profiles can be saved to disk in human-readable or in CSV format for further
processing. Ozone’s code windows display code profile statistics inlined with the code.

1.2.5 Power Profiling

Ozone’s Timeline Window displays the current drawn by the target relative to program
execution flow. Power sampling resolutions of down to 5 us are supported.

1.2.6 Symbol Trace

The values of program variables and arbitrary C-style expressions can be tracked at time
resolutions of down to 100 us and visualized within the Timeline Window.

1.2.7 Instruction Trace

Ozone’s Instruction Trace Window provides a history of executed machine instructions.
The history is updated incrementally following each program halt or step and may display
millions of instructions, limited by Host-PC RAM only. When an instruction is selected, its
execution context is shown within all debug windows.

1.2.8 Unlimited Flash Breakpoints

Ozone integrates SEGGER'’s flash-breakpoints technology which allows users to set an un-
limited number of software breakpoints in flash memory.

1.2.9 Wide Range of Supported File Formats

Ozone supports a wide range of program and data file formats:

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

25

CHAPTER 1 Features of Ozone

e ELF or compatible files (*.elf, *.out, *.axf)
e Motorola s-record files (*.srec, *.mot)

e Intel hex files (*.hex)

e Binary data files (*.bin)

1.2.10 Peripheral and System Register Support

Ozone supports System View Description files that describe the memory-mapped (periph-
eral) register set of the target. Once an SVD file has been selected, its registers become
accessible via the Registers Window and script commands.

1.2.11 Extensive Printf-Support

Ozone can capture printf-output by the embedded application via SEGGER’s Real-Time
Transfer (RTT) technology that provides extremely fast I0 coupled with low MCU intrusion,
the Cortex-M SWO capability, and ARM’s semihosting.

1.2.12 Snapshots

Ozone enables users to save and restore the entire debug session, including advanced
target state, to/from a session file called debug snapshot.

1.2.13 Custom Instruction Support

Ozone features a powerful disassembler that can be extended and reprogrammed via a
javascript plugin file.

1.2.14 Instruction Set Simulation

Using J-Link's instruction set simulation capability, Ozone achieves one of the fastest step-
ping performances of any debugger for embedded systems on the market.

1.2.15 SmartView

The plugin-based SmartView window allows to present information from complex data
structures in the target software in easy to comprehend, human readable tables. Users may
implement new plugins tailored to their own needs, thus enabling the feature for virtually
any embedded software component.

1.2.16 GDB Client

Ozone integrates a GDB client which allows communication with debug probes via a GDB
server. By that means Ozone is capable of targeting 3rd party debug probes. Depending
on the capabilities of the respective GDB server, not all features offered by Ozone may
be available.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://developer.arm.com/embedded/cmsis

26 CHAPTER 1 Requirements

1.3 Requirements

To use Ozone, the following hardware and software requirements must be met:

Windows 2000 or later operating system

1 gigahertz (GHz) or faster 32-bit (x86) or 64-bit (x64) processor

1 gigabyte (GB) RAM

100 megabytes (MB) available hard disk space

J-Link or J-Trace debug probe

JTAG or SWD data cable to connect the target with the debug probe (not needed for
J-Link OB)

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

27 CHAPTER 1 Supported Operating Systems

1.4 Supported Operating Systems

Ozone currently supports the following operating systems:

Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64
Windows Vista Microsoft
Windows Vista x64
Windows 7

Windows 7 x64
Windows 8

Windows 8 x64
Windows 10

Linux

macO0S/0S X

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

28

1.5 Supported Target Devices

CHAPTER 1

Supported Target Devices

Ozone currently works in conjunction with microcontrollers (target devices) based on the
following architecture profiles:

1.5.1

1.5.2

1.5.3

ARM

ARM7
ARM9
ARM11
Cortex-M
Cortex-A
Cortex-R

RISC-V

RV32I

Target Support Plugins

Ozone’s target support is based on a generic plugin API that simplifies the process of ex-

tending device support to new MCU architectures.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

29 CHAPTER 1 Supported Debug Interfaces

1.6 Supported Debug Interfaces

Ozone communicates with the target via a debug probe. Direct communication with the de-
bug probe is available only for SEGGER J-Link and J-Trace probes. This is the recommended
use case providing the best debug experience for the end-user.

J-Link/]-Trace probes support the following target interfaces:

e JTAG
SWD
e CJTAG

Ozone also offers a GDB client which allows communication with debug probes via a GDB
server. By that means Ozone is capable of targeting a 3rd party debug probe. Depending
on the capabilities of the respective GDB server, not all features offered by Ozone may
be available.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

30 CHAPTER 1 Supported Programming Languages

1.7 Supported Programming Languages

Ozone supports debugging of programs whose source language is:
C

C++

Rust

Assembler

Ozone offers source level debugging. This includes stepping through the code on a per-
source-line basis, setting breakpoints onto locations specified by filename and line number,
evaluatig C-language expressions in the watched data window, syntax highlighting, and
many more.

It is likely that applications written in programming languages other than the ones listed
above can be debugged satisfactory using Ozone, as ELF debugging information is stored
in @ mostly language-independent format.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

Chapter 2

Getting Started

This chapter contains a quick start guide. It covers the installation procedure and explains
how to use the Project Wizard in order to create a basic Ozone project. The chapter com-
pletes by explaining how a debug session is entered.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

32

2.1

2.1.

CHAPTER 2 Installation

Installation

This section explains how Ozone is installed and uninstalled from the operating system.

1 Installation on Windows

Ozone for Windows ships as an executable file that installs the debugger into a user-spec-
ified destination folder. The installer consists of four pages and guides the user through the
installation process. The pages themselves are self-explanatory and users should have no
difficulty following the instructions.

orTesm— L

Choose optional components #
Choose optional companents to be installed. .

¥ Create entry in start menu
[Add shorteut to desktop

Choose destination:
¥ |pdate existing installation
" Install a new instance

Select:
i Install for allusers ¢ Install for thiz user only

Discover SEGGER

solutions for the ~ Destination Folder
Internet of Things | C:\Program Files\SEGGER \0zone Browse... |

Learn More
< Back

First page of the windows installer

Cancel

After installation, Ozone can be started by double-clicking on the executable file that is
located in the destination folder. Alternatively, the debugger can be started by executing
the desktop or start menu shortcuts.

2.1.1.1 Multiple Installed Versions

Multiple versions of Ozone can co-exist on the host system if they are installed into different
folders. Application settings, such as user interface fonts, are shared among the installed
versions.

2.1.2 Uninstallation on Windows

Ozone can be uninstalled from the operating system by running the uninstaller’s executable
file (Uninstall.exe) that is located in the installation folder. The uninstaller is very simple to
use; it only displays a single page that offers the option to keep the debuggers application
settings intact or not. After clicking the uninstall button, the uninstallation procedure is
complete.

2.1.3 Installation on Linux

Ozone

Ozone for Linux ships as an installer (.deb or .rpm) or alternatively as a binary archive
(.tgz).

User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

33 CHAPTER 2 Installation

2.1.3.1 Installer

The Linux installer requires no user interaction and installs Ozone into folder /opt/ SEG-
GER/ozone/<version>. A symlink to the executable file is copied to folder /usr/ bin. The
installer automatically resolves unmet library dependencies so that users do not have to
install libraries manually.

SEGGER provides two individual Linux installers for Debian and RedHat distributions. Both
installers behave exactly the same way and require an Internet connection.

2.1.3.2 Binary Archive

The binary archive includes all relevant files in a single compacted folder. This folder can
be extracted to any location on the file system. When using the binary archive to install
Ozone, please also make sure that the host system satisfies all library dependencies (see
Library Dependencies on page 33).

2.1.3.3 Library Dependencies

The following libraries must be present on the host system in order to run Ozone:

e libfreetype6 2.4.8 or above
e libfontconfigl 2.8.0 or above
o libext6 1.3.0 or above
e libstdc++6 4.6.3 or above
e libgccl 4.6.3 or above
o libc6 2.15 or above

Please note that Ozone’s Linux installer automatically resolves unmet dependencies and
installs library files as required.

2.1.3.4 Multiple Installed Versions

Multiple versions of Ozone can co-exist on the host system if they are installed into different
folders. Application settings, such as user interface fonts, are shared among the installed
versions.

2.1.4 Uninstallation on Linux

Ozone can be uninstalled from Linux either by using a graphical package manager such as
synaptic or by executing a shell command (see Uninstall Commands on page 33).

2.1.4.1 Uninstall Commands
Debian
sudo dpkg -remove Ozone
RedHat

sudo yum remove Ozone

2.1.4.2 Removing Application Settings

Ozone’s persistent application settings are stored within the hidden file "$Home/.con-
fig/SEGGER/Ozone.conf". In order to erase Ozone’s persistent application settings, delete
this file and re-login to the OS.

2.1.5 Installation on macQOS

Ozone for macOS ships as an installer.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

34 CHAPTER 2 Installation

The macOS-installer installs Ozone into the application folder. It provides a single installa-
tion option, which is the choice of the installation disk.

]

w Install Ozone - the J-Link Debugger V2.22d

Select a Destination

© Intreduction Select the disk where you want to install the Ozone - the J-

© License Link Debugger V2.22d software.
& Destination Select ‘ .
‘-| l
@ Installation Type (A
@ Installation U
@ Summary Macintosh HD

2,18 GB available
59,81 GE total

’ Installing this software requires 71,7 MB of space.
/ SEGGER
Co Back Continue
MacOS Installer

2.1.5.1 Multiple Installed Versions

Installing multiple versions of Ozone is supported. Each version is installed into a dedicated
directory in the Applications folder which incorporates the version number. Thus it is easily
possible to select the desired version to be launched.

In addtion, an alias to the version installed the latest is created in the Applications folder.

2.1.6 Uninstallation on macOS

To uninstall Ozone from macQOS, move its application folder to the trash bin. The application
folder is "/applications/SEGGER/Ozone<version>".

2.1.6.1 Removing Application Settings

Ozone’s persistent application settings are stored in the hidden file $Home/Library/Prefer-
ences/com.segger.Ozone.plist. In order to erase Ozone's persistent application settings,
delete this file and re-login to the OS.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

35 CHAPTER 2 Using Ozone for the first time

2.2 Using Ozone for the first time

When running Ozone for the first time, users are presented with a default user interface
layout and the Project Wizard pops up.

2.2.1 Project Wizard

The Project Wizard provides a graphical facility to specify the required settings needed to
start a debug session. The wizard hosts a total of three settings pages that are described in
more detail below. The user may navigate forward and backward through these pages via
the next and back buttons. Note that the Project Wizard will continue to pop up on start-
up until the first project was created or opened.

MNew Project Wizard x

Target Device
Choose a Target Device

Device

| STM32H743X1 |

Register Set

(Cortex-M7 (with FPU) [

Peripherals (optional)

Flash Banks

Base Address Mame Loader
0x0300 0000 Internal program flash Default
0x0810 0000 Internal program flash Default
0x9000 0000 | External QSPI flash CLK@PB2_nCS@PGE_DO@PFE_D1@PFS_D2@FF7_D3EFF6 -

First page of the Project Wizard

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

36

CHAPTER 2 Using Ozone for the first time

Device

On the Project Wizard’s first page, the user is asked to specify details about the target
device. By clicking on the dotted button of the device field, a complete list of MCU’s grouped
by vendors is opened in a separate dialog from which the user can choose a target device.

Register Set

The dotted button of the register set description field is used to select an SVD file that
describes the register set of the target device. An additional drop-down box enables users to
select any of the standard SVD files shipped with Ozone. The selection made here governs
which CPU registers will be accessible via the Registers Window and script commands.

Instruction Set Extension

By specifying the instruction set extension in use by the debuggee - if any - enhances the
correctness of disassembly and other instruction-level information. The drop-down box lists
all extensions which are natively supported by Ozone. Users may add support for further
extensions by implementing disassembly plugins (see Disassembly Plugin on page 119).

Peripherals

The user may optionally specify an SVD file that describes the vendor-specific peripheral
register set of the target. If a valid SVD is specified here, vendor-specific peripheral registers
will become accessible via the debugger’s Registers Window and script commands.

Flash Banks

For some devices J-Link offers a choice of flash loaders which may be used for a flash bank.
This table lists all the flash banks of a device and the flash loaders available for each bank.
Initially, the default flash loaders are displayed, but the user may change that by changing
the flash loader for one or more flash banks by selecting the desired flash loader from a
drop-dwon menu.

In case a flash bank does not support multiple flash loaders there is no drop-down menu
for that bank.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

37 CHAPTER 2 Using Ozone for the first time

On the second page of the Project Wizard, connection settings are defined.

MNew Project Wizard >

Connection Settings
Choose a Target and Host Interface

Target Interface Target Interface Speed

SWD v | amhz v|
Host Interface Serial Mo (optional)

USE | | |

Emulators connected via USE

Product Mickname Serial Mo
SEGGER 1-Trace PRO

Second page of the Project Wizard

Target Interface

The target interface setting specifies how the J-Link/]-Trace debug probe is connected to
the target. Ozone currently supports the JTAG and SWD target interfaces.

Target Interface Speed

The target interface speed parameter controls the communication speed with the target.
The range of accepted values is 1 kHz to 50 MHz. Some MCUs require a low, others an
adaptive target interface speed throughout the initial connection phase. Usually, the tar-
get interface speed can be increased after the initial connection, when certain peripheral
registers of the target were initialized. In case the connection fails, it is advised to retry
connecting at a low or adaptive target interface speed.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

38

CHAPTER 2 Using Ozone for the first time

Host Interface

The host interface parameter specifies how the debug probe connected to the target is to
be addressed by Ozone. All J-Link/J-Trace models provide a USB interface. For making use
of that interface, select "USB” in the drop-down menu.

Some J-Link/J-Trace models provide an additional Ethernet interface, which can be used
for debugging an embedded application remotely (see Remote Debugging on page 217).
Please select “IP” in case this connection is to be used.

In case the debug probe is to be accessed via a GDB server, please select "GDB Server” in
the drop-down menu (see Debugging via GDB Server on page 219).

Serial No. / IP Address

In case multiple debug probes are connected to the host-PC via USB, the user may enter
the serial number of the debug probe he/she wishes to use.

If Ethernet is selected as host interface, the caption of this field changes to IP Address and
the user may either enter the IP address of the debug probe to connect to. For remote
debugging, the credentials of a remote server are expected to be input here (see Remote
Debugging on page 217).

In case a GDB Server shall be connected, the caption of the field is set to IP Address as well
and the user may enter the IP address and port number of the GDB server (see Debugging
via GDB Server on page 219).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

39 CHAPTER 2 Using Ozone for the first time

On the third page of the Project Wizard, the user specifies the debuggee.

MNew Project Wizard >

Program File
Choose the Program to be debugged

ELF, Motorola S+ecord, Intel Hex, or Binary file (optional)
C: Work/Test. elf

Third page of the Project Wizard

Program File

This input field specifies the program to debug. Please note that only ELF or compatible pro-
gram files contain symbol information. When specifying a program file without symbol in-
formation, the debug features of Ozone are limited (see Symbol Information on page 183).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

40

CHAPTER 2 Using Ozone for the first time

On the last page of the Project Wizard, advanced project settings are defined.

MNew Project Wizard >

Optional Settings
Set optional project settings, such as the initial PC

Initial PC (after download and reset)

(@) ELF Entry Point

() Read from Base Address Vector Table
() Read from Location

O Location

O Do not set

Initial Stack Pointer
(® Read from Base Address Vector Table

(") Read from Location
() Location

() Do not set
JLink Script File

Jink Log File

Last page of the Project Wizard

Initial PC

Indicates how the debugger is to set the initial value of the PC register. The first option
is the default option. When the third option is checked, an Ozone expression denotes the
memory location of the initial PC value (see Working With Expressions on page 205). When
the fourth option is checked, an Ozone expression (constant) denotes the initial PC value.

Initial SP

Indicates how the debugger is to set the initial value of the SP register. The first option
is the default option. When the third option is checked, an Ozone expression denotes the
memory location of the initial SP value (see Working With Expressions on page 205). When
the fourth option is checked, an Ozone expression (constant) denotes the initial SP value.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

41 CHAPTER 2 Using Ozone for the first time

J-Link Script File

Sets the J-Link script which is to be executed upon target connection (see
Project.SetJLinkScript on page 352.

J-Link Log File

Sets the log file that is to receive logging output of the J-Link library (see Project.SetJLin-
kLogFile on page 352.

Completing the Project Wizard

When the user completes the Project Wizard, a new project with the specified settings is
created and the source file containing the program’s entry function is opened inside the
Source Viewer. The debugger is still offline, i.e. a connection to the target has not yet been
established. At this point, only windows whose content does not depend on target data
are operational and already display content. To put the remaining windows into use and to
begin debugging the program, the debug session must be started.

2.2.2 Starting the Debug Session

The debug session is started by clicking on the green start button in the debug toolbar or
by pressing the shortcut F5. After the startup procedure is complete, users may start to
debug the program using the controls of the Debug Menu. The debugging workflow when
using Ozone is described in detail in Chapter 5.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

Chapter 3

Graphical User Interface

This chapter provides a description of Ozone’s graphical user interface and its usage. The
focus lies on a brief description of graphical elements. Chapter 5 will revisit the debugger
from a functional perspective.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

43 CHAPTER 3 User Actions

3.1 User Actions

A user action (or action for short) is a particular operation within Ozone that can be triggered
via the user interface or programmatically from a script function. Ozone provides a set of
around 250 user actions.

3.1.1 Action Tables

Section Action Tables on page 43 provides multiple tables that contain quick facts on all
user actions. The action tables are particularly well suited as a reference when running the
debugger from the command prompt or when writing script functions.

3.1.2 Executing User Actions

User actions can (potentially) be executed in any of the ways listed below.

Execution Method Description
Menu A user action can be executed by clicking on its menu item.
Toolbar A user action can be executed by clicking on its tool button.
Hotkey A user action can be executed by pressing its hotkey.

A user action can be executed by entering its command into

Command Prompt the Console Window’s command prompt.

A user action can be executed by placing its command into a

Script Function script function.

However, some user actions do not have an associated text command and thus cannot
be executed from the command prompt or from a script function. On the other hand,
some actions can only be executed from these locations, but have no affiliated user inter-
face element. Furthermore, some actions do not provide a hotkey. Section User Actions
on page 43 provides information about which method of execution is available for the
different user actions.

3.1.2.1 User Action Hotkeys

A user action that belongs to a particular debug window may share the same hotkey with
another window-local user action. As a rule of thumb, a window-local user action can only
be triggered via its hotkey when the window containing the action is visible and has the
input focus. On the contrary, global user actions have unique hotkeys that can be triggered
without restriction.

3.1.3 Dialog Actions

Several user actions execute a dialog. The fact that a user action executes a dialog is
indicated by three dots that follow the action’s name within user interface menus.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

44

3.2 Main Window

Ozone’s Main Window consists of the following elements, listed by their location within the

Ozone User Guide & Reference Manual (UM08025)

window from top to bottom:

Menu Bar
Tool Bar
Content Area
Status Bar

CHAPTER 3

Main Window

These components will be explained further down this chapter. First, the Main Window is

described:

SEGGER Ozone V3.40a - embOS _Blinky.elf - [m] X
File View Find Debug Tools Window Help
Ore-at T
Functions X |/ STM32F4xx_Startup.s x)/ OS_TraceDemo.c x Registers 1 (CPU) £
~
Name Address Size Source ~ [Fiescope - - Name Value Description ~
Hardrault_Handler J800 524E 2 STM32F40x_Vectc inciude "RTOS.h" == CPU 687 Registers CPU Registers
HardFault_Handler 5800 52FC 24 HardFaultHandlers #;:Zlﬁdz Py A Ea Core 27 Registers Al CPU Registers
HardFaultHandler(unsigned int*) 1800 0B38 256 SEGGER_HardFaul RO o General purpose register 0
HPTask() 1800 017c 136 OS_TraceDemo.c: int SEGGER_RTT_printf (unsigned BufferIndex, const char * R1 General purpose register 1
12C1_ER_IRQHandler 1800 529¢C 2 STM32F40x_Vecte)) R2 0 General purpose register 2
12C1_EV_IRQHandler 18005298 2 STM32F40x_Vectc :E:ﬁz g:—ii‘;;”“ int ié;;’g“éégié StackLP[128]; jj T R3 0x4 General purpose register 3
12C2_ER_IRQHandler 1800 5280 2 STM32F40x_Vectc ctatic int cnti ! ’ - R4 0xCCCC 0004 General purpose register 4
12C2_EV_IRQHandler 1800 529E 2 STM32F40x_Vecte - RS 0xCCCe 0005 General purpose register 5
12C3_ER_IRQHandler 1900 S2EE 2 STM32F40x_Vectc 1 ¥ static void HPTask(void) { R6 0xCCCC 0006 General purpose register 6
12C3_EV_IRQHandler 800 52EC. 2 STM32F40_Vecto static int increment; R7 0xCCCC 0007 General purpose register 7
static int on_time; ,
JLINKMEM_Process() 1800 06cc 156 JLINKMEM_Proces int off time: R8 0xCCCC 0008 General purpose register 8
JLINKMEM_SendChar(unsigned char) 2800 0768 176 JLINKMEM_Proces v - R9 0xCcccc 0009 e
< B . > 1 ® on_time = 1; < Eiil - connn 5
1 Wi t = 1;
Functions /\ Source Files /\ Break & Tracepoints while (0)
Global Data BSP_ToggleLED (0) ; SK_Delay (on_time) ; ~
Name -~ Value Location _Cntltt; . 1 080001A6 4B14 LDR R3, =on_time.
. . off_time = 100 - on_time; 1 080001A8 681B LDR R3, [R3]
HardFaultRegs 1000 0F5C OS_TASK_Delay (on_time) 1 080001ma 4618 MoV RO, B3
increment 1 1000 104C BSP_ToggleLED (0) ; . 1 080001AC FO03 F82A BL OS_TASK_Delay
main_currentloopFinalTargetTimeUs 42 1000 1048 C 1B MOvS RO, #0 BSP_ToggleLED(0) ;
GILie 1 1000 1044 08000182 BL i BSP_ToggleLED e 1 080001BO 2000 MOVS RO, #0
= 03 Global 1000 002z I ° = OS_TASK_Delay (off_time) ; 1 080001B2 FO0O F907 BL BSP_ToggleLED
;_Global - 080001B6 LDR RO, [sp, #{i 0S_TASK_Delay(off_time) ;
= Counters 000 0048 80001B8 BL os {_Delay EY 080001B6 9801 LDR RO, [sSp, #4]
InInt 0 ('\0') :000 008D i i 080001B8 FOO3 F824 BL 0S_TASK_Delay
pActiveTask TCBHP (0x2(:000 0058 * ‘??fm‘etfz ;g;)re‘:‘e“t? on_time += increment;
. + i on_time: 080001BC 4BOE LDR R3, =on_time.
: pgu"e":ESk §c§§§0(\)\)§£§§§ 3323 k3 on_time = 99; 080001BE 681A DR R2, [R3]
pCurrentTimer x * increment = -1; 080001C0 4BOE DR R3, =incremen
i Pgndmg 1000 004C v yoelse ¢ v 080001C2 681B LDR R3, [R3] v
< > < > |« >
Memory 1 @ 20001090 x | Console x_Call Stack x
Go To: 20000000 V& s efae aale : 3133323 ggg Debug. Stepover () ; A Function Stack Frame Source PC Return Addre Stack Used
20001090 20020000 00000000 08005674 00000000 A~ 01:05.947 972 gzzi?efsiﬁ;hf_;:;ttmce pins = HPTask (void) 16 @ 2000 OS_TraceDemc 0800 01B6 [2000 0C84 1
20001080 00000000 00000000 00000000 00000000 e Dt :
01:05.948 €60 End: Initializing trace pins 0O5_StartTask() 0 @ 2000 0800 5382 <no symbol
200010BO 00000000 00000000 00000000 00000000 9 e
200010C0 00000000 00000000 00000000 01000100 01:05.949 646 OnTracestart() end - Took 15.1ms Top of stack - no unwinding symbols at 0x8005382
20001000 16076100 118DFARA 00000000 00000400 2 e >
200010E0 580CB268 AESA8300 4B236E18 178AE009
200N1NEN TRSFIF44 SSAfRSR arR4nnme mearaena n cinomed s Y[|< >
CPU halted. Ln 60 Ch 10 [Connected @ 4 MHz

Main Window hosting debug information windows

In its center, the Main Window hosts the source code document viewer, or Source Viewer
for short. The Source Viewer is surrounded by three content areas to the left, right and
on the bottom. In these areas, users may arrange debug information windows as desired,
as described in section Window Layout on page 52. The only window that cannot be
undocked or repositioned is the Source Viewer itself.

© 2013-2026 SEGGER Microcontroller GmbH

45

CHAPTER 3

3.3 Menu Bar

Ozone’s Main Window provides a menu bar that categorizes all user actions into five func-
tional groups. It is possible to control the debugger from the menu bar alone. The five

menu groups are described below.

3.3.1 File Menu

Ozone User Guide & Reference Manual (UM08025)

Menu Bar

The File Menu hosts actions that perform file sys- .
tem and related operations (see File Actions on New
page 292). |1 Cpen... Ctrl+0
New Open Folder... k
o . . +Chift+
This submenu hosts actions to create a new L Edit Project File Ctri+Shift+E
project and to run the Project Wizard (see . +Shift+
Project Wizard on page 35). Save Project as... Ctrl+5hift+5
lal Save BSPc Ctrl+5
Open lkl Save BSF.c As...
Opens a project-, program-, data- or source-file el Save Copy Of BSPc As...
(see File.Open on page 301). = ! :
Save a

Open Folder... _

]) . Recent Projects r
A submenu with multiple entries to open a spe- .
cific directory in the standard file explorer: MEIEICTIIETE
e Project Folder: opens the project file Export C

directory -
* Application Folder: opens the directory [Exit Alt+E4
containing the program file

Source Folder: opens the directory containing the active source document
Ozone Folder: opens the directory containing the Ozone executable

(see File.Open on page 301).
Edit Project File

Opens the project file within the Source Viewer.

Save Project as

Opens a dialog that lets users save the current project to the file system.

Save <file>

Saves all changes made to the active document, i.e. the document currently shown within
the Source Viewer.

Save <file> As...

Opens a dialog that lets users save the active document under a new path to the file system.
The active document will be closed and reopened from its new location.

Save Copy Of <file> As...

Opens a dialog that lets users save a copy of the active document to the file system.

Save All

Saves all modified Source Viewer documents and project files.

© 2013-2026 SEGGER Microcontroller GmbH

46

CHAPTER 3 Menu Bar

Recent Projects

The “Recent Projects” submenu contains a list of recently used projects. When an entry is
selected, the associated project is opened.

Recent Programs

The “Recent Programs” submenu contains a list of recently opened program files. When an
entry is selected, the associated program file is opened.

Export
A submenu that hosts an entry for each of Ozone’s data exports:
Export Dialog Command
Code profile Code Profile Export Dialog Export.CodeProfile
Disassembly Disassembly Export Dialog Export.Disassembly
Instruction Instruction Trace Export Dialog Export.Trace
Power graphs Power Sampling Window Export.PowerGraphs
Data graphs Data Sampling Window Export.DataGraphs

3.3.2 View Menu

The View Menu contains an entry for each debug information window. By clicking on an
entry, the corresponding window is added to the Main Window at the last used position
(see Opening and Closing Windows on page 61).

embOS

If an RTOS awareness plugin has been loaded using action Project.SetOSPlugin, the entry
for the RTOS Window (see RTOS Window on page 151) in the View Menu becomes active.

SmartView

If a SmartView plugin has been loaded using action Project.SetSmartViewPlugin, the en-
try for the SmartView Window (see SmartView Window on page 143) in the view menu
becomes active.

Toolbars

This submenu hosts three checkable actions that define which toolbars are visible (see
Toolbars on page 50).

Enter/Exit Full Screen

Enters or exit full screen mode.

3.3.3 Find Menu

The Find Menu hosts actions that locate program symbols

and text patterns. AL B
Find In Files... Ctrl+5hift+F
Find... Find In Trace. .. Cirl+5Shift+T
Opens the Quick Find Widget in text search mode. Find Function... Cirl+M
. . Find Global Data... Cirl+]
Find In Files... Find Source File... Ctrl+

Opens the Find In Files Dialog

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

47

CHAPTER 3 Menu Bar
Find In Trace...
Opens the Find In Trace Dialog
Find Function...
Opens the Quick Find Widget in function search mode.
Find Global Data...
Opens the Quick Find Widget in global data search mode.
Find Source Files...
Opens the Quick Find Widget in source file search mode.
334 Debug Menu (Y Stop Debug Session Shift+F5
_ [Continue F5
The Debug Menu hosts actions that control program ex- e Reset ca ,
ecution (Debug Actions on page 291). ==
Start/Stop Debugging o¥ Step Oyer 10
; ¥ StepInto Fi1

Starts the debug session, if it is not already started. 4 .
Stops the debug session otherwise. s StepOut Shift+711

. Load Snapshot... Ctrl+alt+H
Continue/Halt Save Snapshot. .. Ctrl+alt+5

Resumes program execution, if the program is halted.
Halts program execution otherwise.

Reset

Resets the program using the last employed reset mode. Other reset modes can be executed

from the action’s submenu (see Reset on page 190).

Step Over

Steps over the current source code line or machine instruction, depending on the active
code window (see Active Code Window on page 53 and Step on page 190). Context

aware stepping is supported, if enabled.

Step Into

Steps into the current subroutine or performs a single instruction step, depending on the
active code window (see Active Code Window on page 53 and Step on page 190).

Step Out

Steps out of the current subroutine (see Step on page 190).

Load/Save Snapshot
Opens the Snapshot Dialog (see Snapshot Dialog on page 79).

3.3.5 Tools Menu

Ozone User Guide & Reference Manual (UM08025)

The Tools Menu hosts dialog actions that allow users R
to edit Ozone’s graphical and behavioral settings (see A Iink Settings...
Tools Actions on page 296). ol Trace Settings...

. B Semihosting Settings...
Debug Settings

2 Preferences...

Opens the Debug Settings Dialog that enables users 5 gy tem Variables. .

Ctrl+alt+]
Ctrl+Alt+T
Ctrl+alt+H
Ctrl+alt+P
Ctrl+Aalt+v

to specify J-Link/]J-Trace specific settings such as the

© 2013-2026 SEGGER Microcontroller GmbH

48 CHAPTER 3 Menu Bar

target device and debug interface, including connection to a GDB server, to be used (see
Debug Settings Dialog on page 68).

Trace Settings

Opens the Trace Settings Dialog that is provided to configure trace (see Trace Settings
Dialog on page 84).

Semihosting Settings

Opens the Semihosting Settings Dialog that is provided to configure semihosting operations
(see Semihosting Settings Dialog on page 82).

Preferences

Opens the User Preference Dialog that enables users to specify behavioral and visual pref-
erences of the debugger (see User Preference Dialog on page 86).

System Variables

Opens the System Variable Editor that enables users to configure project-specific behavioral
settings of the debugger (see System Variable Editor on page 83).

3.3.6 Window Menu

The Window Menu lists all open windows and documents and provides actions to alter the
window and document state.

Close Window

Closes the debug window that contains the input focus.

Close All Windows

Closes all debug windows.

Undock

Undocks the debug window that contains the input focus.

Window List Close Window Alt+X

The list of open debug information windows. By se- Close All Windows Alt+Shift-+X
lecting an item, the corresponding debug window is Undock
opened and gains the input focus.

Disassembly

Close Document v Global Data

Closes the active source document. Close Document Cirl+F4
Close All Documents Ctrl+alt+F4

Close All Documents Close All Unedited Documents

Closes all source documents.
v 1TraceDemo.C

Close All Unedited Documents 2 STM32F 4 _Startup. s

Closes all unedited source documents.

Document List

The list of open source documents is appended to the window menu.

3.3.7 Help Menu

User help related actions.
[User Guide... Fi

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SESBERMrocontilirGhb
Release Motes...

49 CHAPTER 3 Menu Bar

User Guide

Opens the user guide and reference manual.

Commands

Prints a description of all user actions to the Console Window

Release Notes

Shows the release notes within the web browser.

About Ozone
Opens the about dialog.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

50 CHAPTER 3 Toolbars

3.4 Toolbars

Three of Ozone’s main menu groups — File, Debug and View — have affiliated toolbars
that can be docked to the Main Window or positioned freely on the desktop. In addition, a
breakpoint toolbar is provided as well as a toolbar for accommodating custom buttons.

Category Toolbar

File EIEN=

Debug 3 ~ li

View o] 5l [o] [[6] [[L] wyf (2] (=] (g | [&] hnf =1 (5] [=] [os] (89 | [Pof (2] [#4] (5] [€
Break-

pgier?ts v e +

Custom User Button Dump TCM Basic Setup | Another Button

3.4.1 Showing and Hiding Toolbars

Toolbars can be added to the Main Window via the toolbar menu (View — Toolbars) or
by executing command Toolbar.Show using the toolbar’s name as parameter (e.g. Tool -
bar. Show(" Debug")). Removing toolbars from the Main Window works the same way using
action Toolbar.Close (see Toolbar.Close on page 319).

3.4.2 Arranging Toolbars

Toolbars can be arranged either next to each other or above each other within the toolbar
area as desired. To reposition a toolbar, pick the toolbar handle and drag it to the desired
position.

3.4.3 Docking and Undocking Toolbars

Toolbars can be undocked from the toolbar area and positioned anywhere on the desktop.
To undock a toolbar, pick the toolbar’s handle and drag it outside the toolbar area. To hide
an undocked toolbar, follow the instructions of section Showing and Hiding Toolbars on
page 50.

3.4.4 Custom Toolbar

In contrast to the other toolbars the custom toolbar can be populated by the user. The user
may add buttons by means of the command Toolbar.AddCustomButton and when pressing
the button, a user function (see User Functions on page 228) in the Ozone project file will
be performed. In fact, pressing a button will have the same effect as invoking the function
via Script.Exec in the Command Prompt in the Console Window or directly inside the Ozone
project script (.jdebug).

The command specified to be executed when pressing the button is not checked upon
creation of the button. It is possible to specify a function call to a function that does not
exist or add unsuitable parameters. When pressing the button with an invalid command,
an error message will be displayed in the Console Window. If a legal command is passed,
the output that is to be expected when manually issuing the command will be displayed
in the Console Window.

The custom tool bar allows to disable buttons by means of the command Toolbar.Disable-
CustomButton and re-enable a button via Toolbar.EnableCustomButton. After creation a
button is always enabled. Clicking onto a disabled button does not have any effect.

A custom button may be removed by issuing the command Toolbar.RemoveCustomButton.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

=

51

CHAPTER 3 Status Bar

3.5 Status Bar

Ozone’s status bar displays information about the debugger’s current state. The status bar
is divided into three sections (from left to right):

e Status message and progress bar
e Window context information
e Connection state

(wyriting Memory... EEEERRRRRRNNNNNNNNNN Ln 33 Ch 1 | Connected @ 100 kHz
Status bar

3.5.1 Status Message

On the left side of the status bar, a status message is displayed. The status message informs
about the following objects, depending on the situation:

Program State

By default, the status message informs about the program state, e.g. "Program running”.

Operation Status

When the debugger performs a lengthy operation, the status message displays the name
of the operation. In addition, a progress bar is displayed that indicates the progress of the
operation.

Context Help

When hovering the mouse cursor over a user interface element, the status message displays
a short description of the element.

3.5.2 Window Context Information

The middle section of the status bar displays information about the active debug information
window.

3.5.3 Connection State

The right section of the status bar informs about the debugger’s connection state. When
the debugger is connected to the target, the data transmission speed is displayed as well.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

52 CHAPTER 3 Debug Information Windows

3.6 Debug Information Windows

Ozone provides multiple debug information windows that cover different functional areas of
the debugger. This section describes the common features shared by all debug information
windows. An individual description of each debug information window is given in chapter
Debug Information Windows on page 52.

3.6.1 Context Menu

Each debug information window owns a context menu that
provides access to the window’s options. The context menu

|c| Wiew Saurce Shift+5
can be opened by right-clicking on the window. i) View Disassembly Shift+D

The state of switchable context menu options is main-
tained across sessions, i.e binary window options remain unchanged after Ozone was closed
and restarted.

3.6.2 Standard Shortcuts

Each debug information window supports the following set of standard hotkeys:

Hotkey Description
ESC Moves the input focus to the Source Viewer.
F6 Moves the input focus to next debug information window.
Shift+F6 Moves the input focus to previous debug information window.
Alt+x Closed the current debug information window.

3.6.3 Window Layout

Section Window Layout on page 52 describes how debug information windows are added
to, removed from and arranged on the Main Window.

3.6.4 Code Windows

Ozone includes two debug information windows that display the program’s source code and
assembly code, respectively. The code windows share several common properties that are
described in Code Windows on page 52.

3.6.5 Table Windows

Several of Ozone’s debug information windows are based on a joint table layout that pro-
vides a common set of features. A shared description of the table-based debug information
windows is given in Table Windows on page 52.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

53 CHAPTER 3 Code Windows

3.7 Code Windows

Ozone includes two debug information windows that display program code: the Source
Viewer and the Disassembly Window. These windows display the program’s source code and
assembly code, respectively. Both windows share multiple properties which are described
below. For an individual description of each window, refer to Source Viewer on page 156
and Disassembly Window on page 117.

3.7.1 Program Execution Point

Ozone’s code windows automatically scroll to the position of the PC line when the user steps
or halts the program. In case of the Source Viewer, the document containing the PC line
is automatically opened if required.

3.7.1.1 Active Code Window

At any point in time, either the Source Viewer or the Disassembly Window is the active
code window. The active code window determines the debugger’s stepping behavior, i.e.
whether the program is stepped per source code line or per machine instruction.

3.7.1.2 Recognizing the Active Code Window

The active code window can be distinguished from the inactive code window by a higher
color saturation level of the PC line (see the illustration below).

;"’BIink',.:'.n: X\l\ w | Disaszembly »
ey ;I Z00011-E 4050F440 ORE RO, F~
5l Main Program 20001132 6005 TR RO, [
B2 F oo e e 4| =zoooiiza a770 EX LR

= 63 int main (void) | =»20001136 BS08 PUSH IR3,1
64 uint3Z_t ad_awg = 0; 20001138 2700 nov R7, #
65 uintls t ad wal = 0, ad val_ = O 20001134 2600 Hov RE,
BE int3zZ_t joy =0, joy_ = — 20001138 TSFFFa4F Jatnkogn) RS, £;I
il | _"I_I K1 — 2l

Source Viewer (inactive, left) and Disassembly Window (active, right)

3.7.1.3 Switching the Active Code Window

A switch to the active code window occurs either manually or automatically.

Manual Switch

A manual switch of the active code window can be performed by clicking on one of the
code windows. The selected window will become active while the other code window will
become inactive.

Automatic Switch to the Disassembly Window

When the user steps or halts the program and the PC is not affiliated with a source code
line via the program’s address mapping table, the debugger will automatically switch to the
Disassembly Window. The user can hereupon continue stepping the program on a machine
instruction level.

Automatic Switch to the Source Viewer

When the program was reset or halted and the PC is affiliated with a source code line, the
debugger will switch to the Source Viewer as its active code window.

3.7.2 Code Line Highlighting

Each code window applies distinct highlights to particular code lines. The table below ex-
plains the meaning of each highlight. Code line highlighting colors can be adjusted via the

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

54 CHAPTER 3 Code Windows

User Preference Dialog (see User Preference Dialog on page 86) or via the command
Edit.Color (see Edit.Color on page 309).

Highlight Meaning

for (inti =0){ The code line contains the program execution point (PC).
Function(x,y); The code line contains the call site of a function on the call stack.
for (inti =0) { The code line is the selected line.

The code line contains the instruction that is currently selected
for (inti =0) { within the instruction trace window (see Backtrace Highlighting on
page 129).

3.7.3 Breakpoints

Ozone’s code windows provide multiple options to set, clear, enable, disable and edit break-
points. The different options are described below.

3.7.3.1 Toggling Breakpoints

Both code windows provide the following options to set or clear breakpoints on the selected

code line:
Method Set Clear
Context Menu Menu Item “Set Breakpoint” Menu Item “Clear Breakpoint”
Hotkey F9 Fo
Breakpoint Bar | Single-Click Single-Click

Breakpoints on arbitrary addresses and code lines can be toggled using the actions
Break.Set, Break.SetOnSrc, Break.Clear and Break.ClearOnSrc (see Breakpoint Actions on
page 290).

3.7.3.2 Enabling and Disabling Breakpoints

The breakpoint on the selected code line can be enabled or disabled by pressing the hotkey
Shift-F9. Breakpoints on arbitrary addresses and code lines can be enabled and disabled us-
ing actions Break.Enable, Break.Disable, Break.EnableOnSrc and Break.DisableOnSrc (see
Breakpoint Actions on page 290).

3.7.3.3 Editing Advanced Breakpoint Properties

Advanced breakpoint properties, such as the trigger condition or implementation type,
can be edited via the Breakpoint Properties Dialog (see Breakpoint Properties Dialog on
page 63) or via commands Break.Edit (see Break.Edit on page 370) and Break.SetType
(see Break.SetType on page 367).

3.7.3.4 Breakpoint Bar

Each code window hosts a breakpoint bar on its left side. The breakpoint bar displays
distinct icons that provide additional information about code lines. The following table gives
an overview.

Icon Meaning

The code line does not contain executable code.

The code line contains executable code.

A breakpoint is set on the code line.

= The code line contains the PC instruction and will be executed next.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

55 CHAPTER 3 Code Windows

Icon Meaning

= The code line contains a call site of a function on the call stack.

= The code line contains the PC instruction and a breakpoint is set on the line.

= The code line contains a call site and a breakpoint is set on the line.

» The code line contains a tracepoint that starts trace.

m The code line contains a tracepoint that stops trace.

The display of the breakpoint bar can be toggled from the User Preference Dialog (see User
Preference Dialog on page 86) or via command Edit.Preference (see Edit.Preference on
page 308).

3.7.4 Code Profile Information

The code windows are able to display code profile information within a switchable sidebar
area on the left side of the window.

3.7.4.1 Hardware Requirements

The code profile features of Ozone require the employed hardware setup to support in-
struction tracing (see Instruction Trace Window on page 128). To use Ozone’s full set of
trace features, a J-Trace PRO debug probe (see Streaming Trace on page 197) must be
employed.

3.7.4.2 Code Execution Counters

When code profiling features are supported by the

188 988 143 [+ Cntt+t:

hardware setup, the code windows display a counter 145
next to each text line that contains executable code. 199 998 150 [if ((Cnt % 100000)
The counter indicates how often the source code line 2 151 ¥ ToggleLED((Cnt
or instruction was executed. g 1152 F HumLEDs = (NumlE

1 153 [+ if (HumLEDs =— 3

X . 0 154 [# n=-1;
Resetting Execution Counters F1:5E) else if (NumLE
The execution counters are reset automatically at the 015&+ n=1:
same time the program is reset. A manual reset can
be performed via context menu or command Profile.Reset.
Toggling Execution Counters
The display of execution counters can be toggled via the context menu.
3.7.4.3 Execution Profile Tooltips
When hovering the mouse cursor over an execu- 5399 998 150 [if ((Cnt % 100000) ==
tion counte_r, the e_xecutlo_n prpﬂle_ of the afﬂ-ha_t- [% 54 Eyecution Profile for 1
ed source line or instruction is displayed within 53| TraceDemo.c:150: 14 EDs
a tooltip: "~ Fetched 399 998 P
Fetched: number of times the instruction was O |E=Ta 008 (MR 01 L,
© Mot-Executed (0.0%:)

fetched from memory. : I 5.qoy,
Executed: number of times the instruction was 168 | 1 ’
executed.

Not-Executed: number of times the (conditional) instruction was fetched from memory
but not executed.

Load: number of times the instruction was fetched divided by the total amount of instruc-
tions fetched during program execution.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

56 CHAPTER 3 Code Windows

The execution profile of a source line is identical to the execution profile of the first instruc-
tion of the source line.

When user preference PREF_EXEC PROFI LE_RESPECTS FI LTERS is set, an instruction fil-
tered from the code coverage statistic will not be accounted for when computing the exe-
cution profiles of source lines and instructions. (see Adding and Removing Coverage Filters
on page 108).

3.7.4.4 Execution Profile Color-Codes

The background of an execution counter is painted in a style which conveys the execution
profile of the affiliated source line or instruction. The following styles are used:

Conditional instructions:

Style Description

instruction was never fetched for execution.

instruction has taken both execution paths.

instruction was always executed.

instruction was never executed.

Non-conditional instructions:

Style Description

instruction was never fetched for execution.

instruction was executed.

Source lines:

Style Description

no instruction of the source line was fetched for execution.

some instructions of the source line were fetched for execution, but not all.

all instructions of the source line were fetched for execution and at least one
conditional instruction of the source lines was always executed.

all instructions of the source line were fetched for execution and at least one
conditional instruction of the source lines was never executed.

all instructions of the source line were executed at least once and all condi-
tional instructions have taken both execution paths.

Changing Code Profile Colors

The colors used in the styles above can be adjusted via the User Preference Dialog (see User
Preference Dialog on page 86) or via command Edit.Color (see Edit.Color on page 309).

3.7.5 Text Cursor Navigation Shortcuts

Ozone’s code windows provide standard text navigation/selection hotkeys. The Shift key
can be held together with any of the below keys to extend the text selection to the new
cursor position.

Arrow key Moves the text cursor in the specified direction.
PgUp Moves the text cursor one page up.
PgDn Moves the text cursor one page down.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

57

CHAPTER 3 Code Windows

Arrow key Moves the text cursor in the specified direction.
Home Moves the text cursor to the start of the line.
End Moves the text cursor to the end of the line.
Ctri+Left Moves the text cursor to the previous word.
Ctri+Right Moves the text cursor to the next word.
Ctrl+Home Moves the text cursor to the start of the document.
Ctrl+End Moves the text cursor to the end of the document.
Ctrl+PgUp Moves the text cursor to the first visible line.
Ctrl+PgDn Moves the text cursor to the last visible line.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

58 CHAPTER 3 Table Windows

3.8 Table Windows

Several of Ozone’s debug information windows are based on a joint table layout that pro-
vides a common set of features. The Global Data Window illustrated below is an example
of a table-based debug information window.

o
Mame S | Value | Location | Sizel Type | Scope I;I
0S5 _TickStepTime 0 2000 14FC 4| wolatile int 05_Global.c
& 0S5 _TickStep o ("0 2000 1534 1 wolatile uchar O5_Global.c
05_Status 05_CE (0) 2000 1504 1 volatile enum ' O5_Global.c
+ 05 _sCopyright 0800 3248 "SEGC 2000 14D4 4 const char* 05_Global.c
05_Rurnning 1 (*%001") 2000 151C 1 uchar 05_Global.c
—| 05_p\WDRoot 2000 1430 2000 1554 4 struct O5_WD 5 0S5_Global.c
| pMext 2000 1478 2000 1430 4 struct OS_WD_S 0S5_Global.c::05_WD_E
+ phext 2000 1460 2000 1478 4 struct OS_WD 5 0S5 _Global.c::05_WD S
Period 750 2000 147C 4 int 05_Global.c::05_WD_&
TimeDex 1480 2000 1480 4 int 05_Global.c::05_WD_&
Period 1000 20001434 4 int 05_Global.c::05_WD_S
TimeDex 1 805 2000 1438 4 int 05_Global.c::05_WD_=
+ OS5_pTLS 20001534 2000 1544 4 woidw 05_Global.c
+ 05_pTickHookRoot 2000 1440 2000 1524 4 struct 05_TICE 0O5_Global.c
+ O5_pSemaRoot 2000 13C8 2000 1540 4 struct 05_S5EMA O5_Global.c ;I

3.8.1 Member Rows

A table row that displays a button on its
left side can be expanded to reveal its A
contained entries. A table window where | Name £ |‘-"B|UE | Size | =
multiple rows have been expanded at- - _acDownBuffer 18
tains a tree structure as illustrated on the] o ("ot 1
right. [1 0 (0"

. o <member display limited by user preference =
Member Display Limit ¥ _acUpBuffer 1024

The number of child entries that can be
displayed for a table row can be limited via the User Preference Dialog. When table rows
are not shown due to the display limit, an indication is displayed as shown on the right.

3.8.2 Column Header

Hiding Columns Namg

_|= F v Mame
Each table column has an entry in the context menu of the ta- vl Ao
ble header. When an entry is checked or unchecked, the cor- .
responding table column is shown or hidden. The table head- MM Ha %€
er context menu can be opened by right-clicking on the table HardFau ¥ #Insts Jsoo o1
header. SVC_Hal v Source £00 0L

MmemACY HemAle [al=Talalyal

Sorting Columns

Table rows can be sorted according to the values displayed in a

particular column. To sort a table according to a particular column, a left click on the column
header suffices. A sort indicator in the form of a small arrow indicates the column according
to which the table is currently sorted. The sort strategy depends on the data type of the
column.

3.8.3 Display Format

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

59 CHAPTER 3 Table Windows

The table windows enable users to change the value display format of a particular (or all)
value items. If supported, the value display format can be changed via the window’s context
menu or via commands Window.SetDisplayFormat and Edit.DisplayFormat (see Window
Actions on page 297).

3.8.4 Filter and Total Value Bars

1
Mame S Stack Total Stack Local Code Total _ Code Local
= > 10 * + (1)

Total :- 2 TZ TZ 228 I/E\I — 228
SEGGER_RTT WriteNoLock 40 40 160 160
SEGGER_RTT_Write 3z 32 &8 &8

Each table window provides two distinct header rows that are always visible, regardless of
the scroll bar positions.

The filter bar (1) enables users to filter the table content. When a filter is set on a table
column, only table rows whose column value matches the filter stay visible.

The total value bar (2) informs about the aggregate value of a table column. The aggregate
value is the sum of all values currently shown within the column.

The display state of the filter and total value bars (shown or hidden) can be toggled via
the context menu of the table window.

3.8.4.1 Value Range Filters

Columns that display numerical data accept value range filter input. A value range filter is
specified in any of the following formats:

Format Description
X-y keep items whose column value is contained within the range [x,y].
>X keep items whose column value is greater than x.
=X keep items whose column value is greater than or equal to x.
<X keep items whose column value is less than x.
<X keep items whose column value is less than or equal to x.

3.8.4.2 Filter Bar Context Menu

In addition to the standard text interaction options, the filter bar context menu provides
the following actions:

Clear All Filters

Clears all column filters.
Set Filter...
Opens the filter input dialog.

3.8.5 CSV Export

All table windows provide a context menu entry RS s
that enables users to export the (filtered) table

. * Export...
content to a comma-separated values file. =

3.8.6 Change Level Highlighting

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

YWalue

60 CHAPTER 3 Table Windows

Multiple debug information windows highlight numeric values according to recency of their
last change (see Change Level Highlighting on page 59).

3.8.7 Letter Key Navigation

By repeatedly pressing a letter key within a table window, the table rows that start with
the given letter are scrolled into view one after the other.

3.8.8 Table Window Preferences

Section Table Window Settings on page 89 lists all user preference settings pertaining
to table windows.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

61 CHAPTER 3 Window Layout

3.9 Window Layout

This section describes how debug information windows can be added to, removed from and
arranged on the Main Window.

3.9.1 Opening and Closing Windows

Opening Windows

Windows are opened by clicking on the affiliated view menu item (e.g. View — Breakpoints)
or by executing the command Window.Show using the window’s name as parameter (e.g.
W ndow. Show(" Br eakpoi nts")). When a window is opened, it is added to its last known
position on the user interface.

Closing Windows Programmatically

Windows can be closed via command Window.Close using the window’s name as parameter.

3.9.2 Undocking Windows

Windows can be undocked from the Main Window by dragging or double-clicking the win-
dow’s title bar. An undocked window can be freely positioned and resized on the desktop.

®_ C:/Examples/Blinky_STM32F - O] x|
File Edit Wiew Debug Help

| P~ & &

=]

Call Skack 20001122 4070F420 BIC R0, RO, #0x]<]

Function | Line | File 20001126 49D2 LDR Rl, [PC, Ox:

= main 63 Blnky. 20001128 6008 STR RO, [RL] J

GPIOD->CRL |- 0Ox00004000;

B 20001508 20001124 4608 Hov RO, Rl
2000112C 6800 LDR RO, [RO]
2000112E 4080F440 OFR RO, RO, #0x-
20001132 6008 STR RO, [RL]

}
[CPU halted 20001134 4770 BX LR
int main (void)] { d|
) i

Undocked disassembly window floating over the Main Window

3.9.3 Docking and Stacking Windows

Windows can be docked on the left, right or bottom side of the Main Window by dragging
and dropping the window at the desired position. If a window is dragged and dropped over
another window the windows are stacked. More than two windows can be stacked above

each other.
Funckion Line |File
= main 63 Blinky .
@ Z00015D5

I'lk Zall Skack, f‘L Instruction Trace '\ Disassembly |
| CPU halked | Ln1 Ch1 | Connected

Stacked debug information windows

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

62

CHAPTER 3 Change Level Highlighting

3.10 Change Level Highlighting

Ozone emphasizes changed values with a set of three different colors that indicate the
recency of the change. The change level of a particular value is defined as the number of
times the program was stepped since the value has changed. The table below depicts the
default colors that are assigned to the different change levels.

Change Level

Meaning

Level 1 The value has changed one program step ago.
Level 2 The value has changed two program steps ago.
Level 3 The value has changed three program steps ago.

Level 4 (and above)

The value has changed 4 or more program steps ago or does
not display change levels.

Both foreground and background colors used for change level highlighting can be adjusted
via the User Preference Dialog (see User Preference Dialog on page 86 or via command
Edit.Color (see Edit.Color on page 309).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

63 CHAPTER 3 Dialogs

3.11 Dialogs

This section describes the different dialogs that are employed within Ozone.

3.11.1 Breakpoint Properties Dialog

The Breakpoint Properties Dialog enables users to edit advanced breakpoint properties
such as the trigger condition and the implementation type. The dialog can be accessed via
the context menu of the Source Viewer, Disassembly Window or Breakpoints/Tracepoints
Window. Breakpoint properties can also be set programmatically using actions Break.Edit
(see Break.Edit on page 370) and Break.SetType (see Break.SetType on page 367).

State ¥ Breakpoint Properties x|
Enables or disables the breakpoint. —Breakpoint

Permitted Implementation Loesian: [ElEgpel il

Sets the breakpoint’s permitted implementa- —chabe —Permitted Impl.

tion type (see Break.SetType on page 367).

¥ Enabled I.ﬁ.ny ;I
Skip Count
Program execution can only halt each Skip- B
Count+1 number of times the breakpoint is hit. |Hp_mg|< ;|
Furthermore, the remaining trigger conditions
must be met in order for program execution to
halt at the breakpoint.

—Condition

Reload | 05 _Global pTask 1= MULL |

When unchecked, the skip count condition is
deactivated as soon as the program halts at the
breakpoint for the first time.

% Trigger when krue € Trigger on change

- ¥ Extra Actions
Task

Specifies the RTOS task that must be running
in order for the breakpoint to be triggered. The
RTOS task that triggers the breakpoint can be Script Callback: |.3.,-,Ereak
specified either via its name or via its ID. When
the field is left empty, the breakpoint is task-
insensitive. oK Cancel

Popup Message: I

Console Message: I

Condition

An integer-type or boolean-type symbol ex-

pression that must be met in order for program execution to halt at the breakpoint. When
option “trigger when true” is selected, the expression must evaluate to a non-zero value in
order for the breakpoint to be triggered. When option “trigger when changed” is selected,
the breakpoint is triggered each time the expression value changed since the last time the
breakpoint was encountered.

Extra Actions

Specifies the additional actions that are performed when the breakpoint is hit. The provid-
ed options are a text message that is printed to the Console Window, a message that is
displayed within a popup dialog and a script function that is executed (see Project Script
on page 226).

Note

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

64 CHAPTER 3 Dialogs

Due to hardware limitations, executing a script function is not supported for data break
points.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

65

CHAPTER 3

3.11.2 Code Profile Export Dialog

Ozone User Guide & Reference Manual (UM08025)

B Export Code Profile Data

x|

—Report Scope
™ Whole Application

+ Selected Functions

= M 3 BsPe

-~ [f Bsp_init

- W f BSP_SetlED

. ¥ f BSP_TooaleLED

O] | STM32F40x_Vectors.s
[%] STM32F4xx_Startup.s
O] %] system_stm32f4xx.c
O %] thumb_crtd.s

] 3] TraceDemo.c

—Output Format —CSY Format
" Report f+ Functions
f+ Csv = Source Lines

" Instructions

—Other Options

[~ Export File Paths

—Output File

I C:UsersflonasVideos/Desktop/Ozone_CP_191120.c5v

o]

QK

Cancel |

Report Scope

Tree View

CSV Format

Available when output file format is “"CSV". Specifies which program entities within the se-
lected report scope are to be exported. For example, if the report scope contains a single
file and the selected CSV format is “Instructions”, then a code profile report about all in-
structions within the selected file is generated.

Code Profile Export Dialog

Functions to be covered by the output file.

Output Format

Allows users to select the functions to be covered by the output file.

Dialogs

The Code Profile Export Dialog is provided to save the application’s code profile to a text
or a CSV file (see Code Profile Window on page 106).

Output file format. The default option “"Report” generates a human-readable text file. The
alternate option “CSV” generates a comma-separated values file that can be used with
table-processing software such as excel.

© 2013-2026 SEGGER Microcontroller GmbH

66 CHAPTER 3 Dialogs

Export File Paths

Specifies if absolute file paths (checked) or file names (unchecked) are to be exported.
Output File
Output file path.

3.11.2.1 Commands

The functionality of the code profile export dialog can be accessed from script functions
using command Export.CodeProfile on page 311.

3.11.2.2 Code Profile Report

Shown below is the content of a text file generated by the Code Profile Export Dialog.

Ozone Code Profile Report

Project: C: /Exanples/Board 636 3THIZF407IC _ewb03 Fercepio
Application: C: /Exanples/Board 636 3THIZF407IG _ewmb03 Fercepio
Date: 23 Nov Z0la

Code Coverage SULNALY

Source Lines Instructions

I

+
core_cmd.h I
MVIC SetPriority |
FysTick_Config |
Main.c |
main |

___________________ +
I

67 / 106 63.2%

Hodule /Function | Funi Count | Load
___________________ +_______________+__________________________
core_cmd.h I I
NWIC SetPriority | Z I 43
3ysTick_Config | 1 I Z6
Main.c | I
main | 1 | 20
___________________ +_______________+__________________________
Total I 4 I 94

Code Profile Report Example

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

67

CHAPTER 3

3.11.3 Data Breakpoint Dialog

The Data Breakpoint Dialog enables users to place data breakpoints on global program
variables and individual memory addresses. Please refer to Data Breakpoints on page 194
for further information on data breakpoints in Ozone.

The dialog can be accessed from the con-
text menu of the Breakpoints/Tracepoints win-
dow (see Breakpoints/Tracepoints Window on
page 96) or from the context menu of the
data symbol windows.

Data Location

The data location pane enables users to speci-
fy the memory address(es) to be monitored for
IO accesses. When field “From Expression” is
checked, the memory address results from the
evaluation of a symbol expression (see Work-
ing With Expressions on page 205. Otherwise,
the memory address is specified manually. The
Mask field specifies the bits of the input address
which are ignored when evaluating the location
condition. An address mask of O monitors ex-
actly and only the input address for 10 access-
es. An address mask of OxFFFFFFFF monitors
all memory addresses.

Access Condition

The access condition pane enables users to
specify the type and size of a memory access
that triggers the data breakpoint.

Value Condition

Dialogs

€. Set Data Beakpoint x|

—Data Location

™ From Expression f* Manual
Address: Mask:
| oooooooo fo =l

—Access Condition

| write |

AcCcess Size:

I.ﬁ.ub:um.atic j
—Value Condition

Value (hex): Mask (hex):
o | FFFFFFFF =l

04 Cancel |

The value condition pane enables users to specify the memory data value required to trigger
the data breakpoint. The mask field specifies the bits of the memory data value which are
to be ignored when evaluating the condition. A value mask of 0 performs an exact match
against the value entered within the “Value” field. A value mask of 0xFFFFFFFF matches any
value and has the same effect as selecting “Ignored”. The value condition can be disabled

by checking the “Ignored” field.

3.11.3.1 Applying Changes

By pressing the OK button, a data breakpoint with the specified attributes is set in target
hardware and added to the Breakpoints/Tracepoints Window. In case the debugger is dis-
connected from the target, the data breakpoint is added to the Breakpoints/Tracepoints
Window and scheduled to be set in target hardware when the debug session is started.

Note

Due to hardware limitations, executing a script function, as is available for source- or
instruction breakpoints, is not supported for data break points.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

68 CHAPTER 3 Dialogs

3.11.4 Debug Settings Dialog

The Debug Settings Dialog enables users to configure J-Link/J-Trace related settings, such
as the target model and the debug interface. The choice of debug interfaces also includes
the connection to a GDB server. Refer to Project Wizard on page 35 for a description of
these settings.

f Debug Settings X

Target Device

STM32F407VE

Target Interface

SWD: 4 MHz
Host Interface

USB
J-Link Script

Save to Project OK Cancel

Debug Settings Dialog

3.11.4.1 Opening the Debug Settings Dialog

The Debug Settings Dialog can be opened from the Tools Menu or by executing the command
Tools.DebugSettings.

3.11.4.2 Applying Changes

Save To Project

By clicking the “Save To Project” button, the selected Debug settings are written to the
project file and thereby applied persistently.

OK

By clicking the Ok button, the selected Debug settings are applied to the current session
only.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

69 CHAPTER 3 Dialogs

3.11.5 Disassembly Export Dialog

The Disassembly Export Dialog is provided to save the disassembly of arbitrary memory
address ranges, including source code and symbol information, to CSV and assembly code
files.

X Export Disassembly Data x|

—Farmat

f+ Csv ™ Assembly Code

—Entity

" \Whole Program

(™~ Address Range

—Function
I main j

—Other Options

[T Remove traiing MOPs at the end of functions

—Output File

I;,."u'idenstesktoprznne_Disassemny_lEIlllﬂ.csu |

0K Cancel |

Disassembly Export Dialog

CSv

Disassembly data is exported in CSV format.

Assembly Code

Disassembly data is exported to a single recompilable GNU-syntax assembly code file. This
option is currently only available when debugging on Cortex-M.

The interrupt vector table is created based on a heuristic detecting the location and size
of the vector table from the information in the ELF file. In some cases this heuristic does
not yield the correct result. In that case you may specify the base address and size of
the vector table by means of the system variables VAR VECTORTABLE ADDR and VAR VEC
TORTABLE_SI ZE.

Entity / Function

Selects the address range to be exported.

Remove Trailing NOPs at the end of functions

Indicates if “no-operation” instructions, emitted by the compiler for function alignment
purposes, are to be filtered from the output.

3.11.5.1 Exemplary Output

Shown below is an excerpt of a CSV file that was generated using the Disassembly Export
Dialog.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

70

Address
a001340
8001342
8001344
8001346
a001348
03001344,
0300134C
0300134E
8001350
8001352

Encoding
B4a0
B033
AFO0
4B21
BO7EB
B37EB
2202
B11A
B37EB
2202

Length Type

SR SR R R SR R R SRR R R L]

THUMB
THUMB
THUMB
THUMEB
THUME
THUMB
THUMB
THUMB
THUMB
THUMEB

CHAPTER 3

Opcode
FLISH
SUB
ADD
LDR
STR
LOR
Pl I
STR
LOR

B D

Operands Label
[R7} _Daolnit
SF, SP,#2

R7, 5P, #

FH3, [0x080013CE]
F3, [R7, #+H0x04)

R3, [R7, #H0x04]

R2, #

F2, [R3, #+H1x10]

F3, [R7, #+H0x04]

R2, #

Dialogs

Source
static waid

p= & SEC

p-=hdaxhur

p-=MaxMur

CSV content generated by the Disassembly Export Dialog

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

71

CHAPTER 3 Dialogs

3.11.6 Find In Files Dialog

The Find In Files Dialog enables users to search for text patterns within multiple source
code documents.

Find What Find In Files X

Defines the search pattern. The search Find]
pattern is either a plain text, an expres-
sion containing wild cards (see Use Unix Find what:

Style Wildcards) or a regular expres- | BSP_Init "
sion (see Use Regular Expressions), de-

pending on the type of the search be- | -2%™

low. Current Project =
Look In = Find Options

Selects the source code documents that [] search Inline Asembly Code

are to be included in the search (see File [] Match Case

Search Scope on page 72). [] Match Whale Word

Search Inline Assembly Code [] Use Unix Style Wildcards

L. T |Use Regular Expressions
Also search within source-inline assem- O - s

bly code lines. = Result Options

Match Case Show Filepaths

Specifies if the letter casing of the
search pattern is relevant.

Match Whole Word Find Prev Find Mext

Specifies if a match must start and end Close
at word boundaries.

This setting is mutual exclusive with us-
ing wild cards and regular expressions.

Use Unix Style Wildcards
Indicates if the search pattern is to be interpreted as an expression containing wildcards.

This setting is mutual exclusive with matching whole words and using regular expressions.

Use Regular Expressions

Indicates if the search pattern is to be interpreted as a regular expression. In that case,
the search is conducted on the basis of a regular expression pattern match.

This setting is mutual exclusive with matching whole words and using wild cards.

Show File Paths

Indicates if the file path of matches should be included in the search result. The search
result is displayed within the Find Results Window (see Find Results Window on page 121).

Find All

Finds all occurrences of the search pattern in the selected search scope. The search result
is printed to the Find Results Window.

Find Next/Previous

Finds the next/previous occurrence of the search pattern in the selected search scope.
When a match is found, it is highlighted within the Source Viewer. After closing the Find

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

72 CHAPTER 3 Dialogs

In Files Dialog, the next/previous occurrence of the search pattern can be located using
shortcut F3/Shift+F3.

In Addtion, shortcut Ctrl+F3 is provided to locate the next occurrence of the word under
the cursor without the need to open the Find In Files Dialog.

3.11.6.1 File Search Scope

Find in files can be conducted in one of three search scopes. The desired search scope can
be specified via the “Look In” selection box of the Find In Files Dialog.

Search Scope Description

Current Document The search is conducted within the active document.

The search is conducted within all documents that are open

All Open Documents within the Source Viewer.

The search is conducted within all source files used to com-

Current Project pile the debuggee.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

73

CHAPTER 3

3.11.7 Find In Trace Dialog

The Find In Trace Dialog enables users to search for text patterns within the content of the
Instruction Trace Window (see Instruction Trace Window on page 128).

Find what

Defines the search pattern. The search
pattern is either a plain text, an expres-
sion containing wild cards (see Use Unix
Style Wildcards) or a regular expres-
sion (see Use Regular Expressions), de-
pending on the type of the search be-
low.

Look where

Defines the text columns to include
within the search. When a match spans
multiple text columns, the checkboxes
of these text columns must be checked
in order for the match to be accounted.

Address

Defines if the address text column is in-
cluded within the search.

Encoding

Defines if the instruction encoding text
column is included within the search.

Assembly Code

Defines if the assembly code text col-
umn (including mnemonics, operands
and assembly comments) is included
within the search.

Source Code

Dialogs

Find In Trace
Find |

Find what:

| memory_set

= Look where

[] Address

[] Instruction Encoding
[] Assembly Code
Source Line

[] Function Header

[Find Options
Match Case
[] Match Whele Werd

[] Use Unix-Style Wildcards
|:| IUse Regular Expressions

Find Prev

Find Mext

Close

Defines if the source code text column is included within the search.

Function Header

Defines if call frame header titles are included within the text search (see Call Frames).

Match Case

Specifies if the letter casing of the search pattern is relevant.

Match Whole Word

Specifies if a match must start and end at word boundaries.

This setting is mutual exclusive with using wild cards and regular expressions.

Use Unix Style Wildcards

Indicates if the search pattern is to be interpreted as an expression containing wildcards.

This setting is mutual exclusive with matching whole words and using regular expressions.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

74

CHAPTER 3 Dialogs

Use Regular Expressions

Indicates if the search pattern is to be interpreted as a regular expression. In that case,
the search is conducted on the basis of a regular expression pattern match.

This setting is mutual exclusive with matching whole words and using wild cards.

Find All

Finds all occurrences of the search pattern within the selected text columns. The search
result is printed to the Find Results Window.

Find Next/Previous

Finds the next/previous occurrence of the search pattern within the selected text columns.
When a match is found, it is highlighted within the Instruction Trace Window. After closing
the Find In Trace Dialog, the next/previous occurrence of the search pattern can be located
using shortcut F3/Shift+F3.

In Addtion, shortcut Ctrl+F3 is provided to locate the next occurrence of the word under
the cursor without the need to open the Find In Trace Dialog.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

75 CHAPTER 3 Dialogs

3.11.8 Memory Dialog

The Memory Dialog is a multi-functional dialog that is used to:

e Dump target memory data to a binary file
e Download data from a binary file to target memory
e Fill a target memory area with a specific value

All values entered into the Memory Dialog are interpreted as hexadecimal numbers, even
when not prefixed with “0x”.

3.11.8.1 Save Memory Data

In its first application, the Memory Di-
alog is used to save target memory
data to a binary file.

¥ Save Memory Data ? >

|Fi|e: |C:,.'Temp,."|'~1em.|:-in | "
| Start Address: | 20000030

File

The destination binary file (*.bin) into
which memory data should be stored.
By clicking on the dotted button, a file |5ize: |444;.
dialog is displayed that lets users se-

lect the destination file. Cancel
Address

The addresses of the first byte stored
to the destination file. Size The number of bytes stored to the destination file.

|
|End Address: | 2000046F |
|

3.11.8.2 Load Memory Data

In its second application, the Memory Dialog is used to write data from a binary file to
target memory.

File

The binary file (*.bin) whose contents are to be written to target memory. By clicking on
the dotted button, a file dialog is displayed that lets users choose the data file.

Address

The download address, i.e. the memory address that should store the first byte of the data
content.

End Address / Size

The number of bytes that should be written to target memory starting at the download
address.

3.11.8.3 Fill Memory

In its third application, the Memory Di-

alog is used to fill a memory area with | L Fill Memory ? X
a specific value.

[Fill value: o |
Fill Value

| Width: |4

The fill value.
| Start Address: | 20000030

|
Width [End Address: | 2000046F |
|

The word width (i.e. the number of | Size: | 440
bytes) the fill value consumes. Sup-

Cancel

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

76 CHAPTER 3 Dialogs

ported values are 1, 2, 3, 4 and 8 bytes. This allows for memory being filled byte- word-
or double-word wise, and also supports filling frame buffers encoding a color in 3 bytes.

Address

The start and end addresses (inclusive) of the memory area.

End Address / Size

The size of the memory area.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

77 CHAPTER 3 Dialogs

3.11.9 Instruction Trace Export Dialog

The Instruction Trace Export Dialog is provided to save the current instruction trace record
to a CSV file.

L Export Instruction Trace Data x|

—Maximum Instruction Count

[6.91k
e.q: M, 2.2G,...

—Qutput File

IfidEDS,."DESktop,."Dzu::nE_Instrul:ﬁon_Trau:E_l'El11}‘_[1.u:sv vor |

K, Cancel |

Instruction Trace Export Dialog

Maximum Instruction Count

Maximum number of instructions to export.

Output File
Output file.

3.11.9.1 Exemplary Output

Shown below is an excerpt of a CSV file that was generated using the Instruction Trace
Export Dialog.

Address |[Encoding |Length Type Opcode Operands Label Source
8001340 B480 THUME FUSH [R7} _Dalnit | static wvoid
|001342 BO33 THUME SUE SF, SP,#2

001344 AFOO THUME ADD R7, 5P, #

g001346 | 4B21 THUME LDR FH3, [0x080013CE] p=& SEC
g0013458 BOYE THUME | STR F3, [R7, #+H0x04]

030013445 BS7E THUME LDR R3, [R7, #H0x04] p-=MaxMur
0300134C 2202 THUME MO R2, #

0300134E B11A THUME | STR F2, [R3, #+H1x10]

8001350 BS7E THUME LDR F3, [R7, #+H0x04] p-=hdaxhur
go01352 2202 THUMEB MO R2, #

CSV content generated by the Instruction Trace Export Dialog

SR SRR R R SR R R SRR R R L]

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

78 CHAPTER 3 Dialogs

3.11.10 Project Load Diagnostics Dialog

The Project Load Diagnostics Dialog notifies users about erroneous project settings and
other project loading issues, such as syntax errors. This dialog is only shown when required,
and only during loading of a project file.

.+ Project Load Diagnostics

Project Load Diagnostics:

4| warning (134): The target application seems to be using embOS, but embOS-awareness is not enabled.

! warning (175): All physical addresses in program segments are 0x0.

Suggested fix-ups:

Add command 'Project.SetOSPlugin(embOSPlugin)' to the project file.
Add command 'Edit.SysVar(VAR_DOWNLOAD_ADDR, DL_VMA)' to the project file.

[] Do nat show these diagnostics again.

Apply selected fix-ups

Edit Project File Reload Project Cancel

Project Load Diagnostics Dialog

3.11.10.1 Project Load Diagnostics

For each issue encountered during project loading, an entry is added to the load diagnostics
table. This entry provides a basic description of the issue and an index into Ozone’s appli-
cation message table. The application message table usually provides further information
about the issue (see Errors and Warnings on page 283).

3.11.10.2 Suggested Fix-Ups

For each issue that the debugger knows how to resolve automatically, an entry is added
to the fix-ups table.

3.11.10.3 Buttons

Apply selected fix-ups
Applies the selected fix-ups and updates the project file.
Edit Project File

Closes the dialog, cancels project loading and opens the project file within the Source
Viewer.

Reload Project

Closes the dialog and reloads the project file.

Continue

Closes the dialog and continues project file loading.

Cancel

Closes the dialog and unloads the project.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

79 CHAPTER 3 Dialogs

3.11.11 Snapshot Dialog

The snapshot dialog enables users to save and load debug snapshots (see Debug Snapshots
on page 215). The dialog has two display modes: a “save snapshot” and a “load snapshot”
mode.

3.11.11.1 Load Snapshot

When opened in load mode, the snapshot dialog informs about basic properties of the
snapshot to be loaded, such as the employed target device and program file. The snapshot
dialog can be opened in load mode from the Debug Menu or by executing command De-
bug.LoadSnapshot.

x|

—File
I C:/Temp/SEGGER._CortexM_Trace_Reference_Board_embO5.jsnap ver |
—Snapshot Info
Producer: Dzone V2.63
Created: 10, Jul 2019 11:13
Target device: STM3ZF407IE
CPU model: Cortex-i4

Emulator model: 1-Trace PRO V2 Cortex
Program file: SEGGER Cortex-M Trace Reference Board.elf

Project file: SEGGER_CortexM_Trace_Reference_Board_emb05_Snapshot.jdebug
Byte order: data: litle endian, code: litte endian

Data size: 821KE

File size: 405 KB

i

Cancel

Snapshot Load Diagnostics

A requirement for the successful restoration of a debug session from a snapshot is that
the snapshot settings match the project settings. In particular, the program file must bi-
nary-match the program file at the time the snapshot was saved. When any mismatches
occur, the snapshot load diagnostics dialog will be shown to inform the user.

l, Snapshot Load Diagnostics EI

Warnings occurred during processing of session file:
C:/Temp/SEGGER_CortexM_Trace_Reference_Board_embO5.jsnap

{FLASH memory data @ 0x3000000, 0x748 bytes, does not match program file
FLASH memory data @ 0x8000748, 0x30 bytes, does not match program file

Edit Project File Close

3.11.11.2 Save Snapshot

When opened in save mode, the snapshot dialog enables users to define what data will be
saved to the snapshot. In particular, the dialog provides two sub-dialogs that allow to define

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

80 CHAPTER 3 Dialogs

what components of the system state, i.e. which target memory regions and registers, are
to be saved.

£\, save Debug Snapshot x|

¥ select Al
—Target State
¥ Memory Regions Select... |
¥ Registers Select... |
—5ession Data
¥ Trace ¥ Terminal Log
¥ Data Graphs ¥ Console Log
¥ Power Graphs
—Output File
IC:ﬁempfSEGGER_C:::rtE:{M_Trace_Reference_Bnard_eml:uOS.jsnap;I

The snapshot dialog can be opened in save mode from the Debug Menu or by executing
command Debug.SaveSnapshot.

3.11.11.3 Memory Selection

The "Memory Selection” sub-dialog of the snapshot dialog enables users to define the target
memory regions to be stored to the snapshot.

:-'—'-\ Select Snapshot Memory Regions il

Region Mame Base Address Size
FLASHO (auto)
RAMO (auto) 2000 Q000 OxZ0000
Region0 (ELF) 0200 0000 0x4EE5
Region1 (ELF) 2000 0000 0x14DC
Region2 (ELF) 2001 FDOO 0x300

1=, Add = Remove | <¥RemoveAl| |[|Import..| [J Load DefaultRegions

Save to Project Ok | Cancel

Import

Adds the memory regions defined by an Embedded Studio memory map file to the list.

Restore Defaults

Resets to the default configuration, which is:

e all FLASH and RAM region defined for the target by J-Link/J-Trace.
e all ELF program data sections with the allocatable flag (A) set.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

81 CHAPTER 3 Dialogs

Save to Project

Applies changes persistently by writing them to the user file of the project.

Ok

Applies changes to the current session only.

3.11.11.4 Register Selection

The “Register Selection” sub-dialog of the snapshot dialog enables users to define the target

registers to be stored to the snapshot.

4, select Snapshot Registers x|

| Mame | Address | Description &

= o CPL CPU Registers

. Core CPU registers

O o Peripherals Memory-Mapped CPL Registers

[=I @R Peripherals Memory-Mapped Reqisters

I E B ADC

[FR ADC1 4001 2000 Analog-to-digital converter

O R ADC_Common 4001 2300 ADC common registers

= = DMA

FR DMAZ 4002 €400 CMA controller

O FR DMA1 4002 €000 DMA controller ;l
Save to Project Ok | Cancel |

Users may save CPU registers and peripheral registers to the snapshot, although only CPU
registers will be automatically restored when the snapshot is loaded (see Advanced System

Restore on page 215).

Save to Project

Applies changes persistently by writing them to the user file of the project.

Ok

Applies changes to the current session only.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

82 CHAPTER 3

3.11.12 Semihosting Settings Dialog

Dialogs

The semihosting settings dialog enables users to conveniently edit any of the semihosting
settings described in section Project.ConfigSemihosting on page 345. The dialog can be
opened from the tools menu or the context menu of the Terminal Window (see Terminal
Window on page 162). An elaborate description of Ozone’s semihosting facility can be

found in section Semihosting on page 200.

% semihosting Settings EI

—Semihosting Operations

Allow File Read: I‘r‘es

Allow File Write: IH"ES

Allow File Rename; |'1"Es

Allow File Remove: I‘r‘es

Ll Ll L L

—Semihosting Configuration

Semihosting on SVC:

I‘fes, ask on non-semihosting SVC ;I

Semihosting on BKPT: |'1"Es LI
Semihosting on Breakpoint: I‘r‘es LI
User Input: ILIser input via popup dialog ;I
- ¥ Advanced Configuration
Thumb S¥C Number: ||
ARM SVC Mumber: |
BKFT Mumber: I
BF Address: I
Save to Project | Ok Cancel

Save to Project

Applies changes persistently by writing them to the user file of the project.

OK

Applies changes to the current session only.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

83 CHAPTER 3 Dialogs

3.11.13 System Variable Editor

Ozone defines a set of system variables that control project-specific behavioral aspects
of the debugger. The System Variable Editor lets users observe and edit these variables
in a tabular fashion. A description of each system variable is provided by section System
Variable Identifiers on page 277.

System Variables
=
Description Value Reset MName
Default memory access width Automatic v *+ VAR_ACCESS_WIDTH
Allow background memory access emulation (halt mode) no v - VAR_ALLOW _BMA_EMIJLATION
Break at this symbol on debug session start main + VAR _BREAK_AT_THIS_SYMBOL
Permitted breakpoint implementation type Any v + VAR _BREAKPOINT_TYPE
Unwinding infarmation source Automatic - 1 VAR _CALLSTACK_UNWIND _INFO_SRC
Step aver shall halt in same function context {call frame) no v - VAR _CONTEXT_AWARE _STEFFING
Download Memory Address Phyiscal memory address = + VAR _DOWMNLOAD _ADDR.
Default memory zone accessed when the program is running Default + VAR _MEM_ZOME_RUNNING
Reset mode Reset & Break At Symbol = *+ VAR_RESET_MODE
Program execution point where memory init is complete miain * VAR _STARTUP _COMPLETION_POINT
Jink f JTrace supplies power to the target no v + VAR _TARGET _POWER_OM
Verify download of program images yes v + VAR _VERIFY_DOWNLOAD

System Variable Editor

3.11.13.1 Opening the System Variable Editor

The System Variable Editor can be opened from the Main Menu (Edit — System Variables)
or by executing command Tools.SysVars.

3.11.13.2 Editing System Variables Programmatically

The command Edit.SysVar on page 309 is provided to manipulate system variables within
script functions or at the command prompt (see Command Prompt on page 111).

3.11.13.3 Applying Changes

Save To Project

By clicking the “Save To Project” button, the displayed system variable state is written to
the project file and thereby applied persistently.

Ok

By clicking the Ok button, the selected J-Link settings are applied to the current session
only.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

84 CHAPTER 3 Dialogs

3.11.14 Trace Settings Dialog

The Trace Settings Dialog enables the user to configure the available trace input sources.

Trace Settings ped Trace Settings ped
Trace Source Trace Source
|Trace Pins - | SWO -
Instrumentation Instrumentation
Timestamps Timestamps
CPU Frequency CPU Frequency
| 100 MHz | Auto D He

e.q: 200MHz, 0.2GHz,... SWO Frequency

Trace Port Width

Auto 0 Hz
4 hit -
Data from stimulus ports
Maximurmn Instruction Count 31 24 23 16
10M | oo goodoooad

15 8 7 o]

oooooooo oooooodM

e.gr 4M, 2.2G,...

Trace Timing

Default |

Save to Project oK Cancel Save to Project oK Cancel

Trace Source

Selects the trace source to be used:

Trace Source Description

Instruction Trace (ETM) data is read realtime-continuously from the
target’s trace pins and supplied to Ozone’s Trace Windows. This option
requires a J-Trace debug probe to be employed (see Streaming Trace
on page 197).

Instruction Trace (ETM) data is read from the target’s trace data
buffer and supplied to Ozone’s Trace Windows.

SWO “Printf-type” textual application (ITM) data is read via the SWO chan-
nel and supplied to Ozone’s Terminal Window on page 162.

Trace Pins

Trace Buffer

For detailed information on ETM and ITM trace and how to set up your hardware and soft-
ware accordingly, please consult the J-Link User Guide .

Note

The simultaneous use of multiple trace sources in Ozone is currently not supported.

Timestamps (Trace Pins, SWO)

Specifies if the target is to output cycle counters (instruction execution timestamps) mul-
tiplexed with the pin trace. The cycle counters are employed by various debug windows to
present users with information about the CPU time spend inside individual program entities.

CPU Frequency (Trace Pins)

Specifies the constant conversion factor to use when converting cycle counters to time
values and vice versa.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://www.segger.com/downloads/jlink/UM08001

85 CHAPTER 3 Dialogs

Trace Port Width (Trace Pins)

Specifies the number of trace pins comprising the target’s trace port (see Project.SetTra-
cePortWidth on page 348).

Maximum Instruction Count (Trace Pins)

The maximum number of instructions that are read from the selected trace source before
readout is stopped.

Trace Timing (Trace Pins)

Specifies the software delays to be applied to the individual trace port data lines. This essen-
tially performs a software phase correction of the trace port’s data signals (see Project.Set-
TraceTiming on page 348).

CPU frequency (SWO)
Specifies the core frequency of the target in Hz. (see Project.ConfigSWO on page 349).

SWO Frequency (SWO)

Specifies the signal frequency of the SWO trace interface in Hz. (see Project.ConfigSWQO
on page 349).

Data from stimulus ports (SWO)

Specifies the stimulus ports that are used for transferring SWO data. (see Edit.SysVar using
argument VAR_SWO PORTMASK).

3.11.14.1 Opening the Trace Settings Dialog

The Trace Settings Dialog can be opened from the Main Menu (Edit — Trace Settings) or
by executing command Tools.TraceSettings.

3.11.14.2 Applying Changes

Save To Project

By clicking the “Save To Project” button, the selected trace settings are written as Ozone
commands to the project file and thereby applied persistently.

Ok

By clicking the Ok button, the selected trace settings are applied to the current session only.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

86

CHAPTER 3 Dialogs

3.11.15 User Preference Dialog

The User Preference Dialog provides multiple user-specific options. In particular, fonts,
colors and switchable items such as line numbers and sidebars can be customized.

x|

= w0 General
: Application

- =) Call Stack Window

- “ig| Call Graph Window

- 5| Code Profile Window

Console Window

Data Sampling YWindow

Disassembly Window

Instruction Trace Windaow

Power Sampling YWindow

Source Viewer

;TE||:I|E Windows

- 22| Terminal Windowe

- =] Timeline Windaw
- & Appearance

Application
Disassembly Window

- D
LC | Source Viewer
|| Table Windows

General ->= Table Windows

Show text value for type (u)char yES ll
Show text value for type (u)short no LI
Show text value for type (u)int no ll
Show text value for type (u)char® =] LI
Show text value for type (u)short® no ll
Show text value for type (W)int® no LI
Globally hide filter bars no ll
Globally hide total value bars no LI
Symbol member count display limit 512 ll
Hide C++ dass member functions no LI
Resize column when item is expanded no ll
Resize column when item is collapsed no LI

Close

User preference dialog

3.11.15.1 Opening the User Preference Dialog

The User Preference Dialog can be opened from the Main Menu (Edit — Preferences) or by
executing command Tools.Preferences (see Tools.Preferences on page 307).

3.11.15.2 Dialog Components

Page Navigator

The Page Navigator on the left side of the User Preference Dialog displays the available
settings pages grouped into two categories: general and appearance. Each settings page
applies to a single or multiple debug information windows, as indicated by the page name.

Settings Pane

The Settings Pane on the right side of the User Preference Dialog displays the settings

associated with the selected page.

3.11.15.3 General Application Settings

This settings page lets users adjust general application settings.

Setting

Description

Open the most recent project on
startup

When set, the most recent project is opened when
the debugger is started. When unset, a welcome
screen is displayed when the debugger is started.

Show a popup dialog when
project settings are erroneous

When set, a popup dialog is displayed when the
project file contains errors or inconsistent settings.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

87

CHAPTER 3 Dialogs

Setting

Description

Show progress bar while running

When set, a moving progress bar is animated with-
in Ozone’s status bar area while the program is ex-
ecuting.

Show dialog option “Do not show
again”

When set, popup-dialogs contain a checkbox that
enables users to stop the dialog from popping up.

Reset all dialog options “do not
show again”

When set, the users choice for all dialog options “"Do
not show again” is reset when the preference dialog
is closed.

Show tooltips

Toggles the display of mouse-over tooltips.

Append type signatures to func-
tion names

When set, type signatures are appended to function
names.

Prepend class names to C++
member functions

When set, C++ member functions are prefixed with
the class name.

Allow automatic creation of out-
put directory paths

When set, directory paths are automatically created
as necessary for file output operations.

Disable target exception dialog

When set, a CPU fault does not cause the target ex-
ception dialog to pop up.

Block Separator

Separator character used to delimit blocks within
the display texts of large integer numbers.

3.11.15.4 Call Stack Window Settings

Setting

Description

Callstack layout

Selects if the current frame is displayed on top or at
the bottom of the call stack.

Callstack depth limit

Maximum number of frames that are displayed
within the Call Stack Window.

Show parameter names/val-
ues/types

When set, the display text of a call frame is aug-
mented with the names/values/types of the para-
meters of the affiliated function.

3.11.15.5 Call Graph Window Settings

Setting

Description

Group by root functions

When set, the call graph window contains an (ex-
pandable) entry for each root function of the pro-
gram. When unset, the top level contains an entry
for each program function.

3.11.15.6 Code Profile Window Settings

Ozone User Guide & Reference Manual (UM08025)

Setting

Description

Highlight source code lines

When set, source code text is syntax-highlighted.

Highlight assembly code

When set, assembly code is syntax-highlighted.

Show instruction encodings

When set, instruction encodings are syntax-high-
lighted.

Show source line numbers

When set, source line humbers are prefixed to
source code text lines.

Show breakpoints

When set, breakpoint indicators are displayed.

© 2013-2026 SEGGER Microcontroller GmbH

88

CHAPTER 3 Dialogs

3.11.15.7 Console Window Settings

Setting

Description

Show timestamps

When set, all messages logged to the Console Win-
dow are prefixed with a time stamp.

3.11.15.8 Data Sampling Window Settings

Setting

Description

Data limit

Data limit, in KB, of the data sampling window.
When the data limit is surpassed, the oldest data is
overwritten.

3.11.15.9 Disassembly Window Settings

Setting

Description

Show source

When set, the assembly code is augmented with
source code text to improve readability.

Show labels

When set, the assembly code is augmented with la-
bels to improve readability.

Show breakpoint bar

Toggles the breakpoint bar (see Breakpoint Bar on
page 54).

Show execution counters

Toggles instruction execution counters (see Code
Execution Counters on page 55).

Show instruction encodings

Toggles instruction encodings.

Show pseudo instructions

When set, pseudo instruction syntax is prefered
over normal syntax within disassembly.

Register name format

Selects the register name format.

Hide mapping symbol labels

Specifies if mapping symbol labels should be hidden
from disassembly.

3.11.15.10

Instruction Trace Window Settings

Setting

Description

Show instruction encodings

Toggles instruction encodings.

Timestamp Format

Selects the time stamp format (see Trace Time-
stamp Formats on page 2697%}.

Sync With Code

Specifies if the row selection is synchronized with
the code windows (see Backtrace Highlighting on
page 129).

3.11.15.11 Power Sampling Window Settings

Setting

Description

Maximum sample count

Maximum number of samples than can be
processed and displayed by the Power Sampling
Window.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

89

CHAPTER 3 Dialogs

3.11.15.12 Source Viewer Settings

Setting

Description

Show breakpoint bar

Toggles the breakpoint bar (see Breakpoint Bar on
page 54).

Show expansion indicators

Toggles expansion indicators.

Show execution counters

Toggles execution counters (see Code Execution
Counters on page 55).

Show instruction encodings

Toggles instruction encodings within inline assembly
code text lines.

Lock header bar

When set, the header bar is visible at all times.
When unset, the header bar is only visible when
hovered with the mouse.

Indent inline assembly code

When set, inline assembly code text lines are in-
dented in relation to the affiliated source statement.

Document editing restriction

Selects when editing of source code documents is
disabled.

Line number frequency

Selects the frequency of source code text lines that
display line numbers.

Tab Spacing

Number of white spaces drawn for each tabulator in
the source text.

3.11.15.13 Table Window Setti

ngs

Setting

Description

Show text value for...

By setting a data type’s option to yes, all symbols
of this data type display their value in the format
“<number> (<text representation>)" instead of
just “<number>".

Globally hide filter bars

When set, the display of table filter bars is glob-
ally disabled (see Filter and Total Value Bars on
page 59).

Globally hide total value bars

When set, the display of total value bars is glob-
ally disabled (see Filter and Total Value Bars on
page 59).

Symbol member count display
limit

Maximum number of members that are displayed
for complex-type symbols such as arrays.

String display limit

The maximum number of characters that are dis-
played for strings.

Hide C++ class member functions

Do not display C++ class member functions.

Resize column when item is ex-
panded

Adjust the column size when a table item is ex-
panded.

Resize column when item is col-
lapsed

Adjust the column size when a table item is col-
lapsed.

3.11.15.14 Terminal Window Settings

Setting

Description

Suppress control characters

When set, non-printable and control characters are
filtered from IO data prior to terminal output (see
User Preference Identifiers on page 273).

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

90

CHAPTER 3 Dialogs

Setting

Description

Clear on reset

When set, the window’s text area is cleared follow-
ing each program reset.

Data limit

Date limit, in KB, of the Terminal Window.

Zero-terminate input

When set, a string termination character (\0) is ap-
pended to terminal input before the input is sent to
the debuggee.

Echo input

When set, each terminal input is appended to the
terminal window’s text area.

Newline input termination format

Selects the type of line break to be appended to
terminal input before the input is send to the de-
buggee (see Newline Formats on page 269).

3.11.15.15 Timeline Window Settings

Setting

Description

Cursor labels

Selects the cursor labels to be displayed

Mouse wheel action

Selects the action to be performed when the mouse
wheel is scrolled (scroll time-axis, scroll Y-axis,
zoom time-axis, zoom Y-axis, none)

Time origin Selects the time origin (CPU halt, program start)
Selects the auto-scrolling behavior(do not auto
Auto scroll . -)
scroll, auto scroll while program is running)
Clear event Selects the debug event upon which the timeline is

cleared (see Clear Event).

3.11.15.16 Appearance Settings

On the appearance settings pages,
dow or window group can be adjust-

ed. Within the window group “Appli-
cation”, the default appearance set- Fants
tings for all windows and dialogs can

be specified. | M5 shel Dl 2, apt, Mormal .. |+ |
Fonts Colars
Lets users adjust individual fonts of the Console Test (Error) j -

window or window group.

Colors

Lets users adjust individual colors of

the window or window group.

3.11.15.17 Specifying User Preferences Programmatically

Each setting provided by the User Preference Dialog is affiliated with an user action. User
preference actions allow users to change the preference from a script function or at the
command prompt. The table below gives an overview of the available user preference ac-

tions.

User Preference Category

Affiliated User Action(s)

General Settings Edit.Preference (see Edit.Preference on page 308)

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

91 CHAPTER 3 Dialogs

User Preference Category Affiliated User Action(s)

Edit.Color (see Edit.Color on page 309) and Ed-

Appearance Settings it.Font (see Edit.Font on page 310)

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

92 CHAPTER 3 Dialogs

3.11.16 Quick Find Widget

The Quick Find Widget is a pop-up screen that facilitates locating program symbols and
text patterns.

Find Text Y1 4 Y@ Yo € =¥ || Find Function dm 4R 4 g € >
| ~pintib 204 |||| R 1of 14 |
Matches ha B3 >*. () am | %. SEGGER._RTT _ConfigDownBuffer (unsigned int, const char®, void®, unsig

SEGGER._RTT_ConfigUpBuffer{unsigned int, const char®, void*, unsignec

int SEGEER RTT printf(unsigned BufferIndex, const SEGGER_RTT_printf{unsigned int, const char®)

MW SEGGER _RTT_ReadNoLock(unsigned int, void=, unsigned int)

int LocalCnt; SEGGER._RTT_vprintf{unsigned int, const char™, struct _ va_list™)

int main{woid) { SEGGER_RTT_Write{unsigned int, const void*, unsigned int)

SEGGER._RTT_WriteMoLodk{unsigned int, const void®, unsigned int)

< > SEGGER._RTT_WriteSkipMoLod«{unsigned int, const void™®, unsigned int)
_PrintInt(struct SEGGER_RTT_PRINTF_DESC¥, int, unsigned int, unsigne

Current Match “storeChar(struct SEGGER_RTT_PRINTF_DESCS, char)

_WriteMoChedk(struct SEGGER._RTT_BUFFER_UP*, const char®, unsigne

_PrintUnsigned(struct SEGGER_RTT_PRINTF_DESC*, unsigned int, unsigi

_WriteBlocking{struct SEGGER._RTT_BUFFER_UP*, const char®, unsignec

static int on_time; _GetAvailWriteSpace(struct SEGGER._RTT_BUFFER_UP®)
int off_time;

static woid HFTask(woid]
static int increment;

on_time = 1;
increment = 1;
while (1) {

<

> <

Quick Find Widget in text mode (left) and symbol mode (right).
How to use the quick find widget

As letters are typed into the input box, the list of match suggestions updates and shrinks.
The user selects the desired match via the arrow keys and upon pressing return, the se-
lected match will be shown and highlighted within its containing debug window.

3.11.16.1 Search Modes

The search mode of the Quick Find Widget can be selected using keyboard shortcuts or
the toolbar at the top.

Mode Hotkey Initial Match List Content
Find Text Ctrl+F All text lines of the active document.
Find Function Ctrl+M All functions.
Find Global Data Ctri+] All global variables.
Find Source File Ctrl+K All source code files.

3.11.16.2 Text Search Options

When in text search mode, additional search options are provided via the toolbar below
the find text line:

Search Option Description
Match case The search is case sensitive.
Matching text must begin and end at word boundaries. This
Match whole word setting is mutual exclusive with using wild cards and regular

expressions.

The input text is interpreted as an expression containing
Use Unix Style Wildcards | wildcards. This setting is mutual exclusive with matching

whole words and using regular expressions.

The input text is interpreted as a regular expression. This
Use regular expression setting is mutual exclusive with matching whole words and
using wild cards.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

93 CHAPTER 3 Dialogs

Search Option Description

Include inline assembly | The search includes the active document’s inline assembly
code code lines.

Furthermore, text search mode provides two buttons to toggle the “"Matches” and “Current
Match” panes in the toolbar below the find text line.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

94 CHAPTER 3 Dialogs

3.11.17 Quick Watch Dialog

The Quick Watch Dialog enables users to observe the value of the expression under the
cursor (see Working With Expressions on page 205).

“} Quick Watch x|
Expression:
I SysTimerConfig ;I
Value:

Location

B SysTimerConfig 2001 FFC4 20| struct O
TimerFreg a 2001 FFC4 4 ulong RTOSInit_STM32F dxx.c
TickFreq 1000 2001 FFCE 4 uleng RTOSInit_STM32F4xx.c
IsUpCounter [2001 FFCC 1 uchar RTOSInit_STM32F 4. c
+ pfGetTimerCydes 0800 0BES 2001 FFDO 4 uint()* RTOSInit_STM32F4xx.c
+ pfGetTimerIntPending 0800 0BS5S 2001 FFD4 4 uint{i¥ RTOSInit_STM32F4xx.c

1 | i
Cloze |

Quick Watch Dialog showing a symbol expression.

How to use the Quick Watch Dialog

The Quick Watch Dialog can be brought up by pressing hotkey Shift+F9 while the text
cursor is over the expression/symbol to be evaluated. A recently evaluated expression can
be select from the drop-down box. The values of symbols and member symbols can be
edited by double-clicking on a table row or by pressing spacebar.

3.11.17.1 Context Menu

The context menu of the Quick Watch Dialog provides options to select the display mode
of all or individual items. In addition, the context menu of the table header row enables
to toggle individual table columns.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

Chapter 4

Debug Information Windows

This chapter provides individual descriptions of Ozone’s debug information windows, start-
ing with the Breakpoint Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

96

CHAPTER 4

Breakpoints/Tracepoints Window

4.1 Breakpoints/Tracepoints Window

Ozone’s Breakpoints/Tracepoints Window lists all breakpoints, data breakpoints, tracepoints
and vector catches that have been set by the user during the current debug session.

Break & Tracepoints |

7 Code 05_Start EDBlink.c: 113 Task HP Task, Type=Flash, a = _FuncAla, 0);
& Data 05_Runining Write, Automatic
b Trace Start O5_StartLEDEBlink.c: 126
a Trace Stop OS5 _StartlEDEBlink.c: 127
P | Vector Catch Description

& Heset Viector catch on core reset

BusFault Viector catch on bus error

<

KOOOROO®
]

HardFault Viector catch on hard fault

MemManage Viector catch on memory management faults
|UsageFault_Coprocessor Viector catch on fault access to coprocessor that is not present
IUsageFault_CheckingError Viector catch on usage fault enabled checking errors
|IsageFault_StateError Viector catch on usage fault state errors

HandlerFault Viector catch on interrupt/exception service errors

Breakpoints window showing the state of breakpoints (top) and vector catches (bottom).

For reasons of simplicity, the terms breakpoint and tracepoint are used interchangeably

in this section.

4.1.1 Breakpoint Properties

The Breakpoint Window displays the following information about breakpoints:

Column Description
State Indicates if the breakpoint is enabled or disabled.
Type One of CODE, DATA, TRACE_START and TRACE_STOP.
Location Source code or instruction address location of the breakpoint.

Extras

Lists all advanced breakpoint properties that are set to non-default
values. Advanced breakpoint properties are summarized in Advanced
Breakpoint Properties on page 192 and Data Breakpoint Attributes
on page 194. Tracepoints do not carry advanced properties.

4.1.2 Breakpoint Dialog

The breakpoint dialog enables users to place break-
points on:

e Machine instructions

e Source lines

e Functions and other code symbols such as
assembly code labels

Source Line Input

Source code lines are specified in a predefined format
(see Source Code Location Descriptor on page 264).

Opening the Breakpoint Dialog

The Breakpoint Dialog can be accessed via the con-

Ozone User Guide & Reference Manual (UM08025)

+ Set/Clear Breakpoint x|

—Location:

ol

Address: e,0, Oxa0000000
Source Location: e.g. main.cpp:20
Symbol Mame: £.3. main

Set Cancel

© 2013-2026 SEGGER Microcontroller GmbH

97

4.1.

4.1.

4.1.

CHAPTER 4

text menu of the Breakpoint Window.

3 Derived Breakpoints

Breakpoints/Tracepoints Window

Source breakpoints can be expanded in order to reveal their derived instruction breakpoints.

4 Vector Catches

The list of supported vector catches and their states are shown within a
separate table of the Breakpoint Window (see title figure). The context

menu of this table hosts the following actions:

Set/Clear

Sets or clears the selected vector catch.

Clear All

Clears all vector catches.

Vector Catches

Shows or hides the vector catch table.

5 Context Menu

The Breakpoint Window’s context menu hosts
the following actions (see Breakpoint Actions
on page 290):

Clear

Clears the selected breakpoint.

Enable / Disable
Enables or disables the selected breakpoint.
Edit

Edits advanced properties of the selected
Breakpoint such as its trigger condition (see
Breakpoint Properties Dialog on page 63).

Show Source

Displays the source code line associated with
the selected breakpoint. This action can also be
triggered by double-clicking a table row.

Show Disassembly

Displays the assembly code line associated with
the selected breakpoint.

Set Breakpoint...

¢ ®c oW oo @

[l

Clear
Disable
Edit...

Show Source

Show Disassembly

Set Breakpoint. ..

Set Data Breakpoint. ..

Set Tracepoint...
Enable all
Disable all

Clear all

Filter Bar
Viector Catches

Export...

Opens the Breakpoint Dialog (see Breakpoint Dialog on page 96).

Set Data Breakpoint...

@ Set
¥ Clear all
v Vector Catches

Fa
Ctrl+9
F&

Ctrl+U
Ctrl+D

Ctrl+alt+B8
Ctrl+alt+D
Ctrl+alt+E

Ctrl+5hift+79
Alt+Del

Opens the Data Breakpoint Dialog (see Data Breakpoint Dialog on page 67).

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

98

CHAPTER 4 Breakpoints/Tracepoints Window

Set Tracepoint...
Opens the Tracepoint Dialog.

Enable All

Enables all breakpoints. The vector catches remain untouched.

Disable All

Disables all breakpoints. The vector catches remain untouched.

Clear All

Clears all breakpoints.

Filter Bar

Shows or hides the filter bar.

Vector Catches

Shows or hides the vector catch table.

Export

Opens a file dialog that enables users to export the table content to a CSV file. This action
can also be executed from the project script using command Window.Export.

4.1.6 Editing Breakpoints and Vector Catches Programmati-
cally

Ozone provides multiple user actions that allow users to edit breakpoints from script code
or from the command prompt (see Breakpoint Actions on page 290 and Trace Actions on
page 297).

User action Break.SetVectorCatch (see Break.SetVectorCatch on page 376) is provided to
set and clear vector catches within script functions or plugins.

4.1.7 Table Window

The Breakpoint Window shares multiple features with other table-based debug information
windows (see Table Windows on page 58).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

99

CHAPTER 4 Call Graph Window

4.2 Call Graph Window

Ozone'’s Call Graph Window informs about function call paths and stack usages.

ﬂ
Name Stack Total | Stack Local | Code Total |Code Local| Depth | called From | call site PC i’
-l LCD_FillPalyLine 504 484 590 5490 4
LCD_SetTextColor & a 26 25 0 stm324xg_ev: 0800 B4RAE
=l LCD_DrawLine 3z 24 126 126 2 stm324wg_evi 0800 Be32
=l LCD_SetCursor =3 2 23 28 1 stm324wg_ewv: 0800 B20OC
LCD_WriteRe a 0 10 10 0 stm324wg_eve 0200 AF3C
LCD_WriteRAM a a 12 12 0 stm324wg_eve OB00 B212
LCD_WriteR.AM a 08 8 0 stm329xg_eve 0800 B2ZE
+ PutPixel 40 g 40 40 3 stm324xg_ev: 0800 Be44
=l prvTimerTask Z98+ 58 2216+ 416 3 + FP
vTaskSuspendAll o} a 22 22 0 timers.c:542 0800 1008
=l prvSampleTimeMoy 240+ 40 1800+ 134 8 + FP timers.c:549, ' 0800 100E
wTaskGetTickCo Ju} o 12 12 0 tmers.c:628 0800 0FZ24
uxListRemaove a 0 42 42 0 timers,c:632 08200 OF4E
<fp-call = H/R H/2 0 0 0 timers.c:632 0800 0F5¢€
vListInsert =] 8 54 54 0 timers.c:632 0800 DFEELI

4.2.1 Overview

Each table row of the Call Graph Window provides information about a single function call.
The top-level rows of the call graph are populated with the program’s entry point functions.
Individual functions can be expanded in order to reveal their callees.

4.2.2 Setup

In order to obtain correct output when debugging applications that include custom instruc-
tions, a disassembly support plugin must have been loaded (see Project.SetDisassembly-
Plugin on page 343).

4.2.3 Table Columns

Name

Name of the function.

Stack Total

The maximum amount of stack space used by any call path that originates at the function,
including the function’s local stack usage.

Stack Local

The amount of stack space used exclusively by the function.

Code Total

The maximum code size of any call path that originates at the function, including the func-
tion’s local code size.

Code Local

The function’s code size, including code-inline data pools if present.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

100 CHAPTER 4 Call Graph Window

Depth

The maximum length of any non-recursive call path that originates at the function.

Called From

Source code location of the function call.

Call Site PC

Instruction memory location of the function call.

Note

Instruction-level information may not be accessible to Ozone before debug session
startup completion (see Startup Completion Point on page 188). Ozone will display
a warning sign next to table values which may be unavailable due to this reason.

4.2.4 Uncertain Values

A plus (+) sign that follows a table value indicates that the value is not exact but rather a
lower bound estimate of the true value. A trailing "R” or “FP” further indicates the reason
for the uncertainty. R stands for recursion and FP stands for function pointer call.

4.2.5 Recursive Call Paths

In order to obtain meaningful values for recursive call paths, the Call Graph Window only
evaluates these paths up to the point of recursion. This means that the total stack usage
and depth values obtained for recursive call paths are only lower bound estimates of the
true values (see Uncertain Values on page 100).

4.2.6 Function Pointer Calls

The Call Graph Window is able to detect function calls via function pointers. Currently, these
calls are restricted to be leaf nodes of the call graph. A function pointer call is indicated
by the display name “<fp-call>".

4.2.7 Table Window

The Call Graph Window shares multiple features with other table-based debug information
windows provided by Ozone (see Table Windows on page 58).

4.2.8 Context Menu

Set/Clear BreakDOint @ Set Breakpoint =]
Sets or clears a breakpoint on the se- B o ~
lected function. p| Show Call Site Cirl+L

) | Show Implementation Ctri+1
Show Call Site

Show path with max stack usage Ctri+P

Displays the call location of the select-
ed function within the Source Viewer s group By Root Functions Ctrl+R
(see Source Viewer on page 156). This
action can also be triggered by dou- % Group Callees Ctrl+G

ble-clicking a table row.
Filter Bar

Show Implementation Total Value Bar

Displays the implementation of the se-

1L

Export...

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

101

CHAPTER 4 Call Graph Window

lected function within the Source Viewer (see Source Viewer on page 156).

Show path with max stack usage

Expands all table rows on the call path with the highest stack usage.

Expand All / Collapse All

Expands or collapses all top-level entry point functions.

Group By Root Functions

Indicates if the top-level shows root functions only, i.e. functions that are not called by any
other functions. If unchecked, the top level shows all program functions.

Group Callees

Displays all calls made to the same function as a single table row.

Filter Bar / Total Value Bar

Toggles the named table header bar.

Export

Opens a file dialog that enables users to export the table content to a CSV file. This action
can also be executed from the project script using command Window.Export.

4.2.9 Call Graph Window Preferences

Section Call Graph Window Settings on page 87 lists all user preference settings pertaining
to the Call Graph Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

102 CHAPTER 4 Call Stack Window

4.3 Call Stack Window

Ozone’s Call Stack Window displays the function call sequence that led to the current pro-
gram execution point.

Call stack ﬂ

Function Stack Frame Source PC Return Address

=¢ _FuncC (intc=1) 1000 FEDO main.c:a1:10 0800 0736 El4: 0200 074B

_FuncB (intb=1) 1& @ 1000 FEDS main.c; 72: 10 0200 0748 [1000 FEE4]: 0820
_FuncA (inta=1) 1& @ 1000 FEES main.c:33: 10 0200 07&0 [1000 FEF4]: 080
svC_Handler {void) & @ 1000 FEFS main.c;132;7 0800 OTBE [1000 FEFC] : FFE
<5V Call Exception = 32 @ 1000 FFAS FFFF FFFD [1000 FFCO]+2: O
_CallSupervisorInd (int Level=2) & @ 1000 FFCE main.c:958:1 0800 077E [1000 FFBC] - 0RO
_CallSupervisorIni (int Level=1) 1§ @ 1000 FFDO main.c: 108:3 0800 0790 [1000 FFDC] - 0RO
_CallSupervisorIn (int Level=0) 1§ @ 1000 FFED main.c: 120:3 0200 OTLE [1000 FFEC] - 080
main {void) 1 @ 1000 FFEQ main.c: 157:7 0800 OTFC [1000 FFEC] - 020
start() 0 @ 1001 Q000 thumb_cri0.5:272 0800 0ZBE <no symbols®

Top of stack - no unwinding symbols at 0x0800025E

1 | i

4.3.1 Overview

The topmost row of the Call Stack Window informs about the current program execution
point. Each of the other rows display information about a function call that led to the current
program execution point. In the illustration above, the second row informs about the call
site where function _FuncB called function _FuncC.

The preference “Callstack Layout” for the Call Stack Window allows to reverse the order of
rows such that the current program execution point is displayed at the bottom, not the top.
Changing that preference is also possible via the context menu of the call stack window.

4.3.2 Table Columns

The Call Stack Window provides the following information about function call sites:

Table Column Description
Function The calling function’s name.
Stack Info Size and position of the stack frame of the calling function.
Source Source code location of the function call.
PC Instruction address of the function call.

PC that will be attained when the program returns from the function
Return Address | call. This field is displayed as “location:value”, where “location” is the
target data location of the return address.

Note

A call site that the debugger cannot affiliate with a source code line is displayed as
the address of the machine instruction that caused the branch to the called function.

4.3.3 Call Site Parameter Values

The Call Stack Window may display the values and types of all local function parameters.
This settings can be toggled via the window’s context menu and via the preferences for
the Call Stack Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

103 CHAPTER 4 Call Stack Window

4.3.4 Instruction Based Call Stack Unwinding

The debug information found in the ELF file provides so called unwinding information which
describes where to find and how to interpret the information on the stack for finding the
sequence of function calls that led to the currently executing code. This debug information
also allows reconstruction of some of the register values that were valid inside a function.
The format of such unwinding information is documented in the DWARF standard.

Ozone uses that unwinding information for obtaining the sequence of function calls as well
as the values of parameters passed in each call.

In some ELF files the unwinding information is incomplete or missing. This may be caused
by having configured the build tool chain incorrectly. There are also build tool chains which
are incapable of creating the unwinding information according to the DWARF standard.

In case the unwinding information is missing in the ELF file, Ozone offers deriving the
unwinding information from an analysis of the instructions rather than from the ELF file.
This can be enabled via the system variable "Unwinding information source”.

The unwinding information in the ELF file normally contains information only for high-level
language code, not for assembly language. Therefore the call stack displayed in the call
stack window normally ends with the firsts function for which unwinding information is
available. For applications without an RTOS this may be the mai n function, for applications
incorporating an RTOS this is often a function inside the RTOS code.

Instruction analysis, however, is oblivious of an instruction being part of high-level language
code or assembly language code. Thus the analysis does not necessarily stop at mai n and
may stretch into the startup or RTOS code.

Function Stack Frame Source PC Return Address Stack Used
= Calllvl7 (woid) O @ 2001 FFEBO main.c:17:1 0200 0A€E R14: 0800 aFCC 20
CallLvle (\,.'Did;'l 8 @ 2001 FFEO main.c:20:3 Q0800 0OFCE [2001 FFE4]: 0800 OFD4 20
CallLvls (\u'ljid:l 2 @ 2001 FFEZ main.c:24:3 0200 OFD0O [2001 FFBC] : 0200 OFDC 72
CallLvlg |:\u'l:|ilj:| 2 @ 2001 FFCO main.c:28:3 OB00 0FD2 [2001 FFC4]: 0200 OFE4 &4
CallLvl3 (void) 2 @ 2001 FFCE main.c:32:3 0200 OFED [2001 FFCC] = 0800 OFEC 5€
CallLvl2 (\,.'Did;'l 8 @ 2001 FFDO main.c:35:3 0800 OFES [2001 FFD4]: 0200 OFF4 45
CallLvli (\u'ljid:l 2 @ 2001 FFDE main.c:40:3 0200 OFFO [2001 FFDC] : 0200 0ESC 40
main ['u'l:lilj:] 32 @ 2001 FFED main.c:477: 3 0200 0ES2 [2001 FFFC] : 0800 00CH 32
_start) 0 @ 2002 0000 SEGGER_THUMB_Startup.s: 137 0800 00CE “no symbols>]
Top of stadk - invalid stack pointer location: M/A

Call stack window operating on instruction analysis

For some branch instructions the destination address cannot be determined. If a function
call takes place in a code sequence that is reached only by such a branch instruction, the
call stack ends prematurely in that very place. Once the code execution leaves that code
sequence, the call stack is displayed correctly.

Note

As of now, instruction based call stack unwinding is available only for 16/32-bit ARM
architectures, it is not yet supported for RISC-V.

4.3.5 Unwinding Stop Reasons

The reason why call stack unwinding stopped is displayed at the bottom of the stack. Nor-
mally, the reason “Top of stack - no unwinding symbols at <Address>" indicates a complete
evaluation of the call stack. In case the system variable “Unwinding information source” is
set to “Instruction Analysis” a regular call stack evaluation ends with “Invalid return address
location: N/A”. The message “depth limit reached” is displayed if the number of call frames
displayed in the window exceeds the preference “Callstack Depth Limit” for the Call Stack
Window. In that case you may wish to increase the value for that preference.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

104 CHAPTER 4 Call Stack Window

Any other message indicates missing or erroneous unwinding information in the ELF file.

4.3.6 Active Call Frame

By selecting a table row within the Call Stack Window, the affiliated call frame becomes
the active program execution point context of the debugger. At this point, the Register and
Local Data Windows display content no longer for the current PC, but for the active call
frame. The active frame can be distinguished from the other frames in the call stack by the
preceding arrow dsiplayed left of the function name.

4.3.7 Context Menu

The Call Stack Windows’s context menu hosts ac- _
tions that navigate to a call site’s source code or as- ~ ® Set Breakpoint F9
sembly code line (see Show Actions on page 295).

| Show Source Ctri+U
Set/Clear Breakpoint |o] Show Disassembly Ctrl+D
Sets or clears a breakpoint on the function of the +1 Show Stack Frame Cirl+T

selected frame.
Parameter Names
Show Source

: . I Parameter Values
Displays the selected call site within the Source

Viewer (see Source Viewer on page 156). This ac- Parameter Types
tion can also be triggered by double-clicking a table v

Current Frame on Top
Fow.

. Filter Bar
Show Disassembly

. . I . Total Value Bar
Displays the selected call site within the Dis-

assembly Window (see Disassembly Window on
page 117).

[l

Export...

Show Stack Frame

Displays the base of the selected call frame with-
in the Memory Window (see Memory Window on page 135).

Parameter Names / Values / Types

Toggles the display of function parameter names / values / types.

Current Frame On Top

Selects the ordering of the frames on the call stack.

Filter Bar / Total Value Bar

Toggles the named table header bar.

Export

Opens a file dialog that enables users to export the table content to a CSV file. This action
can also be executed from the project script using command Window.Export.

4.3.8 Settings

The call stack window evaluates the following system variables settings:

System Variable Description
VAR_CALLSTACK_UNW ND_I N- Unwinding information is obtained from the ELF file
FO_SRC (“"DWARF information”), by instruction analysis (“In-

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

105 CHAPTER 4 Call Stack Window

System Variable Description

struction Analysis”), or the source is automatically
chosen (“Automatic”).

Section Call Stack Window Settings on page 87 lists all user preference settings pertaining
to the call stack window.

4.3.9 Table Window

The Call Stack Window shares multiple features with other table-based debug information
windows (see Table Windows on page 58).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

106 CHAPTER 4 Code Profile Window

4.4 Code Profile Window

Ozone’s Code Profile Window displays the program’s execution profile selectively at a file,
function, source line or instruction level.

441 Setup

Section Setting Up Trace on page 210 explains how to configure Ozone and the hardware
setup for trace, thereby enabling the Code Profile Window.

Note

Instruction-level information may not be accessible to Ozone before debug session
startup completion (see Startup Completion Point on page 188). Ozone will display
a warning sign next to table values which may be unavailable due to this reason.

4.4.2 Overview

Each table row displays the execution profile of a single program entity (PE). A program
entity is either a source file, a function, an executable source line or a machine instruction.
Table rows can be expanded to show their contained PEs. Table values continuously update
while the program is running.

4.4.3 Code Coverage

Code Profile

Function Source Coverage % | Inst. Coverage

b e

m system_stm32f4o.c 74_5% (41/55)
=l |1 O5_TraceDemo.c 88.7T% (14/21) T7-3% (75/587)
+ f main() 66.7% (/9] 77.0% (47/61)
+ f LPTask() 6E.T% (4/8) 77.8% (14/18)
=l f HPTask() BE.T% (4/8) T7.8% (14/18)
=] |c| 42: OS_TASK_Delay(50); 100.0% ({1/1) 100.0% (Z/2)
0800 0EFE BL OS_TASE Delay ; 0 N/A 100.0% (171}
0800 O8FC MOVS RO, #0x32 H/R 100.0% (171} —
 C] 450 _Cntl++ 100_-0% (1/1) 100.0% (5/5)
+ |C| 44 BSP_TogagleLED{D); 100.0% (1/1) 100.0% (2/3)
+ || 42: static void HPTask{void) { 100.0% ({(171) 100.0% (1/1)
+ |c| 47: _Cntl=0; 0.0% (071) 0.0% (053)
+ |c| 45 if (_Cntl == 100) { 0.0% {(071) T5.0% (3/4)
+ |3t core_cméh 64.3% (3/14) T5.0% (42/58) Ll

Code profile window displaying code coverage statistics.

Table columns code coverage and instruction coverage provide information about the pro-
gram’s code coverage.

Instruction Coverage

Percentage of machine instructions of the PE that have been covered since code profile data
was reset. A machine instruction is considered covered if it has been “fully” executed. In
the case of conditional instructions, “full execution” means that the condition was both met
and not met. In the title figure, 77.0% or 47 of 61 machine instructions within function
main were covered.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

107 CHAPTER 4 Code Profile Window

Source Coverage

Percentage of executable source code lines of the PE that have been covered since code
profile data was reset. An executable source code line is considered covered if all of its
machine instructions were fully executed. In the case of conditional instructions, “full exe-
cution” means that the condition was both met and not met. In the title figure, 66.7% or
6 of 9 executable source codes lines within function main were covered.

44.3.1 Color Bars

Code Profile

Function | Source Coverage | Inst. Coverage
f main() 50.0% (2/4) 72.7% {8/11)

D 06

Table columns code coverage and instruction coverage display color bars to help identify
PE’s whose code can potentially be optimized.

A color bar is split vertically into a green (1), orange (2) and a white (3) segment. Each
segment visualizes a percentage value. The percentage values of all 3 segments add up

to 100.

Segment

Source Coverage

Instruction Coverage

Prognosis

Percentage of source
lines that are fully cov-
ered. Identical to the
value displayed within
the table cell.

Percentage of instruc-
tions that are fully cov-
ered. Identical to the
value displayed within
the table cell.

Little to no potential for
optimization

Percentage of source
lines that are partially
covered

Percentage of instruc-
tions that are partially
covered

Good potential for opti-
mization

Percentage of source
lines that are not cov-
ered

Percentage of instruc-
tions that are not cov-
ered

Potential for removal

A source line or instruction is considered:

o fully covered, if its execution profile color code is solid-green
e partially covered, if its execution profile color code is orange or split orange-green
e not covered, if its execution profile color code is gray

Refer to Execution Profile Color-Codes on page 56.

4.4.4 Program Load
Table columns Run Count, Fetch Count and Load inform about the CPU usage of PE's.

Run Count

Number of times the PE was executed since code profile data was reset.

Load

Number of instruction fetches that occurred within the PE’s address range divided by the
total number of instruction fetches that occurred since code profile data was reset.

Fetch Count

Number of instruction fetches that occurred within the address range of the PE.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

108

CHAPTER 4 Code Profile Window

Code Profile

Function Run Count

E 42; static void HFTask{void) { 3 : 0.00%

+ |C] 47 _Cntl=0; a 0 0.00%

|c| 45 if (_Cntl == 100) { 48 154 0.00%

+ || core_cmdh 3 g4 0.00%

= %] RTOSInit_STM32F4ux.c 190438 266 150 625 354 99_70%

- f os_1de) 190 435 9586 190 435 988 99_g0%

=l |c| 231: woid OS_Idle{void) { f/Idle loop 130 435 386 130 435 386 899 _&0%

0800 4E92 B OS5 Idle ; O0x080 150 435 986 150 435 988 95.80%

+ f Os5_InitHwW(1 76 0.00%

+ f SysTick_Handler() 2279 189 292 0.10%

+ Ff 05_COM_Sendi{unsigned char) a a 0.00%
+ f _05_GetHwWTimer_IntPending() a i} 0.00% ll

Code profile window displaying PE load statistics.

4.4.5 Execution Counters

Ozone also shows the program’s execution profile inlined with the code. For more informa-
tion, refer to Code Profile Information on page 55.

4.4.6 Filters

Individual PE’s can be filtered from the code profile statistic. In particular, there are two
different type of filters that can be applied to PE’s, as described below.

Profile Filter

When a profile filter is set on a PE, its CPU load is filtered from the code profile statistic.
After filtering, the load column displays the distribution of the remaining CPU load across
all none-filtered PE's.

Coverage Filter

When a coverage filter is set on a PE, its code coverage value is filtered from the code profile
statistic. After filtering, the code coverage columns displays coverage values computed as
if the filtered PE does not exist.

4.4.6.1 Adding and Removing Profile Filters

A profile filter can be set and removed via commands Profile.Exclude and Profile.Include
(see Code Profile Actions on page 290). In Addition, the load column of the Code Profile
Window provides a check box for each item that enables users to quickly set or unset the
filter on the item.

4.4.6.2 Adding and Removing Coverage Filters

A coverage filter can be set and removed via commands Coverage.Exclude and Cover-
age.Include (see Code Profile Actions on page 290). In Addition, the code coverage
columns of the Code Profile Window provide a check box for each item that enables users
to quickly set or unset the filter on the item.

4.4.6.3 Filtering Code Alignment Instructions

Compilers may place alignment instructions into program code that have no particular op-
eration and do never get executed. These so-called NOP-instructions can be filtered from
the code coverage statistic via context menu entry “Exclude All Trailing NOPs” or via com-
mand Coverage.ExcludeNOPs (see Coverage.ExcludeNOPs on page 356).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

CHAPTER 4

4.4.6.4 Observing the List of Active Filters

Code Profile Window

The Code Profile Filter Dialog can be accessed from the context menu and displays all filters
that were set, alongside the affiliated user action commands that were executed.

4.4.7 Context Menu

The context menu of the Code Pro-
file Window provides the following
actions:

Set/Clear Breakpoint

Sets or clears a breakpoint on the
selected function, source line or in-
struction.

Show Source

Displays the selected item with-
in the Source Viewer (see Source
Viewer on page 156).

Show Disassembly

Displays the selected item within
the Disassembly Window (see Dis-
assembly Window on page 117).

Include/Exclude from

Filters or unfilters the selected
item from the load, code coverage
or both statistics.

Exclude All Trailing NOPs

Excludes all “no operation” (code
alignment) instructions, which trail
the function’s code body, from the
code coverage statistic.

Exclude (Dialog)

Moves multiple items to the fil-

k4

Set Breakpoint

Show Source

Show Disassembly

Exclude from Load & Code Coverage
Excluded From Code Coverage
Excluded From Load

Exclude All Trailing NOPs
Exclude...

Include...

Remove All Filters

Show Filters...
Eeset Data

Execution Counters in Source
Execution Counters in Disassembly
Group By Files

Sort Respects Filters

Parent-Relative Load

Eilter Bar

Total Value Bar

Export...

tered set (see Profile.Exclude on page 355).

Include (Dialog)

Removes multiple items from the filtered set (see Profile.Include on page 355).

Remove All Filters

Removes all filters.

Show Filters

Opens a dialog that displays an overview of the currently active filters.

Reset Execution Counters

Resets all execution counters (see Code Execution Counters on page 55).

Ozone User Guide & Reference Manual (UM08025)

Fo

Ctrl+U
Ctrl+D

Del

Alt+Del

© 2013-2026 SEGGER Microcontroller GmbH

110

CHAPTER 4 Code Profile Window

Reset Data

Resets the session’s trace and sampling data. This action can also be executed from the
project script using command Timeline.Reset (see Timeline.Reset on page 363).

Execution Counters in Source

Displays execution counters within the Source Viewer (see Source Viewer on page 156).

Execution Counters in Disassembly

Displays execution counters within the Disassembly Window (see Disassembly Window on
page 117).

Group by Files

Groups all functions into expandable source file nodes.

Sort Respects Filters

When this option is checked, filtered items are moved to the bottom of the table.

Parent Relative Load

When this option is checked, the CPU load of a table item is calculated as the total number of
instructions executed within the item divided by the total number of instructions executed
within the parent item. Otherwise, the total number of instructions executed is used as
the divisor.

Filter Bar / Total Value Bar

Toggles the named table header bar.

Export

Opens a file dialog that enables users to export the table content to a CSV file. This action
can also be executed from the project script using command Window.Export.

4.4.8 User Preference Settings

The User Preference Dialog allows users to specify appearance-related settings of the Code
Profile Window. The available settings are listed in section Code Profile Window Settings
on page 87.

4.4.9 Selective Tracing

Ozone can instruct the target to constrain trace data output to individual address ranges
(see Tracepoints on page 212). When selective tracing is active, it acts as a hardware
prefilter of code profile data.

4.4.10 Table Window

The Code Profile Window shares multiple features with other table-based debug information
windows (see Table Windows on page 58).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

111 CHAPTER 4 Console Window

4.5 Console Window

Ozone’s Console Window displays application- and user-induced messages.

=
Debug. Starti) : |
EeforeTargetConnect.
Targetlonnect.

J —

Exec.Connect() :
J-Link: connected to dewvice
LfterTargetConnect.

K

4.5.1 Command Prompt

The Console Window displays a command prompt below its text area that enables users to
execute any user action that has a command (see User Actions on page 43). It is possible
to control the debugger from the command prompt alone.

4.5.2 Message Types
The type of a console message depends on its origin. There are three different message

sources and hence there are three different message types. The message types are de-
scribed below.

45.2.1 Command Feedback Messages

When a user action is executed — be it via the Console Window’s command prompt or any of
the other ways described in Executing User Actions on page 43 — the action’s command text
is added to the Console Window. This process is termed command feedback. For actions
that query a value, the returned value is displayed in a trailing comment.

Target. Get Reg("PC"); // returns 0x8000284

4.5.2.2 Error Messages

When an unexpected condition occurs and depending on the severity of the condition, an
error or warning message is logged to the Console Window. Most error and warning mes-
sages are accompanied by a message code. The message code is an index into table Errors
and Warnings on page 283, which provides additional information about the exception.

Tar get . Get Reg(" ProgranmCounter"): unknown regi ster "ProgranmCounter".

45.2.3 J-Link/J-Trace Messages

Control and status messages emitted by the debug probe API are a distinct message type.

J-Li nk: Devi ce STM32F13ZE sel ect ed.

45.2.4 Script Messages
Messages emitted from script functions are a distinct message type.
Executing Script Function "BeforeTarget Connect".
The commands Util.Log (see Util.Log on page 321) and TargetInterface.message (see Tar-

getinterface.message on page 388) can be employed within project scripts and JavaScript
plugins, respectively, to log a message to the Console Window. Command Util.Error (see

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

112 CHAPTER 4 Console Window

Util.Error on page 321) is provided to display an error message box and stop the debug
session.

4.5.3 Message Colors

Messages printed to the Console Window are colored according to their type.

The message colors can be adjusted via command Edit.Color (see Edit.Color on page 309)
or via the User Preference Dialog (see User Preference Dialog on page 86). The default
coloring scheme is depicted above.

454 Context Menu

The context menu of the Console Window provides the fol-

lowing actions: Y Copy Bk
Select Al Ctrl+a

Copy
¥ Clear Alt+Del

Copies the selected text to the clipboard.

/4 LstCommands

Select All
Selects all text lines. Timestamps
Clear ¥ Export...

Clears the Console Window.

List Commands

Prints the command help.

Timestamps

Toggles the display of message timestamps.

Export

Opens a file dialog that enables users to export the content of the console window to a CSV
file. This action can also be executed from the project script using command Window.Export.

455 Command Help

When command Help.Commands is executed, a quick facts table on all user actions in-
cluding their commands, hotkeys, and purposes is printed to the Console Window (see
Help.Commands on page 339). The command help can be triggered from the Console
Window’s context menu or from the main menu (Help — Commands).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

113 CHAPTER 4 Console Window

4

Help. Commands(); ﬂ

Command Arguments Description

Brezak.Clear Rddress Clears a breakpoint

Break.Clearfll Clears all breakpoints
Break.ClearRllimData Clears all data breakpoints
Break.ClearOnData Symbol/2ddress Clears a data breakpoint
Break.ClearfnSrc Srcloc Clears a breakpoint on a source 1i
Break.ClearOnSymbol Symbol Clears a data breakpoint on a symb
Break.Disakle Lddress Disables a breakpoint
Break.DisablelinData Symbol /Rddress Disables a data breakpoint
Break.DisaklelnSrc Srcloc Disabkles a breakpoint on a source
Break.DisabklelnSymbol Symbol Disables a data breakpoint on a sy
Break.Edit Darameters Edits a breakpoint
Break.EditCnData Parameters Edits a data breakpoint

Break . EditOnSymbol Barameters Edits a data breakpoint on a symbn'

Rreak Fnahle Zddre=s Femlnd nm = dnees s densd o
R [
IP

Command help displayed within the Console Window

45.6 Console Window Preferences

Section Console Window Settings on page 88 lists all user preference settings pertaining
to the Console Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

114 CHAPTER 4 Data Sampling Window

4.6 Data Sampling Window

Ozone’s Data Sampling Window employs SEGGER’s High-Speed Sampling (HSS) API to
trace the values of user-defined expressions at time resolutions of down to 100 us (see
Working With Expressions on page 205 and J-Link User Guide).

4
[setup -\J,n'(Samples ﬁ'n,l

Index |T|me | MumLEDs I Cnt % 5
0.135 000 Z
0.13& 000
0.137 000
a

L

134

L

.138 000
0.13% 000
0.140 000
0.141 000
0.142 000
0.143 000
0.144 000
0.145 000

W w W w W W Wi W W W W

B3 R R R R R

[A R TR || P =

L

4.6.1 Hardware Requirements

The Data Sampling Window requires the target to support background memory access
(BMA).

4.6.2 Sampling Frequency

The sampling request of all expressions that are added to the Data Sampling Window is sent
to the debug probe at the same time. This common sampling frequency can be adjusted via
the context menu or via command Edit.SysVar using argument VAR_HSS_SPEED. A sampling
frequency of 0 disables data sampling.

The sampling frequency can be assigned persistently to the project by placing its command
into project script function OnPr oj ect Load.

The sampling of expressions starts automatically each time the program is resumed and
stops automatically each time the program halts.

4.6.3 DataLimit

User preference PREF_DATA SAMPLI NG DATA LI M T sets the data limit of the data sampling
window. The default data limit is 16MB. When the data limit is reached, data acquisition
will continue but the oldest data will be overwritten.

4.6.4 Window Layout

The Data Sampling Window provides two content panes — or views — which can be switched
by selecting the corresponding tab within the tab bar.

4.6.5 Setup View

The Setup View enables users to assemble the list of expressions whose values are to be
traced while the program is running. An expression can be added to the list in any of the
following ways:

e via context menu entry Add Expression.

e via command Window.Add (see Window.Add on page 316).

e via the last table row that acts as an input field.

e by dragging a symbol from a symbol window or the Source Viewer onto the Setup View.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://www.segger.com/downloads/jlink/UM08001

115

CHAPTER 4 Data Sampling Window

and removed from the list via:

e context menu entry Remove.
e command Window.Remove (see Window.Remove on page 317).

A traced expression must satisfy the following constraints:

e the expression must evaluate to a numeric value of size less or equal to 8 bytes.
e all symbol operands of the expression must be either static variables or constants.

Data Sampling ﬂ

I,-'rSE1J.||:| ﬁ'n,f Samples

Expression < | Type Value Min Max Average # Changes | Min. Change Max. Change

MumLEDs wvolatil O [a] 3 1.5563 23 -1 1
L3

Setup view of the Data Sampling Window.

The setup view'’s toolbar provides quick access to the sample frequency. The toolbar can
be shown and hidden via the context menu entry “Toolbar”. If this entry is checked, the
toolbar is shown, if it is unchecked, the toolbar is hidden.

4.6.5.1 Signal Statistics

Next to its editing functionality, the Setup View provides basic signal statistics for each
traced expression. The meanings of the displayed values are explained below.

Min, Max, Average
Minimum, maximum and average signal values.

#Changes

The number of times the signal value has changed between two consecutive samples.

Min. Change

The largest negative change between two consecutive samples of the symbol value.

Max. Change

The largest positive change between two consecutive samples of the symbol value.

4.6.5.2 Context Menu

The context menu of the Setup View provides the following actions:

Remove

Removes an expression from the window.

Display (All) As

Allows users to change the display format of the selected expression or all expressions.
Sampling Frequency

Selects the data sampling frequency.

Add Expression

Opens an input box that lets users add an expression to the window.

Remove All 75 Remove Del

Removes all expression from the window.

. i . b
Ozone User Guide & Reference Manual (UM08025) ©%'§E£a-§d£§% SEGGER Microcontroller Gmb

Display All As *

116

4.6.

CHAPTER 4 Data Sampling Window

Reset Data

Resets the session’s trace and sampling data. This action can also be executed from the
project script using command Timeline.Reset (see Timeline.Reset on page 363).

Toolbar
Toggles the display of the toolbar.

Filter Bar / Total Value Bar

Toggles the named table header bar.

Export

Opens a file dialog that enables users to export the table content to a CSV file. This action
can also be executed from the project script using command Window.Export.

6 Samples View

The Samples View displays the sampling data in a tabular fashion. Following two columns
that displays the index and time stamp of a sample, the remaining columns display the
values of each traced expression at the time the sample was taken.

The samples view’s toolbar provides quick access to the sample frequency. The toolbar can
be shown and hidden via the context menu entry “Toolbar”. If this entry is checked, the
toolbar is shown, if it is unchecked, the toolbar is hidden.

4.6.6.1 Context Menu

4.6.

4.6.

The context menu of the Samples View provides the follow-

i 3
ing actions: Sampling Freguency
+ Go To Time... Ctrl+3
Sampling Frequency & Export.
Selects the data sampling frequency. v Toobar

Goto Time

Opens an input dialog that enables users to scroll to a par-
ticular samples table row.

Export

Opens a file dialog that enables users to export the sampling data to a CSV file. This action
can also be executed from the project script using command Export.DataGraphs.

Toolbar
Toggles the toolbar.

7 Timeline

HSS sampling data, together with power and instruction trace data, is visualized in a com-
bined signal plot (see Timeline Window on page 165). This enables users to establish a
link between the values of selected variables and program execution. To further support
this correspondence, the selected table row of the Data Sampling Window is synchronized
with the sample cursor of the Timeline Window.

8 Data Sampling Window Preferences

Section Data Sampling Window Settings on page 88 lists all user preference settings per-
taining to the Data Sampling Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

117 CHAPTER 4

4.7 Disassembly Window

Disassembly Window

Ozone’s Disassembly Window displays the assembly code interpretation of target memory.
The window automatically scrolls to the position of the program counter when the program
is stepped; this enables users to follow program execution on the machine instruction level.

Disassembly |
8228 0200E97A B3z Lop {Bl1,P4-LE5,PC} _:J
prwvlsQuensFull
{
537 0s00z97C BL3E FUISH {B3-R5,_LE}
£37 DB00E597E o004 HMow L4, RO -J

taskENTER CRITICAL ()

537 08002980 F7FE FCEZ EL “yPortEnterCriticals=
ifi{ pxlueune-=uxMessagesWaiting == pxluene->uxLength)
537 020025984 cBAO LLE RO, [R4, #+0x32]
537 08002985 ZEE1 LLE Rl, [R4, #+0x3C]
@ L£3& 02002928 4288 CHMP RO, Rl
0 0g00z334 Loz EME “prvlsfuenseFull=+0xl6
xBeturn = pdTRUE;
£E3& 0g00z2598C Z00l Mow RO, #1

o |

;E0013248

;E002595:2

-

4.7.1 Assembly Code

Each standard text line of the Disassembly Window displays information about a particular
machine instruction. The instruction information is divided into 4 parts:

Address Encoding Mnemonic

Operand

0800297C B538 PUSH

{R3-R5,LR}

Instruction Encoding

The encoding of a machine instruction is identical to the data stored at the instruction’s
memory address. It is possible to toggle the display of instruction encodings via the context
menu or permanently via the User Preference Dialog (see Disassembly Window Settings

on page 88).
Syntax Highlighting

The Disassembly Window applies syntax highlighting to assembly code. The syntax high-
lighting colors can be adjusted via command Edit.Color (see Edit.Color on page 309) or
via the User Preference Dialog (see User Preference Dialog on page 86).

4.7.2 Execution Counters

The Disassembly Window may show the execution counts of individual instructions within

its left sidebar area (see Code Execution Counters on page 55).

4.7.3 Key Bindings

The disassembly window’s special-purpose key bindings are:

Hotkey Description
Enter Navigates to the target address of the selected instruction.
Space Show the selected instruction within the Source Viewer.
Alt+Left Returns to the previous waypoint.
Alt+Right Shows the next waypoint.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

CHAPTER 4

118 Disassembly Window

Next to these keyboard shortcuts, the disassembly window also supports the standard
hotkeys provided by debug windows (see Standard Shortcuts on page 52) and code win-

dows {see Text Cursor Navigation Shortcuts on page 567}.

4.7.4 Context Menu

Ozone User Guide & Reference Manual (UM08025)

The Disassembly Window’s context menu provides the _ _
following actions: % Quick Watch... ST
Quick Watch @ SetBreakpoint]
) .]))) b SetTracepoint (Start)
Opens the Quick Find Widget (see Quick Find Widget Set T it (Sk
on page 92) for the text selection or word under the % S=tTracepoint (Stop)
cursor. " SetNextPC Shift+F 10
Set/Clear/Edit Breakpoint %] Run To Cursor Ctrl+F 10
Sets/Clears or Edits a breakpoint on the selected 8 Show Definition Fiz
machine instruction (see Instruction Breakpoints on +3 Show Dedaration Shift4F12
page 192).
|c| Show Source Ctrl+U
Set Tracepoint (Start/Stop) 1] Show Data Ctri+T
Sets a tracepoint on the selected machine instruction |b| Show Target Address Return
(see Tracepoints on page 212).
= GoToPC Ctrl+P
Set Next PC i+ GoBack Alt+Left
Specifies that the selected machine instruction should */ Go Ferward Alt-+Right
be executed next. Any instructions that would usually = GoTo... Ctrl43
execute when advancing the program to the selected
instruction will be skipped. | 4 SetPlugin...
& Edit Plugin
Run To Cursor - ,
% Reload Plugin
Advances the program execution point to the current _
cursor position. All code between the current PC and v Source Lines
the cursor position is executed. v Labels
o Execution Counters Ctrl+E
Show Definition v Instruction Encodings Ctrl+l
Jumps to the source code definition location of the sym- Pseudo Instructions
bol under the cursor.
= Export...

Show Declaration

Jumps to the source code declaration location of the
symbol under the cursor.

Show Source

Displays the first source code line that is associated with the selected machine instruction
(as a result of code optimization during the compilation phase, a single machine instruction

might be affiliated with multiple source code lines).

Show Data

Displays the selected data item within the Memory Window (see Memory Window on

page 135).
Show Target Address

Navigates to the target address of the selected instruction.

© 2013-2026 SEGGER Microcontroller GmbH

119 CHAPTER 4 Disassembly Window

Goto PC

Scrolls the viewport to the PC line.

Go Back

Returns to the previous waypoint.

Go Forward

Shows the next waypoint.

GoTo

Sets the viewport to an arbitrary memory address. The address is obtained via an input
dialog that pops up when executing this menu item.

Set Plugin

Sets the disassembly plugin to be used with the current project (see Disassembly Plugin
on page 119).

Edit Plugin
Opens the script file of the loaded disassembly plugin within the Source Viewer.

Reload Plugin

Reloads the disassembly plugin.

Source Lines

Toggles the display of source lines.

Labels
Toggles the display of assembly labels.

Execution Counters

Toggles the display of Code Execution Counters (see Code Execution Counters on page 55).

Instruction Encodings

Toggles the display of instruction encodings.

Pseudo Instructions

Enables or disables pseudo-instruction display.

Find In Trace

Opens the Find In Trace Dialog with the word under the cursor (see Find In Trace Dialog
on page 73).

Export
Opens the Disassembly Export Dialog (see Disassembly Export Dialog on page 69).

4.7.5 Disassembly Plugin

The disassembly window can be extended to include the assembly code and code profiling
information of custom instructions (see Disassembly Plugin on page 119). A disassembly
plugin can be assigned to the project via context menu action Set Plugin or command
Project.SetDisassemblyPlugin.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

120 CHAPTER 4 Disassembly Window

4.7.6 Offline Disassembly

The disassembly window is functional even when Ozone is not connected to the target. In
this case, machine instruction data is read from the program file. In fact, disassembly is
only performed on target memory when the program file does not provided data for the
requested address range.

4.7.7 Code Window

The Disassembly Window shares multiple features with Ozone’s second code window, the
Source Viewer. Refer to Code Windows (see Code Windows on page 53) for a shared de-
scription of these windows.

4.7.8 Disassembler Options

Command Project.ConfigDisassembly (see Project.ConfigDisassembly on page 353) is pro-
vided to control behavioral aspects of the disassembler.

4.7.9 Appearance Settings

Section Disassembly Window Settings on page 88 lists all appearance-related settings per-
taining to the disassembly window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

121

CHAPTER 4 Find Results Window

4.8 Find Results Window

Ozone’s Find Results Window displays the results of previous text searches.

ﬂ
=i BL x\/|c| BSP_Init X
Find all 'BL', Match Case, Look in: Assembly Code
5: 0B00018s BLX =1 Blx rd
37: 0B0O0OSTC BL Set3ysClock ; 0x08000538
3 58e: 0800028R BL memory copy ; Ox05000314
3 B883: 08000254 BL memory copy ; O0x08000314
3 850: 0B0002S5E EBL memory copy ; O0x02000314
3 B855: 080002R8 BL memory copy ; O0x08000314
3 S0&: 0B80002BZ BL memory copy ; Ox05000314
3 513: 080002BC BL memory copy ; O0x08000314
3 920: 080002Ce EBL memory copy ; O0x02000314
3 5825: 080002D0 BL memory set ; Ox080003ZR
4 03g: 080002DR BL memory set ; Ox080003ZA
4 044: O0B000ZEe ELT Ox0OB000ZF0 Blt 1f
4 055: 08000310 BLX RZ bBlx r2
Matching Lines: 13

Find Results Window displaying the results of a text search within the Instruction Trace
Window.

4.8.1 Find Result Tabs

The Find Results Window adds a result tab for each text search that was performed. The
result of the text search is displayed as a list of text lines that matched the search pattern.
The search settings are displayed in the first row of the search result text. Tabs can be
closed and rearranged freely.

4.8.2 Supported Text Search Locations

Text searches are currently supported in the following locations:

e Source code documents
e Instruction Trace Window contents

A new text search is performed using the:

e Find In Files Dialog or
e Find In Trace Dialog

4.8.3 Match Highlighting

By double-clicking on a table row or by pressing Return, the match is selected within the
Source Viewer or Instruction Trace Window.

484 Context Menu

The Find Results Window’s context menu provides the

following actions: L | Copy Ctrl+C
Select Al Ctrl+a
COpy %7 Clear Alt+Del
Copies the selected text to the clipboard. Show PreviousResult Shift+F3
Clear Show Mext Result F3
| Show Source Return

Ll

Clears the match list.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

122 CHAPTER 4 Find Results Window

Show Source

Shows the selected match within the Source Viewer. Can also be performed by double-click-
ing on a match result.

Show Next Result

Displays the next match within the Source Viewer.

Show Previous Result

Displays the previous match within the Source Viewer.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

123 CHAPTER 4 Functions Window

4.9 Functions Window

Ozone’s Functions Window lists all functions linked to assemble the debuggee, including
external library functions.

Functions A
Mame " | Address Size #Insts | Source =
= TimelineTest 0000 0108 28 13 Main.c:222:6
=! inlined in: main 0000 0168 20 9 Main.c:275:5
TestfFor 20000014 Z 0 Main.c:195:6
SysTick_Handler 2000 001& 10 0 Main.c:235:6
PendsV_Handler 0000 0124 Z0 % Main.c:244:6
& main 0000 0138 9& 28 Main.c:254:6
exit 0000 0238 4 1 277 _nit.c
=l _TestWhile a & Main.c
=! inlined in: main 0000 018cC ls & Main.c:275:5]
=! inlined in: TimelinsTest 0000 0110 1ls 2 Main.c:226:3
_main 0000 022K 4 1 |z77_nit.c
_exit 0000 023C 1z 5 |z77_nit.c
_call_main 0000 0220 14 4 |z77_nit.c
__low_level_init 0000 0232 4 2 277 _nit.c ;I
Note

When a function is missing from the Functions Window, it was not linked into the
executable image of the debuggee. This is in most cases the result of a compiler/linker
optimization.

4.9.1 Function Properties

The Functions Window displays the following information about functions:

Table Column Description
Name Name of the function.
Address base address of the function’s machine code.
Size Byte size of the function’s machine code.
#1Insts Number of instructions encompassed by the function.
Source Source code implementation location of the function.

#Insts: instruction-level information may not be accessible to Ozone before debug session
startup completion (see Startup Completion Point on page 188). Ozone will display a
warning sign next to table values which may be unavailable due to this reason (see the
title figure).

4.9.2 Inline Expanded Functions

A function that is inline expanded in one or multiple other functions can be expanded and
collapsed within the Functions Window to show or hide its expansion sites. As an example,
consider the figure above. Function _Test Wi | e is inline-expanded within within functions
mai n and Ti nel i neTest .

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

124 CHAPTER 4 Functions Window

49.3 Context Menu

The Function Windows’ context menu hosts actions that navigate to a function’s source
code or assembly code line (see Show Actions on page 295).

Set Clear Breakpoint

Sets or clears a breakpoint on the function’s first machine instruction.

Show Source

Displays the first source code line of the selected function within the Source Viewer (see
Source Viewer on page 156). If an inline expansion site is selected, this site is shown
instead.

Show Disassembly ® Set Breakpoint Fa

Displays the first machine instruction of the se-

lected function within the Disassembly Window Show Source Crl+U
(see Disassembly Window on page 117). If an o] Show Disassembly Ctrl+D
inline expansion site is selected, this site’s first = ~

o

machine instruction is displayed instead. = Show Call Graph Ctri+H
|7l Show in Memory Map Ctrl+B
Show Call Graph
Displays the call graph of the function within the Filter Bar
Call Graph Window (see Call Graph Window on Total Value Bar
page 99). -
= Export...

Show In Memory Map

Displays the function symbol within the Memory
Usage Window (see Memory Usage Window on page 139).

Filter Bar / Total Value Bar

Toggles the named table header bar.

Export

Opens a file dialog that enables users to export the table content to a CSV file. This action
can also be executed from the project script using command Window.Export.

4.9.4 Breakpoint Indicators

A breakpoint icon proceeding a function name indicates that one or multiple breakpoints
are set within the function’s address range.

4.9.5 Function Display Names

The display of function names can be configured via the following user preferences (see
User Preference Dialog on page 86):

User Preference Description

PREF_SHOW FUNC TYPE_SI GNATURES | Append the type signature to the function name.

Prepend the class name to C++ member function

PREF_PREFI X_FUNC_CLASS NAMES
- - - - names.

The above settings apply to the functions window and to all GUI elements that display
function names. This includes debug windows, export dialogs and drop-down lists.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

125 CHAPTER 4 Functions Window

49.6 Table Window

The Function Window shares multiple features with other table-based debug information
windows (see Table Windows on page 58).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

126 CHAPTER 4 Global Data Window

4.10 Global Data Window

Ozone’s Global Data Window displays the list of global program variables used by the de-

buggee.
g
Mame S | Value | Location | Sizel Type | Scope I;I
0S5 _TickStepTime 2000 14FC 4 05_Global.c
& 0S5 _TickStep o ("0 2000 1534 1 wolatile uchar O5_Global.c
05_Status 05_CE (0) 2000 1504 1 volatile enum ' O5_Global.c
+ 05 _sCopyright 0800 3248 "SEGC 2000 14D4 4 const char* 05_Global.c
05_Rurnning 1 (*%001") 2000 151C 1 uchar 05_Global.c
—| 05_p\WDRoot 2000 1430 2000 1554 4 struct O5_WD 5 0S5_Global.c
=] pMext 2000 1478 2000 1430 4 struet OS_WD_5 05_Global.c::05_WD_S
+ phlext 2000 14E0 2000 1478 4 struet 05 WD 5 05 _Global.c:05_WD =
Period 750 2000 147C 4 int 05_Global.c::05_WD_=
TimeDex 1 480 20001480 4 int 05_Global,c::05_WD_&
Period 1000 20001434 4 int 05_Global.c::05_WD_=
TimeDex 1 805 20001438 4 int 05_Global.c::05_WD_s
+ OS5_pTLS 20001534 2000 1544 4 woidw 05_Global.c
+ 05_pTickHookRoot 2000 1440 2000 1524 4 struct 05_TICE 0O5_Global.c
+ O5_pSemaRoot 2000 13C8 2000 1540 4 struct 05_S5EMA O5_Global.c ;I
Note

When a variable is missing from the Global Data Window, it was not linked into the
data image of the debuggee. This is in most cases the result of a compiler/linker
optimization.

4.10.1 Table Window

The Global Data Window shares multiple features with other table-based debug information
windows provided by Ozone (see Table Windows on page 58).

4.10.2 Data Breakpoint Indicator

A breakpoint icon preceding a global variable’s name indicates that a data breakpoint is
set on the variable.

4.10.3 Context Menu
The Global Data Window’s context menu provides the following actions:

Set/Clear/Edit Data Breakpoint

Sets/clears/edits a data breakpoint on the selected global variable (see Data Breakpoints
on page 194).

Watch
Adds the selected global variable to the Watched Data Window.

Quick Watch
Shows the selected global variable within the Quick Watch Dialog.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

127 CHAPTER 4 Global Data Window

Graph
Adds the selected global variable to the Data Sampling Window.

Show Value in Source

Displays the source code declaration location of the symbol pointed to within the Source
Viewer. Only shown for pointer-type variables.

Show Value in Disassembly Set Data Breakpoint =
Displays the disassembly location of the sym- @ Watch Ctri+w
bol pointed to within the Disassembly Win- @ _ _
dow. Only shown for pointer-type variables. Quick Watch... Shift+F9
T Graph Ctrl+G

Show Value in Data

Displays the memory location of the symbol ~ + Show Value in Source

pointed to within the Memory Window. Only 0 Show Value in Disassembly
shown for pointer-type variables. _
4 Show Value in Data

Show Source c| Show Source Ctri+U

Displays the source code declaration loca- 4] Show Data Ctri+T
tion of the selected global variable within

the Source Viewer (see Source Viewer on L. Show in Memory Map Ctrl+8
page 156). _

Display As 3
Show Data Display All As 3

Displays the data location of the selected lo-
cal variable in either the Memory Window
(see Memory Window on page 135) or the

~ Member Functions

Registers Window (see Registers Window on Filter Bar
page 147). Total Value Bar
Show In Memory Map * Export...

Displays the data location of the select-
ed local variable within the Memory Usage Window (see Memory Usage Window on
page 139).

Display (All) As

Changes the display format of the selected global variable or of all global variables (see
Display Format on page 58).

Expand / Collapse All

Expands or collapses all top-level nodes.

Member Functions

Toggles the display of class member functions.

Filter Bar / Total Value Bar

Toggles the named table header bar.

Export

Opens a file dialog that enables users to export the table content to a CSV file. This action
can also be executed from the project script using command Window.Export.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

128 CHAPTER 4 Instruction Trace Window

4.11 Instruction Trace Window

Ozone’s Instruction Trace Window displays the history of executed machine instructions.

Instruction Trace ﬂ

CET halt , Besuming ;I
—-| REeget Handler 7 ecyclea (5) J
08000340 4805 LOR B0, = EBIM segment end ; [Ox0800
08000342 FOZ0 0007 BIC RO, RO, £7 bic r0, $#0x7
08000348 4885 MoV S5p, RO mov 3p, rl
02000348 4308 LR R0, =SystemInit ; [0x080003&6C] =0x
02000348 4780 BLX =10 hlx r0
+ SystemInit 58 cycles (35)
+ Reset Handler 17 eyecles (10)
+H start 25 cyecles (15)
+ memory copy 290 cycles (187)
-] _start 5 cycles (4)
02000212 4230 LR B0, = text load start ; [Dx0800
0800021C 4330 LOR B1, =:text:star;_ ; E}LGBDGDZEG]
0800021E 4231 LDR RZ, = text end ; [0x080002E4] =
08000220 FOOO FaaD BL memory copy ; Ox0800023E bl memo
—| memory copy 4 cycles (3)
0800023E 4238 CHME RO, R1 cop rd, rl
028000220 Doo7 BEQ O0x0B0002B2 beg Zf£
080002B2 4770 B LE hx 1r
-| _start 5 cyclea (4)
02000224 4230 LR RO, = fast load start ; [0x0800
08000226 4 53] - [0x0B8000ZEC
08000228 423l LDR RZ, = fast end ; [Ox080002F0] =
08000220 FOOO FB3B BL memory copy ; Ox0800023E bl memo
—| memory copy T cycles (5)

08000Z25E 4288 CHP RO

RO, R1 cmp rd, rl -
< _>I_I

4.11.1 Setup

Section Setting Up Trace on page 210 explains how to configure Ozone and the hardware
setup for trace, thereby enabling the Instruction Trace Window.

4.11.2 Instruction Row

The information displayed within a single text line of the Instruction Trace Window is par-
titioned in the following way:

Timestamp Address Encoding Mnemonic Operands

0.000 100 005 0800297C B538 PUSH {R3-R5,LR}

4.11.3 Instruction Stack

The Instruction Trace Window displays the program’s instruction execution history as a
stack of machine instructions. The instruction at the bottom of the stack has been executed
most recently. The instruction at the top of the stack was executed least recently.

4.11.4 Trace Blocks

The instruction stack is partitioned into trace blocks. A trace block contains the instructions
that were executed between two consecutive program halt events. Each time the target
halts on a new PC, an additional trace block is appended to the bottom of the instructions
stack.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

129

CHAPTER 4 Instruction Trace Window

A trace block may not contain all instructions that were executed between two consecutive
halt events. This may be due to hardware limitations, such as a finite trace buffer capacity,
or due to the software limit opposed by VAR_TRACE_MAX_| NST_CNT. As a result, trace blocks
may be disconnected.

CEU halt at breakpoint, Stepping over

Each trace block has got a header bar which acts as a visual separator between trace blocks.
The trace block header informs about the debug event that caused the program to halt and
also informs about the debug event that caused the program to resume.

4.11.5 Call Frames

A trace block is partitioned into a set of call frames. Each call frame contains the set of
instructions that were executed between entry to and exit from a program function. Call
frames can be collapsed or expanded to hide or reveal the affiliated instructions.

=] main 188 ns (3)

The header of a call frame informs about the function name, the number of instructions
executed and the total CPU time spend in the call frame.

4.11.6 Backtrace Highlighting

Instruction Trace X |/ SEGGER_RTT Syscalls_SES.c X Y ES_Cort =
Z0000B2R AODD R3, 5P, #0x34 wa : ;l File Scope LI f printf LI
‘DDDGB‘C SIR RS, [SP] '__E _."kkk&&kkkkkbk&kkkkkkkk&kﬁﬂ
S5tep into complete, S5tepping into $ e .

- |:|rir11:F 3437 C}'dES {5} 181 - printfi)

Z0000BZE ADD RO, 5P, £4 182 =

Z0O00O0B20 LDE B3, [S8F] 183 * Function description
Z0000B32 LDE Bz, [5P, #£0x30] 124 - print a formatted st
Z0000B34 MOWS Rl, #0xB0 185 =S

Z0000B3e BL 0xZ20000D0E ; <wvsnpr 12& # int printfi{const char *“£fm

—| wsnprintf 6338 cydes (1) 187 int n;

ZO0000D0E CTUISH { B4 . L.:l]- - 188 char aBuffer [FRINTF_

185 va_list arga;

KN r 130

. 1531 [+ wva start (args, fmt);
Disassembl x = .

—— _‘,r' — E— 152 [+ n = wvanprintf (aBuffer,

va_start (args, fmt); _ - 193 @ if (n > (int)sizeof (aBu
Z0000BZ2R ADD B3, 5P, £0x54 194 [F SEGEER ETT Write(d. =z
Z0000B2C S5TR B3, [5P] - } EISE"i;' n > 0) { '

n = wvanprintf (aBuffer, sizeof (aBuffer), :'nt,J _;j - STGGTQ_QTT Writeld =
20000B2E ADD RO, 5P, #4 - ; == g
Z0000B30 LDR B3, [5P] o va end(args);

Z0000B32 LDE BZ, [5P, #0x30] o - re;u:n - ;
Z0000B34 MOVS Rl, #0xE0 2' T} !
Z0000B3E& EL 0x20000D0E I -
] 201 fendif
Z0000B3R 5TR RO, [5P, #0xB4] - T03 ﬂ
ot I e e - 4| | ﬂ

Both code windows highlight the instruction that is selected within the Instruction Trace
Window. This enables users to quickly understand past program flow while key-navigating
through instruction rows. The default color used for backtrace highlighting is yellow and can
be adjusted via command Edit.Color (see Edit.Color on page 309) or via the User Prefer-
ence Dialog (see User Preference Dialog on page 86). The backtrace highlighting feature
can be toggled via the User Preference Dialog or via the context menu of the Instruction
Trace Window.

4.11.7 Text Search

Ozone provides the Find In Trace Dialog to perform text pattern searches within the data
contents of the Instruction Trace Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

130 CHAPTER 4 Instruction Trace Window

4.11.8 Key Bindings

The table below provides an overview of the Instruction Trace Window’s special-purpose

key bindings.
Hotkey Description

+ Expands the selected call frame.

- Collapses the selected call frame.

Alt+Up Selects and scroll to the first (topmost) instruction of the call frame.
Selects and scroll to the last (bottommost) instruction of the call

Alt+Down
frame.

Alt+Home Selects and scroll to the first (topmost) instruction of the trace block.
Selects and scroll to the last (bottommost) instruction of the trace

Alt+End block

Next to these keyboard shortcuts, the Instruction Trace Window also supports the standard
hotkeys provided by debug windows (see Standard Shortcuts on page 52) and code win-
dows {see Text Cursor Navigation Shortcuts on page 56%}.

4.11.9 Context Menu

The context menu of the Instruction Trace Window provides the following operations:

Copy] Copy Ctrl+C
Copies the selected text to the clipboard.
@ Set Breakpoint Fo
Sets or clears a breakpoint on the selected in- = Set Tracepoint (Stop)
struction.
) |c| Show Source Ctrl+U
Set Tracepoint (Start/Stop) _
|p| Show Disassembly Ctrl+D
Sets a tracepoint on the selected machine instruc-
tion (see Tracepoints on page 212). Toggle Reference]
Show Source 4 First in Function Alt+Up
Displays the source code line associated with the % Last in Function Alt+Down
selected instruction in the Source Viewer (see — e lock |
Source Viewer on page 156) # First in Trace Bloc Alt+Home
] ¥ Last in Trace Block Alt+End
Show Disassembly
Displays the selected instruction in the Disas- Expand Al Alt++
sembly Window (see Disassembly Window on = Collapse Al Alt+

page 117)
Instruction Encodings

TOggle Reference v Sync Code Windows Ctrl+2

Toggles the time reference point on the selected

.) Timestamps r
instruction.
Eeset Data
Clear All References _ _
Find In Trace... Ctri+5Shift+T
Clears all time reference points * Export...

Go To Reference

Scrolls to the time reference point preceding the

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

131 CHAPTER 4 Instruction Trace Window

selected instruction.

First in Function

Scrolls to the least recent instruction of the selected call frame.

Last in Function

Scrolls to the most recent instruction of the selected call frame.

Firstin Trace Block

Scrolls to the least recent instruction of the current trace block.

Last in Trace Block

Scrolls to the most recent instruction of the current trace block.

Expand/Collapse All

Expands/Collapses all call frame.

Instruction Encodings

Toggles the display of instruction encodings.

Timestamps

Selects the time stamp format (see Trace Timestamp Formats on page 269).

Reset Data

Resets the session’s trace and sampling data. This action can also be executed from the
project script using command Timeline.Reset (see Timeline.Reset on page 363).

Find In Trace

Opens the Find In Trace Dialog with the word under the cursor (see Find In Trace Dialog
on page 73).

Export

Opens a dialog that enables users to export the window contents to a CSV file. This action
can also be executed from the project script using command Export.Trace.

4.11.10 Instruction Trace Window Preferences

Section Instruction Trace Window Settings on page 88 lists all user preference settings
pertaining to the Instruction Trace Window.

4.11.11 Selective Tracing

Ozone can instruct the target to constrain trace data output to individual address ranges
(see Tracepoints on page 212). When selective tracing is active, it acts as a hardware
prefilter of trace data.

4.11.12 Limitations

The Instruction Trace Window currently cannot be used in conjunction with the Terminal
Window’s printf via SWO feature.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

132

CHAPTER 4 Local Data Window

4.12 Local Data Window

Ozone’s Local Data Window displays local variables and function parameters.

Local Data

b Lk

Mame Location
pucueuestorage <outofscope 4 [uchar* quele.c eueieneri
= pxMNewQueue 2000 00EE RO 4 struct {ueuelef t° queue,c:x(jueueieneri
+ pcHead &500 0130 2000 00ES 4 char+* queue. ci:Queuelef_t
+ pcWriteTo eFeC &Cel 2000 00EC 4 char+* queue,c:QueusDef_t
+ U Z000 00F0 8 union queue, ci:Queuelef_t
=1 xTasksWaitingToSend Z000 00F8 20 struct xLIST queue,c::QueueDef_t
uxMumberOfltems 1 2000 00F8 4 wolatile ulong queue, CxLIST
+ pxIndex 2000 00F2 2000 0OFC 4 struct xLIST ITEM queue.ci:xLIST
+ wlistEnd Z000 0100 12 struct xMINI LIST queue.c::xLIST
+ ¥TasksWaitingToRece 2000 010C 20 struct xLIST queue, ci:Queuelef_t
uxMessagesWaiting 0 20000120 4 wolatile ulong queue,c:QueusDef_t
& uxlength 1 2000 0124 4 ulong queue, ci:Queuelef_t
uxItemSize 1 Z000 0128 4 ulong queue, ci:Queuelef_t
cRylodk 0 ("w0') Z00001l2C 1 wolatile char queue.c::Queuelef t 7
cTxlock a (*\O0") Z200001ZD 1 wolatile char queue.c::QueueDEf_t
ucQueueType 232 ("&") <outofscope 1 const uchar queue, cixjueueizeneri
uxItemsSize 4 ES 4 conat ulong gueus,c: :xQueueGenerinLI

4.12.1 Overview

The Local Data Window enables users to inspect the local variables of any function on the
call stack. To change the Local Data Window’s output to an arbitrary function on the call
stack, the function must be selected within the Source Viewer or the Call Stack Window.
Once the program is stepped, the output will switch back to the current function.

4.12.2 Auto Mode

The Local Data Window provides an “auto mode” display option; when this option is active,
the window displays all global variables referenced within the current function alongside
the function’s local variables. Auto mode is inactive by default and can be toggled from
the window’s context menu.

4.12.3 Data Breakpoint Indicator

A breakpoint icon preceding a local variable’s name indicates that a data breakpoint is set
on the variable.

4.12.4 Context Menu

The Local Data Window’s context menu provides the following actions:

Set/Clear/Edit Data Breakpoint

Sets/clears/edits a data breakpoint on the selected symbol (see Data Breakpoints on
page 194).

Watch

Adds the selected local variable to the Watched Data Window (see Watched Data Window
on page 176).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

133

CHAPTER 4 Local Data Window

Quick Watch

Shows the selected local variable within the Quick Watch Dialog (see Quick Watch Dialog
on page 94).

Graph

Adds the selected local variable to the Data Sampling Window (see Data Sampling Window
on page 114).

Show Value in Source » Set Data Breakpoint F9
Displays the source code declaration location @& Watch Crr+W
of the symbol pointed to within the Source @ _ _
Viewer. Only shown for pointer-type vari- Quick Watch... Shift+F9
ables. Tl Graph Ctrl+G
Show Value in Disassembly & Show Value in Source
Displays the disassembly location of the sym- 40 Show Value in Disassembly
bol pointed to within the Disassembly Win- _
dow. Only shown for pointer-type variables. +* Show Value in Data

. c| Show Source Ctrl+U
Show Value in Data

|#] Show Data Ctri+T

Displays the memory location of the symbol
pointed to within the Memory Window. Only Display As 3
shown for pointer-type variables. _

Display All As r

Show Source
@ Collapse All Alt+
Displays the source code declaration location

of the selected local variable in the Source .r mMember Eunctions
Viewer (see Source Viewer on page 156).

Auto Mode Shift+A
Show Data
Filter Bar
Displays the data location of the selected lo-
cal variable in either the Memory Window Total Value Bar
(see Memory Window on page 135) or the
Registers Window (see Registers Window on = Export...

page 147).
Display (All) As

Changes the display format of the selected symbol or of all symbols (see Display Format
on page 58).

Expand / Collapse All

Expands or collapses all top-level nodes.

Member Functions

Toggles the display of class member functions. This item is only visible when the debuggee’s
source language is C++.

Auto Mode

Specifies whether the “auto mode” display option is active (see Auto Mode on page 132).

Filter Bar / Total Value Bar

Toggles the named table header bar.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

134 CHAPTER 4 Local Data Window

Export

Opens a file dialog that enables users to export the table content to a CSV file. This action
can also be executed from the project script using command Window.Export.

4.12.5 Table Window

The Local Data Window shares multiple features with other table-based debug information
windows provided by Ozone (see Table Windows on page 58).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

135 CHAPTER 4 Memory Window

4.13 Memory Window

Ozone’s Memory Window enables users to observe and edit target memory content.

;
GoTo: 20000868 ;I 4] ”E BE B B B O IE | 2 % Periodic Refresh: »
20000868 EE A5 A5 A5 A5 RS R5 A5 RS A5 A5 AS RS RS RS RS E¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ _:J
20000878 7C 0€ 00 20 00 00 OO0 QOO0 01 00 OO0 00 ZO0 00 00 Z0 | ie et e e e e
20000288 OO0 OO0 OO0 OO0 OO0 OO0 OO OO0 E2 03 00 00 04 ED OO0 EO0 e._...1.4
20000298 OO0 OO0 OO0 10 OO0 OO0 OO0 00 A5 AS RS RS FD FF FF FF L. ¥EYY Ty _J
200008k 00 00 0O OO0 OC 0% 00 20 00 00 Q0 00 00 00 00 00 . oo e e e e e e e e e
Z200008B8 A5 A5 A5 25 31 0 01 08 A2 10 00 08 00 00 00 €1 2 ¥¥F¥¥El .. .2 . ._... a
200008C2 A5 A5 AS AS AS R4 R4 AZ 00 00 00 00 01 00 00 00 ¥¥E¥¥mme. . _ ...
20000202 OO0 OO0 OO0 OO0 DO O5 00 20 A5 AS AS BAS RS RS RS RS e B L EEYEYYYY
Z00008E8 A5 A5 A5 RBS5 RS AS A5 RS AS AS LS RS RS AS AS LS FEVEWWVYWWWEWEEYW
Z00008F8 A5 R4 2R3 RZ 01 EB OO0 08 A5 A5 A5 BS A5 A5 AL A5 ¥ofc. B, FEYEyEyyYy
20000%08 &84 08 00 20 Eg8 03 00 00 54 1E 00 20 0OC 04 00 Z0 [-
20000%1s 02 0% 00 20 4C 1E 00 20 02 00 00 00 24 0& 00 20 R PR =
200005928 24 06 00 Z0 02 0% 00 20 1C 08 00 20 02 00 00 00 % . .. e e e e e
Z20000%38 FO O7 00 20 54 §D 72 Z0 53 76 &3 00 00 00 00 00 d...Tmr.Svco.....
20000%48 00 0% 00 20 03 00 00 00 Q0 00 00 00 00 00 00 00 (e e e i e mmmm
20000558 00 00 00 OO0 OO0 OO0 OO0 OO0 Q0 00 00 00 00 00 00 00 . oo e e e _:J

4.13.1 Window Layout

The memory window displays target memory content using the following layout:

Address Section

The data column on the left side of the Memory Window displays the row’s start address.

Hex Section

The central data column displays memory content as hexadecimal values. The value block
size can be adjusted to 1, 2 or 4 bytes. In the illustration above, the display mode is set
to 2 bytes per block value.

Text Section

The data column on the right side of the Memory Window displays the textual interpretation
(Latinl-decoding) of target memory data.

4.13.2 Base Address

The address of the first byte displayed within the Memory Window is referred to as the
window’s base address.

4.13.2.1 Setting the Base Address

The base address of the Memory Window can be set in any of the following ways:

e via command Show.Data.
e via the goto-dialog accessible from the context menu.
e via the toolbar’s input box.

In each case, the following input formats are understood:

Input Format Example
Address 0x20000000
Address range 0x20000000, 0x200
Symbol CS_d obal

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

136 CHAPTER 4 Memory Window

Input Format Example
Register Name SP
Expression OS_d obal - >pTask + 0x4

For details on supported expressions, see Working With Expressions on page 205. When
the base address input has a deducible byte size, the corresponding address range is se-
lected and highlighted.

4.13.3 Drag & Drop

The Memory Window accepts drops of symbol/register names. When an item is dropped
onto the window, the item’s address range is highlighted and scrolled into view.

4.13.4 Toolbar

GoTo: 0x20000000 x| i+ ||E (2 B = B | IEJ ¥ Pperiodic Refresh: off ¥|

= =l

The Memory Window’s toolbar provides quick access to the window’s options. All toolbar
actions can also be accessed via the window’s context menu.

The toolbar can be shown and hidden via the context menu entry “Toolbar”. If this entry is
checked, the toolbar is shown, if it is unchecked, the toolbar is hidden.

The toolbar elements are described below.

Address Box

The toolbar’s address box provides a quick way of modifying the base address, i.e. the
memory address of the first byte that is displayed within the Memory Window. When a
pointer expression is input into the address box, the Memory Window automatically scrolls
to the address pointed to each time it changes.

Access Width

The blue tool buttons allow users to specify the memory access width. The access width
determines whether memory is accessed in chunks of bytes (access width 1), half words
(access width 2) or words (access width 4).

Display Mode

The red tool buttons let users choose the display mode. There are three display modes that
correspond to the byte size of each hexadecimal value displayed within the hex section.
The display mode can be set to 1, 2 or 4 bytes per value.

Fill Memory
& Opens the Fill Memory Dialog (see Memory Dialog on page 75)

Save Memory Data

+ Opens the Save Memory Dialog (see Memory Dialog on page 75)

Load Memory Data

<+ Opens the Load Memory Dialog (see Memory Dialog on page 75)

=l

Periodic Refresh

Specifies the periodic refresh interval while the program is running (see Periodic Update
on page 137).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

137 CHAPTER 4 Memory Window

4.13.5 Memory Dialog

The Fill Memory, Save Memory and Load Memory features of the Memory Window are
implemented by means of the Memory Dialog (see Memory Dialog on page 137).

4.13.6 Change Level Highlighting

The Memory Window employs change level highlighting (see Change Level Highlighting on
page 137).

4.13.7 Periodic Update

The Memory Window is capable of periodically updating the displayed memory area at
a fixed rate. The refresh interval can be specified via the Auto Refresh Dialog that can
be accessed from the toolbar or from the context menu. The periodic refresh feature is
automatically enabled when the program is resumed and is deactivated when the program
is halted. It is globally disabled by clicking on the dialog’s disable button.

4.13.8 User Input

The current input cursor is shown as a blue box highlight. By pressing a text key, an edit
box will pop up over the selected value that enables the value to be edited. Pressing enter
will accept the changes and write the modified value to target memory.

4.13.9 Copy and Paste

The Memory Window enables users to select memory regions and copy the selected content
into the clipboard in one of multiple formats (see Context Menu on page 132). The current
clipboard content can be pasted into a target memory by setting the cursor at the desired
base address and then pressing hotkey Ctri+V.

4.13.10 Context Menu

The Memory Window’s context menu provides the following actions:

Copy
Copies the text selected within the hex-section to the clipboard.

Copy Special
A submenu with 4 entries:

e Copy Text: copies the selected text-section content to the clipboard.
Copy Hex: copies the selected hexadecimals in textual format to the clipboard.
Copy Hex As C-Initializer: copies the selected hexadecimals as comma separated list in
textual format to the clipboard (e.g. "0xAB, 0x23, 0x00")

e Copy Binary: copies the selected hexadecimals as octet-8 raw binary data to the
clipboard.

Show Disassembly

Displays the address under the cursor within the Disassembly Window (see Disassembly
Window on page 117).

Show Data

Sets the base address to the address under the cursor.

Display Mode
Sets the display mode to either 1, 2 or 4 bytes per hexadecimal block.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

138 CHAPTER 4 Memory Window

Access Mode

Sets the memory access width to either byte (1), half-word (2), word (4) or automatic

(0) access.
Fill Copy Ctrl+C
Opens the Fill Memory Dialog (see Memory Dialog on Copy Special '
page 137). |o| Show Disassembly Cirl+D
Save] Show Data Ctrl+T
Opens the Save Memory Dialog (see Memory Dialog on [l Display 1Byte Items Cirl+1
page 137). [Display 2 Byte Items Ctrl+2
Load £ Display 4 Byte Items Ctrl+3
Opens the Load Memory Dialog (see Memory Dialog on [Access 1Byte Ttems
page 137). Bl Access 2 Byte Ttems
Go Back [l Access 4 Byte Items
, . E Automatic A Width
Sets the base address to its previous value. |_ Hrematlc Access T
5 Fill... Crl+

Go To £ =

= Save... Ctrl+E
Opens an input dialog that enables users to change the % Load... Cirl-
base address (see Base Address on page 135). = -

i+ GoBadk Alt+Left
Toolbar -

= GoTo... Ctrl+G
Opgns_the Auto Refresh Dialog from which t_he yvindow’s ‘B Periodic Refresh. . Cirl+R
periodic update interval can be set (see Periodic Update
on page 137). v Toolbar

Toolbar

Toggles the display of the window’s toolbar.

4.13.11 Multiple Instances

Users may add as many Memory Windows to the Main Window as desired.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

139

CHAPTER 4 Memory Usage Window

4.14 Memory Usage Window

Ozone’s Memory Usage Window displays the type of target memory content.

Memory Usage ﬂ

2000 041D — ;I
2000 0437
RAM heap
2000 0000 eLLIILLE
I raghra
0300 074F 0300 074F main
SetSysClock
text SystemInit

BSP_TogaleLED

0300 0363 B5SP_Init

Flash 0800 0387 memary_set
.init start
0800 017 84 FEQiDI‘IS
wvectors
0200 00495 -

L

The Memory Usage Window’s main areas of application are:

Identifying invalid memory usage

A program data symbol may have been erroneously stored to a special-purpose RAM region
such as a trace buffer. Another example would be a function that was downloaded to a non-
executable memory area.

Identifying erroneous build settings

A linker may have placed program functions outside the target’'s FLASH
address range or program variables outside the RAM address range.

4.14.1 Window Layout

Memory regions are grouped into three columns: segments, data sections, and symbols.

Segments

The first column shown within the Memory Usage Window displays the memory type. Usu-
ally, the target will have a flash and a RAM segment which are displayed here. When no
memory segment information was made available to the window, the segment column will
be invisible.

Data Sections

The central column of the Memory Usage Window displays the arrangement of ELF file data
sections within the containing segment.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

140 CHAPTER 4 Memory Usage Window

Symbols

The right-hand column of the Memory Usage Window displays the arrangement of program
symbols (functions and variables) within the containing data section.

4.14.2 Setup

Section and symbol regions are automatically initialized from ELF program file data when
the program file is opened. Segment information must be supplied via a map file (see
below).

4.14.2.1 Supplying Memory Segment Information

Ozone obtains memory segment information from the memory map file that was set via
command Target.LoadMemoryMap (see Target.LoadMemoryMap on page 362). Individual
segments can be added to the memory map via command Target.AddMemorySegment (see
Target.AddMemorySegment on page 363).

. Memory Regions x|

Region Mame Base Address Size
FLASHO (auto)
RAMOD (auto) 2000 0000 Ox20000
Regiond (ELF) 0800 0000 0x4EES
Regionl (ELF) 2000 0000 Ox14DC
Region2 (ELF) 2001 FDOO Ox300

1= Add |'= Remowve =¥ Remave Al L[| Impart... | [J Load Default Regions |

Save to Project K | Cancel |

Memory segments can also be specified using the Memory Regions dialog shown above,
which can be accessed from the context menu. Button “Import” adds memory segments
from an Embedded Studio memory map file.

4.14.3 Interaction

This section describes how users can interact with the Memory Usage Window.

4.14.3.1 Scrolling
The address range currently displayed within the Memory Usage Window can be scrolled
in any of the following ways:

e via the window’s scrollbars.
e via the horizontal or vertical mouse wheel
e by clicking somewhere and dragging the clicked spot to a new location.

4.14.3.2 Zooming

The vertical scale of the memory usage plot is given as the number of bytes that fit into
view. The vertical scale can be adjusted in the ways described below.

ROl Zooming - I __________ H _____

When the mouse cursor is moved over the memory usage
plot while the left mouse button is held down, a selection
rectangle is shown. Once the mouse button is released, the

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

141 CHAPTER 4 Memory Usage Window

view will be scaled up (zoomed in) in order to match the selected region. The ROI selection
process can be canceled using the ESC key.

Mouse Zooming

The view can be scaled around the mouse cursor position by scrolling the vertical mouse
wheel while holding down a control key. Using mouse wheel zooming, the region under the
cursor will not change position while the plot's zoom level is adjusted.

Zooming via Hotkey

The view can be zoomed in or out by pressing the plus or minus key.

Double-Click Zooming

A double-click on a region fits the region into view.

Zooming via slider control in toolbar

The toolbar of the memory usage window offers a slider allowing to control the zoom level.
The toolbar can be shown and hidden via the context menu entry “Toolbar”. If this entry is
checked, the toolbar is shown, if it is unchecked, the toolbar is hidden.

4.14.4 Context Menu

The Memory Usage Window’s context menu provides the following actions:

Set/Clear Breakpoint

Sets or clears a breakpoint on the selected function.

Show Source

Shows the source code location of the selected memory region within the Source Viewer
(see Source Viewer on page 156).

Show Disassembly

Shows the disassembly of with the selected memory region within the Disassembly Window
(see Disassembly Window on page 117).

Show Data @ SetBreakpoint Fg
Shows the selected memory region within the Memory Win- ¢| Show Source Ctrl+u
dow (see Memory Window on page 135). —

|p| Show Disassembly Ctrl+D
Zoom In 1] Show Data Cirl+T
Increases the zoom level. T . +
Zoom Out Zoom Qut -

Show All Reqions

Decreases the zoom level. ;

I=| GoTo... Ctrl+G
Show All Regions Edit Regions. ..
Resets the zoom level so that all memory regions are fully

. Toolbar

visible.
Go To...
Opens an input dialog that enables users to input the address range or symbol name to
scroll to.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

142 CHAPTER 4 Memory Usage Window

Edit Regions

Opens the memory segment dialog (see Supplying Memory Segment Information on
page 140).

Toolbar
Toggles the display of the toolbar.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

143 CHAPTER 4 SmartView Window

4.15 SmartView Window

The SmartView window allows an in-depth look into internal data structures of the appli-
cation or the core by retrieving the information from the target and arranging it in an easy
to comprehend table view. Linked lists, for example, can be examined inside the watched
data window, each next pointer opening a new sub-tree containing the next element’s data,
however this is a bit cumbersome. The SmartView window allows stepping through the
whole list, extract all the information or just the information of interest, and display the
data of all list elements in a table.

Each plugin can provide multiple pages, allowing to focus on a different aspect of the re-
spective target software.

Multiple plugins can be loaded at the same time. This is handy for target applications con-
sisting of multiple building blocks (such as the SEGGER middleware libraries). Once a script
is written for a building block it can be used in all applications where this building block
is used, alongside the scripts for the other building blocks present in the respective target
software.

Multiple SmartView windows may be opened at the same time. This allows for displaying
multiple pages of multiple scripts at the same time.

SmartView 1 (emFile/Global) * |/ FS_Start.c X \
Plug-in/Page: emFile/Global < File Scope F MainTask <
Item Value 0 269 [F5_SetEncryptionCbject (pFileCrypt, &CryptObj): s
Number of sector buffers 4 270 #endif // F5_SUPPCRT_ENCRYPTICH
Max sector size 2048 bytes _:_ + prir_mt,f (" i\“?'it,-': t,'?st, data t,:- -: %sn", acFileNam
Is inited Yas 272 [(void) FS_Write (pFileCrypt, "Another test", 13);
@ 0 273 & (void) FS_FClose (pFileCrypt):
Is storage inited Yes 274) else {
Mumber of volumes 4 275 [+ printf (" R: Could not open file \"%s\" for writ
Write mode Safe 27 }
File buffer size 2048 bytes = cnee .]
" . 2 + printf ("Close all files..."):
File buffer flags Read/write 279 @ (void) FS FClose (pFile2): >
Copyright SEGGER emFile ¥51800u < = >
SmartView 2 (emfile/Global/File Handles) X
Flug-in/Fage: emFile/Global/File Handles -
Id InUse File Object Access Mode Cursor Pos Last Error File Buffer
0x1fff2450 Yes diskpart:0:\File.bd " i} 0 Position: 0, size: 2048 bytes, used: 0 bytes, dirty: No, flags: Read/write
Ox1fff401c Yes diskpart:0:\FileCrypt.bdt "w" 13 0 Position: 0, size: 2048 bytes, used: 13 bytes, dirty: Yes, flags: Read/write
0x1fff4848 Mo 00 "t 4 0 Position: 0, size: 2048 bytes, used: 4 bytes, dirty: No, flags: Read/write
0x1fffS074 Yes diskpart:1:\File3.t« "W 128 0 Position: 0, size: 2048 bytes, used: 0 bytes, dirty: No, flags: Read/write
SmartView 3 (emFile/Global/File Objects) X
Plug-in/Page: emFile/Global/File Objects -
d Status File Name Size Volume Partition Encryption
0x1fff2468 Used by 1 handles diskpart:0:\File.td 4 bytes Volume 1 FAT, Sector: 11, Position: 1 No encryption
Ox1fff3ee4 Used by 1 handles diskpart:1:\File3.bd 128 bytes Volume 2 FAT, Sector: 11, Position: 1 No encryption
Ox1fff58fc Used by 1 handles diskpart:0:\FileCrypt.bd 0 bytes Volume 1 FAT, Sector: 11, Position: 3 Encryption size: 0 bytes, Context: MainTask._Context, B
< >

Three SmartView Windows displaying emFile information.

4.15.1 SmartView Plugin Concept

The SmartView window’s logic is provided by a JavaScript plugin. By implementing a new
plugin following the rules laid out in section SmartView Plugin on page 244 support for
a new building block can be added to Ozone. It is also possible to quickly implement a
script allowing for displaying the content of a complex data structure in user code in a
comprehensive, human-readable way.

A plugin is loaded by means of the command Project.SetSmartViewPlugin on page 344.
When this command is placed into project script function OnPr oj ect Load, the plugin will
be loaded each time the project is opened. Refer to Project File Example on page 180 for
further information.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

144 CHAPTER 4 SmartView Window

4.15.1.1 Available SmartView Plugins

Middleware File Name
emFile enfFile.js
emNet emNet.js
uKOS-X ukKCSs. j s

4.15.2 Selecting Pages

The page to be displayed in a dedicated SmartView win- | emFile/Global/Memory Manager
dow can be selected via the drop-down box on the right | emFile/Global/File Handles

side of the toolbar. If the toolbar is not visible it can be |emFile/Global/File Objects

shown via the context menu (see section Context Menu |empFile/Volume

on page 141). emFile/Volume/Partition
emFile/Volume,/F5
emFile/Volume,/F5-API
emFile/Config/FAT-Config
emFile/Config/EFS-Config hd

The drop-down box displays all pages provided by all
plugins which are currently loaded in the Ozone project.
For each available page the plugin name precedes the
page name.

4.15.3 Context Menu

Refresh

Refreshes the content of the page currently displayed in the respective SmartView window.

Reload Plugin

Reloads the JavaScript plugin. This action must be triggered in order for changes to the
script file to take effect.

Edit Plugln O Refresh

Opens the JavaScript source code file within the Source Viewer, © Reload Plugin
where it can be edited. =

¢ Edit Plugin
Toolbar
) o _ ~" Toolbar
Shows or hides the toolbar. Allows gaining some space in the
vertical dimension for content display on the cost of the ability ¢ Export...

to switch to a different page.

Export...

Opens afile dialog that enables users to export the table content
to a CSV file. This action can also be executed from the project script using command
Window.Export.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

145

CHAPTER 4 Power Sampling Window

4.16 Power Sampling Window

Ozone’s Power Sampling Window employs SEGGER’s Power Trace (PTRACE) API to track the
current drawn by the target. The resulting sampling data is displayed in a tabular fashion.

4
Index i ITIITIE |ChU |£I
a 0_.488 031 = £1.974 md
1 0.488 231 = 6l _.&657 mid
z 0.458 431 = g6l .560 mid
3 0.488 631 = 62 .0%6 mk
4 0.428 831 = 2l.682 mbh
=1 0_.485 031 = 2l .50 md
6 |o.483 230 s §1.755 mk
7 0.425% 430 = £1.901 md
a8 0.485% &30 = 62 _.218 md
9 0_.489 230 = 62120 mid
1a 0.470 030 = £1.901 md
11 0.470 230 = 61.511 mk
1z 0.470 430 = ©22.15%3 mbd ;I

4.16.1 Hardware Requirements

The Power Sampling Window requires the target to be powered by J-Link/]-Trace, i.e. over
the debug interface. It is to a high degree target-dependent if power supply via the tar-
get interface is supported. Please contact SEGGER if unsure about the capabilities of your
device.

In case your target does not support power via J-Link/J-Trace, you may still want to check
out Ozone’s power profiling capabilities using SEGGER’s Cortex-M trace reference board.

4.16.2 Setup

Power output of the debug probe to the target is switched off per default. Therefore, Ozone
must be instructed to activate power output to the target before a target connection is
established. To do this, system variable VAR TARGET POAER _ON is provided. The expected
way to enable power output to the target is to add the statement

Edi t . SysVar (VAR _TARGET_POWER ON, 1) ;

to project script function OnPr oj ect Load (see Event Handler Functions on page 227).

Power sampling also requires that a positive sampling rate is configured, see below.

4.16.3 Sampling Frequency

The power sampling frequency can be adjusted via the context menu or via command Ed-
it.SysVar using argument VAR PONER _SAMPLI NG _SPEED. A sampling frequency of 0 disables
power sampling.

The sampling frequency can be assigned persistently to the project by placing its command
into project script function OnPr oj ect Load.

The sampling frequency can also be changed via the drop-down field in the toolbar. If the
toolbar is not shown it can be made visibile via the context menu.

Power sampling starts automatically each time the program is resumed and stops auto-
matically each time the program halts.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

146 CHAPTER 4 Power Sampling Window

4.16.4 Data Limit

User preference PREF_MAX_PONER_SAMPLES sets the data limit of the power sampling win-
dow. The default data limit is 10M samples. When the data limit is reached, data acquisition
will continue but the oldest samples will be overwritten.

4.16.5 Timeline

Power sampling data, together with symbol and instruction trace data, is visualized in a
combined signal plot (see Timeline Window on page 165). This enables users to establish
a link between target power consumption and program execution. To further support this
correspondence, the selected table row of the Power Sampling Window is synchronized with
the sample cursor of the Timeline Window.

4.16.6 Context Menu

The context menu of the Power Sampling Window provides

i .3
the following actions: Sampiing Freguency
+ GoToTime... Cirl+3
Sampling Frequency “ Export...
Selects the power sampling frequency. v Toolbar

Goto Time

Opens an input dialog that enables users to scroll to a par-
ticular table row.

Export

Opens a file dialog that enables users to export the sampling data to a CSV file. This action
can also be executed from the project script using command Export.PowerGraphs.

Reset Data

Resets the session’s sampling data. This action can also be executed from the project script
using command Timeline.Reset (see Timeline.Reset on page 363).

Toolbar
Toggles the toolbar.

4.16.7 Power Sampling Window Preferences

Section Power Sampling Window Settings on page 88 lists all user preference settings
pertaining to the Power Sampling Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

147

CHAPTER 4 Registers Window

4.17 Registers Window

Ozone’s Registers Window displays the state of the target’s core, system and peripheral
registers.

A
Mame Description -~
------- CPU 6543 ErS CPU Reqgisters
+ o Core 27 Reaqisters All CPU Reqisters
+| o FPL 33 Registers FPU Registers
=] mm Peripherals 533 Registers Memory-Mapped CPU Registers
- W FP & Registers Floating-Point Extension EO0D EF34
+ FPCCR Cooo aoao Holds control data for the Floating Point Unit EQ00 EF34
FPCAR Q000 0000 Holds the location of the unpopulated floating-pc 2000 EF38
=| FPDSCR Q000 0000 Holds the default values for the floating-point st E000 EFaC
¥ AHP B'0 Default value for FPSCR. AHP E00D EF2C
DN B'0 Default value for FPSCR.DM E000 EF3C
¥ FZ B'0 Default value for FPSCR.FZ EQ00 EF3C
¥ RMode bB'00 Default value for FPSCR.RMode EQ00 EF3C o
+ MVFRZ Q000 0000 Describes the features provided by the floating E000 EF48
+ R ICE 2 Reqgisters Implementation Contral Block E000 EQ0L
+ FROITM 266 Registers Instrumentation Macrocell EQ00 0000
-l F# Peripherals 2583 Reqisters Memory-Mapped Registers
- B AFEC 53 Reqgisters
+ FR AFECO 29 Registers Analog Front-End Controller 4003 CO00
+ FR AFEC1 29 Registers Analog Front-End Controller 400& 4000
+H B MCAMN 33 Registers
+ B PIO 275 Registers
¥ B PWM 216 Registers |

Registers window displaying Cortex-M peripherals.

4.17.1 SVD Files

The Registers Window relies on System View Description files (*.svd) that describe the
register set of the target. The SVD standard is widely adopted — many MCU vendors provide
SVD register set description files for their models.

Architecture-specific SVD-Files

Ozone ships with an SVD file for each supported target architecture. These files provide
descriptions of all architecture-defined CPU, system and peripheral registers. Users select
the SVD file that matches their target on the first page of the Project Wizard (see Project
Wizard on page 35).

Vendor-specific SVD-Files

The project wizard also enables users to select an additional vendor-specific SVD file which
describes the vendor-specific peripheral register set of the target. Note that Ozone does
not ship with vendor-specific SVD files out of the box; users have to obtain the file from
their MCU vendor.

Assigning SVD files to the Project

The SVD file selection can be assigned to a project by making corresponding calls to com-
mand Project.AddSvdFile from project script function OnPr oj ect Load. These calls are added
automatically to Project Wizard generated projects.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://developer.arm.com/embedded/cmsis

148 CHAPTER 4 Registers Window

4.17.2 Register Groups

The Registers Window partitions target registers into the following groups:

Core Registers (Now)

CPU registers that are in use given the current operating mode of the target.

Core Registers (All)

All CPU registers, i.e. the combination of all operating mode registers.

FP Registers

Floating-point registers. This category is only available when the target includes a floating
point unit.

System Registers (e.g. CP-15)

Architecture-defined registers that monitor and control system functions, such as coproces-
sor-15 registers on Cortex-A/R. As a defining criteria, these registers are mapped to ma-
chine instructions and not to memory. System registers can be accessed using commands
Target.SetReg (see Target.SetReg on page 357) and Target.GetReg (see Target.GetReg
on page 358).

Peripheral Registers (CPU)

Architecture-defined special function registers. As a defining criteria, these registers are
memory-mapped. This group is shown below the CPU node.

Peripheral Registers

Implementation (or vendor)-defined special function registers. As a defining criteria, these
registers are memory-mapped. This group is only shown when a vendor-specific register
set description file was specified (see SVD Files on page 147).

Peripheral registers can be accessed using commands:

Target.ReadU32 (see Target.ReadU32 on page 359)
Target.WriteU32 (see Target. WriteU32 on page 358)
Target.GetReg (see Target.GetReg on page 358)
Target.SetReg (see Target.SetReg on page 357)

4.17.3 Bit Fields

-~ A register that does not contain a single value but rather one or multiple bit fields can
: be expanded or collapsed within the Registers Window so that its bit fields are shown
or hidden. Bit fields can be edited just like normal register values.

Flag Strings

A bit field register that contains only bit fields of length 1 (flags) displays the state of it’s
flags as a symbol string. These symbol strings are composed in the following way: the first
letter of a flag’s name is displayed uppercase when the flag is set and lowercase when it
is not set.

Editable Registers and Bit-Fields

Both registers and bit fields that are not marked as read-only within the loaded SVD file
can be edited.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

149 CHAPTER 4 Registers Window

4.17.4 Processor Operating Mode

An ARM processor’s current operating mode is displayed as the value of the current CPU
registers group (compare with the title figure). An ARM processor can be in any of 7 op-
erating modes:

USR SvC ABT IRQ FIQ SYS UND

User Supervisor | Abort Interrupt | Fast IRQ System Undefined

ARM processor operating modes

4.17.5 Register Display

Accessible from the context menu, the Register Display dialog enables users to specify
which registers and register groups are shown by the Registers Window and which ones
are hidden from display.

x|
Select registers to display:
o Core i [W] "R GPICE PR 1252ext R USART1
- P R GPIOA R [253ext R USARTZ2
o Peripherals W GPICE R USART3
R Peripherals FR GPIOD E TIM
R GPIOC R TIM1 E USBE_OTG_FS
E ADC R TIM2 FR OTG_FS_GLOBAL
R ADC1 E 12 R TIM3 R OTG_F5_HOST
FR ADC_Common R 1203 R TIMS R OTG_F5_DEVICE
R 1202 R TIMG R OTG_F5_PWRCLE
E DMA R 12C1 R TIM10
W] FH DMAZ W] FR TIM11 W] R CRC
PR OMA1 5P FR TIM4 FR DEG
R SPI1 R EXTI
E GPIO R SPIZ E USART FR FLASH
R GPIOH R SPI3 R USARTS PR IWDG
4| _pl
QK Cancel |

4.17.6 Context Menu
The Registers Windows’s context menu provides the following actions:

Show Source

Displays the source code line affiliated with the register value (interpreted as instruction
address).

Show Disassembly

Displays the disassembly at the register value.

Show Data

Displays the memory at the register value (interpreted as a memory address).

Display (All) As

Sets the display format of the selected item or the whole window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

150 CHAPTER 4 Registers Window

Refresh Rate

Selects the refresh rate which is used to sample all peripheral registers that are selected
for periodic update.

The refresh rate can also be specified via the drop-down-box in the toolbar. If the toolbar
is not shown it may be enabled via the context menu.

Expand / Collapse All c| Show Source Ctrl+U
Expands or collapses all top-level nodes. b Show Disassembly CHI4D
Add SVD File |1 Show Data Ctri+T
Opens a file dialog which enables users to add Display As 3
an extra SVD file to the debug session. The _
change is not persistent and will be lost when Display All As g
the project is closed. Refresh Rate 3
Display Registers Expand All Alt++
Displays the Register Display dialog that en- @ Collapse Al Alt+-
ables users to define which registers are visi-
ble. Add SVD File... Alt+Shift++
Toolbar / Filter bar Display Registers..
Toggles display of the toolbar or filter bar, re- Toolbar
spectively.
Filter Bar

Export

= BExport...

Opens a file dialog that enables users to export
the table content to a CSV file. This action can
also be executed from the project script using command Window.Export.

4.17.7 Table Window

The Registers Window shares multiple features with other table-based debug information
windows provided by Ozone (see Table Windows on page 58).

4.17.8 Multiple Instances

Users may add as many Registers Windows to the Main Window as desired.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

151 CHAPTER 4 RTOS Window

4.18 RTOS Window

Ozone’s RTOS Window displays RTOS-specific application information and enables users
to set the execution context of any RTOS task as the current context displayed by the

debugger.
A
Stack Info
as 100 el ave (9700 | 128/ 512 @ 0%200000C0

MP Task 954 75 [Delaved 1(970) 164 /517 @ OxZ000031C Ox20
Ewal Task 13 G5 [waiting For Task Evert 132 [512 @ 0xz0000704 Oxz20
[LP Task 042 50 [Executing 144 | 512 @ 0x200005758 0x20
Background TaskS 1 [[waiting For message in Mailb 164 [256 @ Ox200010FC Ox20
Background Task 4 1 g [waiting for message in Que 164 | 256 @ Ox20000FFC Oxz0
Backaround Task 3 2 4 [wyaiting for Event Object 0x 156 [256 @ Ox20000EFC Oxz20
Backaround Task 2 1 3 [wwaiting For Memory Poaol 0%z 156 [256 @ Ox200000FC Qw20
Background Task 1 1 z [} waiting for Semaphore 0x20 156 [256 @ Ox20000CFC Ox20
Background Task0 1 1 [waiting For Mutex 0x200012 156 [256 @ 0x20000BFC Ox20
Idle [
< | i

RTOS Window displaying a task list.

4.18.1 RTOS Plugin

The RTOS Window’s application logic is provided by a JavaScript plugin. By implementing
a new plugin following the rules laid out in section RTOS Awareness Plugin on page 237,
support for a specific embedded operating system can be added to the RTOS Window.

Command Project.SetOSPlugin on page 343 loads an RTOS plugin. When this command is
placed into project script function OnPr oj ect Load, the plugin will be loaded each time the
project is opened. Refer to Project File Example on page 180 for further information.

Ozone ships with multiple RTOS-awareness plugins. See Available RTOS Plugins on
page 152 for a complete list.

4.18.2 RTOS Informational Views
%

Timers I Marne | Timeoukt I Hook, | Period I
Q200012102 Timetshark 10 {RO0) QxB0001F1 {_Timershort_Callback) z0

Q20001 1FC TimerLong 10 {ROO) QxB0001C9 {_TimerLong_Callback) 200

QUeUes Marme | Messages I Buffer Address | Buffer Size | Waiting Tasks I
Ox20001334 Queue 0 0 0x20001365 Q5 0x20000844 (Background Task 4)
Swskem Information | Yalue I
Swskem Skakus Lk,

Swskem Time a0

Current Task Q2000051 C (LP Task)

Active Task Q2000051 C (LP Task)

emb0S Build Debug + Prafiling (DP)

embidS Version 5.02a

RTOS window showing multiple RTOS informational views.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

152 CHAPTER 4

Users — or rather RTOS plugin code — may add multiple tables to the RTOS Window, allowing
the display of multiple types of RTOS information and resources. For example, a task list
may be shown in one table and a semaphore list in another. Section RTOS Awareness Plugin

RTOS Window

on page 237 describes the programming possibilities of the RTOS Window in detail.

RTOS informational views are laid out vertically within the RTOS Window’s display area and

can be resized freely.

4.18.3 Task Context Activation

By activating a table row of the task list, the register set of the corresponding task is made

the active execution context of the debugger. What this means is that:

o the Registers Window will show the values of the core registers at the time the task

was interrupted or suspended.

o the Call Stack Window will show the function calling hierarchy at the execution point

of the task.

e the Local Data Window will show the local variables and parameters at the execution

point of the task.

Identifying the Active Task

The active task can be identified by the arrow icon displayed at the left side of its table row.

4.18.4 Context Menu

Refresh

Refreshes all RTOS informational views currently visible.

Reload Plugin

Reloads the JavaScript RTOS plugin. This action must be triggered
in order for changes to the script file to take effect.

Edit Script

Opens the JavaScript RTOS plugin within the Source Viewer, where
it can be edited.

Views

The context menu of the RTOS Window shows an entry for each
RTOS informational view. By toggling an item, the affiliated view is
shown or hidden.

4.18.5 Available RTOS Plugins

&

Refresh
Reload Flugin
Edit Script

Event Ohjects
Mailboxes

Memory Pools
Mutexes

Queues
Semaphores
System Information
Task List

Timers

Watchdogs

RTOS File Name
ChibiOS Chi bi OSPl ugin. s
embOS enmbCOSPl ugin. js
embOS Ultra enbOSU traPl ugin.js
FreeRTOS for Cortex-A FreeRTOSPl ugi n_Cortex-A.js
FreeRTOS for Cortex-M FreeRTOSPl ugin_Cortex-Mjs
FreeRTOS for Legacy-ARM FreeRTOSPI ugi n_ARM j s
FreeRTOS for RISC-V FreeRTOSPl ugi n_RI SC- V. j s
NuttX Nutt XPl ugin.js
ThreadX ThreadXPl ugin.js

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

153 CHAPTER 4 RTOS Window

RTOS File Name

Zephyr ZephyrPlugin.js

Following plugins are not maintained anymore and are left over for compatibility. They are
subject to be removed in a future Ozone release.

FreeRTOSPI ugi n_CA9. j s
FreeRTOSPI ugin_CMWD. j s
FreeRTOSPl ugin_CMB. | s
FreeRTOSPl ugin_CMW4. | s
FreeRTOSPl ugin_CW7. | s

A programming guide for RTOS plugins is provided by section RTOS Awareness Plugin on
page 237.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

154 CHAPTER 4 Source Files Window

4.19 Source Files Window

Ozone’s Source Files Window lists the source files that were used to generate the debuggee.

4
File / |status | size| #insts| path [~
. SEGGER.h incduded C:/ExamplesTestsuites/SEGGER _Ozone_embOS_Plugin
| SEGGER_SYSVIEW.h included C:/Examples,Testsuites /SEGGER_Crzone_embO5_Plugin,
| stdarg.h included C:/Program Files/SEGGER /SEGGER Embedded Studio for
| stdint.h included C:/Program Files/SEGGER /SEGGER Embedded Studio for
|1 STM32F41x_Vectors.s compiled 18 g C:/Examples/Testsuites/SEGGER_Ozone_emb05_Flugin,
| stm32fech included C:/Examples Testsuites /SEGGER_Dzone_embO5_Plugin,
|%] STM32F4ux_Startup.s compiled 3 7 C:fExamples,Testsuites /[SEGGER_Ozone_embOS5_Plugin,
| string.h included C:/Program Files [SEGGER, /SEGGER Embedded Studio for
|| system_stm32fdux.c compiled 40 27 C:/Examples/Testsuites /SEGGER_Ozone_embOS_Plugin
| system_stm32f4ch included C:/Examples,Testsuites /SEGGER_Crzone_embO5_Plugin,
|1 thumb_cri0.s compiled 348 37 CifExamples/Testsuites/SEGGER._Ozone_embO5_Pluging
i __crossworks.h included c:/Tool/C/Seqoer SES_W334findude/__crossworks.h

| OS_ARMyIM_ISRCheckPr external C:Miorkfemb0s fembQS_CortexM_ES/CPLUOSSrcCPLUC
4 O5_EventObject.c external C:fWorkfembO5 femb05_CortexM_ES/GenO55rcf0S_Ey
i O5_Global.c external C:fWorkfembO5 jemb05_CortexM_ESjGen055rcf05_Gh
4 05_Info.c external C:ﬂf'.n'l:urk,."eml:uOS,."eml:uOS_Cl:urtexM_ESfGenOSSrchS_In;I

4.19.1 Source File Information
The Source Files Window displays the following information about source files:
File
Filename. An icon preceding the filename indicates the file status.

Status

Indicates how the compiler used the source file to generate the debuggee. A source file
that contains program code is displayed as a “compiled” file. A source file that was used to
extract type definitions is displayed as an “included” file.

Size
Byte size of the program machine code encompassed by the source file.

#Insts

The number of instructions encompassed by the source file.

Note

Instruction-level information may not be accessible to Ozone before debug session
startup completion (see Startup Completion Point on page 188). Ozone will display
a warning sign next to table values which may be unavailable due to this reason.

Path

File system path of the source file.

4.19.2 Unresolved Source Files

A source file that the debugger could not locate on the file system is indicated

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller Gmbh

155 CHAPTER 4 Source Files Window

by a warning sign within the Source Files Window. Ozone supplies users with multiple
options to locate missing source files (see Locating Missing Source Files on page 207).
The user may also edit and correct file paths directly within the Source Files Window.

4.19.3 Context Menu

The context menu of the Source Files Window

adapts to the selected file. c| Show Source Return
. Select In File Explorer Ctrl+F2
Show Source
Opens the selected file in the Source Viewer Eilter Bar
(see Source Viewer on page 156). The same Total Value Bar
can be achieved by double-clicking on the file.
. ¥ Export...
Locate File = =t

Opens a file dialog that lets users locate the
selected file on the file system. This context menu is displayed when the selected source

file is missing.
Select In File Explorer

Selects the file within the default file explorer of the operating system.

Filter Bar / Total Value Bar

Toggles the named table header bar.
Export

Opens a file dialog that enables users to export the table content to a CSV file. This action
can also be executed from the project script using command Window.Export.

4.19.4 Table Window

The Source Files Window shares multiple features with other table-based debug information
windows (see Table Windows on page 58).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

156 CHAPTER 4 Source Viewer

4.20 Source Viewer

The Source Code Viewer (or Source Viewer for short) enables users to observe program
execution on the source-code level, set source breakpoints and perform quick adjustment
of the program code. Individual source code lines can be expanded to reveal the affiliated
assembly code instructions.

starbup_stm3zfdux.s X Y kasks.c X Y main.c > \ ¥

File Scope j| i wokartLEDFlashTasks ﬂ
107 woid vEtartLEDFlashTasks({ UBaseType t uxPriority) ;l
1 108
1 OS00ZA10 BL30 PUIZH {P4-BE LB}
1 O200ZA1Z EOZE SUE P, BP, #=20
1 OS00ZA14 ooog4 MoY B4, RO
105 EBaseType_t xLEDTaszk:
110
111 #* Create the three tasks. *7F
@1 11=7[= fori xLEDTask = 0; xLEDTask < ledNUMEER OF LEDE; ++xLEDTask |
1 0200ZalE zoono Mow RO, #0
1 og00zals aoos oY RL, RO
=% 2 | 0S00Za18 D03 CHMP DL, #32 -J
o 0g00zalc LAOF ECGE “wStartLEDFlashTasks=+0xZE ;200ZL3E
. 0200ZA30 1CED AT RS, RS, #£1
E 0200zazc ET7ED E “wStartLEDFlashTasks=+0xi 200ZL1L
113 {
114 f* Bpawm the task. */
2 11:5 [= xTaskCreate{ wLEDFlashTask, "LEDx", ledSTACE S5IZE, NULL, uxPriority
E OZ00ZALE zooo Moy RO, $0O
z O200ZAZ0 003 TR RO, [2P, #4+0x0C]
Z O200ZAZE pu [} Moy RO, #0O
s OS00ZAF4 00E 5TR RO

. [SD, #+0x08] =
1 b

4.20.1 Supported File Types

The Source Viewer is able to display text documents of any file extension. Syntax high-
lighting is limited to the following file types:

e C source code files: *.c, *.cpp, *.h, *.hpp, *.cc
e Assembly code files: *.s, *.asm, *.arm

4.20.2 Execution Counters

Within a switchable sidebar on the left, the Source Viewer may display the execution counts
of individual source lines and instructions (see Code Execution Counters on page 55).

4.20.3 Opening and Closing Documents

Documents can be opened via the file dialog (see File Menu on page 45) or using commands
File.Open and File.Close (see File Actions on page 292).

4.20.4 Editing Documents

Ozone’s Source Viewer provides all standard text editing capabilities and keyboard short-
cuts. Please refer to section Key Bindings on page 130 for an overview of the key bindings
available for editing documents. It is advised to recompile the program following source
code modifications as source-level debug information may otherwise be impaired.

4.20.5 Document Tab Bar
TR svstem_stm3zfacoc X\ Mainc X\ RTOSInk_STM32F4x_CMSIS.c X\ -

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

157

CHAPTER 4 Source Viewer

The document tab bar hosts a tab for each source code document that has been opened
in the Source Viewer. The tab of the visible (or active) document is highlighted. Users can
switch the active document by clicking on its tab or by selecting it from the tab bar’s drop-
down button. The drop-down button is located on the right side of the tab bar.

4.20.5.1 Tab Bar Context Menu

The tab bar’s context menu hosts actions that can be used to close documents, to select
the active document within the operating system’s file explorer, and to reload the active
document from disk.

4.20.5.2 Tab Selection Widget Main.c
Shortcut Ctrl+Tab brings up the Source Viewer’s b trcRecorderh
document tab selection widget. This widget fa- B main.c
cilitates the activation of document tabs. While | trekernelPort.c
the tab selection widget is visible, hotkeys Ctrl 2| startup_stm32f4ux.5

+Tab and Ctrl+Shift+Tab can be pressed to se-
lect the next or previous document tab, respec- C Source File

tively. When the control key is released, the se- . [Examples/Board_412_PercepioTrace/Start/Os/
lected document is activated. N

4.20.6 Document Header Bar

= ClassA j F FuncA2 jl

The document header bar provides users with the ability to quickly navigate to a particular
function within the active document. The header bar hosts two drop-down lists. The drop-
down list on the left side contains all function scopes (namespaces or classes) present
within the active document. The drop-down list on the right side lists all functions that are
contained within the selected scope. When a function is selected, the corresponding source
line is highlighted and scrolled into view.

4.20.7 Symbol Tooltips

By hovering the mouse cursor over a variable, the variable’s value is displayed in a tooltip.
Please note that this feature only works for local variables when the function that contains
the local variable is the active function of the Local Data Window. A function can be activated
by selecting it within the Call Stack Window.

4.20.8 Expression Tooltips

¢
I
o
H
of
(2
n

f* The total number of 32Z2-bit worda neede

nBParam = Epattha-t s Fhas -]

if (nParam > 15-:1[,:“'?1

strParam+nArgs Bo stoze moze
t b 7

* Truneate even| o-- The string cha:r
23t, Io usually — o is truncated, 1
T T t'v':“‘ Location const [0 COOTERESS. L
BT PEESEELEES---| gige 8 Bytes

Type long long
f/* Diagnostics .Le—
uint3Z_t bytesTrucated = (nParam - 15) * 4;

When text is selected within the Source Viewer, it is evaluated as an expression and the
result is displayed in a tooltip (see Working With Expressions on page 205).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

158 CHAPTER 4 Source Viewer

4.20.9 Expandable Source Lines

Each text line of the active source code document that contains executable code can be
expanded or collapsed to reveal or hide the affiliated machine instructions. Each such text
line is preceded by an expansion indicator that toggles the line’s expansion state. Further-
more, when the PC Line is expanded, the debugger’s stepping behavior will be the same
as if the Disassembly Window was the active code window (see Stepping Expanded Source
Code Lines on page 190).

4.20.10 Key Bindings

The table below provides an overview of the Source Viewer’s special-purpose key bindings.

Hotkey Description
Ctri+Tab Selects the next document in the list of open documents.
Ctrl+Shift+Tab | Selects the previous document in the list of open documents.
Ctrl+Plus Expands the current line.
Ctrl+Minus Collapses the current line.
Alt+Plus Expands all lines within the current document.
Alt+Minus Collapses all lines within the current document.
Alt+Left Shows the previous location in the text cursor history.
Alt+Right Shows the next location in the text cursor history.
Ctrl+Wheel Adjusts the font size.
F3 Finds the next occurrence of the current search string.
Ctrl+F3 Finds the next occurrence of the word under the cursor.

Next to these keyboard shortcuts, the source viewer also supports the standard hotkeys
provided by debug windows (see Standard Shortcuts on page 52) and code windows {see
Text Cursor Navigation Shortcuts on page 567%.

4.20.11 Syntax Highlighting

The Source Viewer applies syntax highlighting to source code. The syntax highlighting colors
can be adjusted via command Edit.Color (see Edit.Color on page 309) or via the User
Preference Dialog (see User Preference Dialog on page 86).

4.20.12 Source Line Numbers

The display of source line numbers can be toggled by executing command Edit.Preference
using parameter PREF_SHOW LI NE_NUMBERS (see Edit.Preference on page 308) or via the
User Preference Dialog (see User Preference Dialog on page 86).

4.20.13 Context Menu

The Source Viewer’s context menu provides the following actions:

Set / Clear / Edit Breakpoint @ SetBreskpaint Fg

Sets, clears or edits a breakpoint on the selected @ Break on Change

source code line. # SetTracepoint (Start)

Break On Change m SetTracepoint (Stop)
Sets a data breakpoint on the variable under the 7§ 5etMextStatement Shift+F 10
cursor. The breakpoint is triggered when the vari- #] RunTo Cursor e

able’s value changes.
4cl Show Value in Source
Ozone User Guide & Reference Manual (UM08025) 4O 28182606 SHBEERMicrocontroller GmbH
4= Show Value in Data

159

CHAPTER 4 Source Viewer

Set Tracepoint (Start/Stop)

Sets a tracepoint on the selected source code line (see Tracepoints on page 212).

Set Next Statement

Sets the PC to the first machine instruction of the selected source code line. Any code
between the current PC and the selected instruction will be skipped, i.e. will not be executed.

Run To Cursor

Advances program execution to the current cursor position. All code between the current
PC and the cursor position is executed.

Show Value in Source

Displays the source code declaration location of the symbol pointed to within the Source
Viewer. Only shown for pointer-type variables.

Show Value in Disassembly

Displays the disassembly location of the symbol pointed to within the Disassembly Window.
Only shown for pointer-type variables.

Show Value in Data

Displays the memory location of the symbol pointed to within the Memory Window. Only
shown for pointer-type variables.

Show Definition

Jumps to the source code definition location of the symbol under the cursor.

Show Declaration

Jumps to the source code declaration location of the symbol under the cursor.

Show Disassembly

Displays the first machine instruction of the selected source code line in the Disassembly
Window (see Disassembly Window on page 117).

Show Data

Displays the data location of the symbol under the cursor within the Memory Window (see
Memory Window on page 135).

Show Call Graph

Displays the call graph of the function under the cursor within the Call Graph Window (see
Call Graph Window on page 99).

Show in Memory Map

Shows the symbol under the cursor within the Memory Usage Window (see Memory Usage
Window on page 139). Call Graph Window (see Call Graph Window on page 99).

Watch

Adds the expression under the cursor to the Watched Data Window (see Watched Data
Window on page 176).

Quick Watch

Shows the expression under the cursor within the Quick Watch Dialog (see Quick Watch
Dialog on page 94).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

160 CHAPTER 4 Source Viewer

Graph

Adds the expression under the cursor to the Data Sampling Window (see Data Sampling
Window on page 114).

Goto PC

Displays the PC line. If the source code document containing the PC line is not open or
visible, it is opened and brought to the front.

Goto Line
Scrolls the active document to the line number obtained from an input dialog.
Find

Opens the Quick Find Widget with the word under the cursor (see Quick Find Widget on
page 92).

Find In Trace

Opens the Find In Trace Dialog with the word under the cursor (see Find In Trace Dialog
on page 73).

Expand / Collapse All

Expands or Collapses all expandable lines within the current document.

Cut/Copy/Paste

Standard text editor actions.

Line Numbers

Displays a submenu that enables users to specify the line numbering frequency.

Execution Counters

Toggles the display of Code Execution Counters (see Code Execution Counters on page 55).

Instruction Encodings

Toggles the display of instruction encodings within inline assembly code.

Pseudo Instructions

Enables or disables pseudo-instruction display.

Export

Opens a file dialog that enables users to export the content of the current source window,
including side bar information, to a CSV file. This action can also be executed from the
project script using command Window.Export.

4.20.14 Font

The Source Viewer's font can be adjusted by executing command Edit.Font (see Edit.Font
on page 310) or via the User Preference Dialog (see User Preference Dialog on page 86).

Quick Adjustment of the Font Size

The font size can be quick-adjusted by scrolling the
mouse wheel while holding down the control key. g) — Y
This action will also bring up the font size selection
widget shown to the right. The font size selection

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

161 CHAPTER 4 Source Viewer

widget provides additional controls that facilitate font resizing. It can be used to save the
selected font size session-persistently and to reset the font size to the last saved value.

4.20.15 Code Window

The Source Viewer shares multiple features with Ozone’s second code window, the Dis-
assembly Window. Refer to Code Windows on page 53 for a shared description of these
windows.

4.20.16 Source Viewer Preferences

Section Source Viewer Settings on page 89 lists all user preference settings pertaining to
the source viewer.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

162 CHAPTER 4 Terminal Window

4.21 Terminal Window

Ozone’s Terminal Window provides text transmission of textual information from and to the
debuggee. Text output generated by the debugee is displayed in the terminal window.

Non-printable control characters are either removed or transformed into octal C-string-
sequences. ANSI escape sequences carrying color information are supported.

Terminal |

>» Output wia 3W0 active
printf via 3W0 test
printf wia 5WO test

> Semihosting I0 inactiwe

4.21.1 Supported IO Techniques

The Terminal Window supports three communication techniques for transmission of textual

data from the debugger to the debuggee and vice versa that are described in Terminal IO
on page 200.

4.21.2 Terminal Input

A debuggee may request user input via ——
the Semihosting or RTT technique. RTT in- BRSMSRUCi U SlC i X|
put requests are answered over the terminal Enter input and press Send
prompt, while Semihosting input requests can

be answered over the terminal prompt or al- L ITEEEE
ternatively over a popup dialog. Hello Target!

This common debugging technique enables
users to manipulate the program state at ap-
plication-defined execution points and to ob- 4 |
serve the resulting runtime behavior. =en Cance

4.21.2.1 Terminal Prompt

The Terminal Window'’s input text box is used

to respond to user input requests via RTT. or semihosting. The terminal prompt is located
at the bottom of the Terminal Window.

Input Termination

A string-termination character or a line break may be automatically appended to terminal
input before the text is sent to the debuggee. Input termination behavior can be adjusted
via the context menu or via command Edit.Preference (see Edit.Preference on page 308).

Asynchronous Input
Textual data can be send to the debuggee even when there is no pending input request. In
this case, the text will be stored at the next free RTT memory buffer location.

4.21.3 Ansi Escape Sequences

ANSI sequences for coloring text are supported. The following features the ANSI standard
offers, are supported:

e Standard color palette for foreground and background.
e High-intensity basic color palette for foreground and background.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

163 CHAPTER 4 Terminal Window

e 8-bit color ID palettes for selecting one of 256 entries from a color palette offering the
standard colors, high-intensity colors, grayscale colors and 216 8-bit colors

e 24-bit RGB-values for true color usage for foreground and background

e Bold formatting leads to high-intensity foreground color when using the standard color
palette.

e Underline formatting leads to high-intensity background color when using the standard
color palette.

An ANSI escape sequence has the format
<esc>"[”"<paranmeter 1>[";”"<paraneter 2>[..;”<paraneter n>]]“nf.

The sequence “<esc>[93; 48; 5; 21nf will display subsequent text in bright yellow color on
blue background.

The following table describes the parameter values supported by Ozone:

Parameter Description
30 - 37 Set foreground color in one of the standard colors.
90 - 97 Set foreground color in one of the standard high-intensity colors.
40 - 47 Set background color in one of the standard colors.
100 - 107 Set background color in one of the standard high-intensity colors.
38;5 Set foreground color via Color ID.
48;5 Set background color via Color ID.
38;2 Set foreground color via RGB value.
48;2 Set background color via RGB value.
1 Sgt foreground to bold mode, which makes the foreground color
bright.
4 Set underline mode, background color set to high-intensity.
24 Reset the underline mode, background set to normal intensity.
0 Reset, set default colors for foreground and background.

Other features the ANSI standard offers are not supported.

4.21.4 Logging

In addition to displaying the data received from the debugee in the terminal window, Ozone
can write the information into a log file. Logging can be enabled and the name of the log
file can be specified by means of the command Project.SetTerminalLogFile.

4.21.5 Control Character Handling

The terminal window's handling of non-printable control characters can be controlled via the
preference PREF_TERM NAL_NO CONTROL_CHARS. This allows to either suppress the display
of such control characters or transform it into an octal sequence as found in a C-string.

4.21.6 Terminal Window Limit

The amount of data displayed in the terminal window can be limited. For that purpose there
is the preference PREF_TERM NAL_ DATA LI M T which specifies the amount of data up to
which the terminal window will accept incoming data. Once that limit is reached, a message
is displayed in the console window and additional incoming data is rejected.

4.21.7 Context Menu

The Terminal Window's context menu provides the following actions:

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

164 CHAPTER 4 Terminal Window

Copy

Copies the selected text to the clipboard.

Select All [Copy Ctrl+C
Selects all text lines. Select Al Ctrl+a
Clear “¥ Clear Alt+Del
Clears the Terminal Window. Clear On Reset
Clear On Reset Capture RIT

Capture SWO

When checked, the window’s text area is cleared fol-

lowing each program reset. Tt e

Capture RTT Echo Input
Indicates whether the Terminal Window captures text S .
messages that are output by the debuggee via SEG- L .
GER'’s RTT technique. e
o
Capture SWO = bBeport...

Indicates whether the Terminal Window captures text
messages that are output by the debuggee via the SWO interface.

Zero-Terminate Input

Indicates if a string termination character (\0) is appended to user input before the input
is sent to the debuggee.

Echo Input

When checked, each terminal input is appended to the terminal window's text area.

End Of Line Input

Specifies the type of line break to be appended to terminal input before the input is send
to the debuggee (see Newline Formats on page 269).

Semihosting Settings
Opens the Semihosting Settings Dialog (see Semihosting Settings Dialog on page 82).

Export

Opens a file dialog that enables users to export the window content to a CSV file. This
action can also be executed from the project script using command Window.Export.

4.21.8 Terminal Window Preferences

Section Terminal Window Settings on page 89 lists all user preference settings pertaining
to the Terminal Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

165 CHAPTER 4 Timeline Window

4.22 Timeline Window

Ozone’s timeline window visualizes the supported trace and data sampling channels in a
combined signal plot.

g

| Data | Power | Code Clear On Resume LI Continuous LI @ J @
¥ ¥

Data Time +0.866 751 s Time +0.920 559 5
4 REF-0 +0.035925¢ Cursor —0.037 502 s

B numlEDs | W

Sampl. Freqg IlkHz TI
Draw Paints | [~
2 L
0
s0ma Power
M choma] | W
55 mA Sampl. Freqg |5 kHz YI
Draw Points | [~
50 m&
45ma |
Timestamps | [Time i
Function Info | 10 000 001 Insts
main

I T I T F3 T I T F T |
10 ms -20 ms +20 ms +40 ms +50 ms
5 [2

4.22.1 Overview

The timeline provides multiple interactive features that allow users to quickly understand
the time course of the displayed data both on a broad and on a narrow time scale.

The timeline is subdivided into 3 data panes:

Position Pane Description

Top Data Displays the graphs of recorded variables and expressions
Middle Power Displays the target’s power consumption

Bottom Code Displays the course of the program’s call stack

The visibility of each pane can be toggled via the toolbar or the context menu.

All data panes share a common time axis, or timescale. This enables users to e.g:

e compare the target’s power consumption against code execution
e observe selected data state at a particular program execution point

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

166

CHAPTER 4 Timeline Window

In the title figure, the debuggee switched 3 LED’s on and off in short succession. Traced
variable NumLEDs was incremented or decremented each time an LED was switched on or
off. As can be seen, the target’s power consumption is directly proportional to the humber
of active LEDs. The code pane shows multiple call stack transitions (shown as spikes).
Zooming into one of the call stack transitions presents the following view:

4

Data Power |Cnde 100ns/Div x| (= &

¥

| Time -0.012 385 861 s |

Timestamps I'I'lme - I

Function Info | 38 Insts

BSP_TogaleLED
| _TogalelED

main
T F Y T

I T I I I I
10 ns -200 ns -100 ns +100 ns +200 ns

5 18
Timeline plot after zooming in
confirming that each call stack transition corresponds to the toggling of an LED.

Instruction Ticks

The vertical ticks displayed in the figure above mark instruction boundaries. The instruction
ticks help to understand relative instruction execution durations, for example the execution
time difference of a load/store and an ALU instruction.

4.22.2 Navigating the Window with the Mouse

Navigating the window with the mouse is quite intuitive:

Moving the mouse will move the Hover Cursor.

A single left mouse click will position the Sample Cursor.

Dragging the mouse will pan the selected pane vertically and all panes horizontally.

Spinning the scroll wheel will perform the action specified in the preferences: pan

horizontally, pan vertically, zoom horizontally, zoom vertically, or no action. Horizontal

actions are performed on all panes, vertical actions only on the pane under the mouse

cursor.

e Spinning the scroll wheel while [ctrl] is pressed will zoom the pane under the mouse
cursor horizontally.

e Spinning the scroll wheel while [shift] is pressed will zoom the pane under the mouse
cursor vertically.

e Tilting the scroll wheel (or using the horizontal scroll wheel) will pan horizontally.

4.22.3 Hardware Requirements

The timeline window has individual hardware requirements for each of the 3 data panes:

Pane Hardware Requirements
Data Same as Data Sampling Window on page 114.
Power Same as Power Sampling Window on page 145.
Code Same as Instruction Trace Window on page 128.

In case your target does not satisfy all of the above hardware requirements, you may still
want to check out all capabilities of the Timeline Window using SEGGER’s Cortex-M trace

reference board.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

167 CHAPTER 4 Timeline Window

4.22.4 Setup

The timeline window is setup using project settings. Each data pane has an individual
configuration requirement, as explained by this section.

Data

The list of traced expressions is setup using the Data Sampling Window on page 114. The
data sampling rate is configured in any of the ways described in section Sampling Frequency
on page 145. A data sampling rate of 0 disables data trace.

Power

The power sampling rate is configured in any of the ways described in section Sampling
Frequency on page 145. A power sampling rate of 0 disables power trace.

Code

In order to obtain a consistent output when debugging multi-threaded applications, either:

e an RTOS-awareness plugin must have been loaded (see Project.SetOSPlugin on
page 343) or

e information about program code that performs a task switch must have been supplied
(see OS.AddContextSwitchSymbol on page 366).

For applications that include custom instructions, additionally:

e adisassembly support plugin must have been loaded (see Project.SetDisassemblyPlugin
on page 343).

4225 Code Pane

This section describes details of the code pane.

Call Frames

Each horizontal bar of the code pane represents a function invocation, or call frame. The left
and right boundaries of a call frame denote the points in time when the program entered
and exited the called function.

Exception Frames

An exception handler or interrupt service routine frame is painted with rounded corners
and a deeper color saturation level (compare with SysTi ck_Handl er in the figure below).

The information whether a function is an interrupt service routine or not is determined
by a heuristic from the ELF file. Sometimes this heuristic cannot retrieve the correct re-
sults, leading to an unexpected display in the code pane. In such a case the exact location
and size of the vector table can be specified by means of the system variables VAR VEC
TORTABLE _ADDR and VAR VECTORTABLE_SI ZE.

Frame Tooltips

When the mouse cursor hovers over a call frame of the timeline plot, a tooltip pops up that
informs about frame properties such as the number of encompassed instructions.

Task Context Highlighting

Instruction blocks that were executed by different threads of the target application are
distinguishable through the window background color. The task context highlighting fea-
ture requires an OS-awareness-plugin to have been set (see RTOS Awareness Plugin on
page 237).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

168 CHAPTER 4 Timeline Window

4

Dats Power | Code Continuous =] (=) | (+)
Task Switch Task Switch
1l [T 1 [&
I 0S_ChangeTask_VFP |
[1hte] [wo_checd 0S_SwitchAfterlsR_CortexM | tch
lde] os_T1cK_Handie |] 0S _Deactivated | [l [ated
SysTick Hander 05_TASK_Delay lhaerfrask Delay| | |] [€]
_Dweell _HFTask 05_ChangeTask_vEP el
I I +5 us I +1I5 us I +1|5|_|s

i e

Task context highlighting within the Timeline Window.

4.22.6 Sample Cursor

The sample cursor marks the program execution point that is currently set within the PC
aware debug information windows. This enables users to get a complete view of the program
execution context for any position of the timeline plot. Conversely, changing the selection
within one of the PC-aware debug windows also causes the sample cursor to adjust.

The default color used for execution point highlighting is yellow and can be adjusted via
command Edit.Color (see Edit.Color on page 309) or via the User Preference Dialog (see
User Preference Dialog on page 86).

Instruction Trace = thurmb_crtd.s X\{STMSEF"rxx_Startup.s X ¥ T
0S000zZ00 MOV Rz, #0 | movs rz, #0 ﬂ File Scope
0200020 EL <memory sets> ;3000322 bl
—| mernary _sek 3 2:2 * . bne l1b
08000222 CMP RO, Bl cwp rd, rl i
02000224 EBEQ “memory set +0xd SB0003EC . sac
0S00032C B LE bx 1r = - Eh _tune
‘I I L 77 Memory Set:
] 278 [H cup rd, rl
Disassembly x 719 hEI; 1t
b lx Al zs0®m serw vz, [r0]
O80003E0 4770 Ex LE o1 [F adds r0, r0, #1
mEMOLY_Set Z8E [H b memory set
02000322 438 CHMP ko, RB1 Faa 1-
beg 1f 284 # bx lr
og0003z4 Looz EEQ AMEMOTY_S o5
‘I'“'”' == I“ j zas ¢ default C/C+H+ library help
a7
Timeline b 282 .macro HELPER helper nane
] i — a3 .section .text.helper name
2 [Diw *| (4] (= - 4
! J O (_) £a0 -global “helper name
h 4 Z91 -weak ‘helper name
"l | memary_set 232 Zhelper name:
233 -thunb func
_SlLEt 294 _endm
-26 -24 -22 Z9E
_4' J ﬂ £25 HELPER __ _aeahi read tp
| CPU halked

The sample cursor is synchronized with Ozone’s execution point aware debug windows.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

169 CHAPTER 4 Timeline Window

4.22.6.1 Positioning the Sample Cursor

The sample cursor can be positioned by single click, drag & drop or the keys shown in the
table below. In this table, “sample” refers to the data sample or instruction of the pane
which has the input focus.

Key Description
Left/Right Moves the sample cursor 1/5 grid spacing left or right
Shift + Left/Right Moves the sample cursor 1 grid spacing left or right
Up/Dn Moves the sample cursor to the previous/next sample
Page Up Moves the sample cursor 1 page left
Page Down Moves the sample cursor 1 page right
Home Moves the sample cursor to the least recent sample
End Moves the sample cursor to the most recent sample

4.22.6.2 Pinning the Sample Cursor

The sample cursor can be pinned to a fixed window position via context menu entry “Cur-
sor”. When pinned to the window, the sample cursor will always stay visible regardless of
any view modification.

4.22.7 Hover Cursor

The hover cursor is a vertical line displayed below the mouse cursor that follows the move-
ments of the mouse. At the intersection point of the hover cursor with each graph, a value
box is displayed that indicates the graph’s signal value at that position. The figure below
and the title figure give examples for the hover cursor.

4.22.8 Time Reference Points

L 4 L 4

| REF-0 0.185230401 = | Tirne 0.185 231 714 =
Cursor —0.001 278 711 =
REF-0 —-0.000001 313 =

@' SendF‘ﬁl EkPril:u

| SEGGER_SYSWIEW RecordErferlsR | [ntsrMods]|_TICK_Handle
SperNick_Handiar

05 _Idle

I I I I
- +1.275 ms - +1.279 ms +1.28 ms

To ease the measurement of time distances, the context menu provides an option to toggle
a time reference at the position of the sample cursor. For each time reference, an additional
label will be displayed next to the hover cursor that shows the time distance between the
hover cursor and the time reference.

4.22.9 Graph Legends

Each data pane provides a graph legend with a context menu:

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

170 CHAPTER 4 Timeline Window

Show Only *_TestFunc2Cnt1™ Shift+L
B TestFunc2cntl | W Set Scale ®_TestFunc2Cntl® v
|| NumLEDs | [+
Sampl. Freq m TR Show All Shift+L
Draw Paints | [Hide All Shift-+H
/ Set Color...
Eh Reset Colors Shift+L

The graph legend enables users to:

e show or hide individual graphs
e assign colors to graphs
e assign a vertical scale factor to graphs

A graph legend can be freely moved within a pane.

4.22.10 Toolbar

| Data | Power | Code Clear OnResume = | Continuous »| (=) | &

The toolbar of the timeline window has the following layout, from left to right:

e 3 buttons to toggle the display of the 3 data panes.

e a drop-down box which sets the debug event upon which timeline data is cleared (see
Clear Event on page 173).

e a drop-down box sets the time resolution of the timeline to discrete levels.
e a slider which sets the time resolution of the timeline to continuous levels.

The time resolution drop-down provides two special options:

e continuous: the time resolution is selected via the zoom slider.
e data fit: the time resolution adapts to the data in order to fit all data into view.

If the toolbar is not shown it can be made visible via the context menu.

4.22.11 Context Menu

The panes of the timeline window provide individual context menus. The illustration below
depicts the context menu of the code and power panes. The context menu of the data pane
is identical to that of the power pane, with the exception of entries Show Average, Show
Time Average and Show Names at Cursor.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

171 CHAPTER 4 Timeline Window
Fit Width Ctrl+I Fit Width Cirl +
Fit Height Cirl+E Fit Height Ctrl+E
Go To Cursor Ctrl+C Go To Cursor Ctrl+C
Go To Reference Go To Reference
Go To Time. .. Ctrl+3 Go To Time... Ctrl+G
+ Go To Start of HardrFault_Handler CtrlH eft
Cursor b
=+ Go To End of HardFault_Handler Ctrl+Right i
Sampling Freguency b
+ Go To Previous execution of HardFault_Handler Ctrl+shift+Heft
Time Scale r
=+ Go To Mext execution of HardFault_Handler Ctrl+5hift+Right
Clear Event r
+ Go To Previous function on level Ctrl+Home
Show Average k
=+ Go To Next function on level Ctrl+End
Show Time Average 3
Cursor g
Toggle Reference R
Time Scale 4
Clear All References
Clear Event r
- Set Offset To Code
Timestamps + .
Set Y-Axis Range...
Tooale Reference R Open Sampling Window
Clear All References Reset Data
Open Instruction Trace Window . .
" Auto Fit Height Cirl+A
Reset Data
- Draw Points
" Auto Fit Height Ctrl+A Lniform Sample Spacing
" Auto Scroll » Auto Scroll
Data Data
Power ~ Power
~ Code Code
Legend Legend
" Toolbar " Toolbar

Context menus of the code pane (left) and power pane (right).

Common Actions

Context menu actions provided by all panes:

Action Description
A Fits the selected data horizontally into view. When there is no se-
Fit Width
lection, fits all data of the focused pane into view
. . Fits the selected data vertically into view. When there is no selec-
Fit Height

tion, fits all visible data of the focused pane into view

Go To Cursor

Scrolls the sample cursor into view

Go To Reference

Scrolls to the time reference nearest to the sample cursor

Go To Time Shows an input dialog and scrolls to input plot position
Cursor Pins the sample cursor at a fixed window position
Time Scale Sets the time resolution of the timeline plot

Toggle Reference

Sets or clears a time reference at the sample cursor position

Clear All References

Removes all time references

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

172

CHAPTER 4 Timeline Window

Action

Description

Open Data Window

Opens the data sampling window affiliated with the pane

Reset Data

Resets the session’s trace and sampling data and thereby all
timeline panes.

Auto Fit Height

When checked, the zoom factor of the y-axis auto-adjusts to data
in order to provide integer-valued grid labels. When unchecked,
the zoom factor of the y-axis remains unchanged.

Data Toggles the data pane

Power Toggles the power pane

Code Toggles the code pane

Legend Toggles the pane’s graph legend
Toolbar Toggles the toolbar

Sampling Pane Actions

Context menu actions provided by the data and power panes:

Action

Description

Sampling Frequency

Sets the data sampling frequency. Entry “Off” (0) disables data
sampling.

Set Offset To Code

Starts operation Set Offset To Code (see Set Offset To Code on
page 173)

Draw Points

Displays sampling data as a point cloud instead of graphs

Uniform Sample
Spacing

When checked, sample timestamps are computed by Ozone
based on the sampling frequency. When unchecked, Ozone uses
the sample timestamps provided by J-Link.

Data Pane Actions

Context menu actions exclusive to the data pane:

« Auto Fit Height Ctrl+A
Action Description Draw Points
When checked, displays the Show Names at Cursor

Show Names at Cur-
sor

expression or variable name
together with the value in the
boxes close to the hover cur- ¥ Auto Scrol
sor.

LIniform Sample Spacing

Power Pane Actions

Context menu actions exclusive to the power pane:

Action

Description

Show Average

Selects the sample width of the running-average filter used to
compute the filtered power graph. The filtered power graph is
displayed along with to the power graph within the power pane.
A sample width of 0 disables the display of the filtered power
graph.

Show Time Average

Selects the time range used to compute the average power val-
ue. The average power value is displayed within the data legend
of the power pane. It is taken at the position of the hover cur-
sor or the most recent data sample, when the hover cursor is not
visible.

Code Pane Actions

0zone DO EHHEERMAGHRNPFXGIHANR IS fhe code pane: ¢ 5013.2026 SEGGER Microcontroller GmbH

173 CHAPTER 4 Timeline Window

Action Description

Set Breakpoint Sets/clears a breakpoint on the function of the selected frame
Go To Start/End of Sets the sample cursor on to the start/end of the selected frame

Go To Next/Previous | Sets the sample cursor on to the next/previous execution of the

execution of selected frame

Go To Next/Previous | Sets the sample cursor on to the next/previous function on the
function on level selected stack level

Time Stamps Selects the time unit to use with frame tooltips.

4.22.12 Settings

The timeline window evaluates the following system variables settings:

System Variable Description
Maximum number of instructions that can be ac-
VAR _TRACE_MAX_| NST_CNT quired from target and displayed within the code
pane

Conversion factor used to convert execution times

VAR_TRACE_CORE_QLOCK between CPU cycles and time units

Used for identifying interrupt service routines. Not
identifying all ISRs or assuming a function for an
ISR that is not, may result in inappropriate display
of the contents of the code pane.

VAR_VECTORTABLE_ADDR

Used for identifying interrupt service routines. Not
identifying all ISRs or assuming a function for an
ISR that is not, may result in inappropriate display
of the contents of the code pane.

VAR_VECTORTABLE_SI ZE

Section Timeline Window Settings on page 90 lists all user preference settings pertaining
to the Timeline Window.

4.22.13 Clear Event

The debug event upon which the session’s trace and sampling data is cleared can be
specified via the toolbar, the context menu or command Edit.Preference. The possible val-
ues of user preference PREF_TI MELI NE_CLEAR EVENT are listed in section Clear Events on
page 271. The clear event takes effect even when the timeline window is not open. In
addition, timeline data can also be cleared from the project script using command Time-
line.Reset (see Timeline.Reset on page 363).

Note

When the timeline is cleared, the data contents of the Instruction Trace Window, Code
Profile Window, Data Sampling Window and Power Sampling Window are reset as well.

4.22.14 Set Offset To Code

This feature allows specifying an offset on the time axis to the data and power panes
with respect to the code pane. The intention is to change the alignment or fix a potential
misalignment in the display of the repsective curves.

Assume the following state: An application toggles a variable and sets an LED according
to the new state of the variable. In the data pane we can see the graph going from 0 to 1
and the power graph also indicates an increase in power consumption caused by the LED

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

174 CHAPTER 4 Timeline Window

now being active. The code that triggers that action is executed shortly beforehand at the
cursor position. This can be seen in the subsequent graphic:

Data Power | Code | (ClearOnResume ~ | 20us/Div ~| (5 &
4
Datz Time +0.881 650 440 5
H state
1 Sampl. Freq | | 10kHz
Draw Points | []
Q
Power
M Cho[mA]
100 mA Sampl. Freq || 10kHz =
Draw Points | [_]
50 mA
Timestamps | [Tme
Function Info | 17 Insts
Pend
5 LT H, H}EJJJ
SysTack_pazips_tas| [ps_TPey
05_Idle() HPTask() 05_Idle(
T T T T Y T T T T T T T T T T T T T
pis -40 us -20 us +20us +40us +50 us +80 us +100us +120us +140 us +16(
< >
Timeline Power Sampling Data Sampling
CPU halted. Timeline: 10 000 001 instructions (119.3 ms) Connected @ 4 MHz

Adding an offset to the data graph’s position on the time axis allows aligning the rising edge
with the code that changes the variable and toggles the LED.

To do so, first set the cursor onto the rising edge in the power pane by clicking onto that
rising edge. Once the cursor is in place, open the context menu of the data pane and select
“Set Offset to Code”. A 2nd cursor, the offset cursor, will appear and the area between the
two cursors will be highlighted. In addition, below the code pane, a text is displayed which
shows the available options.

Move the offset cursor to the respective place in the code pane.

Dats Power | Code ClearOnResume v | 20us/Div v | (=) &
Dat hi v
Offset +0.000 140925 s
H State
1 Sampl. Freq | | 10kHz
Draw Points | []
a
Power
W Cho [ma)
100 mA mal |4
Sampl, Freq | | 10kHz =
Draw Paints | []
50 mA

Timestamps | | Time

Function Info | 837 634 Insts

Fend

Mtle L Ipﬁj

ysTiokHaos_Tas| ps_ife)

05_Idle() HPTask() 05_1dle)
T T T T T Al T T T T T T T T T T T Y
us -180 us -160 us -140 us -120 us -100 us -80us -60us -40 us -20 us +2(
Set data to code offset and press Enter. Press Del to reset offset. Press Esc to cancel.

< >
Timeline }, Power Sampling [Data Sampling [
CPU halted. Timeling: 10 000 001 instructions (119.3ms) | Connected @ 4 MHz

Once the offset cursor is in the correct place, press the [Enter] key. Now the offset will be
applied to the data pane and the rising edge will be aligned with the respective code. Please
note that the offset is applied only to the data graph since the context menu was opened
for the data pane. In order to specify an offset for the power graph please follow the same
steps but open the context menu for the power pane.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

Timeline Window

Datza | Power | Code ClearOnResume ¥ | 20us/Div ~| (= &
4
Datz Time +0.881 799995 5
H state
1 Sampl. Freq | | 10kHz
Draw Points | []
Q
Power
M Cho[mA]
100 mA Sampl, Freg || 10kHz =
Draw Points | [_]
50 mA
Timestamps | | Time -
Function Info | 837 694 Insts
Pend
sljbs: \mg i
55| ESIES
BysTik_ralps _Tas{ s Be)
05_Idle() HPTask() 05_Ide
T T T T T T T T T T T T T T i
us -180 us -160 us -140 us -120 us -100 us -80us -60 us -40 us -20us +21
< >
Timeline Power Sampling Data Sampling
CPU halted. Timeline: 10 000 001 instructions (119.3 ms) Connected @ 4MHz

In order to abort the action, please press the [Esc] key.
For removing the offset from a pane, open the pane’s context menu, select “Set Offset to

Code” and press the [Del] key.

Panning and zooming may be used for setting both the cursor and the offset cursor in order

to precisely hit the correct spot in the respective pane.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

176 CHAPTER 4 Watched Data Window

4.23 Watched Data Window

Ozone’s Watched Data Window tracks the values of C-style expressions that the user chose
for explicit observation (see Working With Expressions on page 205).

g
Expression Value Location Size | Refresh| Type Scope &
MurnLEDs 3 2 long long
+ (char*)0x 20000000 2000 0000 "LED const 4 Off char *
{_aLEDInfa[0].Portfin) 1= false 1 const] Off| long long
-l _alEDInfo 20000000 48 Off struct _LE BSPc
=[] 20000000 16 Off struct _LE BSPc
PortFin 2044 454C 2000 0000 4 5 Hz int BSP.c:: LED I
+ pModeReq EFED 6544 2000 0004 4 Off | wolatile u BSP.c:: LED _IM
+ pReadReg 0801 1C00 2000 0008 4 Off | wolatile u BSP.ci: LED _IM
+| pSetReq OxCO008 2000 000 4 Off wolatile u BSPc:: LED TP
=1 [1] 2000 0010 16 Off struct _LE BSPc |
PortPin 0501 2544 2000 0010 4 Off| int BSP.c:: LED I
+ pModeReq OxCO00C 2000 0014 4 Off wolatile u BSP.c: LED It
+ pReadReg 0801 ZER4 2000 0018 4 Off | volatile u BSF‘.::::_LED_II*;'

4.23.1 Adding Expressions

An expression can be watched, i.e. added to the Watched Data Window, in any of the
following ways:

via context menu entry Watch of any symbol window.

via command Window.Add (see Window.Add on page 316).

via context menu entry “*Watch...” that opens an input dialog.

by entering an expression into the last table row, which acts as an input field.
by dragging a symbol or any other source of text mime data onto the window.

Watched Data

Expression | Value | Location
+ 2000 0044

Namespace.ﬂ.::Class.ﬂ.::m_Staﬁr_Int'l.-'ar. 20000110

L]

The list of expressions can be reordered in any of the following ways:

e By dragging an expression to a new position

e By using the “up” and “down” buttons of the toolbar. If the toolbar is not shown it can
be made visible via the context menu.

e By using hotkeys “Ctrl+Up” and “Ctrl+Dn”

4.23.2 Local Variables

The Watched Data Window supports expressions that contain local variables. An expression
containing a local variable that is out of scope, i.e. whose parent function is not the current
function, displays the location text “out of scope”.

4.23.3 Live Watches

The Watched Data Window supports live updating of expressions while the program is
running. Each expression can be assigned an individual update frequency via the windows
context menu or via command Edit.RefreshRate (see Edit.RefreshRate on page 311).

Note

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

177 CHAPTER 4 Watched Data Window

The live watches feature requires the target to support background memory access.

4.23.4 Quick Watches

Where it suffices to evaluate a symbol expression momentarily, users can resort to the
Quick Watch Dialog.

4.23.5 Context Menu

The Watched Data Window’s context menu

provides the following actions: & Remove Del
¥ Set Data Breakpoint F9
Remove
Tl Graph Ctri+G

Removes an expression from the window.

'Cl Show Value in Source
Set/Clear/Edit Data Breakpoint ”

Sets/clears/edits a data breakpoint on the _
selected expression (see Data Breakpoints ~ +" Show Value in Data

4T Show Value in Disassembly

on page 194). c| Show Source Ctri+U
Graph |#] Show Data Ctri+T
Adds the selected expression to the Data Display As 3
Sampling Window. _
Display All As »

Show Value in Source Refresh Rate ’
Displays the source code declaration lo- _
cation of the symbol pointed to within % Add... Alt+Shift++
the Source Viewer. Only shown for point- </ Remove All Alt+Del
er-type variables.

Expand All Alt++
Show Value in Disassembly

+* Member Functions

Displays the disassembly location of the

symbol pointed to within the Disassembly Toolbar
Window. Only shown for pointer-type vari-
ables. Filter Bar

. Total Value Bar
Show Value in Data

¢

Displays the memory location of the sym- Export...

bol pointed to within the Memory Window.
Only shown for pointer-type variables.

Show Source

Displays the source code declaration location of the selected variable in the Source Viewer
(see Source Viewer on page 156).

Show Data

Displays the data location of the selected variable in either the Memory Window (see Mem-
ory Window on page 135) or the Registers Window (see Registers Window on page 147).

Display (All) As

Changes the display format of the selected item or of all items (see Display Format on
page 58).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

178

CHAPTER 4 Watched Data Window

Refresh Rate

Sets the refresh rate of the selected expression (see Live Watches on page 176).

Add
Opens the Watch Dialog (see Working With Expressions on page 205).

Remove All

Removes all items from the Watched Data Window.

Expand/Collapse All

Expands or collapses all top-level nodes.

Member Functions

Toggles the display of class member functions. This item is only visible when the debuggee’s
source language is C++.

Tool Bar
Toggles display of the tool bar.

Filter Bar / Total Value Bar

Toggles the named table header bar.

Export

Opens a file dialog that enables users to export the table content to a CSV file. This action
can also be executed from the project script using command Window.Export.

4.23.6 Multiple Instances

Users may add as many Watched Data Windows to the Main Window as desired.

4.23.7 Table Window

The Watched Data Window shares multiple features with other table-based debug informa-
tion windows provided by Ozone (see Table Windows on page 58).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

Chapter 5
Debugging With Ozone

This chapter explains how to debug an embedded application using Ozone’s basic and ad-
vanced debug features.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

180 CHAPTER 5 Project Files

5.1 Project Files

An Ozone project file (.jdebug) stores settings that configure the debugger so that it is ready
to debug a program on a particular hardware setup (microcontroller and debug interface).
When a project file is opened or created, the debugger is initialized with the project settings.

5.1.1 Project File Example

Illustrated below is an example project file that was created with the Project Wizard (see
Project Wizard on page 35). As can be seen, project settings are specified in a C-like syntax
and are placed inside a function. This is due to the fact that Ozone project files are in fact
programmable script files.

/***
OnProj ect Load

Functi on description
Execut ed when the project file is opened. Required.

* Ok ¥ X

*
EE Ik Ik kS b I Ik Rk S Ik S Rk I bk S S Sk kS kS S kS
*/
voi d OnProjectlLoad (void) {
Proj ect. Set Devi ce ("STM32F103ZE");
Project.SetHostIF ("USB", "0");
Project. Set Targetl F ("SWD");
Proj ect. Set Tl FSpeed ("2 Miz");
File.Open ("C:/Exanpl es/Blinky_ STM32F103_Kei | / Bl i nky/ RAM Bl i nky. axf");

}

5.1.2 Opening Project Files

A project file can be opened in any of the following ways:
Main Menu (File — Open)

Recent Projects List (File — Recent Projects)

Hotkey Ctrl+0O

User action File.Open (see File.Open on page 301)

5.1.3 Creating Project Files

A project file can be created manually using a text editor or with the aid of Ozone’s Project
Wizard (see Project Wizard on page 35). The Project Wizard creates minimal project files
that specify only the required settings.

5.1.4 Programmability

Users may reprogram key debug operations within the project file. This aspect of project
files is covered in detail in section Project Script on page 226.

5.1.5 Project Settings

Any user action that configures the debugger in some way is a valid project setting (see
User Actions on page 43). Project settings are specified by inserting user action commands
into the obligatory script function OnPr oj ect Load (compare with Project File Example on
page 180). The most relevant project settings include:

e Program File

e Target Device

¢ Connection Settings
e RTOS Plugin

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

181 CHAPTER 5 Project Files

e Source File Resolution Settings

each of these settings are described in more detail below.

5.1.5.1 Program File

The program to be debugged is specified using command File.Open. This command has a
single file path argument which can be an absolute path or a path relative to the project
file directory (see File.Open on page 301). Section Supported Program File Types on
page 183 lists the supported program file types.

5.1.5.2 Target Device
Command Project.SetDevice specifies the target device (see Project.SetDevice on
page 340).

5.1.5.3 Connection Settings

Commands Project.SetHostIF and Project.SetTargetlIF specify in which way the debug probe
is connected to the Host-PC and to the target device, respectively (see Project Actions on
page 294).

5.1.5.4 RTOS Plugin

Command Project.SetOSPIlugin specifies the file path or name of the plugin that adds RTOS
awareness to the debugger (see Project.SetOSPIlugin on page 343).

See Available RTOS Plugins on page 152 for the RTOS awareness scripts shipped with
Ozone. A guide on programming RTOS plugins is given in section RTOS Awareness Plugin
on page 237.

5.1.5.5 Source File Resolution Settings

Settings that allow Ozone to find source files that have been moved to a new location after
the program file was build are described in File Path Resolution Sequence on page 207.

5.1.5.6 Required Project Settings

A valid project file must specify the following settings:

Setting Description

Project.SetDevice The name of the target device.

Project.SetHostIF Specifies how the J-Link/]-Trace debug probe is connected to

the Host-PC.

Project.SetTargetIF Specifies how the J-Link/]-Trace debug probe is connected to
the target.

Project.SetTifSpeed Specifies the data transmission speed.

5.1.6 Project Load Diagnostics

Each time a project file is opened, Ozone performs an integrity check of the project file
and its settings. When issues are detected, the Project Load Diagnostics Dialog on page 78
is shown.

5.1.7 User Files

When a project is closed, Ozone associates a user file (*.user) with the project and stores it
next to the project file. The user file contains window layout information and other appear-
ance settings in an editable format. The next time the project is opened, Ozone restores

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

182 CHAPTER 5 Project Files

the user interface layout from the user file. User files may be shared along with project
files in order to migrate the project-individual look and feel.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

183

CHAPTER 5 Program Files

5.2 Program Files

The program to be debugged is specified as part of the project settings or is opened man-
ually from the user interface.

5.2.1 Supported Program File Types

Ozone supports the following program file types:

e ELF or compatible files (*.elf, *.out, *.axf)
e Motorola s-record files (*.srec, *.mot)

e Intel hex files (*.hex)

e Binary data files (*.bin)

5.2.2 Symbol Information

Only ELF or compatible program files contain symbol information. When specifying a pro-
gram or data file of different type, source-level debug features will be unavailable. In ad-
dition, all debugger functionality requiring symbol information — such as the variable or
function windows — will be unavailable.

Debugging without Symbol Information

Ozone provides many facilities that allow insight into programs that do not contain symbol
information. With the aid of the Disassembly Window, program execution can be observed
and controlled on a machine code level. The target’s memory and register state can be ob-
served and modified via the Memory and Registers Windows. Furthermore, many advanced
debug features such as instruction trace and terminal I0 are operational even when the
program file does not provide symbol information.

Configuring the ELF Parser

Ozone provides command EIf.SetConfig to configure the ELF parser for optimal handling of
special situations and corner cases. This command usually does not need to be employed.

5.2.3 Opening Program Files

When the program file is not specified as part of the project settings (using action
File.Open), it needs to be opened manually. A program file can be opened via the Main
Menu (File — Open), or by entering command File.Open into the Console Window’s com-
mand prompt (see File.Open on page 301).

Effects of opening a Program File

When an ELF- or compatible program file is opened, the program’s main function is dis-
played within the Source Viewer. Furthermore, all debug information windows that dis-
play static program entities are initialized. Specifically, these are the Functions Window
(see Functions Window on page 123), Source Files Window (see Source Files Window on
page 154), Global Data Window (see Global Data Window on page 126) and Code Profile
Window (see Code Profile Window on page 106).

5.2.4 Data Encoding

When an ELF or compatible program file is opened, Ozone senses the program file’'s data
encoding (data endianness) and configures itself for that encoding. Additionally, the endi-
anness mode of the attached target is set to the program file’s data encoding if supported
by the target. The target’'s endianness mode can also be specified independently via the
Debug Settings Dialog (see Debug Settings Dialog on page 68) and action Target.SetEndi-
aness (see Target.SetEndianess on page 362).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

184 CHAPTER 5 Starting the Debug Session

5.3 Starting the Debug Session

After a project was opened or created and a program file was specified, the debug session
can be started. The debug session is started via command Debug.Start (see Debug.Start on
page 331). This action can be triggered from the Debug Menu or by pressing the hotkey F5.

When the start-up procedure is complete, the debug information windows that display
target data will be initialized and the code windows will display the program execution point
(PC Line).

5.3.1 Connection Mode

The operations that are performed during the startup sequence depend on the value of
the connection mode parameter (see Debug.SetConnectMode on page 332). The different
connection modes are described below.

5.3.1.1 Download & Reset Program

The default connection mode “Download & Reset Program” performs the following startup

operations:
Startup Phase Description
Phase 1: Connect A connection to the target is established via J-Link/J-Trace.

Phase 2: Breakpoints Pending (data) breakpoints that were set in offline mode are

applied.
Phase 3: Reset A hardware reset of the target is performed.
Phase 4: Download The debuggee is downloaded to target memory.

The initial program operation is performed (see Initial Pro-

Phase 5: Finish gram Operation on page 184).

Flow Chart

Section Startup Sequence Flow Chart on page 282 provides a flow chart of the Download &
Reset Program startup sequence. This chart can be used as a reference when reprogram-
ming the sequence via the scripting interface.

5.3.1.2 Attach to Running Program

This connection mode attaches the debugger to the debuggee by performing phases 1 and
2 of the default startup sequence (see Download & Reset Program on page 184).

5.3.1.3 Attach & Halt Program

This connection mode performs the same operations as “Attach To Running Program” and
additionally halts the program.

5.3.1.4 Setting the Connection Mode

The connection mode can be set via command Debug.Set-
ConnectMode (see Debug.SetConnectMode on page 332),
via the System Variable Editor (see System Variable Editor b Attach to Running Program
on page 83) or via the Connection Menu (Debug — Start De-] attach & Halt Program

bugging). The Connection Menu is illustrated on the right.

{!} Cownload & Reset Program

5.3.2 Initial Program Operation

When the connection mode is set to Download & Reset Program, the debugger finishes the
startup sequence in one of the following ways, depending on the reset mode (see Reset
Mode on page 190):

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

185

CHAPTER 5 Starting the Debug Session

Reset Mode

Initial Program Operation

Reset & Break at Symbol

Program execution is advanced to a particular symbol.

Reset & Halt

The program is halted at the reset PC.

Reset & Run

The program is resumed.

5.3.3 Reprogramming the Startup Sequence

Parts or all of the Download & Reset Program startup sequence can be reprogrammed. The
process is discussed in detail in DebugSt art .

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

186 CHAPTER 5 Register Initialization

5.4 Register Initialization

5.4.1 Overview
Ozone initializes the program counter register (PC) and possibly also the stack pointer
register (SP) in an architecture-specific manner each time...
e a program file was downloaded to target memory.
e a hardware-reset of the target was performed.

In the download case, register initialization takes place after file contents have been written
to target memory and before the initial program operation is performed (see Initial Program
Operation on page 184).

Note

Ozone performs a hardware reset of the target...

e before a program file is downloaded
e when the program is user-reset

5.4.2 Register Reset Values

The standard register initialization values are depicted in the table below. The depicted
values apply for both download and hardware reset.

Architecture Initial PC Initial SP
Legacy ARM 0
Cortex-A/R 0
Cortex-M [0x4] [0x0]
RISC-V 0

An empty table cell indicates that Ozone leaves the register uninitialized. A value in square
brackets means that the value is interpreted as a memory location from which the register
reset value is read.

5.4.3 Manual Register Initialization

Users are able to override Ozone’s default register initialization behavior by implementing
script functions Af t er Tar get Downl oad and/or Af t er Tar get Reset . When one of these script
functions is implemented, Ozone skips the standard register initialization procedure of the
named event. In this case, users are required to implement the script function in a manner
such that the SP and PC registers are initialized according to their needs. Ozone’s scripting
system is discussed in detail in chapter Scripting Interface on page 24.

5.4.4 Project-Default Register Initialization

Ozone projects generated via the Project Wizard implement both script functions After -
Tar get Downl oad and After Tar get Reset and therefore override Ozone’s default register
initialization behavior per default (see Project Wizard on page 35). The register initializa-
tion scheme of wizard-generated projects can be specified on the last page of the Project
Wizard. The default settings are depicted in the table below. The depicted values apply for
both download and hardware reset.

Architecture Initial PC (ELF) Initial PC (Non-ELF) Initial SP
Legacy ARM Elf.e_entry <baseaddr >
Cortex-A/R Elf.e _entry <baseaddr >

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

187 CHAPTER 5 Register Initialization

Architecture Initial PC (ELF) Initial PC (Non-ELF) Initial SP
Cortex-M Elf.e_entry [<baseaddr > + 4] [<baseaddr >]
RISC-V Elf.e entry <baseaddr >

<baseaddr > stands for the lowest memory address that was written to during download.
A value in square brackets means that the value is interpreted as a memory location from
which the register reset value is read.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

188 CHAPTER 5 Startup Completion Point

5.5 Startup Completion Point

Startup completion is the moment during program execution when the debuggee has com-
pleted memory initialization. This moment is implementation-defined and not necessarily
identical to the program’s entry point function.

Knowledge about the startup completion point enables Ozone to safely initialize its instruc-
tion-level debug information once the entire machine code of the debuggee is accessible
to the debugger. For example, a debuggee may decompress parts of the program code
into target RAM before branching to the main function. In this situation, the compressed
machine code is not accessible to the debugger before startup completion.

Upon startup completion, Ozone:

e calls project script function OnSt art upConpl et e.
e updates instruction-level debug information.
e starts debug features that access memory, such as RTT and data sampling.

Startup completion reoccurs each time the startup completion point is reached following
program reset.

In certain special situations as described in section Setting Up The Instruction Cache on
page 209, the debugger may not be able to initialize its instruction-level debug informa-
tion automatically upon startup completion. In these cases, the instruction cache must be
initialized manually using command Debug.ReadIntoInstCache.

5.5.1 Specifying the Startup Completion Point

The startup completion point is maintained as system variable VAR STARTUP_COMW
PLETI ON_PO NT. This variable can be edited via the System Variable Editor or us-
ing command Edit.SysVar (see System Variable Editor on page 83 and Edit.SysVar on
page 309). The default value of this system variable is identical to the system variable
VAR BREAK AT THI S_SYMBQL, i.e. the program’s symbol or address upon which execution
shall be stopped during start-up.

Empty Startup Completion Point

When the startup completion point is set to an empty string, startup completion is defined
to occur on the first CPU halt.

Startup Completion Point When Attaching

When the program is not reset during target connection, startup completion is defined to
occur on the first CPU halt. This is the case when the connection mode is CM ATTACH or
CM ATTACH HALT (see Connection Modes on page 267).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

189 CHAPTER 5 Symbol or PC to Stop Target during Startup

5.6 Symbol or PCto Stop Target during Startup

When the reset mode “"Reset & Break at Symbol” is used, the startup is to be stopped once
execution reaches the respective symbol or address.

Upon reaching that point Ozone calls the project script function OnDebugSt ar t Br eak Sy m
Reached. This script function is to be considered a break point call-back function with a
special name that is automatically attached to a break point on that symbol or address.

The user may specify a dedicated break point on the same symbol or address, but in case
a call-back is attached to that break point, it will not be called - instead OnDebugSt art -
Br eakSynmReached will be invoked, if it exists.

This project script function can be used for automating jobs with Ozone. In particular,
debug actions that change the target state, such as Debug.Continue (see Debug.Continue
on page 333), should be invoked here and not in the context of OnSt art upConpl et e.

5.6.1 Specifying the Symbol or PC to Stop Target during
Startup

For that purpose the system variable VAR BREAK_AT_THI S_SYMBOL is maintained which can
be edited via the System Variable Editor or using command Edit.SysVar (see System Vari-
able Editor on page 83 and Edit.SysVar on page 309). The default value of this system
variable is identical to system variable VAR_STARTUP_COMPLETI ON_PQO NT, i.e. the program’s
startup completion point.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

190 CHAPTER 5 Debugging Controls

5.7 Debugging Controls

Ozone provides multiple debug controls that modify the program execution point in a de-
fined way.

57.1 Reset

The program can be reset via command Debug.Reset (see Debug.Reset on page 333).
The action can be executed from the Debug Menu (see Debug Menu on page 47) or by
pressing F4.

5.7.1.1 Reset Mode

The reset behavior depends on the value of the reset mode parameter (see Reset Modes
on page 267). The reset mode specifies which one of the three initial program operations
is performed after the target has been hardware-reset (see Initial Program Operation on
page 184).

Setting the Reset Mode

The reset mode can be set via command Debug.SetResetMode
(see Debug.SetResetMode on page 334), via the System Vari-
able Editor (see System Variable Editor on page 83) or via the
Reset Menu (Debug — Reset). The Reset Menu is illustrated on
the right. The symbol to break at can be specified by settings
System Variable VAR BREAK_AT_THI S_SYMBOL.

5.7.2 Step

Ozone provides three user actions that step the program in defined ways. The debugger’s
stepping behavior also depends on whether the Source Viewer or the Disassembly Window
is the active code window (see Active Code Window on page 53). The table below considers
each situation and describes the resulting behavior.

[4= Reset & Ereak At Symbol
@1 Peset & Halk
CJ Reset &Run

Source Viewer is Disassembly Window

Action

Active Code Window

is Active Code Window

Debug.Steplnto

Steps the program to the next
source code line. If the current
source code line calls a function,
the function is entered.

Advances the program by a sin-
gle machine instruction by ex-
ecuting the current instruction
(single step).

Debug.StepOver

Steps the program to the next
source code line. If the current
source code line calls a function,
the function is overstepped, i.e.
executed but not entered. Con-
text aware stepping is support-
ed, if enabled.

Performs a single step with the
particularity that branch with
link instructions (BL) are over-
stepped, i.e. instructions are
executed until the PC assumes
the address following that of the
branch. Context aware stepping
is supported, if enabled.

Debug.StepOut

Steps the program out of the
current function to the source
code line following the function’s
call site.

Steps the program out of the
current function to the machine
instruction following the func-
tion’s call site.

5.7.2.1 Stepping Expanded Source Code Lines

When the Source Viewer is the active code window and the source line containing the PC
is expanded to reveal it's assembly code instructions, the debugger will use its instruction
stepping mode instead of performing source line steps.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

191 CHAPTER 5 Debugging Controls

5.7.2.2 Context Aware Stepping

The expected behavior of stepping over a function call is to continue execution until the
next source line is reached. In the case of an RTOS-based application a context switch
might happen and the next line is reached in the context of another task. In the case of
a recursive function call, the next line might be reached in the context of a deeper level
in the recursion.

With context-aware stepping enabled, Ozone ensures to continue execution until the next
line is reached in the same context, i.e. on the same call frame in which the step over is
performed.

Context-aware stepping can be enabled or disabled via the system variable VAR _CONTEX-
T_AWARE_STEPPI NG (see System Variable Identifiers).

Note

With context-aware stepping the target may halt multiple times, which may impact
runtime performance and behavior of the target application.

57.3 Resume

The program can be resumed via command Debug.Continue (see Debug.Continue on
page 333). The action can be executed from the Debug Menu or by pressing the hotkey F5.

5.7.4 Halt

The program can be halted via command Debug.Halt (see Debug.Halt on page 333). The
action can be executed from the Debug Menu or by pressing the hotkey F6.

575 RunTo

User action Debug.RunTo advances program execution to a particular function, source code
line or instruction address, depending on the command line parameter given (see De-
bug.RunTo on page 335). All instructions between the current PC and the destination are
executed. Both code windows provide a context menu entry “Run To Cursor” that advance
program execution to the selected code line.

5.7.6 Set Next Statement

User action Debug.SetNextStatement advances program execution to a particular source
code line or function. The action sets the execution point directly, i.e. all instructions be-
tween the current execution point and the destination location will be skipped (see De-
bug.SetNextStatement on page 335). The action is accessible from the context menu of
the Source Viewer.

5.7.7 Set Next PC

User action Debug.SetNextPC advances program execution to a particular instruction ad-
dress (see Debug.SetNextPC on page 335). The action sets the execution point directly,
i.e. all instructions between the current execution point and the destination execution point
will be skipped. The action is accessible from the context menu of the Disassembly Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

192 CHAPTER 5 Breakpoints

5.8 Breakpoints

Ozone provides many alternative ways of setting, clearing, enabling and disabling break-
points on machine instructions, source code lines, functions and program variables.

5.8.1 Source Breakpoints

A breakpoint that is set on a source code line is referred to as a source breakpoint. Tech-
nically, a source breakpoint is set on the memory addresses of one or multiple machine
instructions affiliated with the source code line.

5.8.1.1 Editing Source Breakpoints

Source breakpoints can be edited within the Source Viewer (see Source Viewer on
page 156), within the Breakpoints/Tracepoints Window (see Breakpoints/Tracepoints Win-
dow on page 96) or via commands Break.SetOnSrc, Break.ClearOnSrc, Break.EnableOnSrc,
Break.DisableOnSrc and Break.ClearAll (see Breakpoint Actions on page 290. Source code
locations are specified in a predefined format (see Source Code Location Descriptor on
page 264).

5.8.2 Instruction Breakpoints

A breakpoint that is set on the memory address of a machine instruction is referred to as
an instruction breakpoint.

5.8.2.1 Editing Instruction Breakpoints

Instruction breakpoints can be edited within the Disassembly Window (see Disassembly
Window on page 117), within the Breakpoints/Tracepoints Window (see Breakpoints/Tra-
cepoints Window on page 96) or via commands Break.Set, Break.Clear, Break.Enable,
Break.Disable and Break.ClearAll (see Breakpoint Actions on page 290).

5.8.3 Derived Breakpoints

An instruction breakpoint that was set implicitly by Ozone in 241 static woid Sens
order to implement a source breakpoint is referred to as a de- @ =4z
rived breakpoint. As a fixed part of their parent source break- |# 020047EE EBO3Z

point, derived breakpoints cannot be cleared individually. De-
rived breakpoints can be distinguished from user-set breakpoints by their smaller diameter
icon as depicted on the right.

5.8.4 Advanced Breakpoint Properties

Each breakpoint can be assigned a set of advanced (“extra”) properties that are evaluat-
ed/performed when the breakpoint is hit. The advanced properties of a breakpoint can be
edited via the Breakpoint Properties Dialog (see Breakpoint Properties Dialog on page 63) or
via command Break.Edit (see Break.Edit on page 370). Please refer to section Breakpoint
Properties on page 96 for an overview of all available advanced breakpoint properties.

5.8.5 Permitted Implementation Types

Each breakpoint can be assigned a permitted implementation type (see Breakpoint Imple-
mentation Types on page 267). The permitted implementation type of a breakpoint can be
edited via the Breakpoint Properties Dialog (see Breakpoint Properties Dialog on page 63),
via the Breakpoints/Tracepoints Window (see Breakpoints/Tracepoints Window on page 96)
or via command Break.SetType (see Break.SetType on page 367).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

193

CHAPTER 5 Breakpoints

Default Permitted Implementation Type

For all breakpoints that have not been assigned a permitted implementation type, the val-
ue of system variable VAR BREAKPO NT_TYPE is used (see System Variable Identifiers on
page 277).

5.8.6 Flash Breakpoints

All J-Link/3-Trace debug probes come with a unique feature that enables the user to set an
unlimited number of software breakpoints when debugging in flash memory. Without this
feature, the user would be limited to the number of breakpoints supported by the target
CPU.

Note

For J-Link base debug probes, the “unlimited flash breakpoints” feature requires a
separate software license from SEGGER.

5.8.7 Breakpoint Callback Functions

Each breakpoint can be assignhed a script function (see User Functions on page 228) that
is executed when the breakpoint is hit. The script callback function can be assigned via the
Breakpoint Properties Dialog (see Breakpoint Properties Dialog on page 63) or program-
matically via commands Break.SetCommand (see Break.SetCommand on page 375) and
Break.SetCmdOnAddr (see Break.SetCmdOnAddr on page 376).

Note

Due to hardware limitations, break point callback functions are supported only for
source- and instruction break points but not for data break points.

5.8.8 Offline Breakpoint Modification

All types of breakpoints can be modified both while the debugger is online and offline. Any
modifications made to breakpoints while the debugger is disconnected from the target will
be applied when the debug session is started.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

194

CHAPTER 5 Data Breakpoints

5.9 Data Breakpoints

Data breakpoints monitor memory areas for specific types of I0 accesses. When a memory
access occurs that matches the data breakpoint’s trigger condition, the program is halted.
Data breakpoints are most commonly used to monitor accesses to global program variables.

5.9.1 Data Breakpoint Attributes

A data breakpoint is defined by the following attributes:

Attribute Description

Address Memory address that is monitored for IO (access) events.
Specifies which bits of the address are ignored when monitoring ac-
cess events. By means of the address mask, a single data breakpoint

Mask can be set to monitor accesses to several individual memory address-
es. More precisely, when n bits are set in the address mask, the data
breakpoint monitors 2n many memory addresses.

Symbol Variable or function parameter whose data location corresponds to

the memory address of the data breakpoint.

On

Indicates if the data breakpoint is enabled or disabled.

Access Type

Type of I0 access that is monitored by the data breakpoint (see Ac-
cess Types on page 267).

Access Size

Number of bytes that need to be accessed in order to trigger the da-
ta breakpoint (see Memory Access Widths on page 266. As an exam-
ple, a data breakpoint with an access size of 4 bytes (word) will only
be triggered when a word is written to one of the monitored memory
locations. It will not be triggered when, say, a byte is written.

Match Value

Value condition required to trigger the data breakpoint. A data break-
point will only be triggered when the match value is written to or read
from one of the monitored memory addresses.

Value Mask

Indicates which bits of the match value are ignored when monitoring
access events. A value mask of OxFFFFFFFF disables the value condi-
tion.

5.9.2 Editing Data Breakpoints

Data breakpoints can be set, cleared and edited via the Data Breakpoint Dialog (see Data
Breakpoint Dialog on page 67). This dialog is accessible from the context menus of the
Code Windows and the Breakpoints/Tracepoints Window.

Data breakpoints can also be manipulated within script functions. For this, the actions listed
in Breakpoint Actions on page 290 that end on either “*Data” or "Symbol” are provided.

Note

Note

The number of data breakpoints that can be set, as well as the supported values of
the address mask parameter, depend on the capabilities of the target.

Due to hardware limitations, break point callback functions, as described in section
Breakpoint Callback Functions on page 193, are not supported for data break points.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

195 CHAPTER 5 Program Inspection

5.10 Program Inspection

This section explains how users can inspect and modify the state of the debuggee when it
is halted at an arbitrary execution point.

5.10.1 Execution Point

Users may navigate to the current position of program execution, also called the PC line,
via commands Show.PC (see Show.PC on page 328) and Show.PCLine (see Show.PCLine
on page 328).

5.10.2 Static Program Entities

Ozone provides 4 debug windows allowing users to inspect static program content that does
not change with the execution point. The capabilities of these windows are summarized
below.

Debug Window Description

Lists all functions linked to assemble the debuggee, including

Functions Window functions implemented within external code.

Displays the source code files that were used to build the de-
buggee.

Displays the partitioning of target memory into Flash, RAM
Memory Usage Window | and other memory areas as well as the usage of these areas
by the debuggee.

Source Files Window

Displays all possible function call paths, giving the user a

Call Graph Window clear picture on the possible execution flow.

5.10.3 Data Symbols

Ozone provides 3 symbol windows that allow users to observe, edit and modify program
variables and function parameters. The capabilities of these windows are summarized be-
low.

Debug Window Description

Allows users to observe and manipulate the local variables
and function parameters that are in scope at the execution
point. Furthermore, the Local Data Window is able to dis-
Local Data Window play the variables and parameters of any function on the call
stack. By selecting a called function within the Call Stack
Window or within the Source Viewer, the local symbols of
that function are displayed.

Global Data Window Allows users to observe and edit global program variables

Any program variable can be put under, and removed from,
explicit observation via commands Window.Add and Win-
Watched Data Window dow.Remove (see Window Actions on page 297). Observed
variables are displayed within the Watched Data Window
(see Watched Data Window on page 176).

Symbol Data Locations

The data location of a variable or function parameter can be navigated-to by executing
the command Show.Data (see Show.Data on page 325). This action is available from the
context menu of all symbol windows.

5.10.4 Symbol Tooltips

i NumLEDs = (NumLED3 + n);
Ozone User Guide & Reference Manual (UM08025) © 2013-2026i§E%§BM§rQ£0r§50llgr GmbH

n = % MurnLEDis
1 elae i pe- 2

196 CHAPTER 5 Program Inspection

When hovering the mouse cursor over a data symbol within the Source Viewer, a tooltip
will pop up that displays the symbol’s value (see Expression Tooltips on page 157).

5.10.5 Call Stack

The sequence of function calls that led to the current execution point can be observed within
the Call Stack Window (see Call Stack Window on page 102).

5.10.6 Target Registers

The current state of the target registers can be inspected and edited via Ozone’s Registers
Window (see Registers Window on page 147). The commands:

e Target.GetReg and
e Target.SetReg

are provided to read and write target registers within script functions or at the command
prompt (see Target Actions on page 296). Command Register.Addr on page 357 returns
the address of a memory-mapped register.

Target Register Types

Ozone categorizes target registers as described in section Register Groups on page 148.

5.10.7 Target Memory

The current state of target memory can be inspected and edited via Ozone’s Memory Win-
dow (see Memory Window on page 135).

The commands:

Target.ReadU8
Target.ReadU16
Target.ReadU32
Target.WriteUS8
Target.WriteU16
Target.WriteU32

are provided to read and write target memory inside script functions or at the command
prompt (see Target Actions on page 296). These actions access memory byte (U8), half-
word (U16) and word-wise (U32).

5.10.7.1 Default Memory Access Width

The default access width that Ozone employs when reading or writing memory strides of
arbitrary size can be specified via the command Target.SetAccessWidth (see Target.SetAc-
cessWidth on page 360).

5.10.8 Inspecting a Running Program

When the debuggee is running, program inspection and manipulation is limited in the fol-
lowing ways:

Limitation Description

CPU registers are not updated and cannot be edit-
ed.

Values within symbol windows are not updated and
cannot be edited.

Frozen CPU registers

Frozen symbol windows

All debug controls except “halt” and “disconnect”

Deactivated debug controls are deactivated.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

197

CHAPTER 5 Program Inspection

Limitation Description

Debug windows that show execution point context
No execution point context when the program is halted (Callstack, Local Da-
ta,...) are empty.

All other features, such as terminal-IO and breakpoint manipulation, remain operational
while the debuggee is running.

5.10.8.1 Live Watches

In situations where the value of a data symbol needs to be monitored while the program
is running, users can resort to Ozone’s Watched Data Window (see Watched Data Window
on page 176). The Watched Data Window enables users to set refresh rates between 1 and
5 Hz for each watched item individually.

5.10.8.2 Data Trace

In situations where a high-resolution trace of a data symbol is required, users can resort
to Ozone’s Data Sampling Window (see Data Sampling Window on page 114). The Data
Sampling Window supports sampling rates of up to 1 MHz. The resulting data graphs can
be explored within the Timeline Window.

5.10.8.3 Streaming Trace

When used in conjunction with a SEGGER J-Trace PRO debug probe on hardware that sup-
ports instruction tracing, Ozone is able to update the application’s code profile statistics
continuously while the program is running. In contrast to non-streaming trace, the trace
data is recorded and sent continuously to the host PC, instead of being limited by the trace
probe buffer size. This enables “endless” recording of trace data and real-time analysis of
the execution trace while the target is running. For use-cases of streaming trace, refer to
Advanced Program Analysis And Optimization Hints on page 213. For further information
on streaming trace, please consult the J-Link User Guide or SEGGER’s website .

5.10.8.4 Power Trace

The Power Sampling Window tracks the current drawn by the target while executing the
debuggee. The acquired power sampling data can be explored within the Timeline Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://www.segger.com/downloads/jlink/UM08001
https://www.segger.com

198

5.11 Downloading Program Files

CHAPTER 5

Downloading Program Files

For the purpose of downloading program files to target memory, Ozone provides four dis-

tinct user actions:

File.Open:
File.Load:
Exec.Download:

Target.LoadMemory:

(see File.Open on page 301)
(see File.Load on page 300)
(see Exec.Download on page 364)
(see Target.LoadMemory on page 362)

These actions differ in the way the download is performed in regards to the following as-

pects:

HWRESET:
SCRIPT:
REGINIT:
FINISH:
SYMBOLS:

program file is opened for download?

5.11.1 Download Behavior Comparison

The table below compares the mentioned actions regarding the named aspects. Only com-
mand File.Open triggers the standard download sequence that is also performed during
debug session startup (see Starting the Debug Session on page 184). The hardware re-
set is identical to the operation performed by command Exec.Reset (see Exec.Reset on
page 364). For a description of the initial program operation, refer to section Inijtial Pro-
gram Operation on page 184.

is a hardware reset of the target performed prior to download?
are script functions called at specific moments of the download?
are registers initialized after download?
is the initial program operation performed after download?

are program symbols loaded into Ozone’s symbol windows when the

User Action

HWRESET

SCRIPT

REGINIT

FINISH

SYMBOLS

File.Open

X

File.Load

Exec.Download

Target.LoadMemory

5.11.2 Script Callback Behavior Comparison

Ozone’s download actions furthermore differ in regards to the script functions executed
during the download sequence. The table below gives an overview.

Script Function File.Open File.Load Exec.Download | Target.LoadMemory
Bef or eTar get Reset X X
Tar get Reset X
Af t er Tar get Reset X X
Bef or eTar get Down-
| oad X X
Tar get Downl oad
Af t er Tar get Downl oad X

5.11.3 Avoiding Script Function Recursions

In order to avoid infinite script function recursions, users are advised to not use actions
File.Open and File.Load within any script function that is itself an event handler for the
command. Users are advised to use actions Exec.Download and Target.LoadMemory in

these places instead.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

199 CHAPTER 5 Downloading Program Files

5.11.4 Downloading Bootloaders

For details on how to configure Ozone for the download and execution of a bootloader prior
to the download of the debuggee, refer to section Incorporating a Bootloader into Ozone’s
Startup Sequence on page 259.

5.11.5 Target Download Addresses

An ELF file contains for each program segment a physical address and a virtual address. The
physical address is the address where the respective segment content is stored whereas the
virtual address is the address where the respective content resides at execution time. The
physical address range may also be referred to as load region and the virtual address range
as execution region or exec region. When downloading an image into the target, Ozone
writes the firmware into the physical address ranges by default, i.e. into the load regions.

If both physical and virtual addresses match the code is executed in-place, i.e. at the very
same location where it is stored. If virtual and physical address ranges are not the same,
the code is executed from a different location than where it is stored. Thus the segment
content needs to be copied from the physical address range into the virtual address range.
This may be done e.g. by a bootloader or by some initialization code executing between
reset vector and main().

Assuming a device that has a slow mass-storage memory from which code execution is not
possible but that is used for storing the firmware. On such a device the firmware needs
to be copied from the mass-storage device to a memory that supports code execution.
When debugging firmware on such devices it may be desired to download the firmware
image directly into the virtual address range, i.e. the address range where the code can be
executed. This allows to start debugging immediately since no loader needs to be executed
that copies the data from the mass storage device into the executable memory.

Certain build tool chains do create ELF files where the physical addresses are not filled-
in but only the virtual addresses are. For such images it is also required to download the
firmware image into the virtual address ranges instead of the physical address ranges.

Ozone offers the system variable VAR DONNLOAD_ADDR which allows to specify wether the
firmware is to be downloaded into the physical or the virtual address ranges (see System
Variable Identifiers and Destination Address Ranges for Download).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

200 CHAPTER 5 Terminal 10

5.12 Terminal IO

Ozone supports printf-style debugging of the debuggee. A debuggee may send text mes-
sages to the debugger by employing one or multiple of the IO techniques described below.
Text output from the debuggee is shown within the Terminal Window (see Terminal Window
on page 162).

bbb
'nnrrnne

" Terminal Window

5.12.1 Real-Time Transfer

SEGGER’s Real-Time Transfer is a bi-directional data transmission technique based on a
shared target memory buffer. Compared to SWO and Semihosting, RTT provides a signifi-
cantly higher data transmission speed. For further information on Real-Time Transfer, refer
to SEGGER’s website .

5.12.1.1 RTT Configuration

When a program file is opened, Ozone tries to sense whether the debuggee uses the RTT
software library to support Text-I0 via RTT. If RTT use is detected, the debugger automat-
ically starts to capture data on the RTT interface. The program file is expected to provide
debug symbol _SEGGER _RTT for fast and reliable RTT discovery. Command Project.AddRT-
TSearchRange (see Project.AddRTTSearchRange on page 344) is provided to speed up
RTT discovery in all other cases, e.g. when debugging release builds. Please refer to SEG-
GER’s website for further information on how to set up and use the RTT software library
within your debuggee.

5.12.2 SWO

The Terminal Window can capture and display textual data that is sent by the debuggee to
the debugger via the target’s Serial Wire Output (SWO) interface. SWO is a unidirectional
technology; it cannot be used to send data from the debugger to a debuggee.

5.12.2.1 SWO Configuration

Text-I0 via SWO must be configured both within the debuggee and within Ozone. Within
the debugger, it is enabled and configured via the Trace Settings Dialog (see Trace Settings
Dialog on page 84) or via commands Project.SetTraceSource (see Project.SetTraceSource
on page 345) and Project.ConfigSWO (see Project.ConfigSWO on page 349). The SWO
interface can also be enabled by checking the Terminal Window’s context menu “Capture
SWO IO". Please refer to the ARM Information Center for details on how to set up and use
printf via SWO in your application.

5.12.3 Semihosting

Ozone is able to communicate with the debuggee via the Semihosting mechanism. Next
to providing bi-directional text I/O via the Terminal Window, the debuggee can employ
Semihosting to perform advanced operations on the Host-PC such as reading from files.
Semihosting with Ozone is covered by section Semihosting on page 200.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://www.segger.com
https://www.segger.com
https://www.segger.com

201 CHAPTER 5 Semihosting

5.13 Semihosting

Semihosting is the name of a communication protocol which provides a debuggee access
to Host-PC resources. Among the possibilities, semihosting enables a target application
running under a debugger to output messages to the debugger’s Terminal Window or to
obtain text input from the user.

The focus of this section lies on the configuration and usage of semihosting within Ozone.
For a technical background on semihosting, including an overview on how the setup the
target application for semihosting, the reader is redirected to the ARM information center
and SEGGER’s wiki homepage.

5.13.1 Supported Architectures

Ozone supports semihosting on the following target architectures:

Cortex-M
Cortex-A/R
Legacy-ARM
RISC-V

5.13.2 Enabling Semihosting

Ozone automatically enables semihosting on the first CPU halt after debug session start.
When not required, semihosting can be explicitly disabled by setting ModeBP, ModeBKPT
and ModeSVC to No.

5.13.3 Supported Operations

This section lists the possible operation codes that the debuggee can write to the semihost-
ing operation code register when issuing a semihosting request to Ozone.

Semihosting operations defined by SEGGER:

Name Code Description

Returns the debugger connection status. When the debugger
is connected to the target, it writes a value of 1 to the result
register. Otherwise, the result register will be left unmodi-
fied. This operation has no arguments.

SysIsConnected | 0x0

Outputs a formatted string on the debug terminal. The text
formatting is performed by the debugger, i.e. on the host.
The argument block for SysWritef (pointed to by al) consists
of two entries: the first entry is the target address of the for-
mat string. The second entry is a pointer to a variable argu-
ment list (va_l i st) which contains the format arguments.
The format string and arguments must follow the C library
rules for printf.

SysWritef 0x40

Semihosting operations defined by ARM:

File operations

Name Code Description
SysOpen 0x1 Open a file or stream on the host system
SysIsTty 0x9 Check wheth_er a file handle is associated with a file or a
stream/terminal such as stdout
SysWrite 0x5 Write to a file or stream
SysRead 0x6 Read from a file at the current cursor position

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

202 CHAPTER 5 Semihosting

Name Code Description
SysClose 0x2 Closes a file on the host which has been opened by SysOpen
SysFlen 0xC Get the byte size of a file
SysSeek OxA Set the file cursor to a given position in a file
SysTmpNam 0xD Get a temporary absolute file path to create a temporary file
SysRemove OxE Remove a file on the host system
SysRename OxF Rename a file on the host system

Terminal I/O operations

Name Code Description
SysWriteC 0x3 Write one character to the debug terminal
SysWrite0 0x4 Write a O-terminated string to the debug terminal
SysReadC 0x7 Read one character from the debug terminal

Time operations

Name Code Description
SysClock 0x10 Returns the system clock counter value
SysElapsed 0x30 Returns the clocks since debug session start
SysTickFreq 0x31 Returns the clocks per seconds
SysTime 0x11 Returns the current time

System / Misc operations

Name Code Description

Returns the value of the C library errno variable that is asso-

SysErrmo Ox13 ciated with the semihosting implementation

Returns the command line parameters for the target applica-

SysGetCmdLine | 0x15 tion to run with (argc and argv for main())

An application calls this operation to report an exception to
SysExit 0x18 the debugger directly. The most common use is to report
that execution has completed.

For further information on the legacy operations, including their parameter definitions, refer
to the ARM information center.

5.13.4 Input Operations

The debuggee may request user input via the

following semihosting operations supported — BSMRRRl LU x|
by Ozone: —Enter input and press Send
e SysReadC and 13/32 characters
e SysRead with IsTtyHandle(R1)==1
Hello Target!

Users may serve input requests by:
e entering text into the terminal window’s

input field and pressing enter or
e by entering text into a popup dialog.
The input mode can be configured via setting Send Cancel

I nput Vi aTer mi nal =0/ 1, as described in sec-

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

203 CHAPTER 5 Semihosting

tion Semihosting Configuration on page 203.

5.13.5 Unsafe Operations

The following group of semihosting operations are classified to be unsafe:

e SysOpen
e SysRemove
e SysRename

These operations can potentially damage the host system. Each time an unsafe operation is
requested by the debuggee, Ozone will ask the user for permission to perform the operation
via a popup dialog. Individual permission dialogs can be suppressed. As an example, op-
eration SysRename can be suppressed via setting Al | owRenane=0, as described in section
Semihosting Configuration on page 203.

5.13.6 Semihosting Configuration

Ozone’s semihosting functionality can be configured in two ways:

e using command Project.ConfigSemihosting
e using the Semihosting Settings Dialog

A detailed description of each setting is given by section Project.ConfigSemihosting on
page 345.

5.13.7 Starting and Stopping Semihosting

Ozone automatically enables semihosting when the debug session is started. No user in-
teraction is required. However, it is recommended to disable semihosting when it is not
needed for performance reasons. To disable semihosting, the settings MbdeBP, ModeBKPT
and MbdeSVC must be set to No, i.e. their highest allowed value

5.13.8 Generic Semihosting

SEGGER has defined the first instruction of function SEGGER _SEM HOST_DebugHal t to be a
universal semihosting trap which is available on all supported target architectures, includ-
ing RISC-V. In order to catch this trap, Ozone sets a hidden breakpoint on the function
whenever it is implemented by the debuggee. In order to perform a semihosting request,
the debuggee simply calls this function with the desired operation code as first parameter
and the operation argument block pointer as second parameter.

/***

SEGGER_SEM HOST_DebugHal t ()

Function description
Ceneri c sem hosting request function.
The debugger may set a breakpoint on this function, handle the
sem hosting request, and return to the caller.

Par anet ers
a0: sem hosting operation code
al: sem hosting operation argunent pointer

Ret urn val ue
a0 if debugger is not connected.
Sem hosting operation result code if debugger is connected.

EE R B I B B N T

/
int __attribute_ ((noinline)) SEGGER SEM HOST DebugHalt(int a0, int al) {
(void)al; // Avoid unused paraneter warning

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

204 CHAPTER 5 Semihosting

return aO;

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

205 CHAPTER 5 Working With Expressions

5.14 Working With Expressions

In Ozone, an expression is a term that combines symbol identifiers or numbers via arith-
metic and non-arithmetic operators and that computes to a single value or symbol. Ozone-
style expressions are for the most part C-language compliant with certain limitations as
described below.

5.14.1 Areas of Application

Expressions are used in the following areas:

¢ As monitorable entities within the Watched Data Window
(see Watched Data Window on page 176).

e As monitorable entities within the Quick Watch Dialog
(see Quick Watch Dialog on page 94).

e As traceable entities within the Data Sampling Window
(see Data Sampling Window on page 114).

e As specifiers for the data locations of data breakpoints
(see Data Breakpoints on page 194).

e As specifiers for the trigger conditions of conditional breakpoints
(see Advanced Breakpoint Properties on page 192).

e At the command prompt or within Project Scripts
(see ElIf.GetExprValue on page 378).

e Within RTOS Awareness Plugins
(see Debug.evaluate on page 386).

e Within SmartView Plugins
(see Debug.evaluate on page 386).

5.14.2 Operands

The following list gives an overview of valid expression operands:

e Global and local variables (e.g. 0S_d obal, Pixel Si zeX)

e Variable members (e.g. 0Ss_d obal . pTask->I D, OS_d obal . Ti ne)
e Numbers (e.g. OXAEQ1, 12.4567, 1000)

e Program defines (e.g. MAX_SPEED)

e Ozone variables & constants (e.g. VAR _ACCESS W DTH, FREQ 1 MHZ)

e User-defined constants (see Script.DefineConst on page 323)

5.14.3 Operators

The following list gives an overview of valid expression operators:

e Number arithmetic (+, -, %/, %)

e Bitwise arithmetic (~, & |, ™)

e Logical comparison (&&, |1

e Bit-shift (>>, <)

e Address-of (&)

e Size-of (sizeof)

e Number comparison (>, <,2, 5, ==,1=)

e Pointer-operations *, 11, ->)

e Integer-operations (++, —)

e Type-casts (see Type Casts on page 205)

The evaluation order of an expression can be controlled by bracketing sub-expressions.

5.14.4 Type Casts

The typecast operator “(<dest>)<src>" supports the following source and destination
types:

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

206 CHAPTER 5 Working With Expressions

<src>

e Integers (e.g. 0x20000000)

e Program Variables (e.g. OS_d obal)

e Members (e.g. OS_d obal .Time)
<dest>

e Pointers and References (e.g.int* /| Type& /| Type*)
e Arrays (e.g. char[128] / Type[20])
e Base types (e.g.int / double)

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

207 CHAPTER 5 Locating Missing Source Files

5.15 Locating Missing Source Files

This section discusses the handling of source code files that Ozone could not locate on the
file system.

5.15.1 Causes for Missing Source Files

When a source code file has been moved from its compile-time location to a different
directory on the file system, the debugger is (in most cases) not able to locate the file
anymore. Due to performance reasons, Ozone only performs a limited file system search
to locate unresolved source code files.

Invalid Root Path

A second reason why one or multiple source files might be missing is that the debugger was
not able to determine the program’s root path correctly. The program’s root path is defined
as the common directory prefix that needs to be prefixed to relative file paths specified
within the program file.

5.15.2 Missing File Indicators

A missing source file is indicated by a warning sign within the Source Files Window. Addi-
tionally the Source Viewer will display an informative text instead of file contents when
the program’s execution point is within a missing source code file. The context menu of
missing source files provide an entry that lets users open a file dialog to locate the file (see
Unresolved Source Files on page 154.

5.15.3 File Path Resolution Sequence

This section describes Ozone’s automatic file path resolution mechanism that is employed
whenever a file path argument is encountered that does not point to a valid file or folder
on the file system.

The file path resolution sequence can be configured via script commands which enables
users to correct the file paths of missing source code files.

File path resolution is employed for all file types and is not restricted to source files. The
sequence of operations and its configuration options are described below. For a generic
overview about file path argument handling, see File Path Arguments on page 222.

Note

The root of relative file paths is the project file directory. If the project file directory
is not available, the system’s current working directory is used instead.

Step 1 - Source File Name Lookup

Step 1 of file path resolution is only applied to plain source file name input (e.g. "main.c"). A
lookup of the source file name is performed within the contents of the source files window.
If a source file with the given name is found, resolution is complete.

Step 2 - Path Substitution

Step 2 of the file path resolution sequence is applied to source files paths only. Any parts
of the unresolved file path that match a user-set path substitute are replaced with the
substitute (see Project.AddPathSubstitute on page 351). If the file path obtained from
path substitution points to a valid file on the file system, resolution is complete.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

208

CHAPTER 5 Locating Missing Source Files

Step 3 - Alias Name Substitution

If the user has specified an alias for the file path to resolve, the path is replaced with the
alias (see Project.AddFileAlias on page 350). If the alias points to a valid file on the file
system, resolution is complete.

Step 4 - Path Expansion

All directory macros and environment variables contained within the file path are expanded
(see Directory Macros on page 281). If the expanded file path points to a valid file on the
file system, resolution is complete.

Step 5 - Source File Root Paths

Step 5 of file path resolution is only applied to unresolved relative file paths. These are ap-
pended successively to each source file root path (see Project.AddRootPath on page 350).
If any of the so-obtained file paths points to a valid file on the file system, resolution is
complete.

Step 6 - Application Directories

Step 6 of file path resolution is only applied to unresolved relative file paths. These are
appended successively to each of the application directories listed in Directory Macros on
page 281. If any of the so-obtained file paths points to a valid file on the file system,
resolution is complete.

Step 7 - Search Directories

Step 7 of file path resolution is applied to both absolute and relative file paths. The file
name of unresolved file paths is searched within all user-specified search directories (see
Project.AddSearchPath on page 351). If any of the search directories contains a file with
the sought name, resolution is complete.

5.15.4 Operating System Specifics

File path arguments are case-insensitive on Windows and case sensitive on Linux and ma-
cOS. When debugging an application on a system that differs from the build platform, ad-
justments to the project file’s path resolution settings might be required in order for the
debugger to be able to locate all files.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

209 CHAPTER 5 Setting Up The Instruction Cache

5.16 Setting Up The Instruction Cache

All instruction-level debug features of Ozone require the debugger to perform an initial
analysis of the machine code to be debugged.

In cases where:

o the debuggee’s machine code is fully accessible from the program file,
o the debuggee’s machine code is fully accessible from target memory at the Startup
Completion Point,

the debugger will perform this analysis automatically and no user interaction is required.

In all other cases, e.g. when:

e a non-ELF program file is specified,
e a secondary program image is in use, such as a bootloader,

parts of the instruction cache may need to be initialized manually. For this purpose,
Ozone provides the command Debug.ReadIntolnstCache (see Debug.ReadIntolnstCache
on page 336). The preferred way to employ this command is to call it from project script
function OnSt art upConpl et e.

:-'—':'-., Dzone - The J-Link Debugger V3.11 (Beta) - C:f/Examples/Board_1 - IEI IEI

File Wew Find Debug Tools Window Help
IR AE-B

Code Profile APP.C X\'{main.c x YCnrtex_M_SErmp.s E
Function Inst, Coverage ! File Scope ;I £ __aeabi_memcpy j
* f __SEGGER_init_lzss 0-0% (0/37) 142 = Main application loop in ?}_Ifl.ﬂ
+ f start 0.0% (0731) 143 g
f HardraultHandler L N/A 144 A wvoid BAM_Func(veid) {
+ f SEGGER_RTT_Writehi[F] & N/2 145 unsigned int Square;)

j’: iteBlocki 7l & N/A 148 printf ("Executing BEAM Funci) £frc
* 7 _WiriteBlocking - N 147 SysTick_Config (16000); // Setug
+ f _Dolnit ’[:@UP* : 4n Nelaw (10007 /7 Delas
¥ f GFGGFR init mnak W 0 Value may be incorrect: runtime code areas (RAM) not yet initialized |
Functions » 50 J7 Dummy endless loop

dd | | . | — |- 151 fF Prinmt the tick count
—— Finsts| Size | Name I:I 152 // Call & function from Flash
Z000 ODOE & [u} Z8 wsnprintf 153 /f Delay some time
0000 0468 1 2 UsageFault_Handler 154 £
2000 ODSC o 16 SysTick_Handler Las for (:7) {
0000 0470 1 2 | SveTick Hond 155 Delay(500);

< =yslice_Randler 157 printf("Tick Count: %d ‘J

2000 0BFS o &4 SysTick_Config 158 Square = MAIN FlashFunc(_Tick
0000 047E 1 & SystemlInit 155 4 printf ("Tick Count sguared: %
0000 0462 1 2 SVC_Handler i | 1] »
| CPU halted. | Code Profile Instruction Count: 0in Os (0/s) | Connected @ 2 MHz

Instruction-level debug information which is unavailable due to an incompletely initialized
instruction cache is indicated by a warning sign.

When the instruction cache misses data for a particular code address range, Ozone will
display a warning sign next to all affected GUI elements as shown above.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

210 CHAPTER 5 Setting Up Trace

5.17 Setting Up Trace

This section describes the configuration of trace within Ozone. For a general overview on
trace with J-Link and J-Trace, please refer to the J-Link User Guide and SEGGER’s website .

5.17.1 Trace Features Overview

Ozone’s trace features consist of the following elements:

e Instruction Trace Window (see Instruction Trace Window on page 128)
e Timeline Window (see Timeline Window on page 165)

e Code Profile Window (see Code Profile Window on page 106)

e Execution Counters (see Code Execution Counters on page 55)

5.17.2 Target Requirements
Ozone currently supports trace on the following MCU architectures:

e Cortex-M
e Cortex-A

ARM'’s Cortex MCU architecture principally enables two ways how trace data may be moved
from the target to the PC: in a buffered (ETB) and a streaming (ETM) fashion. ETM trace
has many advantages over ETB trace but also an extended hardware requirement (see
Streaming Trace on page 197).

5.17.2.1 Target Requirements for ETB Trace

Buffered trace requires the target to contain an embedded trace buffer (ETB). The trace
buffer must be accessible to J-Link/]-Trace, i.e. accessible via the selected target interface.
ETB-Trace otherwise poses no additional requirements on the hardware setup.

5.17.2.2 Target Requirements for ETM Trace

Streaming trace requires the target CPU to contain an embedded trace macrocell (ETM) or
a program trace macrocell (PTM). The trace data generated by these units is emitted via
dedicated CPU pins. It is target dependent if these trace pins are present and to what type
of debug header they are connected, if any. Most commonly, the trace pins are routed to
a 19-pin Samtec FTSH “trace” header.

5.17.3 Debug Probe Requirements

e ETB trace is supported by all J-Link and J-Trace models.
e ETM trace requires a J-Trace PRO model to be employed.

5.17.4 Trace Settings

e ETB trace does not need to be configured in Ozone.
e ETM trace has multiple configuration settings which can be edited via the Trace Settings
Dialog (see Trace Settings Dialog on page 84) or via debugger commands as shown

below.
Command Description Default

Selects the trace source to use. See Trace

Project.SetTraceSource Sources on page 269 for the list of valid none
values.
Specifies the number of trace pins provid-

Project.SetTracePortWidth ed by the target. Permitted valuesare 1, 2 |4
and 4.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://www.segger.com/downloads/jlink/UM08001
https://www.segger.com

211

CHAPTER 5 Setting Up Trace

Command

Description

Default

Project.SetTraceTiming

Configures the sampling delay of trace pin
n (n=1...4). The valid value range is -5 to
+5 nanoseconds at steps of 50 ps. See
Project.SetTraceTiming on page 348 for
further information.

2.0ns

Edit.Sys-
Var(VAR_TRACE_MAX_| NST_CNT)

Specifies the maximum number of instruc-
tions that Ozone can process and store
during a streaming trace session.

10M

Edit.SysVar(VAR_TRACE_TI MES-
TAMPS_ENABLED)

Specifies weather the target is to output
(and J-Link/Ozone is to process) PC time-
stamps multiplexed into the trace data
stream.

Edit.Sys-
Var(VAR_TRACE_CORE_CLOCK)

CPU frequency in Hz. Ozone uses this vari-
able to convert instruction timestamps
from CPU cycle count to time format (see
VAR_TRACE_TI MESTAMPS_ENABLED).

100kHz

Note

When instruction timestamps are not required, the option should be disabled to en-
hance the overall tracing performance.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

212 CHAPTER 5 Selective Tracing

5.18 Selective Tracing
5.18.1 Overview

Many ARM-Cortex targets allow trace data output to be limited to a set of user-defined
program address ranges. When selective tracing is active, the target’s trace buffer is only
filled with trace data that matches the configured constraints. This makes selective tracing
particularly valuable on hardware setups with limited trace buffer size and no streaming
trace capability.

5.18.2 Hardware Requirements

It is to a high degree target dependent if selective tracing is supported and to what extent.
A generic requirements overview cannot be given. Instead, refer to your MCU model’s user
manual or contact the manufacturer when unsure about the capabilities of your target.

Upon target connection, J-Link/J-Trace automatically detects if the target supports selective
tracing and enables the debugger to use the feature when available.

5.18.3 Tracepoints

Selective tracing is implemented in Ozone using start and stop-

. X) 0 165 } while
type tracepoints. Tracepoints can be toggled on program instruc- . ;e TestFum
tions and source lines just like ordinary breakpoints. Each matching 0 167 & TestFun
pair of start and stop tracepoints marks an address range whose p o0 162F TestFum
instructions are included in the target’s trace output. All instruction 5 169 [# _TestFum
fetches occurring outside of tracepoint-configured address ranges 5 170 E _TestFun
will not generate trace data. 5 171 _TestFun;

m 5 17z [+ _TestFuau
. .. o 173 [+ Test Furu
Tracepoint Imprecision @0 17aE)

An MCU possibly commands its tracepoints hardware unit asyn-

chronously to its instruction execution unit. This means that trace data capture may be
started and stopped a few cycles after the affiliated instruction has been fetched for exe-
cution.

5.18.4 Scope

All of the features summarized in Trace Features Overview on page 210 are affected by
selective tracing.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

213 CHAPTER 5 Advanced Program Analysis And Optimization
Hints

5.19 Advanced Program Analysis And Optimization
Hints

This section describes use-cases of advanced program analysis using the (streaming) in-
struction trace and code profiling capabilities of Ozone. For code profiling hardware require-
ments, see Hardware Requirements on page 212.

5.19.1 Program Performance Optimization

5.19.1.1 Scenario

The user wants to optimize the runtime performance of the debuggee.

To get an overview of the program functions in which most CPU time is spent, it is usually
good to start by looking at the Code Profile Window and to sort its functions list according
to CPU load:

Code Profile =
Funickion IS::uurce Coverage IInst. Caverage IRun Count |L|:|a|:| S Iil

035 _Idle 100.0% (242) 100.0% (3/3) ZE9 395.73% (1115888169
SysTick_Handler EO.0% (376) ?7.6% (BESE7) 13 367 0.07% (7354E53)
vTracestareEventl zl. 4% (3714 Sl.1% (45/88) 14 207 0.05% (701041,
CS_TICK_Handle Nik BZ.6% (30757) 13 387]

S0a% (428 280) LI

Filtering Functions

In this example, the program spends 99% of its CPU time in the idle loop, which is not
relevant for optimizations. To get a clear picture about where the rest of the CPU time
is spent, the idle loop can be filtered from the code profile statistic. This can be done by
selecting function OS_I dl e and clicking on the context menu entry “Exclude”.

Filtering Instructions

A compiler may furthermore emit code alignment instructions (NOP’s) that are likewise
not relevant for code optimization. NOP Instructions can be filtered from the code profile
statistic by clicking on context menu entry “Exclude NOP Instructions” or via command
Coverage.ExcludeNOPs (see Coverage.ExcludeNOPs on page 356).

Code Profile =
Funickion IS::uurce Coverage IInst Caverage IRun Count |L|:|a|:| S Iﬂ

SysTick_Handler EO.0% (376) _B% (BEESE7) 13 367 _EZ% (735 4E3)
vTracestareEventl zl. 4% (3714 Sl.1% (45/88) 14 207 23.09% (701041,
CS_TICK_Handle Nik BZ.6% (30757) 13367 14.11% (428 Z20)
JLIMKMEM F'rcu:ess I6.8% (7719 3E.3% (2076E) 13 367 7.92% (240 610) LI

After filtering, the Code Profile Window shows where the application spends the remaining
CPU time. Other functions which affect the CPU load but cannot be optimized any further
can be filtered accordingly in order to find remaining functions worth optimizing. In this
example, a quarter of the remaining CPU time is spend in function vTraceStoreEventl. Let’s
now assume the user wants to optimize the runtime of this function. By double-clicking on
the function, the function is displayed within the Source Viewer.

Evaluating Execution Counters

The Source Viewer's execution counters indi- 6593 /% Store an event with

cate that an assertion macro within function £94 woid wTraceStoreEventl |
vTraceStoreEventl has been executed a signif- 11 966 655 [# {

icant amount of times. The Source Viewer also ggj TRACE ALLOC_CRITICA

11 966 595 0] DSF_ASSERT (eventID <

Ozone User Guide & Reference Manual (UM08025) @DPOtE-2026 SEGGER Micrdedhiréller GRIGH

11 266 0S00LFS: FSE3E

11 2ee6 OZ001FEE Lz03

- T [

214

CHAPTER 5 Advanced Program Analysis And Optimization
Hints

indicates that the last 3 instructions of the assertion macro have never been executed. This
means that the assertion was always true when it was evaluated.

Deriving Improvement Concepts

At this point, the user could think about removing the assertion or ensuring that the asser-
tion is only evaluated when the program is run in debug mode.

Impact Estimation

To get an idea of the impact of the optimization, the execution counters may provide a first
idea. In general, optimizing source lines which are executed more often can result in higher
optimization. If the function code is fully sequential, i.e. if there are no loops or branches
in the code, the impact can be estimated exactly.

Code Profile Status Information

The status information of the Code Profile Window displays the target’s actual instruction
execution frequency. An instructions per second value that is significantly below the target’s
core frequency may indicate that the target is thwarted by an excessive hardware IRQ load.

| Code Profile Instruction Count: 136 094 231 in 541,95 (251 142[<) | Connected @ 2 MHz

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

215 CHAPTER 5 Debug Snapshots

5.20 Debug Snapshots

The debug session and affiliated system state can be saved to / restored from a session
file called debug snapshot. This includes:

RAM

Flash

CPU registers

Selected Peripherals

Timeline

Code Profile (Execution Counters)
Data Graphs

Power Graphs

Terminal Log

Console Log

Snapshots are saved and loaded using the Snapshot Dialog (see Snapshot Dialog on
page 79). After loading a snapshot, all debug windows show the same information they did
at the time the snapshot has been created. Snapshots can be loaded and observed in tar-
get-offline mode. This means that no hardware is required to load a snapshot, not even a J-
Link or J-Trace. Snapshots are compressed using SEGGER’s emCompress software library.

5.20.1 Use Cases

Typical use cases of snapshots are:

e Snapshots allow customers to break away from a debug session with the ability to
resume the session at a later point in time.

e Snapshots allow easier reproduction and analysis of bugs, possibly by multiple parties
on different Host-PCs.

¢ Snapshots enhance Ozone’s teaching and demonstration capabilities in training sessions
and conferences.

5.20.2 Supported Architectures

Snapshots are currently supported on the following target architectures:
e Cortex-M

5.20.3 Default System Restore

When a snapshot is loaded, target CPU registers and memory regions are restored in the
order they appear within the snapshot. This order is identical to the order that was displayed
by the Snapshot Dialog at the time the snapshot was saved. The default system state saved
to snapshots consists of:

e all basic CPU registers, including FP registers.
e all FLASH and RAM regions of the target as defined by J-Link’'s MCU database.
e all ELF program data sections with the allocatable flag (A) set.

5.20.4 Advanced System Restore

In order to restore advanced system state such as (clocked) peripherals from a snapshot,
it is generally necessary for users to program the exact sequence of restore operations.
For this reason, any system or peripheral register stored within a snapshot is not automat-
ically written to the target when a snapshot is loaded. Instead, users must program the
specific way in which special-purpose registers are saved to and restored from snapshots
as explained in section Snapshot Programming on page 255.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

216 CHAPTER 5 Debug Snapshots

5.20.5 The Scope of Snapshots

Snapshot store binary debug session data which cannot be easily or efficiently stored in
a user-readable format. Snapshots do not replace any of Ozone’s existing configuration
facilities. In particular, snapshots do not store nor replace:

e Project settings such as Project.SetDevice or Target.PowerOn.
e User file settings such as breakpoints and open documents.
e User preferences and GUI settings.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

217 CHAPTER 5 Remote Debugging

5.21 Remote Debugging

Ozone can connect to a remote J-Link/J-Trace debug probe to debug on a remote target.
When debugging remotely, the J-Link/J-Trace debug probe is connected to a remote PC via
the Ethernet host interface.

5.21.1 Remote Debugging Over LAN

When the remote PC is on the same LAN as the PC hosting Ozone (host PC), it suffices to
start a J-Link Remote Server on the remote PC and supply the IP address of the remote
server within Ozone’s Host Interface Dialog (instead of the IP of the J-Link / J-Trace de-
bug probe). The Host Interface Dialog is accessible via Ozone menu path Tools->Debug
Settings->Host Interface. Note that J-Link Remote Server V6.53b and later also supports
encrypted connections.

5.21.2 Remote Debugging Over The Internet

SERVER TUNNEL CLIENT

SEGGER
tunnel
server
Remote Debugger
=Sernver

wst” Ty,

PC

USEEIhemel

J-Link

JTAG!

When the remote PC is not on the same LAN as the host-PC, an intermediary tunnel server
at SEGGER can be used to be mediate a connection for remote debugging. Both Ozone
and the J-Link Remote Server then connect to this tunnel server instead of connecting to
each other directly.

For remote debugging via the J-Link Tunnel Server, the IP address field of Ozone’s host
interface dialog expects a tunnel server credential of the form:

t unnel : <Pr obe>[: <Passwor d>[: <Server >]]

where:
Argument Description
Either the serial number or nickname of the J-Link / J-Trace to con-
Probe
nect to.
Password that was used when the J-Link / J-Trace debug probe was
Password

registered with the Remote Server.

Address or hostname of the tunnel server. For use when a tun-
Server nel server other than the SEGGER default tunnel server (jlink.seg-
ger.com, port 19020) is used.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

218 CHAPTER 5 Remote Debugging

The short credential variant t unnel : <Probe> can be used when the connection is to be
established to the default J-Link Tunnel Server and is not password-protected. When de-
bugging via the tunnel server, make sure that port 19020 is not blocked by a firewall.

Examples

Input

Description

tunnel:932000:Pass123:jlink.segger.com

J-Link was registered by S/N, with a pass-
word, at jlink.segger.com

tunnel:MylJLink::jlink2.segger.com

J-Link was registered by Name, without a
password, at jlink2.segger.com

tunnel:600100000:MyPassword123

J-Link was registered by S/N, with a pass-
word, at the default tunnel server.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

CHAPTER 5 Debugging via GDB Server

5.22 Debugging via GDB Server

Ozone provides a GDB client that can connect to a GDB server which is attached to the
target to be debugged. Both in the new project wizard as well as in the J-Link settings
dialog the GDB server is available as an option to connect to the debug probe, alongside
“USB” and “IP”.

The GDB server is specified by means of its IP-address and port number. If the GDB server
runs on the same host as Ozone, setting the IP-address to | ocal host will be sufficient.
In that case the default port-number 2331 will be used. Of course, 127. 0. 0. 1: 2331 can
also be used.

By adding the command Proj ect. Set Host | F (“GDB_Server”,
the function OnPr oj ect Load, the setting will be made permanent.

“l ocal host:2331"); to

5.22.1 Automatically starting GDB Server

It is possible to automatically start the GDB server on the local machine when the debug
session is started. For doing so, the command starting the GDB server must be added to
the Ozone project script function Bef or eTar get Connect . Here is an example command line
starting the J-Link GDB server to debug a target application on the SEGGER trace reference
board:

Process. Exec(“C./Program Fil es/ SEGGER/ JLi nk/ JLi nkGDBSer ver. exe”, “-sel ect
USB -device STM32F407VE -endian little -if SWD -speed 4000 -noir -Local hos-
tOnly -port 2331 -singlerun”, 0);

This command line EJ SEGGER J-Link GDB Server v8.34 - X

tells the J-Link GDB
Server how to connect
to the J-Link or J-Trace
via USB and provides

Eile

GDB |127.0.0.1, 1 diient conned l

Help

I:‘ Stay on top

target details such as Funk [Connected | | [swo | [4000 etz | 2] Show log window
device name and endi- Device [STM32F407VE (Halted) | || [3.30v | [little endian | [Generate logfile
aness as well as con- Logfile |C:,-’Temp;’GdbSeNerL0g.I0g ||:|yerify download
nection details such

as the target inter- dear tog

face and the interface SEGGER J-Link GDB Server V&.34 GUI Version A

speed. For further in-
formation on the com-
mand line parameters
used in this exam-
ple please refer to the
documentation of the
J-Link GDB server.

In this example the
GDB server is started
such that it automat-
ically closes once the
GDB client closes the
connection. This will
have the effect that
the GDB server closes

JLinkARM.d11 V8.34 (DLL compiled May 14 2825 16:57:28)

————— GDB Server start settings-----
GDBInit file:

GDB Server Listening port:
SW0 raw output listening port:
Terminal I/O port:

Accept remote connection: localhost only
Generate logfile: on

Verify download: off

Init regs on start: off

Silent mode: off

single run mode: an

Target connection timeout: 5888 ms

—————— J-Link related settings------

J-Link Host interface: UsE

J-Link script:
J-Link settings file:
—————— Target related settings------

Target device: STM32F487VE
Target device parameters: none
Target interface: SWD

Target interface speed: 40808kHz
Target endian: little

Connecting to J-Link...
J-Link is connected.

automatically once the
debug session is end-
ed. If the GDB server
does not automatical-
ly close, it needs to be
closed manually. Oth-

Firmware: J-Trace PRO V2 Cortex compiled
Hardware: V2.8@

S/N:

Feature(s): RDI, FlashBP, FlashDL, JFlash, GDB
Checking target wvoltage...

= ve

+ 1 o

214 bytes downloaded

Connected to target

erwise, with the start of the next debug session, a new instance of the GDB server may be
started, which is likely to collide with the existing instance.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

220 CHAPTER 5 Debugging via GDB Server

5.22.2 3rd Party Debug Probe Support

By making use of a GDB server, Ozone can also connect to 3rd party debug probes. De-
pending on the functionality provided by the GDB server some features Ozone offers may
not be supported, thus limiting the end-user experience.

5.22.3 GDB Remote Protocol Log

Ozone communicates with the GDB server using the GDB remote protocol. This communi-
cation can be logged into a file. The command Pr oj ect . Set JLi nkLogFi | e will enable that
logging. Due to performance reasons, huge commands and responses will not be written
to the file - they are replaced by short placeholder messages.

Commands sent by Ozone to the GDB server are prepended with a >, responses sent by the
GDB server to Ozone are prepended with a <. Hex-encoded messages are visible in clear
text as well, they are prepended with >> or <<, respectively.

5.22.4 GDB server types

Some GDB servers add extensions to the GDB remote protocol, thus granting access to
functionality otherwise not reachable. Even though the GDB remote protocol specifies how
to handle such extensions in case the extension is not supported, not all GDB servers
adhere to the spec srictly. To avoid overwhelming GDB servers with such extensions the
user can specify which GDB server type is being used. This is controlled via the system
variable VAR _GDB_SERVER TYPE (see GDB Server Type on page 272) which is accessible
in the System Variable Editor.

The system variable is evaluated during the early phase of the debug session, where the
connection to the GDB server is established and the mutual capabilities are negotiated.
Changing the system variable during an active debug session may not have an immediate
effect. The change may become effective only after a new debug session is started.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

221 CHAPTER 5 Messages And Notifications

5.23 Messages And Notifications

This section provides a brief description of Ozone’s application message and user notification
system.

5.23.1 Message Format

The format of Ozone application messages is <t ype>(<code>): <nessage>, where <type>
is either error or warning and <code> is a unique message number.

5.23.2 Message Codes

Section Errors and Warnings on page 283 lists all user-visible error and warning messages
by their code and provides an overview of the cause and possible solution to each exception.

5.23.3 Logging Sinks

Application messages are output to any of the following destinations:

e (Ozone’s Console Window
e Debug Console
e Application Lodfile

Application messages printed to the Console Window have the highest priority and become
immediately noticeable to the user.

The allocation of message types to logging sinks is depicted in the table below.

Message Type Ozone Console Debug Console Logfile
Error X X
Warning (important) X X
Info (important) X X
Warning X X
Info X X

5.23.4 Debug Console

When Ozone is started with command line argument -debug, a debug console will open
next to the Main Window. The debug console displays all application messages of lower
significance that would otherwise only be visible to the software developer.

5.23.5 Application Logfile

The global logdfile storing all application messages is disabled per default. It can be enabled
via command line argument -/ogfile <path> (see Command Line Arguments on page 279).

5.23.6 Other Logfiles

Messages output to the Console Window or Terminal Window can additionally be logged to
a separate logfile (see Project.SetConsoleLogFile on page 353 and Project.SetTerminal-
LogFile on page 353).

In case of connecting to a GDB server the command Project.SetJLinkLogFile on page 352
will have the effect that the communication between GDB client and GDB server is written
to a log file.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

222 CHAPTER 5 File Path Arguments

5.24 File Path Arguments

This section explains the rules pertaining to file path input.

Ozone obtains user file path input via multiple channels, such as:

e export dialogs
e command arguments
e console prompt

Regardless of the input channel, a file path argument is processed in the following globally
consistent way:

e A file path may be specified either as an absolute or as a relative path. In the latter
case, the path is relative to the project file directory. If the project file directory does
not exist, the path is relative to the system’s current working directory.

e File path arguments may include Ozone directory macros, environment variables and
cd-up (..) macros (see Directory Macros on page 281 and Environment Variables on
page 281).

e User preference PREF_AUTO CREATE_DI R_PATHS governs if the output directory path will
be automatically created when it does not exist.

The letter casing of file paths is only relevant on macOS and Linux.
A file path must end with a file nhame and a file extension. The file extension can be
omitted when explicitly indicated within this user guide.

e Every time Ozone encounters an invalid file path argument that does not point to a
file or directory, the debugger tries to resolve the file path as described in File Path
Resolution Sequence on page 207. When the path could be successfully resolved, it
replaces the user input.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

223 CHAPTER 5 Other Debugging Activities

5.25 Other Debugging Activities

This section describes all debugging activities that were not covered by the previous sec-
tions.

5.25.1 Finding Text Occurrences

Text patterns within source code documents may be located using the Find In Files Dialog
(see Find In Files Dialog on page 71). This dialog supports regular expressions and standard
text search options.

Text patterns within the content of the Instruction Trace Window may be located using the
Find In Trace Dialog (see Find In Trace Dialog on page 73). This dialog supports regular
expressions and standard text search options.

When a text pattern is to be found within the active document, users may furthermore
resort to the convenient Quick Find Widget (see Quick Find Widget on page 92). The
quick find widget can be used alternatively to locate a particular function, global variable
or source code file of the debuggee.

The Find In Trace Dialog is provided to locate text patterns within Instruction Trace Window
content.

5.25.2 Saving And Loading Memory

Ozone enables users to store target memory content to a binary data file and vice versa.

Memory-To-File

Target memory blocks can be saved (dumped) to a binary data file via command Tar-
get.SaveMemory (see Target.SaveMemory on page 361) or via the Save Memory Dialog
(see Memory Dialog on page 137).

File-To-Memory

File contents can be downloaded to target memory via command Target.LoadMemory (see
Target.LoadMemory on page 362) or via the Load Memory Dialog (see Memory Dialog on
page 137).

5.25.3 Relocating Symbols

To allow the debugging of runtime-relocated programs such as bootloaders, Ozone pro-
vides command Project.RelocateSymbols (see Project.RelocateSymbols on page 352).
This command shifts the absolute addresses of a set of program symbols by a constant
offset. It can thus be used to realign symbol addresses to a modified program base address.
Symbol relocation must be specified before the program file is opened.

5.25.4 Closing the Debug Session

The debug session can be closed via command Debug.Stop (see Debug.Stop on page 331).
The action can be executed from the Debug Menu or by pressing the hotkey Shift-F5.

5.25.5 Interworking with External Applications

Ozone can spawn processes and execute external applications. The exit code of the ap-
plication can be used in Ozone for further processing and textual poutput created by the
application on standard output channels (such as st dout and st derr) is captured and dis-
played in Ozone’s console window. The preferences dialog allows specifying the colors for
such messages in the console window.

A timeout duration can be specified. If the application does not terminate within that time
limit, the application is killed by Ozone.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

224

Ozone User Guide & Reference Manual (UM08025)

CHAPTER 5 Other Debugging Activities

Applications can be launched in 2 ways:

Waiting for termination: The application is started and Ozone waits until the
application terminates. Ozone supports starting only a single process at a time this way.
Another application can be started only after the previous application terminated.
Fire-and-forget: The application is started without Ozone waiting for its termination.
The exit code of the application is not available in Ozone and textual outputis neither
captured nor displayed in the console window. Multiple applications can be started this
way at the same time.

For this feature the command Process.Exec (see Process.Exec on page 339) is used. When
launching the application, the following information must be provided:

The application’s name as it is used to start the application from the OS shell’s
command line. The path information may be included.

The argument list as it would be specified when starting the application from the OS
shell. The argument list must be provided in a single string containing all arguments
separated by whitespaces.

The Timeout. This is the expected execution time in milliseconds after which the
process will be killed in case the application did not termiante beforehand.

Quotes in the file name and/or arguments need to be escaped with a preceeding backslash,
i.e. '\ must be used.

© 2013-2026 SEGGER Microcontroller GmbH

Chapter 6

Scripting Interface

This chapter describes Ozone’s scripting interface. The scripting interface enables users to:

reprogram key debug operations
incorporate a bootloader into Ozone’s startup sequence

extend Ozone’s target application insight via RTOS awareness plugins
support custom instructions

among other applications.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

226 CHAPTER 6 Project Script

6.1 Project Script

Ozone project scripts (*.jdebug) contain user-implemented script functions that the de-
bugger executes upon entry of defined events or debug operations. By implementing script
functions, users are able to reprogram key operations within Ozone such as the hardware
reset sequence that puts the target into its initial state.

It is also possible to use functions inside the project script as macros for complex command
sequences. For details please refer to User Functions on page 228.

6.1.1 Script Language

Ozone project scripts are written in a simplified C language that supports most C language
constructs such as functions and control structures.

Types

The following types and type definitions can be used within project scripts:
i nt __int64 Ue4 | 64

short __int32 u32 | 32

char __intl6 Ul6 116

voi d _int8 us 18

as well as pointers to — and arrays of — the types listed above.

Type Modifiers

The following type modifiers can be used within project scripts:

e signed

e unsigned
e static

e const
Operators

Ozone project scripts support all binary and unary C operators with the exception of the
unary increment and decrement operators.

Syntax Constraints

The following syntax constraints apply to project scripts:

e variables must be declared before they can be initialized.

e |ocal variable declarations have to be placed on top of the function body before all other
code.

e quotes in strings need to be escaped with a preceeding backslash.

Note

Escaped quotes are supported only by a selection of commands. In case a command
supports escaped quotes there is a note in the respective command’s documentation.

6.1.2 Script Structure

On a top level, there are 3 structural elements within a project script:

Global Variable Declarations

static unsigned int _PC,

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

227

Constant Value Definitions

CHAPTER 6 Project Script

__constant unsigned int PC CFFSET = 4;

Function Definitions

voi d AfterTarget Reset (void) {

Tar get . Wi t eU32(0x40004002, OXFF);

}

All other script code must be contained within script functions. In addition, global constants
can be defined using command Script.DefineConst (see Script.DefineConst on page 323).

6.1.3 Script Functions Overview

Project file script functions belong to three different categories: event handler functions,
process replacement functions and user functions. Each script function may contain C code
that configures the debugger in some way or replaces a default operation of the debugging
workflow. The different function categories are described below.

6.1.4 Event Handler Functions

Ozone defines a set of event handler functions that the debugger executes upon entry of
specific debug events. The Table below lists the event handler functions and their associated
events. The event handler function OnPr oj ect Load must be present in a project file. All

other functions are optional.

Event Handler Function

Description

voi d OnProj ectLoad();

Executed when the project file is opened.

voi d AfterProjectlLoad();

Executed after the project file is opened.

void OnStartupConpl ete();

Executed when the Startup Completion Point was
reached.

voi d OnDebugSt art BreakSym
bol Reached();

Executed when the symbol to be stopped at during
startup was reached.

voi d Bef oreTarget Reset ();

Executed before the target is reset.

voi d AfterTarget Reset();

Executed after the target was reset.

voi d Bef or eTar get Downl oad() ;

Executed before the program file is downloaded.

voi d AfterTar get Downl oad();

Executed after the program file was downloaded.

voi d Bef oreTar get Connect () ;

Executed before a connection to the target is estab-
lished.

voi d AfterTarget Connect();

Executed after a connection to the target was es-
tablished.

voi d Bef oreTarget Di scon-
nect () ;

Executed before the debugger disconnects from the
target.

voi d AfterTarget Di scon-
nect ();

Executed after the debugger disconnected from the
target.

void AfterTargetHalt();

Executed after the target processor was halted.

voi d Bef oreTarget Resune();

Executed before the target processor is resumed.

voi d OnSnapshot Load();

Executed when a debug snapshot is loaded.

voi d OnSnapshot Save() ;

Executed when a debug snapshot is saved.

void OnError(char* sEr-
rorMsQ) ;

Executed when an error occurred.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

228

CHAPTER 6 Project Script

6.1.5 User Functions

Users are free to add custom functions to the project file. These “helper” or user functions
are not called by the debugger directly; instead, user functions need to be called from other
script functions.

User functions can also be called via the command Script.Exec (to be entered into the Com-
mand Prompt in the Console Window), or via the Custom Toolbar. Thus user functions may
serve as macros for complex sequences of steps: The sequence needs to be implemented
into a user function so it can be executed each time the respective button in the Custom
Toolbar is clicked.

User functions may also be linked to a break point, so they are invoked each time the
breakpoint is taken. This can be used for automation purposes but also for smarter trig-
gering, by evaluating complex conditions inside the function and resuming execution of the
target in case they are not met. Details on that topic can be found in the section Breakpoint
Callback Functions on page 193.

6.1.6 Debugger API Functions

In the context of project script files, any user action that has a text command is referred to
as an API function or API command (see Action Tables on page 43). API functions can be
called from project script files to execute specific functions of the debugger and to exchange
data with the debugger. In short, API functions resemble the debugger’s programming
interface (or API).

6.1.7 Process Replacement Functions

Ozone defines 4 script functions that can be implemented within the project file to replace
the default implementations of certain debug operations. The behavior that is expected
from process replacement functions is described in this section.

Process Replacement Function Description
voi d DebugStart(); Replaces the default debug session startup routine.
voi d Target Reset (); Replaces the default target hardware reset routine.
voi d Tar get Connect (); Replaces the default target connection routine.
voi d Tar get Downl oad() ; Replaces the default program download routine.

6.1.7.1 DebugStart

When script function DebugSt art is present in the project file, the default startup sequence
of the debug session is replaced with the operation defined by the script function.

Startup Sequence

The table below lists the different phases of Ozone’s default debug session startup sequence
(see Download & Reset Program on page 184). The last column of the table indicates the
process replacement function that can be implemented to replace a particular phase of the
startup sequence. The complete startup sequence can be replaced by implementing the
script function DebugSt art.

Process Replacement

Startup Phase Description Function

A connection to the target is estab-
lished via J-Link/]J-Trace.

Pending (data) breakpoints that were
set in offline mode are applied.

Phase 1: Connect Tar get Connect

Phase 2: Breakpoints

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

229 CHAPTER 6 Project Script

Process Replacement

Startup Phase Description Function

A hardware reset of the target is per-

Phase 3: Reset Tar get Reset

formed.

Phase 4: Download The debuggee is downloaded to target Tar get Downl oad
memory.
The initial program operation is per-

Phase 5: Finish formed (see Initial Program Operation

on page 184).

Flow Chart

Appendix Startup Sequence Flow Chart on page 282 provides a graphical flowchart of
the startup sequence. Most notably, the flowchart illustrates at what points during the
startup sequence certain event handler functions are called (see Event Handler Functions
on page 227).

Breakpoint Phase

Phase 2 (Breakpoints) of the default startup sequence is always executed implicitly after
the connection to the target was established.

Writing a Custom Startup Routine
A custom startup routine that performs all phases of the default sequence but the initial
program operation is displayed below.

voi d DebugStart (void) {
Exec. Connect () ;
Exec. Reset () ;
Exec. Downl oad(" C: / exanpl es/ kei | / st n82f 103/ bl i nky. axf");

}

6.1.7.2 TargetConnect
When script function Tar get Connect is present in the project file, the debugger’s default
target connection behavior is replaced with the operation defined by the script function.
6.1.7.3 TargetDownload

When script function Tar get Downl oad is present in the project file, the debugger’s default
program download behavior is replaced with the operation defined by the script function.

Writing a Multi-image Download Routine

An application that requires the implementation of a custom download routine is when
one or multiple additional program images (or data files) need to be downloaded to target
memory along with the debuggee. A corresponding implementation of the script function
Tar get Downl oad is illustrated below.

/***
Tar get Downl oad

Function description
Downl oads an additional programimage to target nenory

* % X Sk Ok

*

EE S I I S I b IR I I S b I b I S I I R b I I I b I I I S I I I I I 2 S I I b b I I b I b I b b b I I
*/
voi d Tar get Downl oad(voi d) {

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

230

CHAPTER 6 Project Script

Util.Log("Downl oadi ng Program");

/1 1. Downl oad the debuggee
Exec. Downl oad() ;

/1 2. Downl oad the additional programimage
Tar get . LoadMenor y(" C: / Addi ti onal ProgranDat a. hex", 0x20000400) ;

}

Using command “Exec.Download” to perform the download guarantees that there will be
no script function recursion (see Download Behavior Comparison on page 198).

6.1.7.4 TargetReset

When script function Tar get Reset is defined within the project file, the debugger’s default
target hardware reset operation is replaced with the operation defined by the script function.

J-Link Reset Routine

Ozone’s default hardware reset routine is based on the J-Link/]-Trace firmware routine
“JLI NKARM Reset ". Please refer to the J-Link User Guide for details on this routine and
its target-dependent behavior.

Writing a Reset Routine for RAM Debug

A typical example where the J-Link/]-Trace hardware reset routine must be replaced with
a custom reset routine is when the debuggee is downloaded to a memory address other
than zero, for example the RAM base address.

Problem

The standard reset routine of the firmware assumes that the debuggee’s vector table is
located at address 0 (Cortex-M) or that the initial PC is 0 (Cortex-A/R, Legacy ARM). As this
is not true for RAM debug, the reset routine must be replaced with a custom implementation
that initializes the PC and SP registers to correct values.

Solution

A custom reset routine for RAM debug typically first executes the default J-Link hardware
reset routine. This ensures that tasks such as pulling the target’s reset pin and halting the
processor are performed. Next, a custom reset routine needs to initialize the PC and SP
registers so that the target is ready to execute the first program instruction.

Example

The figure below displays the typical implementation of a custom hardware reset routine
for RAM debug on a Cortex-M target. This implementation is included in all project files
generated by the Project Wizard that are set up for a Cortex-M target device.

/***

Tar get Reset

E A T T

Function description
Resets a program downl oaded to a Cortex-Mtarget’s RAM section

*
EE R b I I b R I I b S I I kR I I I b S L S I
*/
voi d Target Reset (void) {
unsi gned int SP;
unsi gned int PC;
unsi gned i nt ProgramAddr;

Util.Log("Perform ng custom hardware reset for RAM debug.");

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://www.segger.com/downloads/jlink/UM08001

231 CHAPTER 6 Project Script

Pr ogramAddr = 0x20000000;

/1 1. Performdefault hardware reset operation
Exec. Reset () ;

[l 2. Initialize SP
SP = Target. ReadU32(Pr ogr amAddr) ;
Tar get . Set Reg(" SP", SP);

/1 3. Initialize PC
PC = Target. ReadU32(ProgramAddr + 4);
Tar get . Set Reg(" PC', PO);

6.1.8 Executing Script Functions

Ozone provides the command Script.Exec (see Script.Exec on page 322) that enables
users to execute individual project script functions from the Command Prompt (see Com-
mand Prompt on page 111).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

232 CHAPTER 6 Disassembly Plugin

6.2 Disassembly Plugin

A disassembly plugin adds support for custom instructions to Ozone. It enables users to
debug and analyze a program containing custom instructions without limitations.

In particular, a disassembly plugin:

e enables the disassembly of custom instructions within the Disassembly Window (see
Disassembly Window on page 117).

e enables all features of Ozone that rely on numerical instruction information to process
custom instructions and output accurate results.

An example for the latter case is the Call Graph Window. This debug window requires
knowledge about the branch destination PC for all branch-type instructions in order to build
function call graphs.

6.2.1 Script Language

Disassembly plugins are written in JavaScript. All of JavaScript’s basic language constructs
are supported. The following restrictions apply:

e All script code must be contained within functions.
e Exception handling (t hrow, try, cat ch) is not supported.

6.2.2 Loading the Plugin

Command Project.SetDisassemblyPlugin loads a disassembly plugin. When this command
is added to project script function OnPr oj ect Load, the plugin will be loaded each time the
project is opened (see Project.SetDisassemblyPlugin on page 343).

Users may alternatively execute action Set Script of the disassembly window context menu
in order to load a disassembly plugin. When executed, this action will also edit the project
file accordingly.

6.2.3 Script Functions Overview

A disassembly plugin consists of 3 predefined functions:

Function Description Executed When

init performs initialization tasks plugin load

Returns the disassembly text of a custom (or over-

ridden) instruction on-demand

printlnst Asm

Returns numeric information about a custom (or program file

getinstinfo overridden) instruction, such as the PC branched to | load

The implementation of each function is optional.

Next to the predefined script functions, users are free to add their own functions to disas-
sembly plugins in order to structure the code.

6.2.4 Debugger API

Ozone defines a set of commands that can be called from disassembly plugins to communi-
cate and exchange data with the debugger. These commands are implemented as methods
of Ozone’s JavaScript API classes:

Class Description

Debug Provides methods that query information from the debugger.

Targetinterface | Provides methods that read or write target memory and registers.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

233 CHAPTER 6 Disassembly Plugin

The following API commands are of particular importance for the development of disas-
sembly plugins:

Command Description Typical Application

Overrides a known in-

. called from functionini t
struction

Debug. enabl eOverri del nst

Returns the name of a | Obtain the label of a branch
symbol instruction

Obtain the word at the ac-
cess location of a load/store
instruction

Debug. get Synbo

Reads target memory

Target I nterface. peekByt es data

An example-based description of the API classes can be found in section Writing the Dis-
assembly Plugin on page 233. A formal description is given by section JavaScript Classes
on page 383.

6.2.5 Writing the Disassembly Plugin

This section provides an example implementation which adds support for a custom instruc-
tion on a RISCY RISC-V MCU core.

6.2.5.1 init

A disassembly plugin implementation typically starts with script functioni ni t . This function
is called when the disassembly plugin is loaded. The main purpose of function init is to
provide a place where instruction overrides using command Debug. enabl eOver ri del nst
can be defined. An instruction override enables users to alter the disassembly and numerical
information of a known instruction.

/***

*

init

Function Description
Cal l ed by Ozone when the script was | oaded
(i.e. when conmand “Project. Set Di sassenbl yPl ugi n” was execut ed) .

*
*
*
*
*
*
* Typi cal usage: executes one or multiple “Debug. enabl eOverridel nst”
* comands whi ch define the instructions whose default disassenbly

* is to be overridden by this plugin.

*

* Return Val ue

* 0 on success, -1 on error

*/

function init() {

var alnst = new Array();

var aMask = new Array();

/1

/1 This plugin overrides instruction “ADDI sp, sp, -16" (0x1141):
/1

alnst[0] = 0x41;

alnst[1] = 0x11;

aMask[0] = OxFF; // all encoding bits are rel evant

aMask[1] = OxFF; // all encoding bits are rel evant

Debug. enabl eOverri del nst (al nst, aMask);

return O;

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

234 CHAPTER 6 Disassembly Plugin

This example implementation of init overrides the instruction with integer encoding
0x1141.

6.2.5.2 printinstAsm

Next, we implement function pri nt | nst Asmin order to:

e provide the disassembly of custom instruction “P.BEQIMM”
e provide the disassembly of overridden instruction 0x1141

/***

*

* printlnstAsm

*

* Function Description

* Prints the assenbly code of an instruction.

*

* Function Paraneters

* Addr: instruction address (type: U64).

* alnst: instruction bytes (type: byte array).

* Fl ags: basic info about the instruction required for analysis.

*

* Return Val ue

* assenbly code string of format: <mmenoni c>\t<operands>\t; <comrent >.
* undefined if the input instruction is not supported by this plugin.
*/

function printlnstAsn(Addr, alnst, Flags) {
if (alnst.length == 4) {

11
/'l convert byte array “alnst” to integer “Encoding”
11
var Encoding = (alnst[3]<<24) | (alnst[2]<<16) | (alnst[1]<<8) | alnst[O0];
if ((Encoding & 0x707F) == 0x2063) { // opcode == “P.BEQ MM ?
/1
/1 “P.BEQ MV is a PCrelative conditional branch
/1
/1 Operation:
/1 If (Rsl == Imb) branch to Addr + (I mml2 << 1).
/1
var slnst = "P.BEQ MMt" + regNanme(Rsl1l) + ", " + Imb + ", " + I ml2;

var sSynmbol = Debug. get Synbol (Addr + (Inml2 << 1));

return slnst + “\t; ” + sSynbol;

}
} else if (alnst.length == 2) {

var Encoding = (alnst[1l] << 8) | alnst[0];

if (Encoding == 0x1141) { // “ADDI sp, sp, -16" ?
return “ADDI\tsp, sp, -0x107;
}
}

return undefined;

}

The above example of function pri nt | nst Asm executes a single debugger API command
with Debug. get Synbol . This command returns the name of the symbol at or preceding the
input address. The symbol name is appended as comment to the returned assembly code
text. Function r egNane is a user-defined script function which returns the name of a RISC-
V register. The extraction of fields Imm5 and Imm12 from the encoding has been omitted
from this example to improve readability.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

235 CHAPTER 6 Disassembly Plugin

6.2.5.3 getinstinfo

We also want the disassembly plugin to provide numerical information about custom in-
struction “P.BEQIMM” to Ozone, such as the branch destination PC. This will allow Ozone to
assemble and display correct information in areas that are based on numerical instruction
information, such as the Call Graph Window.

The plugin delivers numerical instruction information to Ozone via script function get | n-
st | nfo.

/***

*

getlnstlnfo

Function Description
Returns numerical informati on about an instruction.

Used by Ozone to generate tineline stacks and call-graphs,
anmong ot her applications.

*
*
*
*
*
*
*
*
* Function Paraneters

* Addr: instruction address (type: U64)

* alnst: instruction data bytes (type: byte array)

* Fl ags: basic info about the instruction required for analysis.
*

*

*

*

*

*

*

*

*

*

*

Return Val ue
undefined if the input instruction is not supported by this plugin.
ot herwi se a javascript object corresponding to C structure | NST_I NFO

struct | NST_I NFO {
U32 Mode; // instruction execution node (for ex. THUVMB or ARM
U32 Size; // instruction byte size
U64 AccessAddr; // access address (|l oad/store location, branch dest.)
int StackAdjust; // Difference of SP before and after inst. execution
U32 Flags; // binary instruction informtion
*}
*/
function getlnstlinfo(Addr, alnst, Flags) {

if (alnst.length == 4) {

11
/1l convert byte array “alnst” to integer “Encoding”
11
var Encoding = (alnst[3]<<24) | (alnst[2]<<16) | (alnst[1]<<8) | alnst[0];
if ((Encoding & 0x707F) == 0x2063) { // opcode == “P.BEQ M\ ?
var Instlnfo;
Instinfo = new Cbject();
Instinfo.Size = 4;
I nstlnfo. Mode = O;
I nst | nfo. StackAdj ust = O;
I nstl nfo. AccessAddr = Addr + | nmml2;
Instlnfo.Flags = 0x0888; // IsBranch | IsConditional | |sFixedAddress
return Instlnfo;
} // if opcode == “P. BEQ MV

} /1 if alnst.length ==

return undefined;

}

as demonstrated in the example above, numerical instruction information is returned as a
JavaScript object containing a predefined set of members. The member names are fixed

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

236 CHAPTER 6 Disassembly Plugin

and must match the example. The 32 bit unsigned Flags member of the object has the
following bit field layout:

Instinfo.Flags

Field Pos | Len Description
IsValid 0 1 InstInfo.Flags is not initialized when this field is O
IsCtrlTransfer |1 1 Instruction possibly alters the PC
IsSoftIRQ 2 1 Instruction is a software interrupt request
IsBranch 3 1 Instruction is a simple branch (B, JMP, ...)
IsCall 4 1 Instruction is a function call (Branch with Link, BL, CALL, ...)
IsReturn 5 1 E(e)gligaéc)ed return instruction or return-style branch (e.g.
IsMemAccess 6 1 Instruction reads from or writes to memory
IsFixedAddress | 7 1 Branch or access address is fixed (absolute or PC-relative)
IsBP 8 1 Instruction is a SW breakpoint
IsSemiHosting |9 1 Instruction could be a semihosting instruction
IsNOP 10 |1 Instruction is a NOP
IsConditional 11 |1 Instruction is conditionally executed
Condition 12 |4 Condition if conditionally executed

The field Condition is currently unused.

This concludes the plugin example. We have seen that from a top-level perspective, a
disassembly plugin consists of 3 predefined functions.

6.2.6 The Flags Parameter

The 32 bit unsigned Flags parameter of script functions printlnst Asmand getlInstlnfo
provides basic instruction information required for disassembly and analysis. The interpre-
tation of this parameter depends on the target architecture, as explained below.

6.2.6.1 Flags on ARM

Value Meaning

0 Address is contained within a (code-inline) data segment

1 Address is contained within an AArch32 thumb code segment
2 Address is contained within an AArch32 ARM code segment

3 Address is contained within an AArch64 code segment

6.2.6.2 Flags on RISC-V

The Flags parameter currently has no meaning on RISC-V.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

237 CHAPTER 6 RTOS Awareness Plugin

6.3 RTOS Awareness Plugin

By implementing an RTOS-awareness plugin, users are able to add a task list and other
RTOS-specific debug information to the RTOS Window (see RTOS Window on page 151).
An RTOS plugin may furthermore enable Ozone to show the execution context of any sus-
pended or interrupted task within the Registers, Call Stack and Local Data windows.

6.3.1 Script Language

RTOS awareness plugins are written in JavaScript. All of JavaScript’s basic language con-
structs are supported. The following restrictions apply:

e All script code must be contained within functions.
e Exception handling (throw, try, catch) is not supported.

6.3.2 Loading the Plugin

Command Project.SetOSPlugin loads an RTOS plugin. When this command is added to
project script function OnPr oj ect Load, the plugin will be loaded each time the project is
opened (see Project.SetOSPlugin on page 343).

When an RTOS plugin is loaded, the entry for the RTOS Window will become active in the
the debuggers View Menu (see View Menu on page 46).

6.3.3 Script Functions Overview

Ozone defines the prototypes of 6 script functions that serve specific purposes and that are
executed upon entry of specific events.

Function Description Executed When

init initializes the RTOS Window program file load

updat e updates the RTOS Window program execution halt

getregs returns the register set of a task task context activation

get name returns the name of a task program execution halt

get OSNane returns the name of the RTOS program file load
returns the base address of a task’s thread .

gettls program execution halt
local storage

get Cont ex- returns information about all RTOS kernel rogram file load

t Swi t chAddr s functions that perform a task switch prog

The implementation of function update is obligatory while all other functions may be omitted
from a plugin implementation.

Next to the predefined script functions, users are free to add their own functions to RTOS
scripts in order to structure the code.

6.3.4 Debugger API

Ozone defines a set of functions that can be called from RTOS scripts to communicate and
exchange data with the debugger. These functions are implemented as methods of Ozone’s
JavaScript API classes:

Class Description
Debug Provides methods that query information from the debugger.
Threads Provides methods that control and edit the RTOS Window.

Targetlnterface | Provides methods that read or write target memory and registers.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

238 CHAPTER 6 RTOS Awareness Plugin

An example-based description of the API classes can be found in section Writing the
RTOS Plugin on page 238. A formal description is given by section JavaScript Classes on
page 383.

6.3.5 Writing the RTOS Plugin

The examples presented in this section assume that the debuggee defines a recursive task
control block structure similar to the following type definition:

TCB {
U32* pStack; /1 menory address of the task stack
U32* pTLS; /1 base address of the task’s thread | ocal storage
TCB* pNext /1 menory address of the next TCB
s
6.3.5.1 init

An RTOS plugin implementation typically starts with script function i nit — this function
is expected to set up all RTOS informational views of the RTOS Window so that RTOS
information can be quickly updated once the debug session is running.

/***
Init

Function description
Initializes all RTCS informational views of the RTOS W ndow.

* %k k¥ X

IR R R R SRR R RS SRR R RS EE R RS EREEEEREEREEEREREEEREEE R R EEREEEREEEEEEEERE RS R R R

*

function init()

/1 Init the task table

Thr eads. newqueue(" Tasks") ;

Thr eads. set Col ums(" Nane", "Priority", "Status", "Timeout");
Thr eads. set Sort ByNunber ("Priority");

Thr eads. set Col or (" Status”, "Ready", "Executing", "Waiting");

/ Init the tiners table

Thr eads. newqueue(" Ti ners");

Thr eads. set Col ums(" Nane", "Priority", "Interval");
Thr eads. set Sort ByNunber ("Priority");

Thr eads. set Sort ByNunber ("I nterval ") ;

}

Thr eads. newgueue appends a new table to the RTOS Window and activates it. When the
table already exists, it is simply activated.

Note

The RTOS task list is required to be added as the first table of the RTOS window.

Thr eads. set Col unms sets the columns of the active table. Note that all methods of the
Thr eads class that do not specify a table name act upon the active table. For conveniance,
Ozone implicitly adds table “Task List” to the RTOS window when method Thr eads. set -
Col umms is called before any table was added.

Thr eads. set Sort ByNunber specifies that a particular column of the active table should be
sorted numerically rather than alphabetically.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

239 CHAPTER 6 RTOS Awareness Plugin

Thr eads. set Col or configures the task list highlighting scheme. The tasks with states

”

“Ready”, “Executing” and “Waiting” will be highlighted in light green, green and light red,
respectively.

6.3.5.2 update

An implementation of updat e is expected to perform an all-table update of the RTOS Win-
dow.

/**********~k***~k**********~k***~k*~k********~k***~k************************

updat e

* ok k¥ *

Function description
Updates all RTOS informational views of the RTOS W ndow.

*

EE Ik Sk 2 kS Sk I Rk kS S I Sk I Ik Sk S S O kR Sk kS I I kS
*/

function update()

{
var aRegs = [0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16] ;

/1 clear all tables
Thr eads. cl ear () ;

/1 fill the task table

if (Threads.shown("Tasks")) {
Thr eads. newqueue(" Tasks");
Thr eads. add(" Task1", "0", "Executing", "1000", 0x20003000);
Thr eads. add(" Task2", "1", "Witing", "2000", aRegs);

}

[l fill the timers table
if (Threads.shown("Timers")) {
Thr eads. newgueue(" Ti mers");
Thr eads. add(" Ti nmer 1", "1000", "2000");
}
}

Thr eads. cl ear removes all rows from all tables of the RTOS Window. Table columns remain
unchanged.

Thr eads. shown tests if a RTOS Window table is currently visible. The methods main use is
to allow a faster update of the RTOS Window.

Thr eads. newqueue activates the table named “Tasks” so that the following call to Thr ead-
s. add will append a data row to this table.

The last parameter of method Thr eads. add is either:

e an integer value that identifies the task, usually the address of the task control block.

e an unsigned integer array containing the register values of the task. The array must be
sorted according to the logical indexes of the registers as defined by the ELF-DWARF
ABI.

The first option should be preferred since it defers the readout of the task registers until
the task is activated within the RTOS Window (see method get r egs).

The special task identifier value undefined indicates to the debugger that the task registers
are the current CPU registers. In this case, the debugger does not need to execute method
getregs.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

240 CHAPTER 6 RTOS Awareness Plugin

6.3.5.3 (getregs
An implementation of getr egs is expected to return the (saved) register set of a task.

/***

getregs

Function description
Returns the register set of a task.
For ARM cores, this function is expected to return the val ues
of registers RO to R15 and PSR

Par anet er s
hTask: integer nunmber identifying the task.
Identical to the | ast paraneter supplied to method Threads. add.
For conveni ence, this should be the address of the TCB.

Ret urn Val ues
An array of unsigned integers containing the task’s register val ues.
The array must be sorted according to the |ogical indexes of the regs.
The | ogi cal register indexing schenme is defined by the ELF- DWARF ABI .

* ok k% ok ok ok k% Kk ok ok kK Kk ok ok

*
EE Ik Sk 2 kS Sk I Rk kS S I Sk I Ik Sk S S O kR Sk kS I I kS
*/
function getregs(hTask)
var i;
var tcb;
var aRegs = new Array(16);

/1 get the task’s TCB data structure
tcb = Debug. evaluate("*(TCB*)" + hTask);

if (tcb == undefined) {
return [];
}
/1 copy the registers stored on the task stack to the output array
for (i =0; i < 16; i++) {
aRegs[i] = Targetlnterface. peekWord(tcb. pStack + i * 4);

return aRegs;

}

The method Debug. eval uat e instructs Ozone to evaluate a C-style symbol expression and
return the result as a JavaScript object (see Working With Expressions on page 205).

In the example above, an expression including a type cast and a pointer dereference is
employed to return a JavaScript object that mirrors the TCB type defined by the debuggee.
The member tree of the returned JavaScript object is fully initialized with the exception
that pointer members cannot be dereferenced.

The return value of Debug. eval uat e can be compared to value undefined in order to test
if the evaluation succeeded.

Method Tar get | nt er f ace. peekWor d instructs the debugger to read and return a word from
target memory. In the example above, peekWrd is used to read a register value of the
task stack.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

241 CHAPTER 6 RTOS Awareness Plugin

6.3.5.4 getname
Function get nane is expected to return the name of a task.
/***

get name

Function description
Returns the nane of a task.

Par anet er s
hTask: see the description of method getregs.

* ok ok k k ok * X

*

EE Ik Sk 2 kS Sk I Rk kS S I Sk I Ik Sk S S O kR Sk kS I I kS
*/
function getname(hTask)

{

var tcb;
tcb = Debug. evaluate("*(TCB*)" + hTask);
return tch. sNane;

}

6.3.5.5 getOSName

Function get OSNane is expected to return the name of the RTOS. The name will be used
within Ozone’s view menu, among other applications.

function get OSNane() {
return "enbGCs";

}

6.3.5.6 gettls

Function gettl s is expected to return the base address of the memory block containing
the task’s thread local storage.

/********~k*********~k****************~k*********************************
gettls

Function description
Returns a pointer to the thread | ocal storage of a task.

Par anet er s
hTask: see the description of method getregs.

* ok ok k k ok * X

*
EE Ik Sk 2 kS Sk I Rk kS S I Sk I Ik Sk S S O kR Sk kS I I kS
*/
function gettl s(hTask)
{
var tcb;
tcb = Debug. evaluate("*(TCB*)" + hTask);
return tch. pTLS;
}

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

242 CHAPTER 6 RTOS Awareness Plugin

6.3.5.7 getContextSwitchAddrs

Function get Cont ext Swi t chAddr s is expected to return the base addresses of all functions
and instructions that complete a task switch when executed.

/********~k*********~k****************~k*********************************
get Cont ext Swi t chAddr s
Function description

Returns the base addresses of all functions and instructions
that conmplete a task switch when execut ed.

* ok ok * * *

*

Rk b Sk b I R R S Sk o S S SRR S b b R R kS I R S S R

*/
function get Cont ext Swi t chAddr s()
{

var aAddrs = new Array(1);

var Addr;

Addr = Debug. eval uat e(" & TaskSwi t chContext");

if (Addr != undefined) {
aAddrs[0] = Addr;
return aAddrs;

} else {
return [];

6.3.5.8 Iterating the Task List

The next example demonstrates an advanced implementation of method updat e which
employs Debug. eval uat e to iteratively update the task list.

/********~k*********~k****************~k*********************************
updat e

Function description
Updates the RTOS W ndow

* ok k¥ *

*

kkkhkkhkkhkhhkkhkhhhhhhhhhhhdhhhdhhhdhhhdrhhhhhhhhhhdhhhdhhdhhdhhdhhdrhrddrdxdrrd*x*x%

*/
function update()
{
var pTCB;
var tcb;
var count;
pTCB = Debug. eval uat e(" OS_G obal . pCurrent Task") ;
count = 0;
while ((pTCB != undefined) && (pTCB = 0) && (count < MAX_TASK COUNT))
{
tcb = Debug. eval uate("*(TCB*)" + pTCB);
Thr eads. add(tcb. name, tcb.priority, tcb.status, tcb.timeout, pTCB);
count ++;
pTCB = tch. pNext;
}
}

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

243 CHAPTER 6 RTOS Awareness Plugin

6.3.5.9 Computing The Stack Usage

A common task when implementing an RTOS plugin is to compute the (maximum) stack
usage of a particular task. Often times, this information is not provided by the RTOS and
must be computed via a data analysis of the task stack. To serve this purpose, Ozone pro-
vides the methods Target I nterface. fi ndByt e and Tar get | nt er f ace. fi ndNot Byt e. Both
methods search through a target memory block for the first byte matching, respectively
not matching, a comparison value. An example implementation is given below.

/~k~k~k~k~k~k~k~k~k********~k~k~k~k~k*********~k~k~k~k~k********~k************************
get MaxSt ackUsage

Function description
Returns the maxi mum stack usage of a task.

Paranet ers
hTask: address of the task control bl ock.

* ok ok k k ok * X

*
EE Ik Sk 2 kS Sk I Rk kS S I Sk I Ik Sk S S O kR Sk kS I I kS
*/
function get MaxSt ackUsage(hTask)
var tcb;
var index;

tcb = Debug. evaluate("*(TCB*)" + hTask);

if (tch.stackSize > STACK CHECK LIMT) {
return undefined; // skip analysis if stack is too big
}
i ndex = TargetlInterface.findNotByte(tch.pStack, tch.stackSize, FILL_VAL);
return tch. stackSi ze - index;

}

where STACK _CHECK LI M T limits stack analysis to a preset byte length and FI LL_VAL is
the byte value used to initialize the task stack when the stack is allocated.

6.3.5.10 Convenience Methods

The methods Thr eads. set Col uims2 and Thr eads. add2 are convenience functions that take
as first parameter the name of the table to be altered. Both methods implicitly execute
Thr eads. newqueue with the table name parameter as a first step. Next, both methods per-
form exactly the same operations as their Thr eads. set Col uims and Thr eads. add coun-
terparts. There is one exception in that Thr eads. add2 misses the trailing parameter of
Thr eads. add, i.e. it cannot be used to specify the register set of a task.

6.3.6 Compatibility with Embedded Studio

The JavaScript API of Ozone is a subset of the API employed by Embedded Studio. All
methods necessary to program an RTOS plugin have been adopted. It is, therefore, possible
to write an RTOS plugin once and use it within both software products. Function get Con-
t ext Swi t chAddr s is required for proper displaying task switches in the TimeLine window.
It is not required for displaying the contens in the RTOS Window (see RTOS Window on
page 151).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

244 CHAPTER 6 SmartView Plugin

6.4 SmartView Plugin

By implementing a SmartView plugin, users are able to display complex information from
the target software in a comprehensive, human readable form.

6.4.1 Script Language

SmartView plugins are written in JavaScript. All of JavaScript’s basic language constructs
are supported. The following restrictions apply:

e All script code must be contained within functions.
e Exception handling (t hrow, try, cat ch) is not supported.

6.4.2 Loading the Plugin

Command Project.SetSmartViewPlugin loads a SmartView plugin. When this command is
added to project script function OnProj ect Load, the plugin will be loaded each time the
project is opened (see Project.SetSmartViewPlugin on page 344).

When a SmartView plugin is loaded, the entry for the SmartView Window will become active
in the debuggers View Menu (see View Menu on page 46).

6.4.3 Script Functions Overview

Ozone defines the prototypes of 6 script functions that need be implemented in the
JavaScript script in order for the SmartView window to function properly.

Function Description

Applies initial settings and states in the context of the
init JavaScript script.
Is executed once the script is loaded.

Returns the name of the middleware or building block
get Nane this script supplies support for.
The result is a string depicting the name of the plugin.

Returns the names of the pages this script is capable to
display.

The result consists of a list of strings, each of those
strings depicting the name of a page.

get Pages

Returns the names of the columns for a given page.
PageNane specifies the name of the page, as delivered
by the function get Pages.

get Col Header s(PageNane) The result consists of a list of strings, each of those
strings depicting the name of a column. For each column
a string must be given, this string may be empty in or-
der to have a column with no headline.

Returns the values of the 1st row for a given page.
PageNane specifies the name of the page, as delivered
by the function get Pages.

The result consists of a list of strings, each of those
strings depicting the content of a cell. For an empty cell
an empty string must be provided inside the list.

get Fi r st Row PageNane)

Returns the values of the next row for a given page.
PageNane specifies the name of the page, as delivered
by the function get Pages.

The result consists of a list of strings, each of those
strings depicting the content of a cell. For an empty cell
an empty string must be provided inside the list.

get Next Row(PageNane)

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

245

CHAPTER 6 SmartView Plugin

Function

Description

onTar get Changed

Is called each time the target status has changed, e.g.
after a single step was performed or a breakpoint was
taken.

The implementation of all functions is mandatory.

In addition to those pre-defined functions users are free to implement their own functions
in order to structure the code.

6.4.4 Debugger API

Ozone defines a set of functions that can be called from SmartView scripts to communicate
and exchange data with the debugger. These functions are implemented as methods of
Ozone’s JavaScript API classes:

Class Description
Debug Provides methods that query information from the debugger.
Targetlnterface | Provides methods that read or write target memory and registers.

The following API commands are of particular importance for the development of SmartView

plugins:

Command

Description

Typical Application

Debug. eval uat e

Evaluates a C-lan-
guage expression

Obtain the value or address
of a symbol

Debug. get Synbol

Returns the name of a
symbol

Obtain the name of the
symbol at an address

TargetInterface.

peekWord

Returns a word from
target memory

Evaluating memory contents
Rescuing memory contents
that need be changed for
later restauration

TargetInterface.

pokeWor d

Writes a word to target
memory

Changing memory contents

Targetlnterface.

get Regi ster

Returns the content of
a register

Evaluating register contents
Rescuing register contents
that need be changed for
later restauration

TargetInterface.

set Regi ster

Sets the value of a
register

Changing register contents,
e.g. for the purpose of se-
lecting the bank of banked
registers

TargetInterface.

message

Prints a text into the
console window

Debugging the script

An example-based description of the API classes can be found in section Writing the
SmartView Plugin on page 245. A formal description is given by section JavaScript Classes

on page 383.

6.4.5 Writing the SmartView Plugin

The example presented here displays the elements of a polygon. The polygon consists of a
linked list of points, a point consisting of its position specified by x- and y-coordinates:

typedef struct {
i nt xPos;

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

246

CHAPTER 6 SmartView Plugin

i nt yPos;
} tPoint; // a point, consisting of its coordinates

typedef struct Pol yEl enent {
t Poi nt Position;
struct Pol yEl enent* pNext;
} tPolyEl ement; // an el ement of a polygon, usedto forma linked|list of points

t Pol yEl ement* pPoly; // the root elenent of the polygon

/~k~k~k~k~k~k~k~k~k~k********~k~k~k~k~k*********~k~k~k~k~k*******************************
mai n()

Function description
Application entry point.
/
int main(void) ({
t Pol yEIl enent Poi nt s[5] ;

* ok ok * * *

Poi nt s[0] . Posi ti on. xPos = 42;
Poi nt s[0] . Posi tion.yPos = 23;
Poi nt s[0] . pNext = NULL;

Poi nt s[1] . Posi ti on. xPos = 42;
Poi nt s[1] . Posi ti on. yPos = 42;
Poi nt s[1] . pNext = NULL;

Poi nt s[2] . Posi ti on. xPos = 23;
Poi nt s[2] . Posi tion.yPos = 42;
Poi nt s[2] . pNext = NULL;

Poi nt s[3] . Posi ti on. xPos = 23;
Poi nt s[3] . Posi tion.yPos = 23;
Poi nt s[3] . pNext = NULL;

Poi nt s[4] . Posi tion. xPos = 42;
Poi nt s[4] . Posi ti on. yPos = 23;
Poi nt s[4] . pNext = NULL;

pPoly = &Points[O0];

Poi nt s[0] . pNext = &Poi nts[1];
Poi nt s[1] . pNext = &Poi nts[2];
Poi nt s[2] . pNext = &Poi nts[3];
Poi nt s[3] . pNext = &Poi nts[4];
do {

} while (1);

}

In the subsequent sections a SmartView script is described which steps through the linked
list, seizes the x- and y-coordinates for each point and displays that in a table. For each point
the table has one row, each depicting the position in the list, the x- and the y-coordinate.

6.4.5.1 init

This function is invoked by Ozone when the script is loaded. It is supposed to do the basic
initialization of the script.

The interface contains a get Fi r st Row(PageNane) / get Next Row(PageNane) part. This im-
plies that the current row for each page needs be stored somewhere inside the script. Be-
sides that, the script stores the elements of the polygon internally after read-out from the
target. All that information needs be initialized.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

247

CHAPTER 6 SmartView Plugin

var _Points = []; // the list of points read fromthe target

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

init()

* ok * ¥

Functi ons description:
* This function does the basic initialization of the script.
*/
function init() {
_Points =1[];
for (var Pageldx = 0; Pageldx < _NunPages; Pagel dx++) ({
_Current RowOnPage[Pagel dx] = O0;
}
}

6.4.5.2 getName

This function delivers the name of the script. The result is a string containing the script
name. Ozone adds that name to each page name displayed in the drop-down field allowing
the selection of the page to be displayed.

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

get Name()

Functi ons description:

Returns the name of the niddl eware or building block this script supplies
* support for.

*/

function get Nane() {

return “Poly”;

}

* ok k¥ *

6.4.5.3 getPages

This function is expected to deliver the names of all the pages the plugin provides. The
page names are delivered as a list of strings, each string depicting the name of one page.

Please note that the name of the script (which is displayed in the Ozone drop-down list)
is not supposed to be part of the name. A hierarchy of pages may be specified. In that
case the hierarchy levels need be separated by a slash (*/”). Even though in the current
implementation all pages are presented to the user in a flat list in the drop-down-box this
may be changed into a tree browser in a future release.

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

get Pages()

* ok * ¥

Functi ons description:
* Returns the nanes of the pages this script is capable to display.
*/
function getPages() {
var PageNames = [“Pol ygon”,
“Script Info”];
return PageNanes;

}

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

248 CHAPTER 6 SmartView Plugin

6.4.5.4 getColHeaders (PageName)

This function receives the name of the page as a string and delivers a list of strings which
describe the name of each column, starting on the left-most column (as seen in the default
table layout; the customer may change the order of columns but doing so does not need
to be handled inside the script).

In case a column shall not bear a title, an empty string must be provided.

When displaying the respective page, Ozone provides one column for each member of the
string list. In other words, this function specifies the width of the table.

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

get Col Header s()

* ok * ¥

Functi ons description:

* Returns the nanes of the coluns for a given page.
*/

function get Col Header s(PageNane) {

var Result;

var Pagel dx;

Pagel dx = _Cet Pagel dx (PageNane)
swi tch (Pagel dx) ({
case O:
Result = _Cet PagePol ygonCol Header () ;
br eak;
case 1.
Result = _Cet PageScri pt | nf oCol Header () ;
br eak;
defaul t:
Result = nul|;
br eak;

}

return Result;

}

In this sample implementation there is a dedicated function delivering the column titles
for one page:

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

_Get PageScri pt | nf oCol Header ()

* ok * ¥

Functi ons description:
* Delivers the columm headers of the respective page.

*/

function _CGetPageScri ptlnfoCol Header () {
var Result;
Result = [“Script Info"];
return Result;

}

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

_Get PagePol ygonCol Header ()

Functi ons description:
Delivers the colum headers of the respective page.
/

* ok ok * * *

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

249 CHAPTER 6 SmartView Plugin

function _Get PagePol ygonCol Header () {
var Result;

Result = ["“", “x-Position”, “y-Position”];
return Result;

}

As can be seen, the functions just return a fixed list of constant strings.

6.4.5.5 getFirstRow (PageName) / getNextRow (PageName)

This pair of functions delivers the 1st row of the table and any subsequent row, respectively.
The name of the page is specified as a string. The result is a list of strings, each string being
the content of a cell, starting on the left-most column. Ozone expects those functions to
return a list with exactly one entry for each cell in a row, i.e. the list must be of the same
length as the list provided by get Col Header s.

In case the respective row is empty (e.g. because the required data is not yet available in
the target), nul | is to be returned.

When updating a page, Ozone invokes get Fi r st Rowonce and get Next Row repeatedly, until
any of the functions returns nul | . By doing so the whole table content is transferred from
the script into Ozone.

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

get Fi r st Row()

* ok * ¥

Functi ons description:

* Returns the values of the 1st row for a given page.
*/

function getFirst Rowm PageNane) {

var Result;

var Pagel dx;

Pagel dx = _Get Pagel dx(PageNan®) ;
if (Pageldx !'= null) {
_Current RowOnPage[Pagel dx] = 0;
Result = _get Current Row PageNane) ;
} else {
Result = null;
}

return Result;

}

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

get Next Row()

* ok * ¥

Functi ons description:

* Returns the values of the next row for a given page.
*/

function get Next Row PageNane) {

var Result;

var Pagel dx;

Pagel dx = _Get Pagel dx(PageNan®) ;
if (Pageldx !'= null) {
_Current RowOnPage[Pagel dx] += 1;
Result = _get Current Row PageNane) ;
} else {
Result = null;

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

250 CHAPTER 6 SmartView Plugin

}

return Result;

}

In this sample implementation the script keeps track of the row to be returned to Ozone
with the next call. For this purpose there is _Curr ent RowOnPage, which is an array accom-
modating that information for each page.

var _Current RowOnPage = [];

We have seen that array already in the function init where it is initialized. Get Fi r st Row sets
the row counter for the respective page to 0 before calling get Cur r ent Row which is shared
between get Fi r st Row and get Next Row. Get Next Row does the same as Get Fi r st Row but
instead of resetting the row counter it is incremented.

_get Curr ent Row finally splits into the functions which deliver the actual row content.

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

_get Current Row)

Functi ons description:

Returns the values of the currently selected row for
* a given page.

*/

function _get Current Row PageNane) {

var Result;

var Pagel dx;

* ok k¥ *

Pagel dx = _Get Pagel dx (PageNane)
swi tch (Pagel dx) ({
case O:
Result = _Cet PagePol ygonRow(_Cur r ent RowOnPage[Pagel dx]) ;
br eak;
case 1:
Resul t
br eak;
defaul t:
Resul t
br eak;

_Get PageScri pt | nf oRow(_Cur r ent RowOnPage[Pagel dx]) ;

nul | ;

}

return Result;

}

The implementation for the script info page is pretty straight forward. For each row number
a constant list containing exactly 1 string is returned (the script info page has 1 column).

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

_Get PageScri pt I nf oRow()

* ok * ¥

Functi ons description:

* Returns a row for the respective page.
*/

function _GetPageScri pt| nf oRow(Row dx) {
var Result;

switch (Row dx) {
case O:
Result = [*“LinkedList deno plug-in V1.0.0"];
br eak;

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

251 CHAPTER 6 SmartView Plugin

case 1:
Resul t
br eak;

case 2:
Resul t
br eak;

defaul t:
Resul t
br eak;

[“Last nodified: 2022-08-10"];

[“Copyright (c) 2022 SEGGER M crocontroller GrbH'];

nul | ;

}

return Result;
}
For the Polygon page the implementation is a bit more complicated:

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

_Get PagePol ygonRow()

* ok * ¥

Functi ons description:

* Returns a row for the respective page.
*/

function _Get PagePol ygonRow(Rowl dx) {
var Result;

var NunPoi nts;

NunmPoi nts = _Poi nts. | ength;
if (Row dx < NunPoints) ({
var XxPos;
var yPos;

Result = [];
xPos = _Poi nts[Row dx] [“xPos”];
yPos = _Poi nts[Rowl dx] [“yPos”];
Resul t. push (Rowl dx.toString());
Resul t. push (xPos.toString());
Resul t. push (yPos.toString());

} else {
Result = null;

}

return Result;

}

The information is read from the array _Poi nt's. This contains a record per linked list item,
each record consisting of the members xPos and yPos. Those members are converted into a
string and added to a string list, which, in the end, contains the line number (which actually
is the row index parameter), the xPos member, and finally the yPos member.

In case the array _Poi nts is empty or contains less members than required for creating
the row contents for the given row, nul | is returned.

In this sample implementation, internal addressing of the pages takes place via a humerical
value, not via the name. _Get Pagel dx does that translation. The actual work is done inside
_get Cur r ent Row which is shared between get Fi r st Row and get Next Row.

/~k~k~k~k~k~k~k~k~k~k********~k~k~k~k~k*********~k~k~k~k~k*******************************
_Get Pagel dx()
Functi ons description:

Returns the I ndex of a given page.
/

* ok ok * * *

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

252

CHAPTER 6 SmartView Plugin

function _Cet Pagel dx(PageNane) {
var Result;
var Pages;

Pages = get Pages();
Result = null;
for (var Idx = 0; ldx < Pages.length; Idx++) {
if (Pages[ldx] == PageNane) ({
Result = 1dx;
br eak;
}
}

return Result;

6.4.5.6 onTargetChanged

In the previous section it is depicted how the content of the list _Poi nts is transferred
to Ozone. OnTar get Changed is invoked by Ozone each time the target status may have
changed, e.g. after starting a debug session, reaching a break point or performing a single
step. In this sample application this event is used to read the data from the target.

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

onTar get Changed()

* ok * ¥

Functi ons description:
* Handl es the event of target state having changed.
*/
function onTar get Changed() {
init();
_Get Pol ygonl nf oFr onirar get () ;
}

The main work is done in _Get Pol ygonl nf oFr omTar get . This function steps through the
linked list, extracts the desired data and writes that into the list _Poi nt s.

/~k****~k*~k*~k*~k**********~k***~k*~k********~k*~k***~k************************

_Get Pol ygonl nf oFr omTar get ()

Functi ons description:

Reads the linked list of points forming the pol ygon
* fromthe target

*/

function _Get Pol ygonl nf oFronirarget () {

var Expression;

var RootPtr;

* ok k¥ *

_Points =1[];
Expression = “pPoly”;
Root Pt r = Debug. eval uat e(Expr essi on);
if (RootPtr != 0) {
var Currentltem
var Next El emAddr ;

Currentltem = {};
Expression = “*pPol y”;
do {

var Current XPos;

var Current YPos;

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

253 CHAPTER 6 SmartView Plugin

var Current Point;

Currentltem = Debug. eval uat e(Expr essi on);

if (typeof Currentltem!= “undefined”) {
CurrentPosition = Currentlten“Position”];
Current XPos = CurrentPosition[“xPos”];
Current YPos = CurrentPosition["“yPos”"];
Current Point = {};
Current Poi nt [“xPos”] Cur r ent XPos;
Current Poi nt[*“yPos”] Curr ent YPos;
_Poi nts. push(Current Point);
Next El emAddr = Currentlten”“pNext”];
Expression = “*(tPol yEl enent*)” + Next El emAddr.toString();

} else {
Next El emAddr = O;
}
} while (NextEl enmAddr !'= 0);

}
}

The root element of the polygon is pPol y. This is a pointer and the script first reads the
value of that pointer from the target by calling Debug. eval uat e. This API function evaluates
the expression which is passed as a parameter, and the expression pPol y evaluates to
the address pointed-to by that pointer. In case the address is 0 nothing more is to be
done, the function terminates. Otherwise the structure found at the address is loaded into
Currentltem Again, this is done by means of Debug. eval uat e. Finally, the struct member
Position is extracted from Currentltem and in a subsequent step, the struct members
xPos and yPos are copied into Curr ent Poi nt which is added to _Poi nt s.

At the end, the next pointer pNext is evaluated in order to process the next element in the
very same way. In case pNext is 0 the function terminates.

So extracting the information from the target is pretty straight forward and takes place in
the same way as it would be done in the target software.

6.45.7 General Remarks

The script presented in the sections above adheres to some coding rules (e.g. any non-
exposed, global symbol is prefixed with an underscore, any local symbol starts with a capital
letter, 2 spaces are used for indentation). Those coding rules are not mandatory.

Please keep in mind that this is a sample application, intended to giving users an entry point
for creating their own scripts. Different ways of achieving the same result are possible.

After editing the JavaScript source and saving the new content to disk, the plugin needs
to be reloaded. This can be done via the context menu (Context Menu on page 177). In
case the JavaScript interpreter identifies an error a respective message will be displayed
in the console window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

254

CHAPTER 6 SmartView Plugin

| emFile.js %\

File Scope f main

1374 function GetPageScriptInfololHeader () {
1375 var Result;

13 Result = ["Script Imnfa"™];
1374 returns Result; ff Should be "return” instead of "returns"™

45,380 168 File.Save ("c:/Work/emFile.js"™):

48,925 656 Project.SecSmartViewPlugin ("c:‘\WorkiemFile.js"):

48,999 107 Script error: c:\Work\.emFile.js:expected ; found an identifier
49,003 212 SmartView plugin not reloaded but unloaded: ci\Work‘.emFile.js.
L4

Error in script and message in console window

Ann erroneous JavaScript cannot be reloaded, it will be unloaded instead. In that case the
reload functionality is not available anymore in the context menu. After fixing the bug the
script needs to be loaded manually, e.g. via the command Project.SetSmartViewPlugin or
by reloading the project (in case the plugin is loaded in the project file).

In the example depicted above, the contents are displayed in a vertical table, i.e. there
are 3 columns and as many rows as there are points forming the polygon. It is possible
to change the script such that the same information is displayed in a horizontal table, i.e.
3 rows and as many columns as there are points. It is up to the user to select the most
appropriate layout for the respective use-case.

All target data required by this script is read each time onTar get Changed is invoked. For
bigger scripts providing many pages, this may not be advantageous since the accumulated,
potentially slow target accesses, may lead to a significant delay when reading big amounts
of data from the target. Typically, a single page requires only a small fraction of that data,
so it might be desirable to read the data from the target only when get Fi r st Rowis invoked.
This allows to limit the target interaction to those elements being required for that very
page. Since pages may be updated also upon other events (e.g. changing the window
layout), adding caching functionality can further reduce the number of target interactions.
In such an implementation onTar get Changed would be a good place for invalidating the
caches. Such an implementation can be found in the emFile script which is provided with
Ozone.

It is not required to have a script info page, however it is advisable to implement one.
When it comes to documentation of the debug process and the tools used, the information
displayed here might provide valuable details such as the version of the plug-in script.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

255 CHAPTER 6 Snapshot Programming

6.5 Snapshot Programming

As introduced in section Debug Snapshots on page 215, Ozone debug snhapshots allow to
save the debug session to disk and restore it at a later point in time.

In order to restore advanced system state such as (clocked) peripherals from a debug
snapshot, it is generally necessary for users to program the exact sequence of restore
operations. To support this, Ozone defines two project script functions:

e OnSnapshot Save and
e (nSnapshot Load
which are executed when a snapshot is saved or loaded, respectively.

When script function OnSnapshot Load is not implemented, a snapshot’s system state is
restored in a default way: memory regions and CPU registers are written to the target in
the order of appearance within the snapshot.

6.5.1 Snapshot Commands

For the programming of script functions OnSnapshot Save and OnSnapshot Load, Ozone pro-
vides the command group “Snapshot”. Commands of this group can be employed to access
and restore snapshot file data as summarized below.

Command Description
Snapshot.SaveReg(const char* sReg) Saves a register (group) to a snapshot
Snapshot.SaveU32(U64 Addr, U32 Value) Saves a memory value to a snapshot
Snapshot.ReadReg(const char* sReg) Reads a register from a snapshot
Snapshot.ReadU32(U64 Addr) Reads a memory value from a snapshot

Reads a register (group) from a snapshot

Snapshot.LoadReg(const char* sReg) and writes it to target

Reads a memory value from a snapshot

Snapshot.LoadU32(U64 Addr) and writes it to target

In addition, Ozone provides the following general commands to support snapshots:

Command Description

Returns the address of a memory
mapped register

Target.WriteU32(U64 Addr, U32 Value) Writes a 32 bit value to target memory
Target.ReadU32(U64 Addr) Reads a 32 bit value from target memory
Target.SetReg(const char* sReg, U64 Value) | Writes a CPU or system register

Register.Addr(const char* sReg)

Target.GetReg(const char* sReg) Reads a CPU or system register

6.5.2 OnSnapshotSave

The following script example saves the system state of an embOS blinky debuggee on a
SEGGER Cortex-M trace reference board to a snapshot.

/***
OnSnapshot Save

Function description
Opti onal event handl er, called upon saving a snapshot.

E I I S T

Addi tional information
This function is usually used to save val ues of the target

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

256

E I I I

*

CHAPTER 6 Snapshot Programming

state which can either not be trivially read,

or need to be restored in a specific way or order.
Typically use: nenory nmapped registers,

such as PLL and GPI O configuration.

R Rk S kS O O R S R S S

*/

voi d OnSnapshot Save (void) {

6.5.3

/1l Save Vector table offset register
Snapshot . SaveReg(" CPU. Peri pheral s. SCB. VTCR") ;

/1l Save DWI unit status & control register (used by SystenView)
Snapshot . SaveReg(" CPU. Peri pheral s. DAT. DAWf_CTRL") ;

/1l Save Systemtiner configuration (used by enbQS)
Snapshot . SaveReg(" CPU. Peri pheral s. SYSTI CK") ;

/1l Save Cortex-MIRQ priorties 12-15
Snapshot . SaveReg(" CPU. Per i pher al s. SCB. SHPR3") ;

/1 Save FPU and coprocessor state
Snapshot . SaveReg(" CPU. Per i pher al s. SCB. CPACR") ;

/'l Save system cl ock configuration

Snapshot . SaveReg(" Peri pheral s. RCC. CR") ;
Snapshot . SaveReg(" Peri pheral s. RCC. CFGR") ;
Snapshot . SaveReg(" Peri pheral s. RCC. PLLCFGR") ;

/'l Save LED port state

Snapshot . SaveReg(" Peri pheral s. RCC. AHBLRSTR") ;
Snapshot . SaveReg(" Peri pher al s. RCC. AHB1ENR") ;
Snapshot . SaveReg(" Peri pheral s. GPI O. GPl CA. MODER") ;
Snapshot . SaveReg(" Peri pheral s. GPI O. GPl OCA. ODR") ;

OnSnapshotLoad

The following example is an excerpt from an OnSnapshot Load implementation which re-
stores the system state saved in the preceding section.

/***

EE D SR B T B)

*

OnSnapshot Load

Function description
Opti onal event handl er, called upon | oading a snapshot.

Addi tional information
This function is used to restore the target state in cases
where val ues cannot sinply be witten to the target.
Typi cal use: GPIO clock needs to be enabl ed, before
GPI O is configured.

EE Ik I b kO O I R S O S

*/

voi d OnSnapshot Load (void) {

SNAPSHOT_Rest or e_Sysd ock();
SNAPSHOT_Rest ore_0OS() ;

/*7\'*7\'*7\'*7\'*v\'*7\'*7\'*7\'*7\'***7\'*7\'*7\'*7\'*7\'*7\'*7\'*v\'*7\'*7\'*7\'*7\'*************************

*

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

257

Ozone User Guide & Reference Manual (UM08025)

E I I I

*

CHAPTER 6 Snapshot Programming

SNAPSHOT _Rest ore_Sysd ock

Function description
Restores a HSE cl ock configuration froma snapshot

R Rk S kS O O R S R S S

*/

voi d SNAPSHOT _Rest ore_SysC ock(voi d) {

unsi gned int HSE_STARTUP_TI MEQUT;
unsi gned int RCC_CR_HSEON,

unsi gned int RCC_CR_HSERDY;
unsigned int RCC CR _PLLON;
unsigned int RCC _CR_PLLRDY;
unsigned int RCC CFGR_SW

unsigned int RCC CFGR_SWPLL;

unsi gned int RCC_CFGR _SW5;
unsigned int RCC _CFGR_SW5_HSE;
unsigned int RCC CFGR SW5 PLL;
unsi gned int HSEStat us;

unsi gned int Locked;

unsigned int StartUpCounter;

unsi gned int Val ue;

HSE_STARTUP_TI MEQUT = 500;
RCC_CR_HSEON = 0x00010000;
RCC_CR_HSERDY = 0x00020000;
RCC_CR PLLON = 0x01000000;
RCC_CR_PLLRDY = 0x02000000;
RCC_CFGR_SWs = 0x0000000C,
RCC_CFGR_SW PLL = 0x00000002;
RCC_CFGR_SW = 0x00000003;
RCC_CFGR_SWS_HSE = 0x00000004;
RCC_CFGR_SWS_PLL = 0x00000008;
HSESt at us = 0

St art UpCount er = 0

Locked = 0

/1

/1 Reset RCC cl ock configuration

/1

Set RegBits Peri pheral s. RCC. , 0x00000001); // Set HSION bit

(Il
Target. SetReg ("Peripheral s. RCC. CFGR", 0x00000000); // Reset CFGR register
ClearRegBits (" Peripheral s. RCC , 0x01090000); // HSEON, CSSON, PLLON
(Il
(Il

3349

Tar get . Set Reg Peri pheral s. RCC. PLLCFGR', 0x24003010); // Reset PLLCFGR
ClearRegBits ', 0x00040000); // Reset HSEBYP bit

9

Peri pheral s. RCC.

i f ((Snapshot.ReadReg("Peripherals. RCC.CR') & 0x10000) == 0) { // HSEON clear ?
return 0; // snapshot session ran on reset clock (HSI)

}

/1 Disable all interrupts

Tar get . Set Reg(" Peri pheral s. RCC. CI R', 0x24003010);

/'l Enabl e the HSE
Set RegBi t s(" Peri pheral s. RCC. CR', RCC_CR_HSEQN) ;

/1 Wait till the HSE is ready

do {
HSESt at us = (Target. Get Reg("Peri pheral s. RCC. CR') & RCC_CR_HSERDY) ;
Start UpCounter = StartUpCounter + 1;

} while((HSEStatus == 0) && (Start UpCounter != HSE_STARTUP_TI MEQUT));

/1 Early out when tinmeout was reached
if ((Target. Get Reg("Peripherals.RCC.CR') & RCC_ CR HSERDY) == 0) {return -1;}

/'l Restore peripheral clock enable
Snapshot . LoadReg(" Peri pheral s. RCC. APB1ENR") ;

/'l Restore regul ator voltage output nobde

© 2013-2026 SEGGER Microcontroller GmbH

258

CHAPTER 6 Snapshot Programming

Snapshot . LoadReg(" Peri pheral s. PAR. CR") ;

/'l Restore the clock dividers
Val ue = Snapshot. ReadReg(" Peri pheral s. RCC. CFGR') & O0xFO;
Set RegBi t s(" Peri pheral s. RCC. CFGR', Val ue);

/!l Restore the PLL paraneters
Snapshot . LoadReg(" Peri pheral s. RCC. PLLCFGR") ;

/'l Enable the PLL
Set RegBi t s(" Peri pheral s. RCC. CR'", RCC_CR PLLQON);

/1 Wait till the PLL is ready
whi | e((Target. Get Reg(" Peri pherals. RCC. CR') & RCC_CR PLLRDY) == 0) {}

/!l Restore Flash prefetch, Instruction cache, Data cache and wait state
Snapshot . LoadReg(" Peri pheral s. FLASH. ACR") ;

/'l Select the PLL as system cl ock source
ClearRegBits ("Peripherals.RCC. CFGR', RCC _CFGR _SW;
Set RegBits (" Peripheral s. RCC. CFGR', RCC _CFGR_SWPLL);

/1 Wait till the PLL is used as system clock source */
Start UpCounter = O;
do {

Val ue = Target. Get Reg(" Peri pheral s. RCC. CFGR') & RCC_CFGR_SW5;
Locked = (Value & RCC CFGR _SW5) == RCC _CFGR _SW5 PLL;
Start UpCounter = StartUpCounter + 1;

} while ((Locked == 0) && (StartUpCounter != HSE STARTUP_TI MEQUT));

/***

EE A

*

SNAPSHOT _Rest ore_OS

Functi on description
Restores a RTOS system state from a snapshot

Rk R S b S R S R R R SR kS S Sk S S Rk R I S S R R

*/

voi d SNAPSHOT_Restore_OS() {

}

unsi gned int NOCYCCNT_BIT;
unsi gned int RegVal;

NOCYCCNT BIT = (1 << 25);
RegVal = 0;

/'l Restore reload register
Snapshot . LoadReg(" CPU. Peri pheral s. SYSTI CK. SYST_RVR") ;

/'l Restore Priority for Systick Interrupt
Snapshot . LoadReg(" CPU. Peri pher al s. SCB. SHPR3") ;

/'l Restore the SysTick Counter Val ue
Snapshot . LoadReg(" CPU. Peri pheral s. SYSTI CK. SYST_CVR") ;

/'l Restore SysTick I RQ and SysTick Tiner
Snapshot . LoadReg(" CPU. Peri pheral s. SYSTI CK. SYST_CSR") ;

/'l Restore the cycle counter for SystenView functions

RegVal = Snapshot. ReadReg(" CPU. Peri pheral s. DWl. DW_CTRL") ;

if ((RegVal & NOCYCCNT_BIT) == 0) { // Cycle counter supported?
Tar get . Set Reg(" CPU. Peri pheral s. DAWM. DW_CTRL", RegVal);

}

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

259 CHAPTER 6 Incorporating a Bootloader into Ozone's Startup
Sequence

6.6 Incorporating a Bootloader into Ozone's Startup
Sequence

An important use case of Ozone’s scripting system is to configure the debug session startup
sequence in a manner such that a hardware initialization program (bootloader) is executed
before download of the debuggee. This section explains how users are expected to write an
Ozone script that serves this particular purpose. The following example is written for the
Cortex-M architecture but the demonstrated concepts are universally valid.

OnProjectLoad

/***

OnPr oj ect Load

Function description
Project | oad routine. Required.

* % %k F X

*

EIE I S I I I R I I I I I b I S I I I I e I I I I S I I I I b I I I b I I I I S b I I 3
*/
voi d OnProj ectLoad (void)

Fi | e. Open("debuggee. el f"); // open nmin image

}

The script’s entry point function loads the application to be debugged instead of the boot-
loader. This ensures that the debug windows that show static program information are
initialized to show the applications’s information and not the bootloader’s, even when the
debug session was not yet started.

TargetDownload

/***

Tar get Downl oad

Function description
Downl oads the bootl oader instead of the nmain image.

E A T T

*

R R I I R R I R S I R R R S R R R R S R R R R I R R R R I I R S R

*/
voi d Tar get Downl oad (voi d)
{
Exec. Downl oad(" Boot | oader. hex");
}

The script function Tar get Downl oad instructs Ozone to download the bootloader instead
of the application image when the debug session is started. Note that the command Ex-
ec.Download is used to download the bootloader. The reason for this is that this command
does not trigger any other script functions when executed (see Download Behavior Com-
parison on page 198).

AfterTargetDownload

/**********~k***~k**********~k***~k*~k********~k***~k************************

*

* Af t er Tar get Downl oad
*
*

Functi on description

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

260 CHAPTER 6 Incorporating a Bootloader into Ozone's Startup
Sequence

* Initializes PC and SP for either bootl oader or debuggee execution
*

EE I Ik kS Sk I Rk kS S I Ik Sk I Sk O kS Ik Sk Ik I Rk S I Sk S S S
*/
voi d AfterTarget Downl oad (voi d)

{
U64 Addr;

i f (TargetlsHaltedAtBootl| oader End()) {
Addr = <mai n_i mage_downl oad_address>; // init regs for debuggee exec.
} else {
Addr = <boot | oader _downl oad_address>; // init regs for bootl oader exec.
}
Tar get . Set Reg(" SP", Target.ReadU32(Addr));
Tar get. Set Reg(" PC', Target.ReadU32(Addr + 4));

}

The script function Af t er Tar get Downl oad instructs Ozone to initialize the PC and SP reg-
isters to the required values for either bootloader or main image execution, depending on
which file was downloaded. The information, whether the bootloader or the application is
executing, is provided by the user function Tar get | sHal t edAt Boot | oader End, whose way
of working is described in the subsequent section describing the function Af t er Tar get Hal t .

AfterTargetHalt

/***

Aft er Tar get Hal t

Function description
Checks if the bootl oader finished execution and if so, | oads the debuggee

* % %k F X

*

PR R R R R R R EEEEE R R EEEEEEEE R R R EREEEERE SRR EREEEEREE R I R I

*/
void AfterTargetHalt (void)
{
i f (TargetlsHaltedAt Boot| oader End())
Fil e. Load("debuggee. el f", 0);
}
}

The key to incorporating a bootloader into Ozone’s debug session startup sequence is to
detect the point in time when the bootloader has finished execution. The expected way
to do this is to set a break point at the end of the bootloader. Once the bootloader hits
this breakpoint, Ozone senses that the target has halted and executes the script function
Af t er Tar get Hal t . Here, the user function Tar get | sHal t edAt Boot | oader End checks if the
end of the bootloader is reached by comparing the current value of the PC register with
the address that marks the end of the boot loader. If the check succeeds, the download of
the image of the application to be debugged is performed. A key aspect here is that the
command “File.Load” is used to perform the download of the application image. This way,
the target is not hardware-reset prior to the download (which would possibly revert changes
performed by the bootloader) and the script function Aft er Tar get Downl oad is executed
after the download. For an overview of the behavioral differences of Ozone’s downloading
user actions, refer to section Download Behavior Comparison on page 198.

Note

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

261 CHAPTER 6 Incorporating a Bootloader into Ozone's Startup
Sequence

Implementing the user function Tar get | sHal t edAt Boot | oader End is the user’s re-

sponsibility. The function name is used as an example here, the user may chose a
different name according to his liking.

Note

Further information on this topic can be found on the SEGGER Wiki page Debug
Bootloader and Application in same Ozone project .

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://wiki.segger.com/Debug_Bootloader_and_Application_in_same_Ozone_project
https://wiki.segger.com/Debug_Bootloader_and_Application_in_same_Ozone_project

262 CHAPTER 6 Automation Socket Interface

6.7 Automation Socket Interface

The automation interface allows complete control of Ozone via a TCP socket connected to
the console window. It allows complete control of the application, either manually using a
terminal or fully automated via another application.

Getting started

When Ozone is started, a TCP socket is opened at localhost on the port 19200. Simply
connect to it using a raw TCP connection. As soon as a connection has been established, a
welcome message is shown and Ozone is ready to be used.

As this connection is an interface to the console window, all commands from the console
window may also be used here. See Console Window on page 111 for more information.
Commands are expected to have a linebreak at the end.

Note

Currently only one connection is supported at a time.
Configuration

The used port may be configured by adding the specific argument when executing Ozone,
as described in Command Line Arguments on page 279.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

Chapter 7

Appendix

The Appendix provides quick references and formal listings about different types of user
information, including Ozone API commands, system variables and application error mes-
sages.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

264 CHAPTER 7 Value Descriptors

7.1 Value Descriptors

This section describes how certain objects such as fonts and source code locations are
specified textually, for use as command and script function arguments.

7.1.1 Frequency Descriptor

Frequency parameters need to be specified in any of the following ways:

103000
103000 Hz

103.5 kHz (or 103.5k)
0.13 MHz (or 0.13M)
1.1 GHz (or 1.1G)

A frequency parameter without a dimension is interpreted as a Hz value. The permitted
dimensions to be used with frequency descriptors are Hz, kHz, MHz and GHz. The capital-
ization of the dimension is irrelevant. The dimensions can also be specified using the letters
h, k, M and G. The decimal point can also be specified as a comma.

7.1.2 Source Code Location Descriptor
A source code location descriptor defines a character position within a source code docu-
ment. It has the following format:

"File name: line number: [column number]"

Thus, a valid source location descriptor might be "main.c: 100: 1".

File Name

The file name of the source file (e.g. "main.c") or its complete file path (e.g. "c:/exam-
ples/blinky/source/main.c").

Line Number

The line number of the source code location.

Column Number

The column number of the source code location. This parameter can be omitted in situations
where it suffices to specify a source code line.
7.1.3 Color Descriptor

Color parameters are specified in any of the following ways:

e steel-blue (SVG color keyword)
e #RRGGBB (hexadecimal triple)

Thus, any SVG color keyword name is a valid color descriptor. In addition, a color can be
blended manually by specifying three hexadecimal values for the red, green and blue color
components.

7.1.4 Font Descriptor

Font parameters must be specified in the following format (please note the comma sepa-
ration):

"Font Family, Point Size [pt], Font Style"

Thus, a valid font descriptor might be "Arial, 12pt, bold".

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

265 CHAPTER 7 Value Descriptors

Font Family

Ozone supports a wide variety of font families, including common families such as Arial,
Times New Roman, and Courier New. When using font descriptors, the family hame must
be capitalized correctly.

Point Size

The point size attribute specifies the point size of the font and must be followed by the
measurement unit. Currently, only the measurement unit “pt” is supported.

Font Style

Permitted values for the style attribute are: normal, bold and italic.

7.1.5 System Register Descriptor

A System register descriptor (SRD) is a string that identifies a system register (see Register
Groups on page 148). The format of the SRD depends on the target architecture as shown
below.

7.1.5.1 ARM AArch32

An AArch32 system register descriptor has the following format:
"<CpNum> , <CRn> , <CRm> , <Opcl> , <Opc2>"

Values enclosed by “<>" denote numbers. These numbers are the fields of the system
register access instruction (MRC, MCR, MRRC, MCCR,...) that is used to read the system
register.

7.1.5.2 ARM AArch64

An AArch64 system register descriptor has the following format:
"<0Op0> , <CRn>, <CRm> , <Op1l>, <Op2>"

Values enclosed by “<>" denote numbers. These numbers are the fields of the system
register access instruction (MRS, MSR, AT, IC,...) that is used to read the system register.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

266 CHAPTER 7 System Constants

7.2 System Constants

Ozone defines a set of global integer constants that can be used as parameters for script
functions and user actions.

7.2.1 Host Interfaces

The table below lists permitted values for the host interface parameter (see
Project.SetHostIF on page 341.

Constant Description
usB The debug probe is connected to the host-PC via USB.
IP The debug probe is connected to the host-PC via Ethernet.

7.2.2 Target Interfaces

The table below lists permitted values for the target interface parameter (See Project.Set-
TargetIF on page 341).

Constant Description
JTAG The debug probe is connected to the target via JTAG.
cJTAG The debug probe is connected to the target via cJTAG.
SWD The debug probe is connected to the target via SWD.

7.2.3 Boolean Value Constants

The table below lists the boolean value constants defined within Ozone. Please note that
the capitalization is irrelevant.

Constant Description
Yes, True, Active, On, Enabled The option is set.
No, Off, False, Inactive, Disabled The option is not set.

7.2.4 Value Display Formats

The table below lists permitted values for the display format parameter (see Window.Set-
DisplayFormat on page 315).

Constant Description
Dl SPLAY_FORMVAT DEFAULT Display values in the format that is best suited.
Dl SPLAY_FORVAT_BI NARY Display integer values in binary notation.
DI SPLAY_FORMAT _DECI MAL Display integer values in decimal notation.
Dl SPLAY_FORMAT_HEX Display integer values in hexadecimal notation.
Dl SPLAY_FORVAT _CHAR Display the text representation of the value.

7.2.5 Memory Access Widths

The table below lists permitted values for the memory access width parameter (see Tar-
get.SetAccessWidth on page 360).

Constant Description

AW ANY Automatic access.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

267

CHAPTER 7 System Constants

Constant Description
AW BYTE Byte access.
AW HALF WORD Half word access.
AW WORD Word access.

7.2.6 Access Types

The table below lists permitted values for the access type parameter (see Break.SetOnData

on page 370).

Constant

Description

AT_READ_ONLY

Read-only access.

AT _WRI TE_ONLY

Write-only access.

AT_READ WRI TE

Read and write access.

AT_NO_ACCESS

Access not permitted.

7.2.7 Connection Modes

The table below lists permitted values for the connection mode parameter (see Debug.Set-
ConnectMode on page 332).

Constant

Description

CM _DOWKNLOAD_RESET

The debugger connects to the target and resets it. The pro-
gram is downloaded to target memory and program execu-
tion is advanced to the main function.

CM ATTACH

The debugger connects to the target and attaches itself to
the executing program.

CM ATTACH HALT

The debugger connects to the target, attaches itself to the
executing program and halts program execution.

7.2.8 Reset Modes

The table below lists permitted values for the reset mode parameter (see Debug.SetReset-

Mode on page 334).

Constant

Description

RM RESET_HALT

Resets the target and halts the program at the reset vector.

RM BREAK_AT_SYMBOL

Resets the target and advances program execu-
tion to the function specified by system variable
VAR _BREAK_AT_THI S_SYMBOL.

RN_RESET_AND_RUN

Resets the target and starts executing the program.

7.2.9 Breakpoint Implementation Types

The table below lists permitted values for the breakpoint implementation type parameter
(see Break.SetType on page 367).

Constant Description

BB_TYPE_ANY The debugger chooses the implementation type.

The breakpoint is implemented using the target’s hardware
breakpoint unit.

BP_TYPE_HARD

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

268

CHAPTER 7

System Constants

Constant

Description

BP_TYPE_SOFT

The breakpoint is implemented in software (by amending the

program code with particular instructions).

For breakpoints that have not been assigned a permitted implementation type, the sys-
tem variable default VAR BREAKPO NT_TYPE is used (see System Variable Identifiers on

page 277).

7.2.10 Disassembler Option Flags

The tables below list all options provided to control behavioral aspects of the disassembler.
(see Project.ConfigDisassembly on page 353).

Note

Architecture-specific flags cannot be placed in script code which gets executed before
obligatory project command Project.SetDevice.

Generic:

Constant

Description

DASM _FLAG_SHOW COMVENTS

Show assembly code comments, e.g to in-
dicate memory access addresses

DASM FLAG PREFER ABI _NAMES

Use ABI names (a0) instead of numeric
names (x10)

DASM FLAG _PREFER _PSEUDO | NST

Prefer pseudo instruction disassembly over
normal mode

Arm:

Constant

Description

DASM ARM FLAG USE_ADR

ADR syntax is preferred over “ADD [PC..”
syntax

DASM ARM FLAG SHOW ZERO SHI FT

Do not omit the shift amount for instruc-
tions with bit-shift, when the shift amount
is 0.

DASM ARM FLAG SYSREGS_USE_CPC

Prefer system register opcode over decod-
ed name

RISC-V:

Constant

Description

DASM Rl SCV_FLAG _PREFER _FORVAT_C

Indicates if the C. prefix should be dis-
played for compressed instructions

DASM Rl SCV_FLAG_HUAWEI _EXTENSI ON

Indicates that the Huawei instruction set
extension is present

DASM Rl SCV_FLAG_ANDESTAR_EXTENSI ON

Indicates that the AndeStar V5 instruction
set extensions (Performance, CoDense)
are present

DASM RI SCV_FLAG P_EXTENSI ON

Indicates that the provisional P instruction
set extension is present

DASM RI SCV_FLAG_ZFI NX_EXTENSI ON

Indicates that Zfinx standard instruction
set extension is present. Must be set as
well in case Zdinx is present.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

269 CHAPTER 7 System Constants

Constant Description

Indicates that Zcmt standard instruction

DASM RI SCV_FLAG ZCMI_EXTENSI ON . .
= - = - set extension is present.

Indicates that Zcmp standard instruction

DASM Rl SCV_FLAG ZCWVP_EXTENSI ON . .
= - = - set extension is present.

Indicates that Zcb standard instruction set

DASM RI SCV_FLAG ZCB EXTENSI ON . .
- - == extension is present.

7.2.11 Trace Sources

The Table below lists permitted values for the trace source parameter (see Project.Set-
TraceSource on page 345).

Constant Display Name Description

TRACE_SOURCE_NONE None All trace features of Ozone are disabled.

Instruction trace data is read from the tar-
get’s trace pins (in realtime) and provided to
Ozone’s trace windows. This mode requires a
J-Trace debug probe.

TRACE_SOURCE_ETM Trace Pins

Instruction trace data is read from the tar-
get’'s embedded trace buffer (ETB).

Printf data is read via the Serial Wire Output
interface and output to the Terminal Window.

TRACE_SQURCE_ETB Trace Buffer

TRACE_SOURCE_SWO SWO

Only one trace source can be active at any given time. The Ozone team plans to remove
this constraint in the near future.

7.2.12 Tracepoint Operation Types

The table below lists permitted values for the tracepoint operation parameters required by
tracepoint manipulating actions (see Trace Actions on page 297).

Constant Description
TP_OP_START_TRACE Trace is started when the tracepoint is hit.
TP_OP_STOP_TRACE Trace is stopped when the tracepoint is hit.

7.2.13 Newline Formats

The table below lists supported newline formats.

Constant Description
ECL_FORVAT W N Text lines are terminated with “\r\n”.
EQL_FORMAT _UNI X Text lines are terminated with “\n”".
EQL_FORMAT _MAC Text lines are terminated with “\r”".
EOL_FORVAT_NONE No line break.

7.2.14 Trace Timestamp Formats

The table below lists supported units for trace timestamps.

Constant Description

TI MESTAMP_FORMAT _OFF Timestamps are not displayed.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

270

CHAPTER 7 System Constants

Constant

Description

TI MESTAMP_FORMAT | NST_CNT

Selects “number of instructions” as timestamp unit.

TI MESTAMP_FORVAT_CYCLES

Selects CPU cycles as timestamp unit.

TI MESTAMP_FORMAT_TI ME

Selects nanoseconds as timestamp unit.

7.2.15 Code Profile Export Options

The table below lists binary options that can be specified with action Export.CodeProfile.

Constant

Description

EXPORT_FI LE_PATHS Export full file paths instead of file names.

EXPORT_AS_CSV

Export in CSV format. When not set (the default), a text re-
port is generated.

EXPORT_CSV_FUNCS Use CSV format 1: code profile listing by function (default).
EXPORT_CSV_LI NES Use CSV format 2: code profile listing by source line.
EXPORT_CSV_I NSTS Use CSV format 3: code profile listing by instruction.

When all CSV export format flags are clear (the default), EXPORT_CSV_FUNCS is assumed.

7.2.16 Disassembly Export Options

The table below lists binary options that can be specified with action Export.Disassembly.

Constant

Description

REMOVE_TRAI LI NG_NOPS

Do not export trailing NOP instructions. This flag cannot
be used in conjunction with flag EXPORT_AS_CSV.

EXPORT_AS_CSV

Export disassembly in CSV format. Disassembly is ex-
ported in assembly code format per default, i.e. when
this flag is not set. Export as assembly code is however
only available on Cortex-M.

7.2.17 Session Save Flags

The following flags identify session information that can be disabled within User Files (see

User Files on page 181).

Flag

Description

DI SABLE_SAVE_W NDOW LAYOUT

Do not save the layout of debug information win-
dows.

DI SABLE_SAVE_TABLE_LAYOUT

Do not save arrangements of table columns and
sort indicators.

DI SABLE_SAVE_OPEN_FI LES

Do not save the list of open source files.

DI SABLE_SAVE_BREAKPO NTS

Do not save breakpoints.

DI SABLE_SAVE_EXPRESSI ONS

Do not save watched and graphed expressions.

DI SABLE_SAVE_SELECTED REGS

Do not save the Registers Window’s display configu-
ration.

7.2.18 Snapshot Save Flags

The following flags identify session information that can be omitted from debug snapshots
see Debug.SaveSnapshot on page 337.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

271 CHAPTER 7 System Constants

Flag Description
Dl SABLE_SAVE_TARGET_MEM Do not save selected target memory regions.
Dl SABLE_SAVE TARGET_REGS Do not save selected target registers.
Dl SABLE_SAVE TRACE Do not save trace and code profile data.
Dl SABLE_SAVE POMER TRACE Do not save power trace data.
Dl SABLE_SAVE_HSS Do not save symbol trace data.
Dl SABLE_SAVE_CONSOLE Do not save the console log.
Dl SABLE_SAVE_TERM NAL Do not save the terminal log.

7.2.19 ELF Config Flags

ELF parser configuration flags that can be used with command Elf.SetConfig (see EIf.Set-
Config on page 378).

Flag Description

When set, the ELF parser auto-corrects erroneous

ELF_BI T_CFFSET_CORRECTI ON bitfield debug information (DW AT bit_ of f set).

7.2.20 Clear Events

Valid values of user preference PREF_TI MELI NE_CLEAR EVENT (see User Preference Iden-
tifiers on page 273). PREF_TI MELI NE_CLEAR EVENT selects the debug event upon which
timeline data is cleared (see Clear Event on page 173).

Value Description
CLEAR ON_RESET 'Sl'g?zce and sampling data is cleared when the program is re-
CLEAR ON RESUME Trace and sampling data is cleared when the program is re-
- = sumed.
CLEAR_NEVER Trace and sampling data is never cleared.

7.2.21 Destination Address Ranges for Download

Valid values of system variable VAR DOANLOAD ADDR (see System Variable Identifiers on
page 277). VAR DOMLQOAD ADDR selects the memory addresses into which the program
segments are downloaded.

Value Description
DL PMA Download program segments into physical memory address-
- es
DL_VNA Download program segments into virtual memory addresses

7.2.22 Unwinding Information Source

Valid values of system variable VAR CALLSTACK UNW ND | NFO SRC (see System Variable
Identifiers on page 277). VAR CALLSTACK UNW ND | NFO SRC specifies whether the un-
winding information is to be taken from the ELF file or obtained by instruction analysis.

Value Description

Unwinding information source is selected automatically: In
UNW NDI NG_SRC AUTO case unwinding information may not be present for all parts
in the ELF file and the Ozone supports obtaining unwinding

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

272

CHAPTER 7 System Constants

Value

Description

information by instruction analysis for the respective CPU ar-
chitecture, the unwinding information is obtained by instruc-
tion analysis, otherwise it is read from the ELF file.

UNW NDI NG_SRC_DWARF

Unwinding information is read from the ELF file.

UNW NDI NG_SR-
C I NST_ANALYSI S

Unwinding information is obtained by instruction analysis.

7.2.23 GDB Server Type

Valid values of system variable VAR GDB_SERVER TYPE (see Debugging via GDB Server on

page 219).

Value

Description

GDB_SERVER TYPE_AUTO

The GDB server is attempted to be detected atomatically.

GDB_SERVER TYPE_JLI NK

A J-Link GDB server is connected.

GDB_SERVER TYPE_STLI NK

An ST-Link GDB server is connected.

GDB_SERVER TYPE_OPENOCD | An OpenOCD GDB server is connected.

GDB_SERVER _TYPE_OTHER

Another GDB server is connected.

7.2.24 Font Ildentifiers

The following constants identify application fonts (see Edit.Font on page 310).

Constant

Description

FONT_APP

Default application font.

FONT_APP_MONO

Default mono-space application font.

FONT_ASM CODE

assembly code text font.

FONT_CONSOLE

Console Window text font.

FONT_EXEC_CNT_ASM

Font used for Disassembly Window execution counters.

FONT_EXEC_CNT_SRC

Font used for Source-Viewer execution counters.

FONT_| TEM_NAME

Symbol name text font.

FONT_| TEM VALUE

Symbol value text font.

FONT_LI NE_NUMBERS

Line number text font.

FONT_SRC_CODE

Source code text font.

FONT_TABLE_HEADER

Table header text font.

7.2.25 Color Identifiers

The following constants identify application colors (see Edit.Color on page 309).

Constant

Description

COLOR_ASM BACKG

Disassembly Window background color.

COLOR_ASM LABEL_BACKG

Disassembly Window — label background color.

COLOR CALL_SI TE_ACTI VE

Function call site highlight (active window).

COLOR_CALL_SI TE_|I NACTI VE Function call site highlight (inactive window).
COLOR _CHANGE LEVEL_1 BG Change Level 1 background color.
COLOR _CHANGE LEVEL_2 BG Change Level 2 background color.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

273

CHAPTER 7 System Constants

Constant

Description

COLOR_CHANGE_LEVEL_3_BG

Change Level 3 background color.

COLOR_CHANGE_LEVEL_1_FG

Change Level 1 foreground color.

COLOR_CHANGE_LEVEL_2_FG

Change Level 2 foreground color.

COLOR_CHANGE_LEVEL_3_FG

Change Level 3 foreground color.

COLOR_EXEC PROFI LE_GOOD | NST

Code profile highlighting — good instruction.

COLOR_EXEC_PROFI LE_GOOD | NST

Code profile highlighting — bad instruction.

COLOR _LOGG NG_SCRI PT

Console Window script message color.

COLOR_LOGG NG | NFO

Console Window command feedback message color.

COLOR_LOGG NG_WARNI NG

Console Window warning message color.

COLOR_LOGG NG_ERROR

Console Window error message color.

COLOR_LOGG NG JLI NK

Console Window J-Link message color.

COLOR_LOGG NG_APP

Console Window external application output color.

COLOR_LOGG NG _APP_ERROR

Console Window external application error output
color.

COLOR_PC_ACTI VE

PC Line highlight (active window).

COLOR_PC_| NACTI VE

PC Line highlight (inactive window).

COLOR_PC_BACKTRACE

Selected trace PC highlighting color.

COLOR_PROGRESS_BAR_PROCGRESS

Progress bar progress background color.

COLOR_PROGRESS_BAR_REMAI NI NG

Progress bar remaining background color.

COLOR_SELECTI ON_HI GHLI GHT

Selection highlight background color.

COLOR_SELECTI ON_HI GH+
LI GHT_TEXT

Selection highlight text color.

COLOR_SELECTI ON_SRC_VI EVER

Cursor line background color.

COLOR_SYNTAX_REGQ STER

Syntax color of assembly code register operands.

COLOR_SYNTAX_LABEL

Syntax color of assembly code labels.

COLOR_SYNTAX_MNEMONI C

Syntax color of assembly code mnemonics.

COLOR_SYNTAX_| MVEDI ATE

Syntax color of assembly code immediates.

COLOR_SYNTAX_KEYWORD

Syntax color of source code keywords.

COLOR_SYNTAX_DI RECTI VE

Syntax color of source code directives.

COLOR_SYNTAX_STRI NG

Syntax color of source code strings.

COLOR_SYNTAX_COVVENT

Syntax color of source code comments.

COLOR_SYNTAX_TEXT

Source code text color.

COLOR_TABLE_GRI D_LI NES

Table grid color.

COLOR_MATCH HI GHLI GHT

Text match highlight color.

Color identifiers

7.2.26 User Preference Identifiers

Ozone User Guide & Reference Manual (UM08025)

The following constants

page 308).

identify Ozone user preferences (see Edit.Preference on

Name

Description

PREF_AUTO CREATE_DI R_PATHS

Specifies if automatic creation of output direc-
tory paths is allowed.

© 2013-2026 SEGGER Microcontroller GmbH

274 CHAPTER 7 System Constants

Name

Description

PREF_BI N_BLOCK_SEPARATOR

Specifies the block separator character for bi-
nary numbers (0:none, 1:half-space, 2:space,
3:comma, 4:colon 5:underscore).

PREF_CG_GROUP_BY_ROOT_FUNCS

Specifies if the call graph window displays root
functions on the top level only (1) or all pro-
gram functions (0).

PREF_CALLSTACK_LAYOUT

Specifies if the current frame is displayed at
the top or at the bottom of the call stack. Pos-
sible values are LAYOUT CURR _FRAME ON TOP
(0) and LAYOUT _CURR_FRAMVE_ON_BOTTOM(1).

PREF_CALLSTACK DEPTH LIM T

Selects the maximum number of frames the
call stack can hold.

PREF_CALLSTACK_SHOW PARAM NAVES

Specifies if function parameter names should
be shown within the call stack window.

PREF_CALLSTACK_SHOW PARAM VALUES

Specifies if function parameter values should
be shown within the call stack window.

PREF_CALLSTACK_SHOW PARAM TYPES

Specifies if function parameter types should be
shown within the call stack window.

PREF_DEC_BLOCK_SEPARATOR

Specifies the block separator character for dec-
imal numbers (0:none, 1:half-space, 2:space,
3:comma, 4:colon, 5:underscore)

PREF_DI ALOG_SHOW DNSA

Indicates if a check box should be added to
popup dialogs that enables users to prevent the
dialog from popping up.

PREF_DATA_SAMPLI NG DATA LIM T

Specifies the data limit of the Data Sampling
Window in KB.

PREF_DASM REG NAVE_FORVAT

Specifies the register name format of disas-
sembly text: 0=ABI, 1=Numerical.

PREF_DOC_TAB_CYCLE_W DGET_EN-
ABLED

Ctrl+Tab opens an overlay widget to cycle doc-
ument tabs within the Source Viewer.

PREF_EXEC_PROFI LE_RESPECTS_FI L-
TERS

Specifies if source/instruction execution pro-
files take code coverage filters into account
(see Execution Profile Color-Codes on page 56
and Adding and Removing Profile Filters on
page 108).

PREF_FI LTER_BARS_DI SABLED

Specifies whether table filter bars are globally
disabled.

PREF_HEX_BLOCK_SEPARATOR

Specifies the block separator character for
hexadecimal numbers (0:none, 1:half-space,
2:space, 3:comma, 4:colon, 5:underscore)

PREF_HI DE_MVEMBER_FUNCS

Specifies if C++ class member functions should
be hidden

PREF_H DE_MAPPI NG_SYMBOL_LABELS

Specifies if mapping symbol labels should be
hidden from disassembly.

PREF_| NDENT_I NLI NE_ASSEMBLY

Specifies whether the Source Viewer aligns in-
line assembly code to source code statements.

PREF_LI NE_NUVBER_FREQ

Specifies the Source Viewer’s line number fre-
quency. Possible values are: off (0), current
line (1), all lines (2), every 5 lines (3) and
every 10 lines (4).

PREF_LOCK_HEADER BAR

Specifies whether the Source Viewer header
bar’s auto-hide feature is disabled.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

275

CHAPTER 7

System Constants

Name

Description

PREF_MAX_SYMBOL_MEMBERS

Specifies the maximum number of members to
be displayed for expanded symbol items.

PREF_MAX_POAER_SAMPLES

Specifies the data limit of the Power Sampling
Window in number of samples.

PREF_PREFI X_FUNC_CLASS_NANES

Specifies if the class name should be prefixed
to C++ member functions.

PREF_PLUG N_FUNC EXEC TIME_LIM T

Time limit for (JavaScript) plugin function ex-
ecution in milliseconds. At value of 0 (default)
denotes no limit.

PREF_RESET_DI ALOG_DNSA

Resets all dialog options “do not show again”.

PREF_RESTRI CT_SRC EDI T

Specifies the editing restriction that applies to
source files (0: no restriction, 1: editing disal-
lowed when debugging, 2: never allowed)

PREF_RES| ZE_COL_ON_EXPAND

Specifies whether table columns resize to con-
tents after item expansions.

PREF_RESI ZE_COL_ON_COLLAPSE

Specifies whether table columns resize to con-
tents after item collapses.

PREF_SHOW ASM_SOURCE

Specifies whether the Disassembly Window
augments assembly code with source code.

PREF_SHOW ASM LABELS

Specifies whether the Disassembly Window
augments assembly code with symbol labels.

PREF_SHOW EXP_I NDI CATORS

Specifies whether the Source Viewer displays
source line expansion indicators.

PREF_SHOW BP_BAR_SRC

Specifies whether the Source Viewer displays
its breakpoint bar.

PREF_SHOW BP_BAR_ASM

Specifies whether the Disassembly Window dis-
plays its breakpoint bar.

PREF_SHOW EXEC_COUNTERS_SRC

Specifies if execution counters are displayed
within the Source Viewer

PREF_SHOW EXEC_COUNTERS_ASM

Specifies if execution counters are displayed
within the Disassembly Window.

PREF_SHOW PROGBAR WHI LE_RUNNI NG

Specifies if a moving progress indicator is dis-
played within the status bar while the program
is running.

PREF_SHOW PRQJECT _WARNI NGS_DI A-
LOG

Specifies if a warnings dialog is to pop up when
project settings are erroneous.

PREF_SHOW CHAR_TEXT

Specifies whether values of (u)char-type sym-
bols are display as “value (character)”.

PREF_SHOW SHORT _TEXT

Specifies whether values of (u)short-type sym-
bols are display as “value (character)”.

PREF_SHOW | NT_TEXT

Specifies whether values of (u)int-type symbols
are display as “value (character)”.

PREF_SHOW CHAR_PTR_TEXT

Specifies whether values of (u)char*-type sym-
bols are display as “value (text)”.

PREF_SHOW SHORT _PTR_TEXT

Specifies whether values of (u)short*-type
symbols are display as “value (text)”.

PREF_SHOW | NT_PTR_TEXT

Specifies whether values of (u)int*-type sym-
bols are display as “value (text)”.

PREF_SHOW TOOLTI PS

Specifies whether tooltips are enabled.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

CHAPTER 7

System Constants

Name

Description

PREF_SHOW Tl MESTAMPS_CONSCOLE

Specifies whether the console window shows
message timestamps.

PREF_SHOW ENCODI NGS_ASM

Toggles the display of instruction encodings
within the Disassembly Window.

PREF_SHOW ENCODI NGS_| TRACE

Toggles the display of instruction encodings
within the Instruction Trace Window.

PREF_SHOW ENCODI NGS_SRC

Toggles the display of instruction encodings
within the Source Viewer.

PREF_SHOW FUNC_TYPE_SI GNATURES

Specifies if type signatures are to be appended
to function names.

PREF_SHOW PSEUDO | NSTS

Specifies if instructions should be disassembled
using pseudo syntax if possible.

PREF_START_W TH_MOST_RECENT_PROJ

Specifies if the most recent project is automati-
cally opened on application start.

PREF_SESSI ON_SAVE_FLAGS

Bitwise-OR combination of individual flags.
Each flag specifies a session information that is
not to be saved to (and restored from) the user
file (see Session Save Flags on page 270).

PREF_TAB_SPACI NG

Source Viewer tabulator spacing.

PREF_TOTAL_VALUE_BARS_DI SABLED

Specifies whether total value rows within table
windows are globally disabled.

PREF_TERM NAL_EOL_FORVAT

Specifies the line break characters that the Ter-
minal Window appends to user input before

the input is send to the debuggee (see Newline
Formats on page 269).

PREF_TERM NAL_ECHO | NPUT

Specifies if terminal window input is appended
to Terminal Window output.

PREF_TERM NAL_ZERO TERM | NPUT

Specifies if the string termination character (0)
is appended to Terminal Window input before
the input is send to the debuggee.

PREF_TERM NAL_CLEAR ON_RESET

When set, the terminal window is cleared each
time the program is reset.

PREF_TERM NAL_NO CONTROL_CHARS

Specifies whether the Terminal Window outputs
printable ASCII characters only.

PREF_TERM NAL_DATA LIM T

Specifies the data limit of the Terminal Window
in KB.

PREF_TI MESTAMP_FORNVAT

Specifies the timestamp display format for the
Instruction Trace Window. For the list of sup-
ported values, refer to Trace Timestamp For-
mats on page 269.

PREF_TI MELI NE_CURSOR_LABELS

Selects the cursor labels to be displayed within
the Timeline Window.

PREF_TI MELI NE_WHEEL_ MODE

Selects the mouse wheel action to be used
for the Timeline Window: 0=Scroll, 1=Zoom,
2=None.

PREF_TI MELI NE_TIME_ORIGI N

Selects the time origin of the Timeline Window:
0=CPU Halt, 1=Program Start.

PREF_TI MELI NE_AUTO_SCROLL

Selects the auto-scrolling behavior(0: do not
auto scroll, 1: auto scroll while program is run-

ning).

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

277

CHAPTER 7 System Constants

Name

Description

PREF_TI MELI NE_CLEAR_EVENT

Debug event upon which trace and sampling
data is cleared (Clear On Reset=0,Clear On Re-
sume=1,Clear Never=2).

PREF_CP_HI GHLI GHT_SRC

Specifies if source code lines, as shown within
the code profile window, are syntax-highlight-
ed.

PREF_CP_HI GHLI GHT_ASM

Specifies if assembly code lines, as shown with-
in the code profile window, are syntax-high-
lighted.

PREF_CP_SHOW ENCODI NGS

Specifies if instruction encodings are shown
within the code profile window.

PREF_CP_SHOW LI NE_NUMBERS

Specifies if source line numbers are shown
within the code profile window.

PREF_CP_SHOW BP

Specifies if breakpoints are shown within the
code profile window.

PREF_TRACE_SYNC_W TH_CODE

Sync instruction trace and code window selec-
tions (see Backtrace Highlighting on page 129).

User Preferences

7.2.27 System Variable Identifiers

The following constants identify Ozone system variables (see Edit.SysVar on page 309).

Name

Description

VAR _ACCESS_W DTH

Memory access width (see Memory Access Widths on
page 266 for permitted values).

VAR _ALLOW BMA_EMULATI ON

This system variable is deprecated. Please remove
statements changing this variable from your Ozone
project file(s)

VAR BREAK AT THI S_SYMBOL

Specifies the symbol or PC where program execution
should be stopped when reset mode “"Reset & Break at
Symbol” is used.

VAR_BREAKPO NT_TYPE

Specifies the default breakpoint implementation type to
use when setting breakpoints.

VAR_CALLSTACK_UNW ND_I N-
FO_SRC

Specifies whether the call stack unwinding informa-

tion shall be obtained from the DWARF information in-
side the ELF file or from instruction analysis. By de-
fault, automatic selection of the unwinding information
source is enabled. See Unwinding Information Source on
page 271 for permitted values.

VAR _CONTEXT _AWARE_STEP-
PI NG

Specifies whether to halt in the same function context
(call frame) or anywhere on step over.

VAR _DOWKNLOAD_ADDR

Specifies the download address for program segments.
Possible value are DL_PMA (0) for physical memory
address and DL_VMA (1) for virtual memory address
(see Destination Address Ranges for Download on
page 271).

VAR _GDB_SERVER TYPE

Specifies the type of GDB server. Possible values are
GDB_SERVER_TYPE_AUTO (0), GDB_SERVER TYPE_OTH-
ER (1), GDB_SERVER TYPE_JLI NK (2), GDB_SERV-
ER_TYPE_STLI NK (3) and GDB_SERVER TYPE_OPENOCD
(4), see GDB Server Type on page 272

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

278

CHAPTER 7 System Constants

Name

Description

VAR _HSS_SPEED

Data sampling frequency in Hz.

VAR _MEM ZONE_RUNNI NG

Selects the default memory zone to be accessed when
the program is running.

VAR _POAER_SAMPLI NG_SPEED

Power sampling frequency in Hz.

VAR RESET MODE

Specifies the program reset mode (see Reset Modes on
page 267).

VAR _STARTUP_COM
PLETI ON_POI NT

Specifies the symbol or PC of the startup completion
point (see Startup Completion Point on page 188).

VAR _TARGET_POAER ON

Specifies whether J-Link / J-Trace supplies power to the
target via a dedicated target interface pin. This setting
must be active in order to use Ozone’s power profiling
features.

VAR _TRACE_MAX_| NST_CNT

Specifies the maximum number of instructions that
Ozone can process and store during a streaming trace
session.

VAR TRACE_TI MESTAMPS EN-
ABLED

Specifies whether the target is to output (and J-Link/
Ozone is to process) PC timestamps multiplexed into the
trace data stream.

VAR _TRACE_CORE_CLOCK

CPU frequency in Hz. Ozone uses this variable to con-
vert instruction timestamps from CPU cycle count to
time format.

VAR_VECTORTABLE_ADDR

Specifies the base address of the vector table, thus
overriding the result of the heuristic used to detect the
base address. If set to "Automatic”, the result of the
heurisitic is used.

VAR _VECTCORTABLE_SI ZE

Specifies the base size of the vector table, thus overrid-
ing the result of the heuristic used to detect the size. If
set to “"Automatic”, the result of the heurisitic is used.

VAR_VERI FY_DOALOAD

Specifies if a program data should be read-back from
target memory and compared to original file contents to
detect download errors.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

279 CHAPTER 7 Command Line Arguments

7.3 Command Line Arguments

When Ozone is started from the command line, it is possible to specify additional parameters
that configure the debugger in a certain way. The list of available command line arguments
is given below.

Note

Arguments containing white spaces must be quoted.

7.3.1 Project Generation

Command line arguments that generate (or update) a project.

Parameter Description
} . . Selects the target device (for example ST-
device <device> M32F4071G).
-if <IF> Assigns the target interface (SWD or JTAG).
-speed <speed> Specifies the target interface speed in kHz.

Assigns the host interface. <hostif> can be set to
either USB or IP. The optional parameter <ID> can
be set to the serial number or IP address of the J-
Link to connect to.

-select <hostif>[=<ID>]

Sets the host interface to USB and optionally spec-

-usb [<SN>] ifies the serial number of the J-Link/J-Trace to con-
nect to.
[ip <IP> Sets the host interface to IP and specifies the IP ad-

dress of the J-Link/J-Trace to connect to.

-programfile Sets the program file to open on startup.

Specifies the file path of the generated project. If
the project already exists, the new settings are ap-
plied to it. If the project does not exist, it is creat-
ed.

Specified the file path to the J-Link script that is ex-
ecuted when the debug session is started.

Configures the JTAG interface (see Project.SetJTAG-
Config on page 342).

-project

-jlinkscriptfile

-jtagconfig <DRPre>,<IRLen>

A project is generated when the file path given under -project’ does not exist. Otherwise, an
existing project is updated with the command line arguments. The device, target interface
and host interface settings must be present if the project is created.

7.3.2 Appearance and Logging

Command line arguments that adjust appearance and logging settings.

Argument Description

Sets Ozone’s GUI theme. Possible values for

-style <style> <style> “windows”, “cleanlooks”, “plastique”, *mo-
tif” and “macintosh”.

When set, Ozone outputs all application-generated

-logfile <filepath> messages to the specified text file.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

280 CHAPTER 7 Command Line Arguments

Argument Description

_loginterval <bvtes> The byte interval at which the log file is updated.
9 Y When 0, the log file is updated immediately.

Opens a debug console window along with Ozone.

-debug

7.3.3 Configuration

Command line arguments that adjust functional settings.

Argument Description

—port <numbers Sets the used port for the Automation Socket Inter-
P face on page 262

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

281

CHAPTER 7 Directory Macros

7.4 Directory Macros

The following macros can be used as placeholders for directory paths wherever file path

7.4.

Ozone User Guide & Reference Manual (UM08025)

input is required:

$(DocDir)
$(PluginDir)
$(ConfigDir)
$(LibraryDir)
$(ProjectDir)
$(InstallDir)
$(AppDir)
$(ExecutableDir)
$(AppBundleDir)
$(Date)
$(DateYYYY)
$(DateYY)
$(DateMM)
$(DateDD)
$(Time)
$(TimeHH)
$(TimeMM)
$(TimeSS)

The document directory. Expands to "${InstallDir}/doc".

The plugin directory. Expands to "${InstallDir}/plugins".

The configuration directory. Expands to "${InstallDir}/config".
The library directory. Expands to "${InstallDir}/lib".

The directory containing the project file.

The installation directory.

The directory containing the program file.

The directory containing the Ozone executable.

The application bundle directory (macOS).

The current date in the format YYMMDD.

The current year as four digit number.

The current year as two digit number.

The current month as number with a leading zero (01 to 12).
The current day as number with a leading zero (01 to 31).
The current time in the format HHMMSS.

The hour of the current time with a leading zero (00 to 23).
The minute of the current time with a leading zero (00 to 59).
The second of the current time with a leading zero (00 to 59).

The date and time macros may be used for composing directory names and/or file names,
e.g. when exporting window contents in an automated environment.

1 Environment Variables

System environment variables can be used as placeholders for directory paths wherever
file path input is required. The following environment variable formats are understood:

Format Operating System(s)
% <varname>% windows
$<varname> unix
$(<varname>) all plattforms

<varname> stands for the name of the environment variable (e.g. HOMEPATH on windows

or HOME on Unix).

© 2013-2026 SEGGER Microcontroller GmbH

282

7.5 Startup Sequenc

CHAPTER 7

e Flow Chart

Startup Sequence Flow Chart

The figure below illustrates the different phases of the "Debug & Download Program” startup
sequence and how it inter-operates with script functions (see Download & Reset Program on
page 184). Please note that Phases 2 (Breakpoints) and 5 (Initial Program Operation) of the
startup sequence are not displayed in the chart as these phases cannot be reimplemented

and do not trigger any event ha

ndler functions.

Debugging Work Flow
Replacement Functions
and Standard Execution Called Event Handlers
Alternative Invocation
Debug.Start
5 DebugStart Start debug session
B
1)
c
&
O \
Debug.Connect J
BeforeTargetConnect
[TargetConnect +~4{ Connectto Target]
AfterTargetConnect
Target.Reset \
(BeforeTargetReset
- v
2
e r TargetReset j‘{ Reset Target J
AfterTargetReset ‘
Debug.Download \ B
(j BeforeTargetDownload |
T h 4
]
c
g TargetDownload }‘{ Download file to Target]
a
j AfterTargetDownIoacy

Startup Sequence Flow Chart.

Ozone User Guide & Reference Manual (UM08025)

Y

v

© 2013-2026 SEGGER Microcontroller GmbH

283

CHAPTER 7

7.6 Errors and Warnings

The following table lists all application errors and warnings that may occur during the de-
bugging workflow. For each exception, possible causes and solutions are summarized.

Errors and Warnings

For details on how to conduct solution proposals that contain toolchain (compiler/linker/IDE)
settings, please refer to the user guide of the concerning software tool. Follow the instruc-
tions in Support on page 390 when the problem persists.

Work on the application message tables is currently ongoing.

Code

Description

Possible Causes

Solution Proposals

File not tagged with ELF

The ELF parser attempt-
ed to load an ELF file that

1. Wrong file selected 2.

0 magic number does not contain the ELF File corrupted
9 file byte identification P
pattern
The ELF parser attempt-
ed to load an ELF file that
is not an executable pro- | Incorrect toolchain set- . i
1 gram (instead the file is tings or build target Check toolchain settings
most likely a shared ob-
ject)
The ELF parser attempt-
ed to load an ELF file hav- | Incorrect toolchain set- . .
2 ing an unspecified class tings or build target Check toolchain settings
(ELF_CLASS_NONE)
The ELF parser attempted
3 to load an_E_LF file having I_ncorrect tc_JoIchaln set- Check toolchain settings
an unspecified data en- tings or build target
coding (ELF_DATA NONE)
The ELF parser attempted
to load an ELF file whose | Incorrect toolchain set- .)
4 . : . ; Check toolchain settings
header version number is | tings or build target
not EV_CURRENT
The ELF parser attempt- . :
ed to load an ELF file that I_ncorrect toolchain set_ . .
5 . tings or unsupported file | Check toolchain settings
has an unsupported file f
) ormat
version number
The ELF parser attempted
to load an ELF file but the | o o g0 raviously Contact SEGGER sup-
maximum number of ELF .
6)) opened in Ozone were not | port (see Support on
files that can be simulta- closed correctl age 390)
neously opened is already Y pag
open
1. Check your file system
The ELF parser attempt- 1. Incorrect file access access permissions 2.
ed to load an ELF file but T Check that the file is not
7 - permissions. 2. Corrupt)
could not open the file for | ;. in use by another process
- file header
reading 3. contact the system ad-
ministrator
The ELF parser attempted . .)
to load an ELF file whose ilfi.eFd”E W:: g;rt]::zarlntoodol
8 internal file size informa- Y Rebuild the ELF file

tion does not match the
actual file size

(e.g. readelf ori nst al -
| _nane_t ool)

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

284

CHAPTER 7

Errors and Warnings

Code

Description

Possible Causes

Solution Proposals

Not enough free RAM to

The ELF file contains

9) more debug symbols than | Insufficient target RAM
load the ELF file. fit into Host PC RAM
The ELF parser attempted 1. Check your f_||e system
.) access permissions 2.
to load an ELF file but en- | 1. Incorrect file access o
. . Check that the file is not
10 countered an error while | permissions. 2. Corrupt)
.) . in use by another process
reading file contents from | file header
; 3. contact the system ad-
the hard disk L
ministrator
The ELF parser attempt-
11 ed to initialize its DWARF 1 Corrupted ELF program Check toolchain settings
parser subcomponent, file
which failed
The ELF parser attempt- | Lncorrect toolchain set-
- tings or build target
ed to load an ELF file that ; ; . i
12 e.g. word size mismatch | Check toolchain settings
cannot be executed on - .
(32-bit/64-bit) or target
the selected target .
processor type mismatch
1(‘3:?;5;;;2:2%,:3? 1. Project setting 'Tar-
The ELF parser attempted get. i get.SetEndianess’ not
. present or set incorrect- .
to load an ELF file whose ; present or set incorrect-
13 . ly 2. Incorrect toolchain -
data endianess does not : L ly 2. Incorrect toolchain
: settings pertaining to the : .
match the target settings settings pertaining to the
byte order of the output b d fth
file yte order of the output
1. Project setting Tar-) . g
The ELF parser attempted | get.SetEndianess’ not 1. Project s_ettlng,’Tar
. . get.SetEndianess’ not
to load an ELF file whose | present or set incorrect- .
. . . ; present or set incorrect-
14 instruction endianess ly 2. Incorrect toolchain -
: - ly 2. Incorrect toolchain
does not match the target | settings pertaining to the : i
; settings pertaining to the
settings byte order of the output b d fth
file yte order of the output
1. verify that the target
Hardware setup does application uses SEG-
,g | RTT could not be activat- | o278 = ba‘gk o nd | GER’s RTT library. 2. ver-
ed. PP 9 ify that the hardware set-
memory access.
up supports background
memory access.
Check the sampling fre-
High speed samolin Hardware setup does quency and verify that
84 gn sp pling not support background the hardware setup sup-
could not be started.
memory access. ports background memo-
ry access.
The project file was cre- Check project file for valid
The proiect scriot con- ated with a newer ver- syntax. Remove com-
'€ proj P sion of Ozone and con- mands and identifiers
86 tains a syntax or seman- ins identifi f h . file th
tical error tains identifiers not su'p- rom the project file that
ported by the current in- | are not supported by the
stallation current installation.
1. Incorrect input to com-
The file path to the mand 'Project.AddSvdFile’
CMSIS-SVD file contain- 2. Command 'Project.Ad- | Add command Project.Ad-
90 ing the register set de- dSvdFile not specified and | dSvdFile to project script

Ozone User Guide & Reference Manual (UM08025)

scription for the selected
target is not valid

a default file path is not
available. 3. Incorrect use
of command Project.Ad-

function OnProjectLoad

© 2013-2026 SEGGER Microcontroller GmbH

285

CHAPTER 7

Errors and Warnings

Code

Description

Possible Causes

Solution Proposals

dSvdFile (must be placed
in project script function
‘OnProjectLoad’)

The ELF parser is out of

The ELF file contains

Reduce the amount of de-
bugging information emit-
ted to the program file

103 more debug symbols than ;
memory o (e.g. use -gl instead of
fit into Host PC RAM “g3 on GCC and similar
measures)
The ELF parser encoun- .
tered an internal error Software bug n the_em- Contact SEGGER support
104 while parsing a data sec- ployed toolchain or in (see \ref{Support})
tion Ozone’s ELF parser.
The ELF parser encoun- Incorrect toolchain set-
105 |tered an empty data sec- tinas Check toolchain settings
tion 9
The ELF parser encoun-
tered an invalid debug 1. Unsupported debug -
symbol reference (speci- | symbol format or exten- I%I‘rlfnnagt?ofwhiftezlé%rmat
106 |fied as file offset). The file | sion. 2. Software bug in (e.g. from DWpARF—S to
offset does not point to the employed toolchain or DV'\/gARF—4)
the base of a debug sym- | in Ozone’s ELF parser
bol.
The ELF parser encoun-
tered an invalid symbol 1. Unsupported debug .
location reference (speci- | symbol format or exten- g)hr?:agt?ofnhce)ftezg%olrmat
107 |fied as file offset). The file | sion. 2. Software bug in (e.g. from DWpARF-S to
offset does not point to the employed toolchain or D\}\?ARF-4)
the base of a symbol lo- in Ozone’s ELF parser
cation record.
_ Change the debug in-
108 :cl'he ELF parser encoun Unsupported debug sym- | formation output format
ered an unsupported -
: bol format or extension (e.g. from DWARF-5 to
symbol attribute format DWARF-4)
.) Change the debug in-
109 The symbol location de Unsupported debug sym- | formation output format
coder encountered an un- -
bol format or extension (e.g. from DWARF-5 to
supported operand DWARF-4)
The program file does not The toolchain settings are Change toolchain settings
110 | contain debug informa- not set to not generate to generate DWARF de-
. DWARF debug informa- - .
tion . bug information
tion
The ELF parser encoun-
tered a compilation unit Software bug in the em-
111 | whose byte size is less ployed toolchain or in E:soel'meta\ing{I;(jGE(I}r:}u)pport
than expected from the Ozone’s ELF parser PP
unit’'s header information
The ELF parser encoun- Change the debug in-
112 tered a debug symbol en- | Unsupported debug sym- | formation output format
coded in an unsupported | bol format or extension (e.g. from DWARF-5 to
format DWARF-4)
ELF data section \em{de- | 1. Unsupported debug g)ﬁi:]gt?ozhg:tezltjgfolpr;qat
113 | bug_l oc} has an unex- symbol format or exten- p

Ozone User Guide & Reference Manual (UM08025)

pected byte size

sion. 2. Software bug in

(e.g. from DWARF-5 to
DWARF-4)

© 2013-2026 SEGGER Microcontroller GmbH

286

CHAPTER 7

Errors and Warnings

Code

Description

Possible Causes

Solution Proposals

the employed toolchain or
in Ozone’s ELF parser

ELF data section \em{de-

1. Unsupported debug
symbol format or exten-

Change the debug in-
formation output format

114 | bug_line} has an unex- |sion. 2. Software bug in)
pected byte size the employed toolchain or (DeV\?AFIIZ?T) DWARF-5 to
in Ozone’s ELF parser
1. Unsupported debug -
ELF data section \em{de- | symbol format or exten- Changt_a the debug in
L . formation output format

115 | bug_frane} has an unex- | sion. 2. Software bug in (e.g. from DWARF-5 to
pected byte size the employed toolchain or D\;\?ARF-4)

in Ozone’s ELF parser
The address mapping ta- | Software bug in the em-

116 | ble decoder encountered | ployed toolchain or in %soer;ta\(r:(t;filé(jGEgrts}u)pport
an invalid file index Ozone's ELF parser PP
The address mapping ta- | Software bug in the em-

117 | ble decoder encountered | ployed toolchain or in Eisoeneta\igfszléiGEgr:}u)pport
an invalid directory index | Ozone’s ELF parser PP
ELF data section \em{de- 1. Unsupported debug Change the debug in-

- symbol format or exten- ;
bug_frane} contains an : . formation output format
118 - sion. 2. Software bug in
unsupported address size . (e.g. from DWARF-5 to
. the employed toolchain or
field :) DWARF-4)
in Ozone’s ELF parser
ELF data section \em{de- 1. Unsupported debug Change the debug in-
; symbol format or exten- .
bug_frane} contains an : . formation output format
119 sion. 2. Software bug in
unsupported segment . (e.g. from DWARF-5 to
) X the employed toolchain or
size field . , DWARF-4)
in Ozone’s ELF parser
The ELF parser encoun-

120 tered an inconsistency Software bug in the em- | Contact SEGGER support
within call frame informa- | ployed toolchain (see \ref{Support})
tion data
ELF data section \em<{de- Change the debug in-

121 bug_frane} contains an Unsupported debug sym- | formation output format
unsupported data aug- bol format or extension (e.g. from DWARF-5 to
mentation DWARF-4)

1. Unsupported debug _
The call frame informa- symbol format or exten- Change the debug in
. L . formation output format
122 | tion decoder encountered | sion. 2. Software bug in (e.g. from DWARF-5 to
an internal error state the employed toolchain or D\}\?ARF-4)
in Ozone’s ELF parser
1. Unsupported debug -
ELF data section \em{de- | symbol format or exten- Changt_a the debug in
X . L . formation output format
123 | bug_frane} is encoded in | sion. 2. Software bug in
. (e.g. from DWARF-5 to
an unsupported format the employed toolchain or DWARF-4)
in Ozone’s ELF parser
The ELF parser encoun-
tered an invalid addre_s_s 1. Unsupported debug Change the debug in-
range reference (specified | symbol format or exten- .
") ; . formation output format

124 | as file offset). The file off- | sion. 2. Software bug in (e.g. from DWARF-5 to
set does not point to the |the employed toolchain or DV.\?ARF-4)
base of an address range |in Ozone’s ELF parser
record

125 The program macro infor- | 1. Unsupported debug Change the debug in-

Ozone User Guide & Reference Manual (UM08025)

mation decoder encoun-

symbol format or exten-

formation output format

© 2013-2026 SEGGER Microcontroller GmbH

287

CHAPTER 7

Errors and Warnings

Code

Description

Possible Causes

Solution Proposals

tered an internal error
state

sion. 2. Software bug in
the employed toolchain or
in Ozone’s ELF parser

(e.g. from DWARF-5 to
DWARF-4)

The ELF parser reports
that a debugging infor-

1. Unsupported debug
symbol format or exten-

Change the debug in-
formation output format

129 | mation entry at a specif- | sion. 2. Program file con-)
ic section offset could not | tains corrupted DWARF (DeV\?AFIIZ?T) DWARF-5 to
be parsed/generated debug information
The DWARF parser en- -1. Unsupported debug Change the debug in-

symbol format or exten- .
countered an error pars- :) formation output format

130 |. . sion. 2. Program file con-
ing the debug info for a ; (e.g. from DWARF-5 to
tvpe unit tains corrupted DWARF DWARF-4)
ypP debug information
The DWARF parser en- 1. Unsupported debug Change the debug in-

symbol format or exten- .
countered an error pars- :) formation output format
131 |. i sion. 2. Program file con-
ing the debug info for a . (e.g. from DWARF-5 to
. . tains corrupted DWARF
compile unit debug inf) DWARF-4)
g information
The DWAREF parser en- 1. Unsupported debug Change the debug in-
symbol format or exten- .
countered an error pars- ;) formation output format
132 |. o sion. 2. Program file con-
ing the source file info of . (e.g. from DWARF-5 to
. : tains corrupted DWARF
a compile unit - . DWARF-4)
debug information
The list of available mem-
1. Incorrect user input. 2 ory zones is printed along
An incorrect memory O.zone failed to determ.ine. with this warning. If an
133 | zone name was input by the names of the taraet’s incorrect input can be
the user MEeMmMory Zones 9 ruled out, contact SEG-
Y GER support (see \re-
f{Support})
A requested power sam- | 2_Link/J-Trace debug
lin qfre uenpc is not probes currently support | Update J-Link software
134 Eu gorteqd b t¥1e hard- power sampling rates of | drivers (e.g. by using the
waprz setu Y up to 100 kHz depending | J-Link DLL Updater tool)
P on the model
1. Power output to the 1. Enable power output
target is not enabled (see | (see \ref{Power Sam-

135 Power sampling could not | System Variable Identi- pling Window?}). 2. Up-
be started fiers on page 277). 2. The | date J-Link software dri-

hardware setup does not | vers (e.g. by using the J-
support power sampling Link DLL Updater tool)
The debuggee uses em- Add command

137 bOS-specific functionality, | Missing use of command | ‘Project.SetOSPlugin(em-
but an RTOS-awareness Project.SetOSPlugin bOSPIugin)’ to the project
plugin was not loaded file
The debuggee uses Add command
FreeRTOS-specific func- Missing use of command 'Project.Set OSPI ug-

138 | tionality, but an RTOS- Pro.ecg SetoSPlua i n(Fr eeRTOSPI ug-
awareness plugin was not ject. 9 i n_<port>) to the project
loaded file
Al phvsical addresses in Linker information may Add command ‘Edit.Sys-

Py be incorrect or build tool | Var (VAR_DOWNLOAD_ADDR,

178 | program segments are

0x0

chain does not fill-in
physical addresses

DL_VMA)' to the project
file

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

288

Ozone User Guide & Reference Manual (UM08025)

CHAPTER 7

Errors and Warnings

Code Description Possible Causes Solution Proposals
command 'Edit.Sys-
Linker information may Var (VAR_DOVINLOAD_ADDR,
All virtual addresses in be | . DL_PMA)’ to the project
e incorrect or build tool .
179 | program segments are chain does not fill-in vir- file or remove command
0x0 tual addresses 'Edit.SysVar (VAR_DON\-
LOAD_ADDR, DL_VMA)’ from
the project file
Remove the respective
Illegal command found in | Illegal command added command. Check if it
183 | script function OnSt ar - to script function OnSt ar - | should be moved to On-
tupConpl et e tupConpl ete DebugSt ar t BreakSym
Reached
The debuggee uses Create an RTOS-aware-
FreeRTOS-specific func- Missing use of command ness script and add com-
184 | tionality, but an RTOS- mand 'Project.SetOS-

awareness plugin was not
loaded

Project.SetOSPlugin

Plugin(<plugin>) to the
project file

© 2013-2026 SEGGER Microcontroller GmbH

289

7.7 Minidumps

CHAPTER 7 Minidumps

When Ozone crashes due to an unexpected condition, a compact crash report (minidump)

is stored to the file system.

Users are kindly asked to include the minidump within bug reports, as it greatly simplifies
the task of locating the bug for the Ozone team.

Minidumps are stored to the following directory:

Operating System

Directory

Windows %LOCALAPPDATA%/SEGGER/Ozone
Linux $HOME/.local/share/data/SEGGER/Ozone
macOS $HOME/Library/Application Support/SEGGER/Ozone

The full path of the minidump is indicated by a popup dialog that will be shown when the
crash occurs. Additionally, the file path will be printed to the standard error output channel
(stderr). The file extension of Ozone minidumps is “"dmp”.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

290 CHAPTER 7 Action Tables

7.8 Action Tables

The following tables provide a quick reference on user actions provided by Ozone (see User

Actions on page 43).

7.8.1 Breakpoint Actions
Actions that modify the debugger’s breakpoint state.

Action

Description

Break.Clear

Clears an instruction breakpoint.

Break.ClearOnSrc

Clears a source breakpoint.

Break.ClearOnData

Clears a data breakpoint.

Break.ClearOnSymbol

Clears a data breakpoint on a symbol.

Break.ClearAllOnData

Clears all data breakpoints.

Break.ClearAll

Clears all code breakpoints.

Break.Disable

Disables an instruction breakpoint.

Break.DisableOnSrc

Disables a source breakpoint.

Break.DisableOnData

Disables a data breakpoint.

Break.DisableOnSymbol

Disables a data breakpoint on a symbol.

Break.Enable

Enables an instruction breakpoint.

Break.EnableOnSrc

Enables a source breakpoint.

Break.EnableOnData

Enables a data breakpoint.

Break.EnableOnSymbol

Enables a data breakpoint on a symbol.

Break.Edit

Edits a breakpoints advanced properties.

Break.EditOnData

Edits a data breakpoint.

Break.EditOnSymbol

Edits a data breakpoint on a symbol.

Break.OnChange

Sets a data breakpoint on a symbol.

Break.Set

Sets an instruction breakpoint.

Break.SetEx

Sets an instruction breakpoint.

Break.SetOnSrc

Sets a source breakpoint.

Break.SetOnSrcEx

Sets a source breakpoint.

Break.SetType

Sets a breakpoint’s implementation type.

Break.SetCommand

Assigns a script callback function to a breakpoint.

Break.SetCmdOnAddr

Assigns a script callback function to a breakpoint.

Break.SetOnData

Sets a data breakpoint.

Break.SetOnSymbol

Sets a data breakpoint on a symbol.

Break.SetVectorCatch

Edits the vector catch state.

7.8.2 Code Profile Actions

Ozone User Guide & Reference Manual (UM08025)

Code profile related actions.

Action

Description

Coverage.Exclude

Filters program entities from the code coverage statistic.

Coverage.Include

Re-adds program entities to the code coverage statistic.

Coverage.ExcludeNOPs

Filters trailing NOPs from the code coverage statistic.

© 2013-2026 SEGGER Microcontroller GmbH

201

7.8.3 Debug Actions

CHAPTER 7 Action Tables

Action

Description

Profile.Exclude

Filters program entities from the code profile statistic.

Profile.Include

Re-adds program entities to the code profile statistic.

Profile.Reset

Clears code profile data and resets all execution counters.

Actions that modify the program execution point and that configure the debugger’s con-
nection, reset and stepping behavior.

Action

Description

Debug.Connect

Connects the debugger to the target.

Debug.Continue

Resumes program execution.

Debug.Disconnect

Disconnects the debugger from the target.

Debug.Download

Downloads the program file to the target.

Debug.Halt

Halts program execution.

Debug.IsHalted

Queries the program state.

Debug.Reset

Reset the program.

Debug.ReadIntolnstCache

Reads a code block into the instruction cache.

Debug.RunTo

Advances program execution to a particular location.

Debug.SetConnectMode

Sets the connection mode.

Debug.Start

Starts the debug session.

Debug.Stop

Stops the debug session.

Debug.Steplnto

Steps into the current function.

Debug.StepOver

Steps over the current function.

Debug.StepOut

Steps out of the current function.

Debug.SetNextPC

Sets the next machine instruction to be executed.

Debug.SetNextStatement

Sets the next source statement to be executed.

Debug.SetResetMode

Sets the reset mode.

Debug.SaveSnapshot

Saves a debug snapshot.

Debug.LoadSnapshot

Loads a debug snapshot.

7.8.4 Edit Actions

Actions that edit behavioral and appearance settings of the debugger.

Ozone User Guide & Reference Manual (UM08025)

Action Description
Edit.Color Edits an application color.
Edit.DisplayFormat Edits an item’s integer value display format.
Edit.Font Edits an application font.

Edit.MemZone

Edits the memory zone of a watched expression.

Edit.Preference

Edits a user preference.

Edit.RefreshRate

Edits the refresh rate of a window or watched expression.

Edit.SysVar

Edits a system variable.

© 2013-2026 SEGGER Microcontroller GmbH

7.8.5 ELF Actions

CHAPTER 7 Action Tables

Actions for retrieving ELF program file information.

Action

Description

Elf. GetBaseAddr

Returns the program file’s download address.

Elf.GetFileClass

Returns the ELF file class of the program file.

ElIf.GetEntryPointPC

Returns the initial value of the program counter.

Elf.GetEntryFuncPC

Returns the first PC of the program’s entry function.

EIf.GetExprValue

Evaluates a symbol expression.

Elf.GetEndianess

Returns the program file’s byte order.

EIf.SetConfig

Configures the ELF parser.

Elf.PrintSectionInfo

Prints ELF file section information.

7.8.6 Export Actions

Actions that export debug session data to CSV or text files.

Action

Description

Export.CodeProfile

Exports code profile data.

Export.DataGraphs

Exports all data graphs to a CSV file.

Export.Disassembly

Exports program disassembly.

Export.PowerGraphs

Exports all power graphs to a CSV file.

Export.Trace

Exports instruction trace data to a CSV file.

7.8.7 File Actions

Actions that perform file system and related operations.

Action Description
File.Close Closes a source code document.
File.CloseAll Closes all open source code documents.

File.CloseAllButThis

Closes all but the active source code document.

File.CloseAllUnedited

Closes all unedited documents.

File.Exit

Closes the application.

File.Find

Searches for a text pattern.

File.Load

Loads a file.

File.NewProject

Creates a new project.

File.NewProjectWizard

Opens the Project Wizard.

File.Open

Opens a file.

File.OpenRecent

Reopens a recently opened program file.

File.OpenProjectInEditor

Opens the project file within the source viewer.

File.Reload

Reloads a file from disk.

File.SaveProjectAs

Saves the project file under a new file path to disk.

File.Save

Saves an open document to disk.

File.SaveAs

Saves an open document under a new file path to disk.

File.SaveCopyAs

Saves a copy of an open document to disk.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

293

CHAPTER 7 Action Tables

Action

Description

File.SaveAll

Saves all modified files.

File.SelectInExplorer

Selects a source file within the file explorer.

7.8.8 Find Actions

Actions that locate program entities.

Action

Description

Find.Function

Locates a program function.

Find.GlobalData

Locates a global symbol.

Find.SourceFile

Locates a source file.

Find.Text

Opens the Quick Find Widget.

Find.TextInFiles

Opens the Find In Files Dialog.

Find.TextInTrace

Opens the Find In Trace Dialog.

7.8.9 Help Actions

Actions that display help related information.

Action

Description

Help.About

Shows the About Dialog.

Help.Commands

Prints the command help to the Console Window.

Help.UserGuide

Displays the user guide and reference manual.

Help.ReleaseNotes

Displays the release notes.

Help.LicenseManager

Opens the license manager.

7.8.10 J-Link Actions

Actions that perform J-Link operations.

Action

Description

Exec.AddComman-
dOnOpen

Schedules a J-Link command to be executed immediately
before or after opening J-Link connection (i.e. JLi nk_Qpen()
is called).

Exec.Connect

Connects the debugger to the target.

Exec.Command

Executes a J-Link/J-Trace command.

Exec.Download

Downloads a program or a data file to target memory.

Exec.Reset

Performs a hardware reset of the target.

7.8.11 OS Actions

Actions that perform RTOS related operations.

Action

Description

0S.AddContextSwitchSymbol

Identifies a code symbol that executes a task
switch.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

294 CHAPTER 7 Action Tables

7.8.12 Process Actions

Actions that control interaction with external processes.

Action Description

Process.Exec Spawns a process and executes an external application.

7.8.13 Project Actions

Actions that configure the debugger for operation in a particular software and hardware
environment.

Action Description

Project.AddSvdFile
Project.AddRTTSearchRange
Project.AddFileAlias
Project.AddPathSubstitute
Project.AddRootPath
Project.AddSearchPath
Project.ConfigSWO

Adds a register set description file.

RTT configuration command.

Sets a file path alias.

Replaces substrings within source file paths.

Specifies the program'’s root path.

Adds a path to the program’s list of search paths.
Configures the Serial Wire Output (SWO) interface.

Project.ConfigSemihosting

Configures the Semihosting interface.

Project.ConfigDisassembly

Edits disassembler options.

Project.DisableSessionSave

Disables saving of individual session information.

Project.RelocateSymbols

Relocates one or multiple symbols.

Project.SetDevice

Specifies the target device.

Project.SetFlashLoader

Specifies the flash loader(s) to be used for one or more
flash banks.

Project.SetHostIF

Specifies the host interface.

Project.SetTargetIF

Specifies the target interface.

Project.SetTIFSpeed

Specifies the target interface speed.

Project.SetJTAGConfig

Configures the JTAG target interface.

Project.SetTraceSource

Selects the trace source to use.

Project.SetTracePortWidth

Specifies the number of trace pins comprising the TP.

Project.SetTraceTiming

Configures the trace pin sampling delays.

Project.SetRTT

Enables or disables Real Time Transfer (RTT).

Project.SetSWO

Enables or disables Serial Wire Output (SWO) capture.

Project.SetCorePlugin

Specifies the file path of the target support plugin.

Project.SetDisassemblyPlugin

Specifies the disassembly support plugin to be used.

Project.SetSmartViewPlugin

Specifies the SmartView plugin to be used.

Project.SetOSPIlugin

Specifies the RTOS awareness plugin to be used.

Project.SetBPType

Sets the allowed breakpoint implementation type.

Project.SetMemZoneRunning

Sets the default zone accessed when the CPU is running.

Project.Set]JLinkScript

Sets the J-Link-Script to be executed on debug start.

Project.SetlLinkLogFile

Sets the text file that receives J-Link/]-Trace logging
output. In case of debugging via a GDB server the com-
munication between GDB client and GDB server is writ-
ten into that file.

Project.SetConsoleLogFile

Sets the text file that receives console window output.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

295

CHAPTER 7 Action Tables

Action

Description

Project.SetTerminalLogFile

Sets the text file that receives terminal window output.

7.8.14 Register Actions

Actions that inform about target register properties.

Action

Description

Register.Addr

Returns the memory location of a target register.

7.8.15 Script Actions

Actions that perform script operations.

Action

Description

Script.DefineConst

Defines an integer constant to be used within the project
script.

Script.Exec

Executes a project file script function.

7.8.16 Show Actions

Actions that navigate to particular objects displayed on the graphical user interface.

Action Description
Show.CallGraph Displays the call graph of a function.
Show.Data Displays the data location of a program variable.

Show.Definition

Displays the source code definition location of a symbol.

Show.Declaration

Displays the source code declaration location of a symbol.

Show.Disassembly

Displays the assembly code of an object.

Show.InstTrace

Displays a position in the instruction execution history.

Show.Line

Displays a text line in the active document.

Show.Memory

Displays a memory location.

Show.MemoryMap

Displays a symbol within the memory map of the target.

Show.NextResult

Displays the next search result item.

Show.PC

Displays the PC instruction in the Disassembly Window.

Show.PCLine

Displays the PC line in the Source Viewer.

Show.PrevResult

Displays the previous search result item.

Show.Source

Displays the source code location of an object.

Show.ValueData

Displays the symbol pointed to within the memory window.

Show.ValueDisassembly

Displays the symbol pointed to within the disassembly win-
dow.

Show.ValueSource

Displays the symbol pointed to within the source viewer.

7.8.17 Snapshot Actions

Actions to program snapshot operations.

Action

Description

Snapshot.LoadReg

Reads a register from a snapshot and writes it to target.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

296

CHAPTER 7 Action Tables

Action

Description

Snapshot.LoadU32

Reads a memory value from a snapshot and writes it to tar-
get.

Snapshot.ReadReg

Reads a register from a snapshot.

Snapshot.ReadU32

Reads a memory value from a snapshot.

Snapshot.SaveReg

Saves a register to a snapshot.

Snapshot.SaveU32

Saves a memory value to a snapshot.

7.8.18 Target Actions

Actions that perform target memory and register I0.

7.8.19 Timeline Actions

Action

Description

Target.AddMemorySegment

Adds a memory segment to the memory map.

Target.EraseChip

Erases the target’s FLASH memory (to 0xFF).

Target.FillMemory

Fills a block of target memory with a particular value.

Target.FillMemoryEx

Fills a block of target memory with a particular value
and a particular word width.

Target.GetReg

Reads a target register.

Target.LoadMemory

Downloads the contents of a data file to target memory.

Target.LoadMemoryMap

Loads a memory map from a memory map file.

Target.PowerOn

Toggles target power supply by J-Link/J-Trace.

Target.ReadU32

Reads a word from target memory.

Target.ReadU16

Reads a half word from target memory.

Target.ReadUS8

Reads a byte from target memory.

Target.SaveMemory

Saves a block of target memory to a binary data file.

Target.SetAccessWidth

Specifies the memory access width.

Target.SetEndianess

Configures the debugger for a particular data endianess.

Target.SetReg

Writes a target register.

Target.WriteU32

Writes a word to target memory.

Target.WriteU16

Writes a half word to target memory.

Target.WriteU8

Writes a byte to target memory.

Actions related to the Timeline Window.

Action

Description

Timeline.Reset

Resets trace and sampling data.

7.8.20 Tools Actions

Ozone User Guide & Reference Manual (UM08025)

Actions that open tool dialogs.

Action

Description

Tools.DebugSettings

Opens the Debug Settings Dialog.

Tools.Preferences

Opens the User Preference Dialog.

© 2013-2026 SEGGER Microcontroller GmbH

297

CHAPTER 7

Action Tables

Action

Description

Tools.SemihostingSet-
tings

Opens the Semihosting Settings Dialog.

Tools.SysVars

Opens the System Variable Editor.

Tools.TraceSettings

Opens the Trace Settings Dialog.

7.8.21 Toolbar Actions

Actions that modify the state of toolbars.

Action

Description

Toolbar.Show

Displays a toolbar.

Toolbar.Close

Hides a toolbar.

Toolbar.AddCustomBut-
ton

Adds a button to the Custom Toolbar.

Toolbar.RemoveCus-
tomButton

Removes a button from the Custom Toolbar.

Toolbar.EnableCus-
tomButton

Enables a button in the Custom Toolbar.

Toolbar.DisableCus-
tomButton

Disables a button in the Custom Toolbar.

Toolbar.PressButton

Performs the same action as when clicking on a button in a

toolbar.

7.8.22 Trace Actions

7.8.23 Utility Actions

Trace-related actions.

Action

Description

Trace.SetPoint

Sets a tracepoint.

Trace.ClearPoint

Clears a tracepoint.

Trace.EnablePoint

Enables a tracepoint.

Trace.DisablePoint

Disables a tracepoint.

Trace.ClearAllPoints

Clears all tracepoints.

Trace.Reset

Resets instruction trace data.

Script function utility actions.

Action Description
Util.Error Shows an error message box and stops the debug session.
Util.Log Prints a message to the console window.
Util.LogHex Prints a formated message to the console window.
Util.Sleep Pauses the current operation for a given amount of time.

7.8.24 Window Actions

Actions that edit the state of debug information windows.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

298

CHAPTER 7 Action Tables

Action

Description

Window.Add

Adds a symbol to a window.

Window.Close

Closes a window.

Window.CloseAll

Closes all windows.

Window.Clear

Clears a window.

Window.CollapseAll

Collapses all items of a window.

Window.ExpandAll

Expands all items of a window.

Window.Export

Exports the window content to file.

Window.Insert

Inserts a symbol into a window.

Window.Remove

Removes a symbol from a window.

Window.Show

Shows a window.

Window.SetDisplayFormat

Sets a window'’s integer value display format.

Window.ShowFullScreen

Toggles main window full screen mode.

Window.WaitForUpdateCom-
plete

Waits until all debug windows have completed updating
following a change of the program execution point.

7.8.25 Watch Actions

Actions affiliated with the Watched Data Window.

Ozone User Guide & Reference Manual (UM08025)

Action

Description

Watch.Add

Adds an expression to the Watched Data Window

Watch.Insert

Inserts an expression into the Watched Data Window

Watch.Remove

Removes an expression from the Watched Data Window

Watch.Quick

Shows an expression within the Quick Watch Dialog

© 2013-2026 SEGGER Microcontroller GmbH

299 CHAPTER 7 User Actions

7.9 User Actions

7.9.1 File Actions

7.9.1.1 File.Close

Closes a document (see Source Viewer on page 156).

Prototype
int File.dose(const char* sFil ePat hOr Nane);
Argument Meaning
sFilePathOr- File path (or name) of a source file (see File Path Arguments on
Name page 222).

Return Value

-1: error
0: success

GUI Access

Main Menu — Window — Close Document (Ctrl+F4)

7.9.1.2 File.CloseAll

Closes all open documents (see File Menu on page 45).

Prototype
int File.CoseAl();
Return Value

-1: error
0: success

GUI Access
Main Menu — Window — Close All Documents (Ctrl+Alt+F4)

7.9.1.3 File.CloseAllButThis

Closes all but the active document (see Source Viewer on page 156).

Prototype
int File.d oseAllButThis();
Return Value

-1: error
0: success

GUI Access
Document Tab — Context Menu — Close All But This (Ctrl+Shift+F4)

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

300 CHAPTER 7 User Actions

7.9.1.4 File.CloseAllUnedited

Closes all unedited documents (see Source Viewer on page 156).

Prototype
int File.d oseAll Unedited();
Return Value

-1: error
0: success

GUI Access

Document Tab — Context Menu — Close All Unedited Documents

7.9.1.5 File.Exit

Closes the application (see File Menu on page 45).
Prototype

int File. Exit():

Return Value

-1: error
0: success

GUI Access
Main Menu — File — Exit (Alt+F4)

7.9.1.6 File.Find

Searches a text pattern in source code documents (see Find In Files Dialog on page 71).

Prototype
int File.Find(const char* sFindwat);
Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find In Files (Ctrl+Shift+F)

7.9.1.7 File.Load

Downloads a program or data file to target memory. This command essentially performs
the same operation as File.Open, but it does not reset the target prior to download and
does not perform the initial program operation (see Download Behavior Comparison on
page 198). When an ELF or compatible program file is specified, its debug symbols replace
any previously loaded debug symbols.

Note

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

301 CHAPTER 7 User Actions

Special care must be taken when placing this command into script functions (see
Avoiding Script Function Recursions on page 198).

Prototype
int File.Load(const char* sFilePath, U64 Address);
Argument Meaning
sFilePath Path to a program or data file (see File Path Arguments on page 222).
Address Memory address to download the data contents to. In case the ad-
dress is provided by the file itself, 0 can be specified.

Return Value

-1: error
0: success

GUI Access

None

7.9.1.8 File.NewProject

Creates a new project (see File Menu on page 45).

Prototype
int File.NewProject();
Return Value

-1: error
0: success

GUI Access

Main Menu — File — New — New Project (Ctrl+N)

7.9.1.9 File.NewProjectWizard
Opens the Project Wizard (see Project Wizard on page 35).

Prototype
int File. NewProjectWzard();
Return Value

-1: error
0: success

GUI Access
Main Menu — File — New — New Project Wizard (Ctrl+Alt+N)

7.9.1.10 File.Open

Opens a file (see File Menu on page 45). When a program file is opened and the debug
session is running, the program is automatically downloaded to target memory.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

302 CHAPTER 7 User Actions

Note

Special care must be taken when placing this command into script functions (see
Avoiding Script Function Recursions on page 198).

Prototype
int File.Open(const char* sFil ePat hOr Nane);
Argument Meaning
sFilePathOr- File path (or name) of a project-, source- or program-file (see File
Name Path Arguments on page 222).

Return Value

-1: error
0: success

GUI Access
Main Menu — File — Open (Ctrl+0)

7.9.1.11 File.OpenRecent

Reopens a recently opened program file.

Prototype

int File.OpenRecent (int |ndex);

Argument Meaning

Position of the file within the file menu’s recent programs list, starting

Index at index 0.

Return Value

-1: error
0: success

GUI Access

Main Menu — File — Recent Programs

7.9.1.12 File.OpenProjectinEditor

Opens the project file within the source viewer.

Prototype
int File.OpenProjectlnEditor();

Return Value

-1: error
0: success

GUI Access

Main Menu — File — Edit Project File

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

303 CHAPTER 7 User Actions

7.9.1.13 File.Reload

Reloads a document from disk. Note that unsaved document changes will be lost when this
command is executed.

Prototype
int File.Reload(const char* sFil ePat hOr Nane);

Argument Meaning

File path or name of a document currently open within the Source

sFilePath Viewer (see File Path Arguments on page 222).

Return Value

-1: error
0: success

GUI Access

Document Tab -> Reload from disk

7.9.1.14 File.SaveAll

Saves all modified files.

Prototype
int File.SaveAll ();
Return Value

-1: error
0: success

GUI Access

Main Menu — File — Save all

7.9.1.15 File.SaveProjectAs

Saves the project file under a new file path to disk.

Prototype
int File.SaveProjectAs(const char* sFil ePath);
Argument Meaning
sFilePath New project file path (see File Path Arguments on page 222).

Return Value

-1: error
0: success

GUI Access
Main Menu — File — Save Project as (Ctrl+Shift+S)

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

304 CHAPTER 7 User Actions

7.9.1.16 File.Save

Saves an open document to disk.

Prototype

int File.Save(const char* sFil ePat hOr Nane);

Argument Meaning

File path (or name) of a document which is opened within the Source
Viewer. When empty, the file path of the active document is used
(see File Path Arguments on page 222).

sFilePathOr-
Name

Return Value

-1: error
0: success

GUI Access
Main Menu — File — Save (Ctrl+S)

7.9.1.17 File.SaveAs

Saves an open document under a new file path to disk.

Prototype
int File.SaveAs(const char* sFilePathO Nane, const char* sFilePat hNew);

Argument Meaning

File path (or name) of a document which is opened within the Source

sNFallniZathOr- Viewer. When empty, the file path of the active document is used
(see File Path Arguments on page 222).
sFilePathNew File path to save to.

Return Value

-1: error
0: success

GUI Access

Main Menu — File — Save As...

7.9.1.18 File.SaveCopyAs

Saves a copy of an open document to disk.

Prototype
int File. SaveCopyAs(const char* sFil ePat hOr Name, const char* sFil ePat hQut);

Argument Meaning
SFilePathOr- File path (or name) of a document which is opened within the Source
Name Viewer. When empty, the file path of the active document is used
(see File Path Arguments on page 222).
sFilePathOut File path to save to.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

305 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

Main Menu — File — Save Copy As...

7.9.1.19 File.SelectinExplorer

Selects a source file or a directory within the file explorer of the operating system.

Prototype

int File.SelectlnExplorer(const char* slLocation);

Argument Meaning

File path (or name) of a source file or directory path (see File Path Ar-

sLocation guments on page 222).

Return Value

-1: error
0: success

GUI Access

Source Viewer — File Tab — Select In Explorer (Ctrl+F2)

7.9.2 Find Actions

7.9.2.1 Find.Text

Shows the Quick Find Widget to locate a text pattern within the active document (see Quick
Find Widget on page 92).

Prototype
int Find. Text();

Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find (Ctrl+F)
7.9.2.2 Find.TextInFiles
Opens the Find In Files Dialog (see Find In Files Dialog on page 71).

Prototype
int Find. TextlnFiles();

Return Value

-1: error

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

306 CHAPTER 7 User Actions

0: success

GUI Access
Main Menu — Find — Find In Files (Ctrl+Shift+F)

7.9.2.3 Find.TextInTrace
Opens the Find In Trace Dialog (see Find In Trace Dialog on page 73).

Prototype
int Find. TextlnTrace();
Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find In Trace (Ctrl+Shift+T)

7.9.2.4 Find.Function

Shows the Quick Find Widget to locate a program function (see Quick Find Widget on
page 92).

Prototype

i nt Find. Function();

Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find Function (Ctrl+M)

7.9.2.5 Find.GlobalData
Shows the Quick Find Widget to locate a global variable (see Quick Find Widget on page 92).

Prototype
int Find. dobal Data();

Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find Global Data (Ctrl+1])

7.9.2.6 Find.SourceFile
Shows the Quick Find Widget to open a source file (see Quick Find Widget on page 92).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

307 CHAPTER 7 User Actions

Prototype
i nt Find. SourceFile();

Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find Source File (Ctrl+K)

7.9.3 Tools Actions

7.9.3.1 Tools.DebugSettings
Opens the Debug Settings Dialog (see Debug Settings Dialog on page 68).

Prototype
i nt Tool s. DebugSettings();
Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Debug Settings (Ctrl+Alt+D)

7.9.3.2 Tools.TraceSettings
Opens the Trace Settings Dialog (see Trace Settings Dialog on page 84).

Prototype

int Tool s. TraceSettings();

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Trace Settings (Ctrl+Alt+T)

7.9.3.3 Tools.Preferences

Displays the User Preference Dialog (see User Preference Dialog on page 86).

Prototype

i nt Tool s. Preferences();

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

308 CHAPTER 7 User Actions

GUI Access

Main Menu — Tools — Preferences (Ctrl+Alt+P)

7.9.3.4 Tools.SysVars
Displays the System Variable Editor (see System Variable Editor on page 83).

Prototype
int Tool s. SysVars();
Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — System Variables (Ctrl+Alt+V)

7.9.3.5 Tools.SemihostingSettings
Opens the Semihosting Settings Dialog (see Semihosting Settings Dialog on page 82).

Prototype
i nt Tool s. Sem hostingSettings();

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Semihosting Settings (Ctrl+Alt+H)

7.9.4 Edit Actions

7.9.4.1 Edit.Preference

Edits a user preference.

Prototype

int Edit.Preference(int ID, int Value);

Argument Meaning

User preference identifier (see User Preference Identifiers on

1D page 273).

User preference value. Certain user preferences are specified in a

Value predefined format (see Value Descriptors on page 264).

Additional Information

User preferences can be alternatively edited using the User Preference Dialog (see User

Preference Dialog on page 86).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

309 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

None.

7.9.4.2 Edit.SysVar

Edits a system variable (see System Variable Identifiers on page 277).

Prototype
int Edit.SysVar(int 1D, int Value);

Argument Meaning
ID System variable identifier (see System Variable Identifiers on
page 277).
Value System variable value. Certain system variable values are specified in

a predefined format (see Value Descriptors on page 264).

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — System Variables (Ctrl4+Alt+V)

7.9.4.3 Edit.Find

Searches a text pattern in the active document (see Source Viewer on page 156). Once
executed, hotkey F3 can be used to locate the next occurrence.

Prototype
int Edit.Find(const char* sFindwWat);
Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find (Ctrl+F)

7.9.4.4 Edit.Color

Edits an application color (see Color Identifiers on page 272).

Prototype
int Edit.Color(int ID, int Value);
Argument Meaning
ID Color identifier (see Color Identifiers on page 272).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

310 CHAPTER 7 User Actions

Argument Meaning

Value Color descriptor (see Color Descriptor on page 264).

Return Value

-1: error
0: success

GUI Access

Main Menu — Edit — Preferences — Appearance

7.9.45 Edit.Font

Edits an application font (see Font Identifiers on page 272).

Prototype
int Edit.Font(int ID, const char* sFont);
Argument Meaning
ID Font identifier (see Font Identifiers on page 272).
sFont Font descriptor (see Font Descriptor on page 264).

Return Value

-1: error
0: success

GUI Access

Main Menu — Edit — Preferences — Appearance

7.9.4.6 Edit.DisplayFormat

Edits an object’s value display format.

Prototype

int Edit.DisplayFormat(const char* sObject, int Format);

Argument Meaning

Name of a debug information window, program variable or register.
Registers can be specified using the plain name (such as *"MODER") or

sObject register window path name (such as “Peripherals.GPIO.GPIOA.MOD-
ER™).
Format Value Display Formats (see Value Display Formats on page 266).

Return Value

-1: error
0: success

GUI Access

Window — Context Menu — Display As

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

311 CHAPTER 7 User Actions

7.9.4.7 Edit.RefreshRate

Sets the refresh rate of a debug window or watched expression (see Live Watches on
page 197).

Prototype
int Edit.RefreshRate (const char* sDest, int Frequency);

Argument Meaning

Debug window name (e.g. “Registers 1”) or C-Language expression

sDest (see Working With Expressions on page 205).

Frequency Update frequency in Hz (see Frequency Descriptor on page 264).

Return Value

-1: error
0: success

GUI Access
Watched Data Window — Context Menu — Refresh Rate

7.9.4.8 Edit.MemZone

Assigns a memory zone to a watched expression (see Live Watches on page 197). Whenever
an update of the expression’s value is requested, the specified memory zone is accessed.

Prototype
int Edit.MenZone (const char* sExpression, const char* sMeniZone);
Argument Meaning
sExpression C-Language expression (see Working With Expressions on page 205).
sMemZone Memory zone name

Return Value

-1: error
0: success

GUI Access

Watched Data Window — Context Menu — Memory Zone

7.9.5 Export Actions

7.9.5.1 Export.CodeProfile

Exports the current code profile dataset.

Prototype

i nt Export. CodeProfile (const char* sFilePath, int Options, const char* sltem
sToExport);

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

312

CHAPTER 7 User Actions

Argument Meaning

Destination text file (see File Path Arguments on page 222). An emp-
ty string prompts the export to be performed to a temporary file. The

sFilePath temporary file is opened within the Source Viewer and can be saved
to disk later on.
Obtions bitwise-OR combination of export option flags (see Code Profile Ex-
P port Options on page 270). Use value 0 to specify default options.
A comma-separated list containing the names of the functions to ex-
port. The list may also contain source file (module) names, in which
sltemsToExport

case all functions contained within the module are selected for export.
An empty list (the default) selects all program functions for export.

Additional Information

Command Window.WaitForUpdateComplete can be employed to ensure that the Code Pro-
file Window has processed all available sampling data before the export is performed.

Return Value

-1: error
0: success

GUI Access

Code Profile Window — Context Menu — Export...

7.9.5.2 Export.Disassembly

Exports program disassembly (see Disassembly Export Dialog on page 69).

Prototype

i nt Export.Di sassenbl y(const char* sFilePath, const char* sFuncOr Arange, U32
Fl ags) ;

Argument Meaning

Output file path (see File Path Arguments on page 222). An empty
string prompts the export to be performed to a temporary file. The
temporary file is opened within the Source Viewer and can be saved
to disk later on.

sFilePath

A function name or an address range string of the format “<StartAd-
dr>-<EndAddr>". When set, only the specified function or address
range is exported. An empty string selects the whole program. This
option requires the output format to be “"CSV”.

sFuncOrArange

Bitwise-OR combination of export options (see Disassembly Export

Flags Options on page 270). This argument defaults to 0.

Return Value

-1: error
0: success

GUI Access

Disassembly Window — Context Menu — Export...

7.9.5.3 Export.DataGraphs

Exports all data graphs to a CSV file (see Data Sampling Window on page 114).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

313 CHAPTER 7 User Actions

Prototype
i nt Export.DataG aphs(const char* sFil ePath);

Argument Meaning

Output file path (see File Path Arguments on page 222). An empty
string prompts the export to be performed to a temporary file. The
temporary file is opened within the Source Viewer and can be saved
to disk later on.

sFilePath

Additional Information

Command Window.WaitForUpdateComplete can be employed to ensure that the Data Sam-
pling Window has processed all available sampling data before the export is performed.

Return Value

-1: error
0: success

GUI Access

Data Sampling Window — Context Menu — Export...

7.9.5.4 Export.PowerGraphs

Exports power sampling data to a CSV file (see Power Sampling Window on page 145).

Prototype
i nt Export.Power Graphs(const char* sFil ePath);

Argument Meaning

Output file path (see File Path Arguments on page 222). An empty
string prompts the export to be performed to a temporary file. The
temporary file is opened within the Source Viewer and can be saved
to disk later on.

sFilePath

Additional Information

Command Window.WaitForUpdateComplete can be employed to ensure that the Power
Sampling Window has processed all available sampling data before the export is performed.

Return Value

-1: error
0: success

GUI Access

Power Sampling Window — Context Menu — Export...

7.9.5.5 Export.Trace

Exports the contents of the Instruction Trace Window to a CSV file.

Prototype
i nt Export.Trace(const char* sFilePath, U64 InstCnt);

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

314 CHAPTER 7 User Actions

Argument Meaning

Output file path (see File Path Arguments on page 222). An empty
string prompts the export to be performed to a temporary file. The

sFilePath temporary file is opened within the Source Viewer and can be saved
to disk later on.
Maximum number of instructions to export. When not specified (0),
MaxInstCnt this value defaults to the number of instructions currently loaded by

the Instruction Trace Window. This value is limited by system variable
VAR _TRACE_MAX_| NST_CNT.

Additional Information

Command Window.WaitForUpdateComplete can be employed to ensure that the Instruc-
tion Trace Window has loaded and processed all available instructions before the export
is performed.

Return Value

-1: error
0: success

GUI Access

Instruction Trace Window — Context Menu — Export...

7.9.6 Window Actions

7.9.6.1 Window.Show

Shows a window (see Window Layout on page 139).

Prototype
i nt W ndow. Show(const char* sW ndow);
Argument Meaning
. Name of the window (e.g. “Source Files”). See View Menu on
sWindow
page 46.

Return Value

-1: error
0: success

GUI Access
Main Menu — View — Window Name (Shift+Alt+Letter)

7.9.6.2 Window.Close

Closes a window (see Window Layout on page 139).

Prototype

i nt Wndow. O ose(const char* sWndow);

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

315 CHAPTER 7 User Actions

Argument Meaning

Name of the window (e.g. “Source Files”). See View Menu on

sWindow page 46.

Return Value

-1: error
0: success

GUI Access
Main Menu — Window — Close Window (Alt+X)

7.9.6.3 Window.CloseAll

Closes all windows (see Window Layout on page 139).

Prototype
int Wndow. O oseAll();
Return Value

-1: error
0: success

GUI Access
Main Menu — Window — Close All Window (Alt+Shift+X)

7.9.6.4 Window.SetDisplayFormat

Set’s a window’s value display format (see Display Format on page 58).

Prototype

i nt W ndow. Set Di spl ayFor nat (const char* sWndow, int Format);

Argument Meaning
. Name of the window (e.g. “Source Files”). See View Menu on
sWindow
page 46.
Format Value display format (see Value Display Formats on page 266).

Return Value

-1: error
0: success

GUI Access
Window — Context Menu — Display All As (Alt+Number)

7.9.6.5 Window.ShowFullScreen

Activates or deactivates main window full screen mode.

Prototype
i nt W ndow. ShowFul | Screen(int On);

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

316 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

Main Menu — View — Enter/Exit Full Screen (Alt+Shift+Return)

7.9.6.6 Window.Add

Adds a symbol to a debug window (see Debug Information Windows on page 95).
Prototype

i nt W ndow. Add(const char* sW ndow, const char* sSynbol);

Return Value

-1: error
0: success

GUI Access
Window — Context Menu — Add (Alt+Plus)

7.9.6.7 Window.Insert

Inserts a symbol into a table window (see Debug Information Windows on page 95).

Prototype

int Wndow. I nsert(const char* sWndow, const char* sSymbol, int Tabl eRow);
Argument Meaning

sWindow Window name, as displayed within the window title.

sSymbol Function name, variable or expression.

TableRow insertion position.

Return Value

-1: error
0: success

GUI Access

None

7.9.6.8 Window.Insert

Inserts a symbol into a debug window (see Debug Information Windows on page 95).

Prototype
int Wndow. I nsert (const char* sWndow, const char* sSynmbol, int Row);
Argument Meaning
. Name of the window (e.g. “Source Files”). See View Menu on
sWindow
page 46.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

317 CHAPTER 7 User Actions

Argument Meaning
sSymbol Name of the symbol to insert.
Row Insert symbol at this position. When empty, append the symbol.

Return Value

-1: error
0: success

GUI Access

None

7.9.6.9 Window.Remove

Removes a symbol from a debug window (see Debug Information Windows on page 95).

Prototype

i nt W ndow. Renove(const char* sW ndow, const char* sSynbol);

Return Value

-1: error
0: success

GUI Access

Window — Context Menu — Remove (Del)

7.9.6.10 Window.Clear

Clears a window.

Prototype
int Edit.Termninal Settings();

Return Value

-1: error
0: success

GUI Access

Window — Context Menu — Clear (Alt+Del)

7.9.6.11 Window.ExpandAll

Expands all expandable window items.

Prototype
i nt W ndow. ExpandAl | ();

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

318 CHAPTER 7 User Actions

GUI Access
Window — Context Menu — Expand All (Alt+Plus)

7.9.6.12 Window.Export

Exports the contents of a debug window to file.

Prototype

i nt W ndow. Export (const char* sWndow, const char* sFil ePath);
Argument Meaning

sWindow Window name, as displayed within the window title.

sFilePath Output file path (see File Path Arguments on page 222).

Return Value

-1: error
0: success

GUI Access

Window — Context Menu — Export

7.9.6.13 Window.CollapseAll

Collapses all collapsible window items.

Prototype
i nt W ndow. Col | apseAl'l ();
Return Value

-1: error
0: success

GUI Access
Window — Context Menu — Collapse All (Alt+Minus)

7.9.6.14 Window.WaitForUpdateComplete

Waits until all debug information windows have finished updating following a change of the
program execution point.

Prototype
i nt W ndow. Wai t For Updat eConpl et e(U32 MaxTimeM | 1is);

Argument Meaning

MaxTimeMillis Maximum time to wait in milliseconds.

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

319 CHAPTER 7 User Actions

GUI Access

None

7.9.7 Toolbar Actions

7.9.7.1 Toolbar.Show
Displays a toolbar (see Showing and Hiding Toolbars on page 50).
Prototype
i nt Tool bar. Show(const char* sTool bar);
Return Value

-1: error
0: success

GUI Access

Main Menu — View — Toolbars — Toolbar Name

7.9.7.2 Toolbar.Close
Hides a toolbar (see Showing and Hiding Toolbars on page 50).
Prototype
i nt Tool bar. Show(const char* sTool bar);
Return Value

-1: error
0: success

GUI Access

Main Menu — View — Toolbars — Toolbar Name

7.9.7.3 Toolbar.AddCustomButton

Adds a button to the Custom Toolbar. The parameters specify the text to be displayed on
the button and the function call that is to be executed each time the button is pressed.

Upon creation of the button it is not checked, whether the respective function call works or
not. This becomes visible only after the button is pressed.

Each invocation of this function creates a new button. If a button with the same text already
exists, the result will be two buttons with the same text. It is not possible to alter the
command or text of a button after it was created.

Prototype

i nt Tool bar. AddCust onButt on(const char* sButtonName, const char* sConmand);

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

320 CHAPTER 7 User Actions

GUI Access

None

7.9.7.4 Toolbar.RemoveCustomButton

Removes a button from the Custom Toolbar. The parameter specifies the button to be
removed, numbering starts at 1.

Prototype
i nt Tool bar. RenoveCust onBut t on(i nt Numnber);
Return Value

-1: error
0: success

GUI Access

None

7.9.7.5 Toolbar.EnableCustomButton

Enables a button in the Custom Toolbar. The parameter specifies the button to be enabled,
numbering starts at 1.

Upon creation a button is always enabled. It may be disabled using the command Tool-
bar.DisableCustomButton.

Prototype
i nt Tool bar. Enabl eCust onButton(i nt Numnber);
Return Value

-1: error
0: success

GUI Access

None

7.9.7.6 Toolbar.DisableCustomButton

Disables a button in the Custom Toolbar. The parameter specifies the button to be disabled,
numbering starts at 1.

Upon creation a button is always enabled. It may be disabled using this command. Once it
is disabled, it may be re-enabled using Toolbar.EnableCustomButton.

Prototype
i nt Tool bar. Di sabl eCust onButton(int Number);
Return Value

-1: error
0: success

GUI Access

None

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

321 CHAPTER 7 User Actions

7.9.7.7 Toolbar.PressButton

Performs the same action as if clicking onto a button in a toolbar with the mouse. The
parameters specify the name of the toolbar and the number of the button to be pressed,
numbering starts at 1.

Pressing a disabled button does not have any effect.

Prototype

i nt Tool bar. PressButton(const char* sTool bar, int Nunber);

Return Value

-1: error
0: success

GUI Access

Click on the respective button

7.9.8 Utility Actions

7.9.8.1 Util.Error

Shows an error message box and optionally stops the debug session.

Prototype
int Uil.Error(const char* sError, int StopDebug);

Argument Meaning

sError Error message

1: Ask the user if the debug session is to be stopped. 2: Stop the de-

StopDebug bug session. Otherwise, simply show the error message. Optional.

Return Value

-1: error
0: success

GUI Access

None

7.9.8.2 Util.Log

Prints a message to the Console Window (see Console Window on page 111).

Prototype

int Uil.Log(const char* sMessage);

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

322 CHAPTER 7 User Actions

GUI Access

None

Note

This command supports escaped quotes.

7.9.8.3 Util.LogHex

Appends an integer value to a text message and prints the result to the Console Window
(see Console Window on page 111).

Prototype

int Uil.LogHex(const char* sMessage, unsigned int I|ntValue);

Return Value

-1: error
0: success

GUI Access

None

Note

This command supports escaped quotes.

7.9.8.4 Util.Sleep

Pauses the current operation for a given amount of time.

Prototype

int Uil.Sleep(int mlliseconds);

Return Value

-1: error
0: success

GUI Access

None

7.9.9 Script Actions

7.9.9.1 Script.Exec

Executes a project file script function. The command currently only supports script functions
with void parameter or with up to seven arguments of integer type.

Prototype

int Script.Exec(const char* sFuncNanme, _ int64 Paral, __ int64 Para2,..);

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

323

CHAPTER 7 User Actions

Return Value

Return value of the executed function (-1 if execution failed).

GUI Access

None

7.9.9.2 Script.DefineConst

Defines a constant integer value to be used within the project file script.

Prototype

int Script.DefineConst(const char* sNane, const char* sExpression);

Argument Meaning

sName Name of the constant.

Symbol expression that evaluates to a humeric value of size < 8
sExpression bytes (see Working With Expressions on page 205). The symbol ex-
pression cannot contain local variables.

Return Value

-1: error
0: success

GUI Access

None

7.9.10 Show Actions

7.9.10.1 Show.Memory

Displays a memory location within the Memory Window (see Memory Window on page 135).

Prototype
i nt Show. Menory(U64 Address);
Return Value

-1: error
0: success

GUI Access
Memory Window — Context Menu — Go To (Ctrl+G)

7.9.10.2 Show.MemoryMap

Displays a symbol within the Memory Usage Window (see Memory Usage Window on
page 139).

Prototype
i nt Show. MenoryMap(const char* sSynbol);

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

324 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

Source Viewer — Context Menu — Show in Memory Map (Ctrl+B)

7.9.10.3 Show.Source

Displays the source code location of a variable, function or machine instruction within the
Source Viewer (see Source Viewer on page 156).

Prototype

i nt Show. Sour ce(const char* slLocation);

Argument Meaning

Variable name: displays the source code declaration of a variable.
Function name: displays the source code implementation of a func-
tion.

sLocation Memory address: displays the source line affiliated with an instruc-
tion.

Source location: displays a particular source location (see Source
Code Location Descriptor on page 264).

Return Value

-1: error
0: success

GUI Access

Symbol Windows — Context Menu — Show Source (Ctrl+U)

7.9.10.4 Show.ValueSource

Displays the symbol pointed to within the Source Viewer.

Prototype

i nt Show. Val ueSour ce(const char* sExpression);

Argument Meaning

Variable name: name of a function or data pointer.
sExpression Memory address: memory location of a function or data pointer.
Register name: register location of a function or data pointer.

Return Value

-1: error
0: success

GUI Access

Window — Context Menu — Show Value in Source

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

325 CHAPTER 7 User Actions

7.9.10.5 Show.ValueDisassembly
Displays the symbol pointed to within the Disassembly Window.

Prototype

i nt Show. Val uebi sassenbl y(const char* sExpression);

Argument Meaning

Variable name: name of a function or data pointer.
sExpression Memory address: memory location of a function or data pointer.
Register name: register location of a function or data pointer.

Return Value

-1: error
0: success

GUI Access

Window — Context Menu — Show Value in Disassembly

7.9.10.6 Show.ValueData
Displays the symbol pointed to within the Memory Window.

Prototype

i nt Show. Val uebDat a(const char* sExpression);

Argument Meaning

Variable name: name of a function or data pointer.
sExpression Memory address: memory location of a function or data pointer.
Register name: register location of a function or data pointer.

Return Value

-1: error
0: success

GUI Access

Window — Context Menu — Show Value in Data

7.9.10.7 Show.Data

Displays the data location of a global or local program variable within the Registers Window
(see Registers Window on page 147) or the Memory Window (see Memory Window on
page 135).

Prototype

i nt Show. Data(const char* sVariabl e);

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

326 CHAPTER 7 User Actions

GUI Access
Symbol Windows — Context Menu — Show Data (Ctrl+T)

7.9.10.8 Show.Disassembly

Displays the assembly code of a function or source code statement within the Disassembly
Window (see Disassembly Window on page 117).

Prototype

i nt Show. Di sassenbl y(const char* slLocation);

Argument Meaning

Function name: displays the disassembly of a function.

Memory address: displays the disassembly at a memory location.
Source location: displays the disassembly of a source statement (see
Source Code Location Descriptor on page 264).

sLocation

Return Value

-1: error
0: success

GUI Access
Symbol Windows — Context Menu — Show Disassembly (Ctrl+D)

7.9.10.9 Show.Definition

Displays the source code definition location of a symbol within the Source Viewer (see
Source Viewer on page 156).

Prototype
i nt Show. Definition(const char* sSynbol);
Return Value

-1: error
0: success

GUI Access

Source Viewer — Context Menu — Show Definition (F12)

7.9.10.10 Show.Declaration

Displays the source code declaration location of a symbol within the Source Viewer (see
Source Viewer on page 156).

Prototype

i nt Show. Decl arati on(const char* sSynbol);

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

327 CHAPTER 7 User Actions

GUI Access

Source Viewer — Context Menu — Show Declaration (Shift+F12)

7.9.10.11 Show.CallGraph

Displays the call graph of a function.

Prototype
i nt Show. Cal | Graph (const char* sFuncNane);
Return Value

-1: error
0: success

GUI Access

— Source Viewer — Context Menu — Show Call Graph (Ctrl+H)

7.9.10.12 Show.InstTrace

Displays a position in the history (stack) of executed machine instructions.

Prototype
i nt Show. I nstTrace (int StackPos);
Argument Meaning
StackPos Position 1 = most recently executed machine instruction.

Return Value

-1: error
0: success

GUI Access

Instruction Trace Window — Context Menu — Go To

7.9.10.13 Show.Line

Displays a text line in the active document.

Prototype
i nt Show. Li ne(unsi gned int Line);
Return Value

-1: error
0: success

GUI Access

Source Viewer — Context Menu — Go To Line (Ctrl+L)

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

328 CHAPTER 7 User Actions

7.9.10.14 Show.PC

Displays the program’s execution point within the Disassembly Window (see Disassembly
Window on page 117).

Prototype
i nt Show. PC();
Return Value

-1: error
0: success

GUI Access
Disassembly Window — Context Menu — Go To PC (Ctrl+P)

7.9.10.15 Show.PCLine

Displays the program’s execution point within the Source Viewer (see Source Viewer on
page 156).

Prototype

i nt Show. PCLi ne();

Return Value

-1: error
0: success

GUI Access

Source Viewer — Context Menu — Go To PC (Ctrl+P)

7.9.10.16 Show.NextResult

Displays the next search result.

Prototype
i nt Show. Next Resul t ();

Return Value

-1: error
0: success

GUI Access

None

7.9.10.17 Show.PrevResult

Displays the previous search result.

Prototype

i nt Show. PrevResult();

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

329 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

None.

7.9.11 Snapshot Actions

7.9.11.1 Snapshot.SaveReg

Saves a register or register group to a snapshot (see Register Groups on page 148).

Prototype

i nt Snapshot. SaveReg(const char* sReg);

Argument Meaning

Plain register (group) name (such as "MODER") or register window
path name (such as “Peripherals.GPIO.GPIOA.MODER"). The latter
variant is obligatory when the input is a vendor-specific peripheral
register (group).

sReg

Return Value

-1: error
0: success

GUI Access

None

7.9.11.2 Snapshot.SaveU32

Saves a 32 bit integer value to a snapshot.

Prototype
i nt Snapshot. SaveU32(U64 Addr, U32 Val ue);

Argument Meaning

Address of the integer value to store. The integer is written to this

Addr target memory location when the snapshot is loaded.

32-bit integer value. The value is converted to target endianess be-

Value fore download.

Return Value

-1: error
0: success

GUI Access

None

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

330 CHAPTER 7 User Actions

7.9.11.3 Snapshot.ReadReg

Reads a register value from a snapshot (see Register Groups on page 148).

Prototype
i nt Snapshot. ReadReg(const char* sReQ);

Argument Meaning

Plain register name (such as "MODER") or register window path name
(such as “Peripherals.GPIO.GPIOA.MODER"). The latter variant is
sReg obligatory when the input is a vendor-specific peripheral register.
When a register group was stored to the snapshot, each group regis-
ter can be accessed individually.

Return Value

-1 when register (or containing group) is not stored in snapshot, otherwise register value.

GUI Access

None

7.9.11.4 Snapshot.ReadU32

Reads a 32 bit value from a snapshot.

Prototype
i nt Snapshot. ReadU32(U64 Addr);

Argument Meaning
Addr Target memory address.

Return Value

-1 when the snapshot does not contain integer data for the given address, otherwise data.

GUI Access

None

7.9.11.5 Snapshot.LoadReg

Reads a register (group) from a snapshot and writes it to target (see Register Groups on
page 148).

Prototype
i nt Snapshot. LoadReg(const char* sReg);

Argument Meaning

Plain register (group) name (such as "MODER") or register window
path name (such as “Peripherals.GPIO.GPIOA.MODER"). The latter
variant is obligatory when the input is a vendor-specific peripheral
register (group). When a register group was stored to the snapshot,
each group register can be accessed individually. When a register
group is loaded to the target, registers are written piece-wise.

sReg

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

331 CHAPTER 7 User Actions

Return Value

-1: error, i.e. register (or containing group) not stored in snapshot
0: success

GUI Access

None

7.9.11.6 Snapshot.LoadU32

Reads a 32 bit value from a snapshot and writes it to target.

Prototype
i nt Snapshot. LoadU32(U64 Addr);

Argument Meaning
Addr Target memory address.

Return Value

-1: error, i.e. snapshot does not contain integer data at the given address or value could
not be downloaded.
0: success

GUI Access

None

7.9.12 Debug Actions

7.9.12.1 Debug.Start

Starts the debug session (see Starting the Debug Session on page 184). The startup routine
can be reprogrammed (see TargetConnect on page 229).

Prototype
i nt Debug. Start();

Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Start Debugging (F5)

7.9.12.2 Debug.Stop

Closes the debug session (see Closing the Debug Session on page 223).

Prototype
i nt Debug. Stop();

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

332

CHAPTER 7

Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Stop Debugging (Shift+F5)

7.9.12.3 Debug.Disconnect

Disconnects the debugger from the target.

Prototype
i nt Debug. Di sconnect () ;
Return Value

-1: error
0: success

GUI Access

None

7.9.12.4 Debug.Connect

Establishes a connection to the target and starts the debug session in the default way. A
reprogramming of the startup procedure via script function “Target-Connect” is ignored.

Prototype
i nt Debug. Connect ();
Return Value

-1: error
0: success

GUI Access

None

7.9.12.5 Debug.SetConnectMode

Sets the connection mode (see Connection Mode on page 184).

User Actions

Prototype
i nt Debug. Set Connect Mbde(i nt Mode);
Argument Meaning
Mode Connection mode (see Connection Modes on page 267).

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

333 CHAPTER 7 User Actions

GUI Access

None

7.9.12.6 Debug.Continue

Resumes program execution (see Resume on page 191).

Prototype
i nt Debug. Conti nue();
Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Continue (F5)

7.9.12.7 Debug.Halt

Halts program execution (see Halt on page 191).

Prototype
i nt Debug. Halt();
Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Halt (Ctrl+F5)

7.9.12.8 Debug.Reset

Resets the target and the debuggee (see Reset on page 190). The reset operation can be
customized via the scripting interface (see Tar get Reset).

Prototype
i nt Debug. Reset ();

Argument Meaning
Mode Reset mode (see Reset Modes on page 267).

Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Reset (F4)

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

334 CHAPTER 7 User Actions

7.9.12.9 Debug.SetResetMode

Sets the reset mode. The reset mode determines how the program is reset (see Reset Mode
on page 190).

Prototype

i nt Debug. Set Reset Mode(i nt Mbode);

Return Value

-1: error
0: success

GUI Access

None

7.9.12.10 Debug.Steplinto

Steps into the current subroutine (see Step on page 190).

Prototype
i nt Debug. Steplnto();

Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Step Into (F11)

7.9.12.11 Debug.StepOver

Steps over the current subroutine (see Step on page 190).

Prototype
i nt Debug. St epQver();

Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Step Over (F12)

7.9.12.12 Debug.StepOut

Steps out of the current subroutine. (see Step on page 190).

Prototype
i nt Debug. StepQut ();

Return Value

-1: error

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

335 CHAPTER 7 User Actions

0: success

GUI Access
Main Menu — Debug — StepOut (Shift+F11)

7.9.12.13 Debug.SetNextPC

Sets the execution point to a particular machine instruction (see Execution Point on
page 195).

Prototype
i nt Debug. Set Next PC(U64 Addr ess);

Return Value

-1: error
0: success

GUI Access
Disassembly Window — Context Menu — Set Next PC (Shift+F10)

7.9.12.14 Debug.SetNextStatement

Sets the execution point to a particular source code line (see Execution Point on page 195).

Prototype
i nt Debug. Set Next St at ement (const char* sStatenent);

Argument Meaning

Function name: displays the first source line of a function.
sStatement Source location: displays a particular source location (see Source
Code Location Descriptor on page 264).

Return Value

-1: error
0: success

GUI Access

Source Viewer — Context Menu — Set Next Statement (Shift+F10)

7.9.12.15 Debug.RunTo

Advances the program execution point to a particular source code line, function or instruc-
tion address (see Execution Point on page 195).

Prototype

i nt Debug. RunTo(const char* sLocation);

Argument Meaning

Function name: advances program execution to the first source line of
a function.

Memory address: advances program execution to a particular instruc-
tion address.

sStatement

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

336

CHAPTER 7 User Actions

Argument Meaning

Source location: advances program execution to a particular source
code line (see Source Code Location Descriptor on page 264).

Return Value

-1: error
0: success

GUI Access
Code Window — Context Menu — Run To Cursor (Ctrl+F10)

7.9.12.16 Debug.Download

Downloads the debuggee to the target (see Program Files on page 183). The download
operation can be reprogrammed (see Tar get Downl oad).

Prototype
i nt Debug. Downl oad();
Return Value

-1: error
0: success

GUI Access

None

7.9.12.17 Debug.ReadIntolnstCache

Reads a machine code block into Ozone’s instruction cache (see Setting Up The Instruction
Cache on page 209). The preferred way to employ this command is to call it from project
script function OnSt art upConpl et e.

Prototype
i nt Debug. Readl nt ol nst Cache(U64 Address, U32 Size);

Argument Meaning

Start address of the target memory block to be read into the instruc-

Address tion cache.

Byte size of the target memory block to be read into the instruction

Size
cache.

Return Value

-1: error
0: success

GUI Access

None

7.9.12.18 Debug.IsHalted

Queries the program state.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

337 CHAPTER 7 User Actions

Prototype
i nt Debug. |sHalted();
Return Value

0: Program is running
1: Program is halted

GUI Access

None

7.9.12.19 Debug.LoadSnapshot
Loads a debug snapshot (see Snapshot Dialog on page 79).

Prototype
i nt Debug. LoadSnapshot (const char* sFil ePath);
Argument Meaning
sFilePath Snapshot file path (*.jsnap, see File Path Arguments on page 222).

Return Value

-1: error
0: success

GUI Access
Debug — Load Snapshot

7.9.12.20 Debug.SaveSnapshot
Saves a debug snapshot (see Snapshot Dialog on page 79).

Prototype

i nt Debug. SaveSnapshot (const char* sFil ePath, unsigned int Flags);
Argument Meaning

sFilePath Snapshot file path (*.jsnap, see File Path Arguments on page 222).

Flags Bitwise-OR combination of individual debug snapshot settings (see
9 Snapshot Save Flags on page 270. This argument defaults to 0.

Return Value

-1: error
0: success

GUI Access
Debug — Save Snapshot

7.9.13 Help Actions

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

338 CHAPTER 7 User Actions

7.9.13.1 Help.About
Shows the About Dialog.

Prototype
i nt Hel p. About ();

Return Value

-1: error
0: success

GUI Access

Main Menu — Help — About

7.9.13.2 Help.UserGuide

Opens the user guide within the default PDF viewer.

Prototype
i nt Hel p. User Gui de();

Return Value

-1: error
0: success

GUI Access
Main Menu — Help — User Guide (F1)

7.9.13.3 Help.ReleaseNotes

Opens the release notes within the web browser.

Prototype
i nt Hel p. Rel easeNot es();
Return Value

-1: error
0: success

GUI Access

Main Menu — Help — Release Notes

7.9.13.4 Help.LicenseManager

Opens the license manager.

Prototype
i nt Hel p. Li censeManager () ;

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

339 CHAPTER 7 User Actions

GUI Access

Main Menu — Help — License Manager

7.9.13.5 Help.Commands

Prints the command help to the Console Window (see Command Help on page 112)

Prototype
i nt Hel p. Commands();

Return Value

-1: error
0: success

GUI Access
Main Menu — Help — Commands (Shift+F1)

7.9.14 Process Actions

7.9.14.1 Process.Exec

Spawns a process and executes an external application.
The exit code of the application is conveyed in the return value of this command.

Text output of the application to st dout and st derr is captured and displayed in the console
window in dedicated colors. The colors can be changed, see Message Colors.

A timeout in milliseconds is specified. If the application does not terminate before the
timeout is reached, the application will be killed. In that case the command will return the
value -1.

Setting the timeout to 0 will launch the application in a fire-and-forget way; in that case
the command will return 0 and output on st dout and st derr will neither be captured nor
be displayed in the console window.

Only a single external application can be executed at the same time. The next application
cannot be started before the previous application has terminated. This limit does not apply
to applications started in the fire-and-forget way.

Quotes in the command line and/or argument list need to be escaped by a preceeding
backslash (i.e. "\"").

Prototype

i nt Process. Exec(const char* sCnd, const char* sArgs, int Tinmeout);

Argument Meaning

sCmd The command line for launching the process to be spawned.

SAras The argument list to be passed to the process, formatted in a single
9 string.

Timeout The timeout in milliseconds.

Return Value

-1: error: Timeout occurred or process could not be spawned.
otherwise: the exit code of the Process

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

340

CHAPTER 7 User Actions

Note

An application returning the exit code -1 cannot be distinguished from an application
that could not be started or that was killed due to the timeout since in all those cases
the command returns the value -1.

Note

This command supports escaped quotes.

7.9.15 Project Actions

7.9.15.1 Project.SetDevice

Specifies the target device (see Debug Settings Dialog on page 68).

Prototype
i nt Project. SetDevice(const char* sDevi ceNane) ;
Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Debug Settings (Ctrl+Alt+D)

7.9.15.2 Project.SetFlashLoader

Specifies the flash loader configuration, i.e. the flash loader(s) to be used for one or multiple
flash bank(s).

The configuration string consists of a list of tupels, each tupel specifying the base address
of a flash bank and the name of the flash loader to be used for that flash bank, both
separated by an equal sign character (*="). Multiple tupels are separated by a semicolon
“:"). Specifying one tupel is mandatory, specifying more than one tupel is optional.

“<BankAddr ess> = <Loader Nane>[; <BankAddress2> = <Loader Nanme2>]..[; <BankAd-
dress_n> = <Loader Nane_n>]"

For flash banks which are not listed in the configuration string, J-Link will use the respective
bank’s default flash loader.

This function shall be invoked only from within OnProj ect Load() in the Ozone project
script.

Prototype

i nt Project. SetFlashLoader (const char* sConfig);
Argument Meaning

sConfig The flash loader configuration string

Return Value

-1: error

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

341 CHAPTER 7 User Actions

0: success

GUI Access

None

7.9.15.3 Project.SetHostIF

Specifies the host interface (see Host Interfaces on page 266).

Prototype
int Project. SetHostlF(const char* sHostlF, const char* sHostlD);

Argument Meaning
sHostIF Host interface (see Host Interfaces on page 266).
sHostID Host identifier (USB serial number or IP address).

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Debug Settings (Ctrl+Alt+D)

7.9.15.4 Project.SetTargetlF

Specifies the target interface (see Target Interfaces on page 266).

Prototype

int Project.SetTargetlF(const char* sTargetl|F);

Argument Meaning

sTargetIF Target interface (see Target Interfaces on page 266).

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Debug Settings (Ctrl+Alt+D)

7.9.15.5 Project.SetTIFSpeed
Specifies the target interface speed (see Debug Settings Dialog on page 68).

Prototype
i nt Project.SetTlFSpeed(const char* sFrequency);
Argument Meaning
sFrequency Frequency Descriptor (see Frequency Descriptor on page 264).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

342 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Debug Settings (Ctrl+Alt+D)

7.9.15.6 Project.SetJTAGConfig

Configures the JTAG target interface scan chain parameters.

Prototype
int Project.SetJTACConfig(int DRPre, int IRPre);
Argument Meaning
DRPre Position of the target in the JTAG scan chain. 0 is closest to TDO.
IRPre Sums of IR-Lens of devices closer to TDO. IRLen of ARM devices is 4.

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Debug Settings (Ctrl+Alt+D)

7.9.15.7 Project.SetBPType

Sets the permitted breakpoint implementation type, i.e. restricts breakpoints to be imple-
mented in the way specified by the command argument.

Prototype
i nt Project.SetBPType(int Type);

Argument Meaning

Breakpoint Implementation Types (see Breakpoint Implementation

Type Types on page 267).

Return Value

-1: error
0: success

GUI Access

Main Menu — Tools — System Variables (Ctrl+Alt+V)

7.9.15.8 Project.SetCorePlugin

Sets the file path of the plugin that provides target support (see Target Support Plugins
on page 28. Applying this setting causes the debugger’s automatic plugin selection to be
overridden.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

343 CHAPTER 7 User Actions

Prototype
i nt Project. SetCorePl ugi n(const char* sFil ePath);

Argument Meaning

Plugin file path or name. Valid plugin file extensions are .dll on Win-
dows, .so on linux and .dylib on macOS. The file path may be spec-
ified case-insensitively on all platforms. For further details, see File
Path Arguments on page 222.

sFilePath

Return Value

-1: error
0: success

GUI Access

None

7.9.15.9 Project.SetDisassemblyPlugin

Sets the file path of the plugin that provides disassembly support for custom instructions
(see Disassembly Plugin on page 232.

Prototype
i nt Project. SetDi sassenbl yPl ugi n(const char* sFil ePath);

Argument Meaning

File path to a JavaScript plugin file. The file path may be specified
sFilePath case-insensitively on all platforms. For further details, see File Path
Arguments on page 222.

Return Value

-1: error
0: success

GUI Access

None

7.9.15.10 Project.SetOSPlugin
Specifies the file path or name of the plugin that adds RTOS awareness to the debugger.

Prototype
i nt Project.SetOSPlugin(const char* sFil ePath);

Argument Meaning

Plugin file path or name. The valid plugin file extension is .js on all
platforms. The file path may be specified case-insensitively on all
platforms. The file extension may be omitted. For further details, see
File Path Arguments on page 222.

sFilePath

The provided plugins may be found in the section Available RTOS Plugins on page 152.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

344 CHAPTER 7 User Actions

7.9.15.11 Project.SetSmartViewPlugin

Specifies the file path or name of a SmartView plugin to the debugger.

Prototype
i nt Project.SetSnmartVi ewPl ugi n(const char* sFil ePath);

Argument Meaning

sFilePath Plugin file path or name.

Additional Description

Multiple SmartView scripts may be loaded at the same time. In that case Project.SetS-
martViewPlugin needs be invoked once for each script.

A programming guide for SmartView plugins is provided by section SmartView Awareness
Plugin on page

7.9.15.12 Project.SetRTT

Enables or disables the Real-Time Transfer interface (see Real-Time Transfer on page 200).

Prototype
int Project.SetRTT(int OnOFf);

Return Value

-1: error
0: success

GUI Access

Terminal Window — Context Menu — Capture RTT

7.9.15.13 Project.AddRTTSearchRange

Specifies a memory range to be considered during RTT initialization, specifically RTT control
block discovery (see Real-Time Transfer on page 200).

The RTT control block is a data structure located at the address of global program variable
_SEGGER RTT. When the program file provides a debug symbol for variable _ SEGGER RTT,
no discovery is neccessary. RTT discovery refers to the process of searching target RAM for
a byte pattern specific to the control block in order to locate it. To speed up this process,
command Project.AddRTTSearchRange is provided.

For further details, refer to the J-Link User Guide .

Prototype
i nt Project. AddRTTSear chRange(U32 StartAddr, U32 Size);

Argument Meaning

StartAddr —

Size Address range to be considered in the RTT buffer localization routine.

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://www.segger.com/downloads/jlink/UM08001

345 CHAPTER 7 User Actions

GUI Access

None

7.9.15.14 Project.SetTraceSource

Selects the trace source to be used.

Prototype

i nt Project. SetTraceSource(const char* sTraceSrc);

Argument Meaning

Display name of the trace source to be used (see Trace Sources on

sTraceSrc page 269).

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Trace Settings (Ctrl+Alt+T)

7.9.15.15 Project.ConfigSemihosting

Configures the Semihosting interface (see Semihosting on page 201).

Note

Ozone automatically enables semihosting on the first CPU halt after debug session
start. When not required, semihosting can be explicitly disabled by setting ModeBP,
ModeBKPT and ModeSVC to No.

Prototype
i nt Project. ConfigSem hosting(const char* sConfig);

Argument Meaning

Settings string of the format setti ngl=val uel; setti ng2=val ue2, ...
sConfig The available settings are listed below. The default value of each set-
ting is highlighted.

AllowOpenRead

Sets the permission for semihosting operation SysOpen when file flag READ is set.

Value Description
A popup dialog is shown which asks the user if the operation should be
0 (Ask)
performed.
1 (Yes) The operation is always allowed
2 (No) The operation is never allowed

AllowOpenWrite

Sets the permission for semihosting operation SysOpen when file flag WRI TE is set.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

CHAPTER 7 User Actions

Value Description
A popup dialog is shown which asks the user if the operation should be
0 (Ask)
performed.
1 (Yes) The operation is always allowed
2 (No) The operation is never allowed

AllowRename

Sets the permission for semihosting operation SysRename.

Value Description
A popup dialog is shown which asks the user if the operation should be
0 (Ask)
performed.
1 (Yes) The operation is always allowed
2 (No) The operation is never allowed

AllowRemove

Sets the permission for semihosting operation SysRemove.

Value Description
A popup dialog is shown which asks the user if the operation should be
0 (Ask)
performed.
1 (Yes) The operation is always allowed
2 (No) The operation is never allowed
ModeSVC

Enables or disables semihosting via the SVC instruction.

Value Description

0 (Yes, ask | Semihosting via SVC enabled. A vector catch will be set on the SVC ex-

on non- ception at debug session start. A popup dialog will be shown each time the

semihost- program stops on the vector catch, but not due to a semihosting request

ing SVC) (i.e. when a non-semihosting software interrupt was triggered).
Semihosting via SVC enabled. A vector catch will be set on the SVC ex-

1 (Yes) . .
ception at debug session start.

2 (No) Semihosting via SVC disabled. No vector catch will be set for semihosting
on debug session start.

ModeBKPT

Enables or disables semihosting via the BKPT instruction (ARM) / EBREAK instruction (RISC-

V).

Value Description
0 (Yes) Semihosting via BKPT/EBREAK enabled.
1 (No and Semihosting via BKPT/EBREAK disabled. When the debuggee halts on a
. BKPT/EBREAK semihosting trap instruction, it is automatically resumed by

continue)
Ozone.

2 (No and Semihosting via BKPT/EBREAK disabled. The debuggee halts on BKPT/

halt) EBREAK semihosting trap instructions.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2026 SEGGER Microcontroller GmbH

347 CHAPTER 7 User Actions

ModeBP

Enables or disables semihosting via the generic trap instruction.

Value Description

Semihosting on breakpoint enabled. Ozone will set a hidden breakpoint on
0 (Yes) address BPAddr ess on debug session start in order to serve semihosting
requests.

Semihosting on breakpoint disabled. No hidden breakpoint is set on debug
session start.

1 (No)

InputViaTerminal

Sets the user input mode.

Value Description
User input is obtained via a popup dialog that is shown each time Ozone
0 (No) . X o
receives a semihosting input request from the debuggee.
User input is obtained via the terminal prompt, which gets highlighted and
1 (Yes) focused each time Ozone receives a semihosting input request from the
debuggee.
ExitMode
Specifies Ozone’s reaction on a SYS_EXI T semihosting operation.
Value Description
0 (No) The debug session is ended. Debug.Stop() is executed.
1 (Yes) The target is haltet. Debug.Halt() is executed.
Vector

When semihosting is in its default configuration state and enabled, Ozone will set a vector
catch on the SVC instruction at address 0x8 in order to catch semihosting requests. This
default behavior can reduce the run-time performance of clients which make extensive
use of software interrupts. In order to alleviate this problem, Ozone provides semihosting
configuration setting Vect or.

Setting Vect or instructs Ozone to set a hidden breakpoint on arbitrary address Vect or
within the SVC handler instead of setting a vector catch on SVC. The breakpointed instruc-
tion then acts as the semihosting SVC trap instead of the vector catch. This way, developers
get the chance to evaluate the SWI opcode within the SVC handler on the target side. The
handler code is expected to execute the trap instruction only when the SWI opcode matches
a semihosting SWI opcode. When this option is employed, developers have to make sure
that the semihosting opcode and argument pointer registers RO, R1 and R2 are not modified
within SVC handler code up to the point where the trap instruction is executed.

SVCNumberThumb

Edits the SWI number definition of the 16-bit thumb SVC semihosting trap instruction. The
default value for this setting is 0xAB. The valid range for this value is 0-OxFF. As an example,
when SVC semihosting requests are to be performed via instruction SVC #0x10, then this
setting should be set to value 0x10.

SVCNumberARM

Edits the SWI number definition of the 32-bit ARM SVC semihosting trap instruction. The
default value for this setting is 0x123456. The valid range for this value is 0-OxFFFFFF.
As an example, when SVC semihosting requests are to be performed via instruction SVC
#0x1234, then this setting should be set to value 0x1234.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

348

CHAPTER 7 User Actions

BKPTNumber

Edits the software breakpoint humber definition of the BKPT semihosting trap instruction.
The default value for this setting is 0xAB. The valid range for this value is 0-OxFF. As an
example, when SVC semihosting requests are to be performed via instruction BKPT #0x10,
then this setting should be set to value 0x10.

BPAddress

Edits the address of the generic semihosting trap instruction. The default value for this
setting is the base address of function SEGGER_SEM HOST_DebugHal t . The valid value range
for this setting is the address range of function SEGGER SEM HOST DebugHal t . Depending
on setting ModeBP, Ozone will or will not set a hidden breakpoint on the configured address
in order to catch generic semihosting requests by the debuggee.

TargetCmdLine

Sets the command line text that Ozone is to transmit to the debuggee when it receives
semihosting request SysGetCmdLine. This is the only setting that can not be edited via
the settings dialog.

Return Value

-1: error
0: success

GUI Access

None

7.9.15.16 Project.SetTracePortWidth

Specifies the number of trace pins (data lines) comprising the target’s trace port. This set-
ting is only relevant when the selected trace source is “Trace Pins” / ETM (see Project.Set-
TraceSource on page 345).

Prototype
int Project.SetTracePortWdth(int PortWdth);

Argument Meaning

Number of trace data lines provided by the target. Possible values are

PortWidth 1,2 or 4.

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Trace Settings (Ctrl+Alt+T)

7.9.15.17 Project.SetTraceTiming

This command adjusts the trace pin sampling delays. The delays may be necessary in case
the target hardware does not provide sufficient setup and hold times for the trace pins.
In such cases, delaying TCLK can compensate this and make tracing possibly anyhow.
This setting is only relevant when the selected trace source is “Trace Pins” / ETM (see
Project.SetTraceSource on page 345).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

349 CHAPTER 7 User Actions

Prototype
int Project.SetTraceTimng(int di1, int d2, int d3, int d4);

Argument Meaning

Trace data pin n sampling delay in picoseconds. Only the first para-

dn .
meters are relevant when your hardware has less than 4 trace pins.

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Trace Settings (Ctrl+Alt+T)

7.9.15.18 Project.ConfigSWO

Configures the Serial Wire Output (SWO) interface (see SWO on page 200). This setting
is only relevant when the selected trace source is SWO (see Project.SetTraceSource on
page 345).

Prototype
i nt Project. ConfigSWJO(const char* sSWOFreq, char* sCPUFreq);

Argument Meaning

Specifies the data transmission speed on the SWO interface (see Fre-

SSWOFreq guency Descriptor on page 264).

Specifies the target’s processor frequency (see Frequency Descriptor

sCPUFreq on page 264).

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Trace Settings (Ctrl+Alt+T)

7.9.15.19 Project.SetMemZoneRunning

Specifies the default memory zone that is accessed when the program is running. The de-
bugger uses this memory zone for any memory access that has not been explicitly assigned
to a particular memory zone.

Prototype

i nt Project. Set MenZoneRunni ng(const char* sMenoryZone);

Argument Meaning

sMemoryZone Name of the default memory zone

Return Value

-1: error

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

350 CHAPTER 7 User Actions

0: success

GUI Access

Main Menu — Tools — System Variables (Ctrl4+Alt+V)

7.9.15.20 Project.AddSvdFile

Adds a register set description file to be loaded by the Registers Window (see SVD Files
on page 147).

Prototype
i nt Project.AddSvdFil e(const char* sFil ePath);
Argument Meaning
SFilePath Path to a CMSIS-SVD file. Both .svd and .xml file extensions are sup-
ported. For further details, see File Path Arguments on page 222.

Return Value

-1: error
0: success

GUI Access

None

7.9.15.21 Project.AddFileAlias
Adds a file path alias (see File Path Resolution Sequence on page 207).

Prototype

int Project.AddFil eAlias(const char* sFilePath, const char* sAliasPath);
Argument Meaning

sFilePath Original file path as it appears within the program file or elsewhere.

sAliasPath Replacement for the original file path.

Return Value

-1: error
0: success

GUI Access

Source Files Window — Context Menu — Locate File (Space)

7.9.15.22 Project.AddRootPath
Adds a source file root path. The root path helps the debugger resolve relative file path

arguments (see File Path Resolution Sequence on page 207). Typically a project will have
a single source file root path.

Prototype

i nt Project. SetRootPat h(const char* sRoot Pat h);

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

351 CHAPTER 7 User Actions

Argument Meaning

sRootPath Fully qualified path of a file system directory.

Return Value

-1: error
0: success

GUI Access

None

7.9.15.23 Project.AddPathSubstitute

Replaces a substring within unresolved source file path arguments (see File Path Resolution
Sequence on page 207).

Prototype

i nt Project.AddPat hSubstitute(const char* sSubStr, const char* sAlias);
Argument Meaning

sSubStr Substring (directory name) within original file paths.

sAlias Replacement for the given substring.

Return Value

-1: error
0: success

GUI Access

None

7.9.15.24 Project.AddSearchPath

Adds a directory to the list of search directories. Search directories help the debugger
resolve invalid file path arguments (see File Path Resolution Sequence on page 207).

Prototype

i nt Project.AddSear chPat h(const char* sSear chPat h);
Argument Meaning

sSearchPath Fully qualified path of a file system directory.

Return Value

-1: error
0: success

GUI Access

None

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

352 CHAPTER 7 User Actions

7.9.15.25 Project.SetJLinkScript

Specifies the J-Link script file that is to be executed at the moment the debug session is
started. Refer to the J-Link User Guide for on overview on J-Link script files.

Prototype
int Project.SetJLinkScript(const char* sFil ePath);
Argument Meaning
sFilePath Path to a J-Link script file (see File Path Arguments on page 222).

Return Value

-1: error
0: success

GUI Access

None

7.9.15.26 Project.SetJLinkLogFile

Specifies the text file that receives J-Link logging output or, in case of a GDB server being
connected, the communication between GDB server and Ozone’s GDB client.

Prototype
i nt Project.SetJLinkLogFil e(const char* sFilePath);
Argument Meaning
sFilePath Path to a text file (see File Path Arguments on page 222).

Return Value

-1: error
0: success

GUI Access

None

7.9.15.27 Project.RelocateSymbols

Relocates one or multiple symbols. The command must be executed before the ELF program
file is opened. It is currently not supported to execute the command at program run-time.
Furthermore, relocating symbols outside of their containing ELF data section address range
is currently not supported. When an ELF data section lies completely within a relocated
address range, it is relocated together with all containing symbols.

Prototype
i nt Project. Rel ocat eSynbol s(const char* sSynbols, int Ofset);

Argument Meaning

W /7

Specifies the symbols to be relocated. The wildcard character se-
sSymbols lects all symbols. A symbol name specifies a single symbol. A section
name such as “.text” specifies a particular ELF data section.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://www.segger.com/downloads/jlink/UM08001

353

CHAPTER 7 User Actions

Argument

Meaning

Offset

The offset that is added to the base addresses of all specified sym-
bols.

Return Value

-1: error
0: success

GUI Access

None

7.9.15.28 Project.SetConsoleLogFile

Sets the text file to which Console Window messages are logged.

Prototype

i nt Project. SetConsol eLogFil e(const char* sFil ePath);

Argument

Meaning

sFilePath

Log file path (see File Path Arguments on page 222).

Return Value

-1: error
0: success

GUI Access

None

7.9.15.29 Project.SetTerminalLogFile

Sets the text file to which Terminal Window messages are logged.

Prototype

i nt Project.SetTerni nal LogFil e(const char* sFil ePath);

Argument

Meaning

sFilePath

Log file path (see File Path Arguments on page 222).

Return Value

-1: error
0: success

GUI Access

None

7.9.15.30 Project.ConfigDisassembly

Configures the disassembler.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

354 CHAPTER 7 User Actions

Prototype
i nt Project. ConfigD sassenbl y(unsi gned int Flags);

Argument Meaning

Bitwise-OR combination of individual flags. Each flag specifies a disas-
Flags sembler option. Refer to Disassembler Option Flags on page 268 for
the list of supported options.

Return Value

-1: error
0: success

GUI Access

None

7.9.15.31 Project.DisableSessionSave

Selects session information that is not to be saved to the user file.

Prototype

i nt Project.Disabl eSessi onSave(unsi gned i nt Fl ags);

Argument Meaning

Bitwise-OR combination of individual flags. Each flag specifies a ses-
sion information that is not to be saved to (and restored from) the
user file. Refer to Session Save Flags on page 270 for the list of sup-
ported flags.

Flags

Return Value

-1: error
0: success

GUI Access

None

7.9.15.32 Project.SetSWO
Enables or disables the Serial Wire Output (SWO) capture (see SWO on page 200).

Prototype
int Project.SetSWO(int OnOff);

Return Value

-1: error
0: success

GUI Access

Terminal Window — Context Menu — Capture SWO

7.9.16 Code Profile Actions

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

355 CHAPTER 7 User Actions

7.9.16.1 Profile.Exclude

Filters program entities from the code profile (load) statistic. The code profile statistic is
re-evaluated as if the filtered items had never belonged to the program.

Prototype

int Profile.Exclude (const char* sFilter);

Argument Meaning

Specifies the items to be filtered. All items that exactly match the fil-
ter string are moved to the filtered set. Wildcard (*) characters can
be placed at the front or end of the filter string to perform partial
match filtering.

sFilter

Return Value

-1: error
0: success

GUI Access

Code Profile Window — Context Menu — Exclude...

7.9.16.2 Profile.Include

Re-adds filtered items to the code profile load statistic.

Prototype

int Profile.Include (const char* sFilter);

Argument Meaning

Specifies the items to be unfiltered. All items that exactly match the
filter string are removed from the filtered set. Wildcard (*) characters
can be placed at the front or end of the filter string to perform partial
match unfiltering.

sFilter

Return Value

-1: error
0: success

GUI Access

Code Profile Window — Context Menu — Include...

7.9.16.3 Profile.Reset

Clears code profile data and resets all execution counters.

Prototype
int Profile.Reset ();

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

356 CHAPTER 7 User Actions

GUI Access

Code Profile Window — Context Menu — Reset Execution Counters

7.9.16.4 Coverage.Exclude

Filters program entities from the code coverage statistic. The code coverage statistic is re-
evaluated as if the filtered items had never belonged to the program.

Prototype

i nt Coverage. Excl ude (const char* sFilter);

Argument Meaning

Specifies the items to be filtered. All items that exactly match the fil-
ter string are moved to the filtered set. Wildcard (*) characters can
be placed at the front or end of the filter string to perform partial
match filtering.

sFilter

Return Value

-1: error
0: success

GUI Access

Code Profile Window — Context Menu — Exclude...

7.9.16.5 Coverage.Include

Re-adds filtered items to the code coverage statistic.

Prototype

i nt Coverage.lnclude (const char* sFilter);

Argument Meaning

Specifies the items to be unfiltered. All items that exactly match the
filter string are removed from the filtered set. Wildcard (*) characters
can be placed at the front or end of the filter string to perform partial
match unfiltering.

sFilter

Return Value

-1: error
0: success

GUI Access

Code Profile Window — Context Menu — Include...

7.9.16.6 Coverage.ExcludeNOPs

Excludes instructions without operation (alignment instructions) from the code coverage
statistics.

Prototype
i nt Coverage. Excl udeNOPs ();

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

357

CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access
Code Profile Window — Context Menu — Exclude All Trailing NOPs...

7.9.17 Register Actions

7.9.17.1 Register.Addr

Returns the memory location of a target register.

Prototype
i nt Register.Addr(const char* sReg);

Argument Meaning

Plain register name (such as "MODER") or register window path name
sReg (such as “Peripherals.GPIO.GPIOA.MODER"). The latter variant is
obligatory when the input is a vendor-specific peripheral register.

Return Value

Target memory address or -1 on invalid input (e.g. when not a memory-mapped register).

GUI Access

None

7.9.18 Target Actions

7.9.18.1 Target.EraseChip

Erases all of the target’'s FLASH memory by writing all data bytes to OxFF.

Prototype
int Target. EraseChip();
Return Value

-1: error
0: success

GUI Access

None

7.9.18.2 Target.SetReg

Writes a target register (see Register Groups on page 148).

Prototype

i nt Target. Set Reg(const char* sReg, unsigned int Val ue);

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

358 CHAPTER 7 User Actions

Argument Meaning

Plain register name (such as "MODER") or register window path name
(such as “Peripherals.GPIO.GPIOA.MODER"). The latter variant is
sReg obligatory when the input is a vendor-specific peripheral register.
System registers can also be specified using an architecture-specific
notation, as described in System Register Descriptor on page 265.

Value Register value to write.

Return Value

-1: error
0: success

GUI Access

Register Window — Register

7.9.18.3 Target.GetReg

Reads a target register (see Register Groups on page 148).

Prototype
U32 Target. Get Reg(const char* sReq);

Argument Meaning

Plain register name (such as "MODER") or register window path name
(such as “Peripherals.GPIO.GPIOA.MODER"). The latter variant is
sReg obligatory when the input is a vendor-specific peripheral register.
System registers can also be specified using an architecture-specific
notation, as described in System Register Descriptor on page 265.

Return Value

-1: error
register value: success

GUI Access

Register Window — Register

7.9.18.4 Target.WriteU32

Writes a word to target memory (see Target Memory on page 196).

Prototype
int Target.WiteU32(U64 Address, U32 Val ue);
Return Value

-1: error
0: success

GUI Access

Memory Window

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

359 CHAPTER 7 User Actions

7.9.18.5 Target.WriteU16

Writes a half word to target memory (see Target Memory on page 196).

Prototype
int Target.WiteUl6(U64 Address, Ul6 Val ue);

Return Value

-1: error
0: success

GUI Access

Memory Window

7.9.18.6 Target.WriteU8

Writes a byte to target memory (see Target Memory on page 196).

Prototype
int Target.WiteU8(U64 Address, U8 Val ue);

Return Value

-1: error
0: success

GUI Access

Memory Window

7.9.18.7 Target.ReadU32

Reads a word from target memory (see Target Memory on page 196).

Prototype
U32 Target. ReadU32(U64 Address);

Return Value

-1: error
Memory value: success

GUI Access

Memory Window

7.9.18.8 Target.ReadU16

Reads a half word from target memory (see Target Memory on page 196).

Prototype
Ul6 Tar get. RReadUl6(U64 Address);

Return Value

-1: error
Memory value: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

360 CHAPTER 7 User Actions

GUI Access

Memory Window

7.9.18.9 Target.ReadUS8

Reads a byte from target memory (see Target Memory on page 196).

Prototype
U32 Target. ReadU3(U64 Address);
Return Value

-1: error
Memory value: success

GUI Access

Memory Window

7.9.18.10 Target.SetAccessWidth

Specifies the default access width to be used when accessing target memory (see Tar-
get.SetAccessWidth on page 360).

Prototype
i nt Target. Set AccessWdt h(U32 AccessW dt h);
Argument Meaning
AccessWidth Memory access width (See Memory Access Widths on page 266).

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — System Variables (Ctrl+Alt+V)

7.9.18.11 Target.FillMemory

Fills a block of target memory with a particular value (see Target. FillMemory on page 360).

Prototype

int Target.Fill Menory(U64 Address, U32 Size, U8 Fill Val ue);
Argument Meaning

Address Start address of the memory block to fill.

Size Size of the memory block to fill.

FillValue Value to fill the memory block with.

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

361 CHAPTER 7 User Actions

GUI Access

Memory Window — Context Menu — Fill (Ctrl+I)

7.9.18.12 Target.FillMemoryEx

Fills a block of target memory with a particular value (see Target.FillMemoryEx on
page 361) and a particular word width.

The value can be seen as a pattern which is used to fill the memory and the word width
specifies the period of the pattern. Supported values for width are 1, 2, 3, 4 and 8 bytes,
so the memory area can be filled byte-wise, half-word-wise, word-wise and double-word-
wise. In addition, frame buffers containing information organized in 3 bytes, can directly
be filled, as well.

Prototype

int Target.Fill MenoryEx(U64 Address, U32 Size, U8 Wdth, U64 Fill Val ue);
Argument Meaning

Address Start address of the memory block to fill.

Size Size of the memory block to fill (in bytes).

Width The word width.

FillValue Value to fill the memory block with.

Return Value

-1: error
0: success

GUI Access
Memory Window — Context Menu — Fill (Ctrl+I)

7.9.18.13 Target.SaveMemory

Saves a block of target memory to a binary data file (see Target.SaveMemory on
page 361).

Prototype
i nt Target. SaveMenory(const char* sFilePath, U64 Address, U32 Size);

Argument Meaning
sFilePath Output binary data file (*.bin, see File Path Arguments on page 222).
Address Start address of the memory block to save to the destination file.
Size Size of the memory block to save to the destination file.

Return Value

-1: error
0: success

GUI Access

Memory Window — Context Menu — Save

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

362 CHAPTER 7 User Actions

7.9.18.14 Target.LoadMemory

Downloads the contents of a binary data file to target memory (see Download Behavior
Comparison on page 198).

Prototype
i nt Target.LoadMenory(const char* sFil ePath, U64 Address);
Argument Meaning
sFilePath Input binary data file (*.bin, see File Path Arguments on page 222).
Address Download address.

Return Value

-1: error
0: success

GUI Access

Memory Window — Context Menu — Load

7.9.18.15 Target.SetEndianess

Sets the data endianness mode of the target.

Prototype
i nt Target. Set Endi aness(i nt Bi gEndi an);
Argument Meaning
BigEndian When 0, little endian is selected. Otherwise, big endian is selected.

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Debug Settings — Target Device (Ctrl+Alt+D)

7.9.18.16 Target.LoadMemoryMap

Loads a memory map from an Embedded Studio memory map file. The loaded memory
map is applied to the Memory Usage Window (see Supplying Memory Segment Information
on page 140).

Prototype

i nt Target.LoadMenoryMap(const char* sFil ePath);

Argument Meaning

Path to a memory map file. Currently, the only supported file format
sFilePath is SEGGER Embedded Studio. For further details, see see File Path Ar-
guments on page 222.

Return Value

-1: error

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

363 CHAPTER 7 User Actions

0: success

GUI Access

Memory Usage Window — Context Menu — Edit Regions

7.9.18.17 Target.AddMemorySegment

Adds a segment to the memory map displayed by the Memory Usage Window (see Supplying
Memory Segment Information on page 140).

Prototype

i nt Target.AddMenor ySegnent (const char* sName, U64 Addr, U32 Size);
Argument Meaning

sName Segment name.

Addr Segment base address.

Size Segment byte size.

Return Value

-1: error
0: success

GUI Access

Memory Usage Window — Context Menu — Edit Regions

7.9.18.18 Target.PowerOn

Enables or disables target power supply via the debug probe.

Prototype
i nt Target.PowerOn(int On);

Argument Meaning

on When 1, the target is powered via the debug probe. When 0, target
power via J-Link/J-Trace is switched off.

Return Value

-1: error
0: success

GUI Access
Main Menu — Edit — System Variables (Ctrl+Alt+V)
7.9.19 Timeline Actions

7.9.19.1 Timeline.Reset

Resets all panes of the timeline window, i.e. the session’s trace and sampling data (see
Timeline Window on page 165).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

364

CHAPTER 7 User Actions

Prototype
int Tinmeline.Reset();
Return Value

-1: error
0: success

GUI Access

Timeline Window

7.9.20 J-Link Actions

7.9.20.1 Exec.Connect

Establishes a connection to the target (see DebugSt art).

Prototype
i nt Exec. Connect ();
Return Value

-1: error
0: success

GUI Access

None

7.9.20.2 Exec.Reset

Performs a hardware reset of the target (see DebugSt art).

Prototype
i nt Exec.Reset();
Return Value

-1: error
0: success

GUI Access

None

7.9.20.3 Exec.Download

Downloads the contents of a program file to target memory (see Download Behavior Com-
parison on page 198 and Supported Program File Types on page 183).

Prototype
i nt Exec. Downl oad(const char* sFil ePath);
Argument Meaning
sFilePath Path to a program or data file (see File Path Arguments on page 222).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

365 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

None

7.9.20.4 Exec.Command

Executes a J-Link command.

Prototype
i nt Exec. Command(const char* sComand);
Argument Meaning
J-Link command to execute (refer to the J-Link User Guide for on
sCommand . ;
overview on the available commands).

Return Value

-1: error
0: success

GUI Access

None

7.9.20.5 Exec.AddCommandOnOpen

Schedules a J-Link command to be executed immediately before or after opening the J-
Link connection (i.e. JLi nk_Qpen() is invoked). This function shall be invoked only from
within OnProj ect Load() in the Ozone project script.

Prototype
i nt Exec. AddCommandOnQpen(const char* sCommand, int Bef oreNot After Cpen);

Argument Meaning
J-Link command to execute (refer to the J-Link User Guide for on
sCommand) ;
overview on the available commands).
BeforeNo- Indicates wether the command is to be executed immediately before
tAfterOpen (1) or after (0) opening a J-Link connection.

Return Value

-1: error
0: success

GUI Access

None

7.9.21 OS Actions

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://www.segger.com/downloads/jlink/UM08001
https://www.segger.com/downloads/jlink/UM08001

366 CHAPTER 7 User Actions

7.9.21.1 0OS.AddContextSwitchSymbol

Specifies a function or program instruction that performs a task switch when executed. This
command can be used to enable a consistent output within the Timeline Window even when
no RTOS Awareness Plugin was loaded (see Timeline Window on page 165).

Prototype
i nt OS. AddCont ext Swi t chSynbol (const char* sSynbol);
Argument Meaning
sSymbol Function name, assembly label or instruction address.

Return Value

-1: error
0: success

GUI Access

None
7.9.22 Breakpoint Actions

7.9.22.1 Break.Set

Sets an instruction breakpoint (see Instruction Breakpoints on page 192).

Prototype
i nt Break. Set (U64 Address);
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set / Clear (Ctrl+Alt+B)

7.9.22.2 Break.SetEx

Sets an instruction breakpoint of a particular implementation type (see Instruction Break-
points on page 192).

Prototype
i nt Break. Set Ex(U64 Address, int Type);

Argument Meaning

Address Instruction address.

Breakpoint Implementation Types (see Breakpoint Implementation

Type Types on page 267).

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

367 CHAPTER 7 User Actions

GUI Access

None

7.9.22.3 Break.SetOnSrc

Sets a source breakpoint (see Source Breakpoints on page 192).

Prototype

i nt Break.SetOnSrc(const char* sLocation);

Argument Meaning
Name of a program function (e.g. "Reset Handl er ") or source lo-
sLocation cation (e.g. "main.c:100", see Source Code Location Descriptor on
page 264).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set / Clear (Ctrl+Alt+B)

7.9.22.4 Break.SetOnSrcEx

Sets a source breakpoint of a particular implementation type (see Source Breakpoints on
page 192).

Prototype

i nt Break.SetOnSrc(const char* sLocation, int Type);

Argument Meaning
Name of a program function (e.g. "Reset Handl er ") or source lo-
sLocation cation (e.g. "main.c:100", see Source Code Location Descriptor on
page 264).
Type Breakpoint Implementation Types (see Breakpoint Implementation

Types on page 267).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set / Clear (Ctrl+Alt+B)

7.9.22.5 Break.SetType

Sets a breakpoint’s permitted implementation type (see Breakpoint Implementation Types
on page 267).

Prototype

i nt Break. Set Type(const char* slLocation, int Type);

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

368 CHAPTER 7 User Actions

Argument Meaning
sLocation The breakpoint’s source location (e.g. "*main.c:100", see Source Code
Location Descriptor on page 264) or instruction address.
Type Breakpoint Implementation Types (see Breakpoint Implementation

Types on page 267).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Edit (F8)

7.9.22.6 Break.Clear

Clears an instruction breakpoint (see Instruction Breakpoints on page 192).

Prototype
i nt Break.C ear(U64 Address);

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set / Clear (Ctrl+Alt+B)

7.9.22.7 Break.ClearOnSrc

Clears a source breakpoint (see Source Breakpoints on page 192).

Prototype

i nt Break.C earOnSrc(const char* slLocation);

Parameter Description
Refer to Break.SetOnSrc on page 367.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set / Clear (Ctrl+Alt+B)

7.9.22.8 Break.Enable

Enables an instruction breakpoint (see Instruction Breakpoints on page 192).

Prototype
i nt Break. Enabl e(U64 Address);

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

369 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Enable (Ctrl+F9)

7.9.22.9 Break.Disable

Disables an instruction breakpoint (see Instruction Breakpoints on page 192).

Prototype
i nt Break. Di sabl e(U64 Address);

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Disable (Ctrl+F9)

7.9.22.10 Break.EnableOnSrc

Enables a source breakpoint (see Source Breakpoints on page 192).

Prototype

i nt Break. Enabl eOnSrc(const char* sLocation);

Parameter Description
Refer to Break.SetOnSrc on page 367.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Enable (Ctrl+F9)

7.9.22.11 Break.DisableOnSrc

Disables a source breakpoint (see Source Breakpoints on page 192).

Prototype

i nt Break.Di sabl eOnSrc(const char* slLocation);

Parameter Description
Refer to Break.SetOnSrc on page 367.

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

370 CHAPTER 7 User Actions

GUI Access
Breakpoint Window — Context Menu — Disable (Ctrl+F9)

7.9.22.12 Break.Edit

Edits a breakpoint’s advanced properties.

Prototype

int Break.Edit(const char* slLocation, const char* sCondition, int DoTrig-
ger OnChange, int SkipCount, const char* sTaskFilter, const char* sConsol eMsg,
const char* sMsgBoxMsg);

Argument Meaning

The breakpoint’s source location (e.g. "*main.c:100", see Source Code

sLocation Location Descriptor on page 264) or instruction address.
sCondition Symbol expression that must evaluate to non-zero for the breakpoint
to be triggered (see Working With Expressions on page 205).
DoTrigaeron- Indicates whether the condition is met when the expression value has
Changg changed since the last time it was evaluated (DoTriggerOnChange=1)
9 or when it does not equal zero (DoTriggerOnChange=0).
SkinCount Indicates how many times the breakpoint is skipped, i.e. how many
P times the program is resumed when the breakpoint is hit.
The name or ID of the RTOS task that triggers the breakpoint. When
<TaskFilter empty, all RTOS tasks trigger the breakpoint. The task filter is on-

ly operational when an RTOS plugin was specified using command
Project.SetOSPlugin.

Message printed to the Console Window when the breakpoint is trig-
gered.

sConsoleMsg

Message displayed in a message box when the breakpoint is trig-

sMsgBoxMsg gered

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Edit (F8)

7.9.22.13 Break.SetOnData
Sets a data breakpoint (see Data Breakpoints on page 194).

Prototype

i nt Break.Set OnDat a(U64 Address, U64 AddressMask, U3 AccessType, U3 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Argument Meaning

Address Memory address that is monitored for IO (access) events.

Specifies which bits of the address are ignored when monitoring ac-
cess events. By means of the address mask, a single data breakpoint
can be set to monitor accesses to several individual memory address-
es.

AddressMask

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

371 CHAPTER 7 User Actions

Argument Meaning

Type of access that is monitored by the data breakpoint (see Connec-

AccessType tion Modes on page 267).

Access size condition required to trigger the data breakpoint. As an
example, a data breakpoint with an access size of 4 bytes (word)
AccessSize will only be triggered when a word is written to one of the monitored
memory locations. It will not be triggered when, say, a byte is writ-
ten.

Value condition required to trigger the data breakpoint. A data break-
MatchValue point will only be triggered when the match value is written to or read
from one of the monitored memory addresses.

Indicates which bits of the match value are ignored when monitoring
ValueMask access events. A value mask of OxFFFFFFFF means that all bits are ig-
nored, i.e. the value condition is disabled.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set (Ctrl+Alt+D)

7.9.22.14 Break.ClearOnData

Clears a data breakpoint (see Data Breakpoints on page 194).

Prototype

i nt Break.C ear OnDat a(U64 Address, U64 AddressMask, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnData on page 370.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Clear (Ctrl+Alt+D)

7.9.22.15 Break.ClearAll

Clears all breakpoints (see Data Breakpoints on page 194).

Prototype
int Break.dearAl();

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

372

CHAPTER 7 User Actions

GUI Access

Breakpoint Toolbar — Clear All Breakpoints

7.9.22.16 Break.ClearAllOnData

Clears all data breakpoints (see Data Breakpoints on page 194).

Prototype
i nt Break.C earAll OnData();
Return Value

-1: error
0: success

GUI Access

Breakpoint Toolbar — Clear All Data Breakpoints

7.9.22.17 Break.EnableOnData

Enables a data breakpoint (see Data Breakpoints on page 194).

Prototype

i nt Break. Enabl eOnDat a(U64 Address, U4 AddressMask, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnData on page 370.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Enable (Ctrl+F9)

7.9.22.18 Break.DisableOnData

Disables a data breakpoint (see Data Breakpoints on page 194).

Prototype

i nt Break.Di sabl eOnDat a(U64 Address, U4 AddressMask, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnData on page 370.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Disable (Ctrl+F9)

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

373

CHAPTER 7 User Actions

7.9.22.19 Break.EditOnData

Edits a data breakpoint (see Data Breakpoints on page 194).

Prototype

i nt Break. EditOnData(U64 Address, U4 AddressMask, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnData on page 370.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Edit (F8)

7.9.22.20 Break.SetOnSymbol

Sets a data breakpoint on a symbol (see Data Breakpoints on page 194).

Prototype

i nt Break. Set OnSynbol (const char* sSynbol Name, U8 AccessType, U8 AccessSize,
U32 Mat chVal ue, U32 Val ueMask);

Argument Meaning

sSymbolName Name of the symbol that is monitored by the data breakpoint.

Type of access that is monitored by the data breakpoint (see Access
Types on page 267).

Memory access size required to trigger the data breakpoint (see
Memory Access Widths on page 266).

Value condition required to trigger the data breakpoint. A data break-
MatchValue point will only be triggered when the match value is written to or read
from one of the monitored memory addresses.

AccessType

AccessSize

Indicates which bits of the match value are ignored when monitoring
ValueMask access events. A value mask of OxFFFFFFFF means that all bits are ig-
nored, i.e. the value condition is disabled.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set (Ctrl+Alt+D)

7.9.22.21 Break.OnChange

Sets a data breakpoint on a symbol that triggers when the symbol value changes (see Data
Breakpoints on page 194).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

374 CHAPTER 7 User Actions

Prototype
i nt Break. OnChange(const char* sSynbol Nane) ;

Argument Meaning

sSymbolName Name of the symbol that is monitored by the data breakpoint.

Return Value

-1: error
0: success

GUI Access

Source Viewer — Context Menu — Break On Change

7.9.22.22 Break.ClearOnSymbol

Clears a data breakpoint on a symbol (see Data Breakpoints on page 194).

Prototype

i nt Break.C earOnSynbol (const char* sSynbol Nane, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnSymbol on page 373.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Clear (Ctrl+Alt+D)

7.9.22.23 Break.EnableOnSymbol

Enables a data breakpoint on a symbol (see Data Breakpoints on page 194).

Prototype

i nt Break. Enabl eOnSynbol (const char* sSynbol Nane, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnSymbol on page 373.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Enable (Ctrl+F9)

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

375 CHAPTER 7 User Actions

7.9.22.24 Break.DisableOnSymbol

Disables a data breakpoint on a symbol (see Data Breakpoints on page 194).

Prototype

i nt Break. D sabl eOnSynbol (const char* sSynbol Nane, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnSymbol on page 373.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Disable (Ctrl+F9)

7.9.22.25 Break.EditOnSymbol

Edits a data breakpoint on a symbol (see Data Breakpoints on page 194).

Prototype

i nt Break. Edit OnSynbol (const char* sSynbol Name, U8 AccessType, U8 AccessSi ze,
U32 Mat chVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnSymbol on page 373.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Edit (F8)

7.9.22.26 Break.SetCommand

Assigns a script function to a breakpoint that is executed when the breakpoint is hit.

Note
Due to hardware limitations, break point callback functions are not supported for data
break points.

Prototype

i nt Break. Set Conmand (const char* sLocation, const char* sFuncNane);

Argument Meaning
sLocation The breakpoint’s source location (e.g. "*main.c:100", see Source Code
Location Descriptor on page 264) or instruction address.
sFuncName Name of the script function to callback when the breakpoint is hit.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

376 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

Breakpoint Window — Context Menu — Edit (F8)

7.9.22.27 Break.SetCmdOnAddr

Assigns a script function to a breakpoint that is executed when the breakpoint is hit.

Note

Due to hardware limitations, break point callback functions are not supported for data
break points.

Prototype

i nt Break. Set CdOnAddr (U64 Address, const char* sFuncNane);

Argument Meaning
Address Instruction address.
sFuncName Name of the script function to callback when the breakpoint is hit.

Return Value

-1: error
0: success

GUI Access

Breakpoint Window — Context Menu — Edit (F8)

7.9.22.28 Break.SetVectorCatch

Edits the vector catch state.

Prototype
i nt Break. Set Vect or Cat ch(U32 | ndexMask) ;
Argument Meaning
A bitmask where bit <n> corresponds to the vector catch at table row
IndexMask <n> of the Breakpoints/Tracepoints Window on page 96. Vector catch
<n> is activated by setting bit <n>. A bitmask of 0 clears all vector
catches.

Return Value

-1: error
0: success

GUI Access

Breakpoints/Tracepoints Window — Context Menu — Vector Catches

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

377 CHAPTER 7 User Actions

7.9.23 ELF Actions

7.9.23.1 EIf.GetBaseAddr

Returns the program file’s download address. This is the lowest memory address written
to during program download.

ARM specific:

The address returned by Elf.GetBaseAddr may or may not correspond to the base address
of the program’s vector table. The addresses in particular do not coincide when a code
section is linked before the vector table, such as a bootloader.

Prototype
int Elf.GetBaseAddr();

Return Value

-1: error
Base address: success
GUI Access

None

7.9.23.2 Elf.GetFileClass
Returns the ELF file class of the program file. The ELF file class may be 32-bit or 64-bit.

Prototype
int EIf.GetFiled ass();

Return Value

0: none / invalid

1: 32-bit architecture
2: 64-bit architecture
GUI Access

None

7.9.23.3 Elf.GetEntryPointPC

Returns the initial PC of program execution.

Prototype
int Elf.GetEntryPoint PC();

Return Value

Initial PC of program execution (-1 on error)

GUI Access

None

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

378 CHAPTER 7 User Actions

7.9.23.4 Elf.GetEntryFuncPC

Returns the base address of the program’s entry (or main) function.

Prototype
int Elf.GetEntryFuncPC();

Return Value

PC of the program entry function (-1 on error)

GUI Access

None

7.9.23.5 EIf.GetExprValue

Evaluates a symbol expression.

Prototype
int Elf.Get ExprVal ue(const char* sExpression);

Return Value

-1: error
Expression value: success
GUI Access

Watched Data Window — Context Menu — Add (Alt+Shift+Plus)

7.9.23.6 EIf.GetEndianess

Returns the program file's data encoding scheme.

Prototype
i nt Elf.Get Endi aness(const char* sExpression);
Return Value

-1: indeterminable
0: Little Endian
1: Big Endian

GUI Access

None

7.9.23.7 EIf.SetConfig
Configures the ELF parser.

Prototype
int Elf.SetConfig(U32 ConfigFl ags);
Argument Meaning
) Bitwise-or combination of ELF parser configuration flags (see ELF
ConfigFlags Config Flags on page 271).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

379

CHAPTER 7

Return Value

0: OK
-1: Error

GUI Access

None

7.9.23.8 Elf.PrintSectionInfo

Prints ELF file section information to the Console Window.

User Actions

Prototype
int EIf.PrintSectionlnfo(int SortCol);
Argument Meaning
SortCol 0: sort output by name, 1: sort output by address

Return Value

0: OK
-1: Error

GUI Access

None

7.9.24 Trace Actions

Actions performing trace related operations.

7.9.24.1 Trace.SetPoint

Sets a tracepoint

Prototype

int Trace. SetPoint(int Op, const char* sLocation);

Argument Meaning

Op Operation Types on page 269).

Operation to be performed when the tracepoint is hit (see Tracepoint

sLocation

Location of the tracepoint as displayed within the Breakpoints/Trace-
points Window (see Breakpoints/Tracepoints Window on page 96)).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set Tracepoint (Ctrl+Alt+E)

7.9.24.2 Trace.ClearPoint

Ozone User Guide & Reference Manual (UM08025)

Clears a tracepoint.

© 2013-2026 SEGGER Microcontroller GmbH

380

CHAPTER 7 User Actions
Prototype
i nt Trace. Set Poi nt (const char* sLocation);
Argument Meaning
sLocation Location of the tracepoint as displayed within the Breakpoints/Trace-
points Window (see Breakpoints/Tracepoints Window on page 96)).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Clear (Ctrl+Alt+E)

7.9.24.3 Trace.EnablePoint

Enables a tracepoint.

Prototype

i nt Trace. Enabl ePoi nt (const char* sLocation);

Argument Meaning

Location of the tracepoint as displayed within the Breakpoints/Trace-

sLocation points Window (see Breakpoints/Tracepoints Window on page 96)).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Enable (Ctrl+F9)

7.9.24.4 Trace.DisablePoint

Disables a tracepoint.

Prototype

i nt Trace. Di sabl ePoi nt (const char* sLocation);

Argument Meaning

Location of the tracepoint as displayed within the Breakpoints/Trace-

sLocation points Window (see Breakpoints/Tracepoints Window on page 96)).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Disable (Ctrl+F9)

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

381 CHAPTER 7 User Actions

7.9.245 Trace.ClearAllPoints

Clears all tracepoints.

Prototype
int Trace.C earAll Points();
Return Value

-1: error
0: success

GUI Access

Breakpoint Toolbar — Clear All Tracepoints

7.9.24.6 Trace.Reset

Resets Ozone’s trace data buffer and the contents of the Instruction Trace Window.

Prototype

int Trace. Reset();

Return Value

-1: error
0: success

GUI Access

None

7.9.25 Watch Actions

7.9.25.1 Watch.Add
Adds an expression to the Watched Data Window (see Watched Data Window on page 176).

Prototype
i nt Watch. Add(const char* sExpression);
Return Value

-1: error
0: success

GUI Access
Watched Data Window — Context Menu — Add (Alt+Shift+Plus)

7.9.25.2 Watch.Insert

Inserts an expression into the Watched Data Window (see Watched Data Window on
page 176).

Prototype

int Watch.Insert(const char* sExpression, int Row);

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

382

CHAPTER 7 User Actions

Argument Meaning

Ozone symbol expression. See Working With Expressions on

sExpression page 205.

Insert expression at this table row. When empty, append the expres-

Row .
sion.

Return Value

-1: error
0: success

GUI Access

None

7.9.25.3 Watch.Remove

Removes an expression from the Watched Data Window (see Watched Data Window on
page 176).

Prototype
i nt WAt ch. Renove(const char* sExpression);
Return Value

-1: error
0: success

GUI Access

Watched Data Window — Context Menu — Remove (Del)

7.9.25.4 Watch.Quick

Shows an expression within the Quick Watch Dialog (see Quick Watch Dialog on page 94).

Prototype
i nt WAt ch. Qui ck(const char* sExpression);

Argument Meaning

Ozone symbol expression. See Working With Expressions on

sExpression page 205.

Return Value

-1: error
0: success

GUI Access
Shift+F9

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

383 CHAPTER 7 JavaScript Classes

7.10 JavaScript Classes

This section provides a quick reference on Ozones build-in JavaScript classes that are pro-
vided for the development of JavaScript plugins.

7.10.1 Threads Class

The Thr eads class supports the implementation of RTOS-awareness plugins by providing
methods that control and edit the RTOS Window (see RTOS Window on page 151). Methods
of the Thr eads class that do not specify a table name parameter target the “active” table
of the RTOS Window. The active table is usually the table that has been added last. The
active table can be switched via methods Thr eads. newqueue, Thr eads. set Col ums2 and
Thr eads. add2.

7.10.1.1 Threads.add
Appends a data row to the active table of the RTOS Window.

Prototype
voi d Threads. add (s1, .., sN, x);
Argument Meaning
s1,...,sN Text to be inserted into columns 0 to n
X a generic parameter described below

Additional Description

The last parameter is either:

e an integer value that identifies the task, usually the address of the task’s control block.
e an unsigned integer array containing the register values of the task. The array must be
sorted according to the logical register indexes as defined by the ELF-DWARF ABI.

The first option should be preferred since it defers the readout of the task registers until
the task is activated within the RTOS Window (see method getregs on page 240).

The special task identifier value undefined indicates to the debugger that the task registers
are the current CPU registers. In this case, the debugger does not need to execute method
getregs.

7.10.1.2 Threads.add2
Appends a data row to a specific table of the RTOS Window.

Prototype
voi d Threads. add2 (sTable, sl, ..,sN);
Argument Meaning
sTable Table name
s1,...,sN Text to be inserted into columns 0 to n

Additional Description

When the specified table does not exist, it is added implicitly. The specified table becomes
the active table of the RTOS Window.

7.10.1.3 Threads.clear

Removes all rows from all tables of the RTOS Window. Table columns remain unchanged.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

384 CHAPTER 7 JavaScript Classes

Prototype

void Threads. clear (void);

7.10.1.4 Threads.newqueue
Appends a table to the RTOS Window.

Prototype
voi d Threads. newqueue (sTabl e);

Argument Meaning
sTable Table name

Additional Description

The specified table becomes the active table of the RTOS Window. The task list is required
to be added as the first table of the RTOS Window.

7.10.1.5 Threads.shown

Indicates if a RTOS Window table is currently visible.

Prototype
i nt Threads. shown (sTable);

Argument Meaning
sTable Table name

0: table is not shown
1: table is shown

7.10.1.6 Threads.setColumns
Sets the column titles of the active table of the RTOS Window.

Prototype
voi d Threads. set Col ums (s1, ..,sN);

Argument Meaning

si,...,sN Column titles

Additional Description

When no table has been added to the RTOS Window before this method is executed, a
default table will be added. The default table can be accessed via the table name “Default”.

7.10.1.7 Threads.setColumns?2
Sets the column titles of a RTOS Window table.

Prototype

voi d Threads. set Col unmms2 (sTable, sl,..,sN);
Argument Meaning

sTable Table name

si,...,sN Column titles

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

385 CHAPTER 7 JavaScript Classes

Additional Description

When the RTOS Window does not contain a table of the given name, a new table is added
to the window and its columns are set.

The specified table becomes the active table of the RTOS Window.
7.10.1.8 Threads.setColor
Assigns a task list highlighting scheme to the RTOS Window.

Prototype
voi d Threads. setCol or (sTitle, sReady, sExecuting, sWiiting);

Argument Meaning
sTitle Title of the table column that displays the task status
sReady Display text for task status “ready”

sExecuting | Display text for task status “executing”

sWaiting Display text for task status “waiting”

Additional Description

o the task whose status text matches “sExecuting” will be highlighted in green.
o all tasks whose status text match “sReady” will be highlighted in light green.
o all tasks whose status text match “sWaiting” will be highlighted in light red.

7.10.1.9 Threads.setSortByNumber

Specifies that a particular table column should be sorted numerically rather than alphabet-

ically.

Prototype

voi d Threads. set Sort ByNunber (sCol Title);
Argument Meaning

sColTitle Column title

Additional Description
The method acts upon the active table of the RTOS Window.

7.10.2 Debug Class

The Debug class provides methods that expose debugger functionality to JavaScript plugins.

7.10.2.1 Debug.enableOverridelnst

Allows a disassembly plugin to override the disassembly of a known instruction. This com-
mand must be executed from script function i ni t.

Prototype
i nt Debug. enabl eOverridel nst (alnst, aMask);
Argument Type Meaning
alnst byte array | Instruction data bytes
aMask bvte arra Instruction bits significant for matching. This argument must
Y Y | have the same byte size as argument Encoding. The argu-

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

386

CHAPTER 7 JavaScript Classes

Argument Type Meaning

ment effectively enables users to override multiple instruc-
tions at once. This is commonly desirable when overriding all
instructions of a particular type.

Return Value

Success: 0
Failed: -1

7.10.2.2 Debug.evaluate

Evaluates a C-style symbol expression.

Prototype
obj ect Debug. eval uate (sExpression);
Argument Meaning
sExpression Ozone expression (see Working With Expressions on page 205)

Return Value

Success: JavaScript object corresponding to the evaluated expression
Failed: value undefined
Additional Description

When the input expression evaluates to a complex-type symbol, a JavaScript object is
returned that exactly mirrors this symbol. The member tree of the returned object is fully
initialized but pointer members cannot be dereferenced.

Example

var d obal = Debug. eval uate("*(OS_G.OBAL_STRUCT*) 0x20002000") ;
var Count = d obal . Counters. Cnt;

7.10.2.3 Debug.getSymbol

Returns the name of the symbol at or preceding the input address. Ozone only considers
symbols of variable, constant, function and assembly label type for the return value.

Prototype
string Debug. get Synbol (U64 Address);
Return Value

Success: 0
Failed: -1

7.10.3 Targetinterface Class

The Tar get I nt er f ace class provides methods that access target memory and registers.

7.10.3.1 Targetinterface.findByte

Searches a memory block for a particular byte value.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

387 CHAPTER 7 JavaScript Classes

Prototype
int Targetlnterface.findByte (Addr, Size, Val ue);

Argument Meaning
Addr Base address of the memory block to search
Size Size of the memory block to search
Value Byte value to search

Return Value

>0: byte offset of the matching byte
-1: no match found

7.10.3.2 Targetinterface.findNotByte

Searches a memory block for the first byte not matching a particular value.

Prototype

int Targetlnterface.findNotByte (Addr, Size, Val ue);
Argument Meaning

Addr Base address of the memory block to search

Size Size of the memory block to search

Value Match value

Return Value

>0: byte offset of the first byte not matching “Value”
-1: not found, i.e. all bytes match “Value”

7.10.3.3 Targetinterface.peekBytes

Returns target memory data.

Prototype
Array Targetlnterface. peekBytes (Addr, Size);
Argument Meaning
Addr Base address to read from
Size Number of bytes to read

Return Value

Success: memory data (as byte array)
Failed: value undefined

Additional Description

This method returns the target memory content residing at the specified address. The
amount of data is specified by the paramter Size and is an upper limit. In case the specified
address range is at least partially not readable the memory content is returned only up
to but not including the first non-readable address. This implies that a shorter byte array
than requested may be returned.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

388 CHAPTER 7 JavaScript Classes

7.10.3.4 Targetinterface.peekWord

Returns a word from target memory.

Prototype

unsi gned int Targetlnterface. peekWord (Addr);
Argument Meaning

Addr Memory address

Return Value

Success: data word
Failed: value undefined

7.10.3.5 Targetinterface.pokeWord
Writes a word to target memory.

Prototype
unsi gned void Targetlnterface. pokeWrd (Addr, Val ue);

Argument Meaning
Addr Memory address
Value Value to be written

7.10.3.6 Targetinterface.getRegister

Returns the content of a register.

Prototype

unsi gned int Targetlnterface.get Regi ster (RegQ);
Argument Meaning

Reg Register name

Return Value

Success: register content
Failed: value undefined

7.10.3.7 Targetinterface.setRegister
Sets the value of a register.

Prototype

unsi gned void Targetlnterface. set Regi ster (Reg, Value);

Argument Meaning
Reg Register name
Value New register value

7.10.3.8 Targetinterface.message

Logs a message to the Console Window (see Console Window on page 111).

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

389 CHAPTER 7 JavaScript Classes

Prototype
void Targetlnterface. nessage (Text);

Argument Meaning
Text Text to be written to the console window

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

Chapter 8
Support

How to Report Bugs

Users are kindly asked to include as much as possible of the following information in Ozone
bug reports (in order of importance):

Ozone version number

A detailed description of the problem

A minidump in the case of a crash (see Minidumps on page 289)

A visual studio core dump file (.dmp) in case of a crash or freeze on Windows or a GDB

core dump file (.core) in case of a crash or freeze on Linux

e An Ozone application log of the faulting session (for this, start Ozone with arguments
"-logfile <filepath>" and "-loginterval 0")

e Information about the target hardware (processor, board, etc.)

e The debug probe model employed (e.g. J-Trace PRO Cortex-M V2)

e The operating system and OS version of the Host PC

Users without a support agreement with SEGGER are kindly asked to report bugs at the
general room of SEGGER’s forum .

Users which are entitled to support should use the contact information below.

Contact Information
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support @egger.com

Internet: www. segger.com

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

https://forum.segger.com
https://www.segger.com

Chapter 9

Glossary

This chapter explains the meanings of key terms and abbreviations used throughout this
manual.

Big-endian

Memory organization where the least significant byte of a word is at a higher address than
the most significant byte. See Little-endian.

BMA

Background Memory Access. Targets featuring BMA support memory accesses while the
CPU is running.

Command Prompt

The console window’s command input field.

Debuggee

Same as Program.

Debugger

Ozone.

Device

The Microcontroller on which the debuggee is running.

Halfword

A 16-bit unit of information.

Host

The PC that hosts and executes Ozone.

HSS

High Speed Sampling. A feature of J-Link/J-Trace which enables high speed data readout
of individual target memory locations.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

392

CHAPTER 9

ID

Identifier.

Joint Test Action Group (JTAG)
The name of the standards group which created the IEEE 1149.1 specification.

Little-endian

Memory organization where the least significant byte of a word is at a lower address than
the most significant byte. See also Big-endian.

MCU

Microcontroller Unit. A small computer on a single integrated circuit containing a processor
core, memory, and programmable input/output peripherals.

J-Link OB
A J-Link debug probe that is integrated into the target (*on-board”).

PC

Program Counter. The program counter is the address of the machine instruction that is
executed next.

Processor Core

The part of a microprocessor that reads instructions from memory and executes them,
including the instruction fetch unit, arithmetic and logic unit, and the register bank. It
excludes optional coprocessors, caches, and the memory management unit.

Program

Application program that is being debugged and that is running on the target device.

RTOS

Real Time Operating System; an operating system employed within an embedded system.

SVvD

System View Description, a standard by Keil for describing the register layout of an MCU.

System Register

A special-purpose CPU register that controls or monitors advanced core functions, usually
memory-mapped and accessible via dedicated machine instructions.

Peripheral Register

A memory-mapped special function register (SFR) provided by a peripheral hardware unit
of the MCU/SoC.

Target

Same as Device. Sometimes also referred to as “Target Device”.

Target Application

Same as Program.

User Action

A particular operation of Ozone that can be triggered via the user interface or program-
matically from a script function.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

393 CHAPTER 9

Window

Short for debug information window.

Word

A 32-bit unit of information. Contents are taken as being an unsigned integer unless oth-
erwise stated.

Ozone User Guide & Reference Manual (UM08025) © 2013-2026 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Introduction
	What is Ozone?
	Features of Ozone
	Fully Customizable User Interface
	Scripting Interface
	RTOS Awareness
	Code Profiling
	Power Profiling
	Symbol Trace
	Instruction Trace
	Unlimited Flash Breakpoints
	Wide Range of Supported File Formats
	Peripheral and System Register Support
	Extensive Printf-Support
	Snapshots
	Custom Instruction Support
	Instruction Set Simulation
	SmartView
	GDB Client

	Requirements
	Supported Operating Systems
	Supported Target Devices
	ARM
	RISC-V
	Target Support Plugins

	Supported Debug Interfaces
	Supported Programming Languages

	Getting Started
	Installation
	Installation on Windows
	Multiple Installed Versions

	Uninstallation on Windows
	Installation on Linux
	Installer
	Binary Archive
	Library Dependencies
	Multiple Installed Versions

	Uninstallation on Linux
	Uninstall Commands
	Removing Application Settings

	Installation on macOS
	Multiple Installed Versions

	Uninstallation on macOS
	Removing Application Settings

	Using Ozone for the first time
	Project Wizard
	Starting the Debug Session

	Graphical User Interface
	User Actions
	Action Tables
	Executing User Actions
	User Action Hotkeys

	Dialog Actions

	Main Window
	Menu Bar
	File Menu
	View Menu
	Find Menu
	Debug Menu
	Tools Menu
	Window Menu
	Help Menu

	Toolbars
	Showing and Hiding Toolbars
	Arranging Toolbars
	Docking and Undocking Toolbars
	Custom Toolbar

	Status Bar
	Status Message
	Window Context Information
	Connection State

	Debug Information Windows
	Context Menu
	Standard Shortcuts
	Window Layout
	Code Windows
	Table Windows

	Code Windows
	Program Execution Point
	Active Code Window
	Recognizing the Active Code Window
	Switching the Active Code Window

	Code Line Highlighting
	Breakpoints
	Toggling Breakpoints
	Enabling and Disabling Breakpoints
	Editing Advanced Breakpoint Properties
	Breakpoint Bar

	Code Profile Information
	Hardware Requirements
	Code Execution Counters
	Execution Profile Tooltips
	Execution Profile Color-Codes

	Text Cursor Navigation Shortcuts

	Table Windows
	Member Rows
	Column Header
	Display Format
	Filter and Total Value Bars
	Value Range Filters
	Filter Bar Context Menu

	CSV Export
	Change Level Highlighting
	Letter Key Navigation
	Table Window Preferences

	Window Layout
	Opening and Closing Windows
	Undocking Windows
	Docking and Stacking Windows

	Change Level Highlighting
	Dialogs
	Breakpoint Properties Dialog
	Code Profile Export Dialog
	Commands
	Code Profile Report

	Data Breakpoint Dialog
	Applying Changes

	Debug Settings Dialog
	Opening the Debug Settings Dialog
	Applying Changes

	Disassembly Export Dialog
	Exemplary Output

	Find In Files Dialog
	File Search Scope

	Find In Trace Dialog
	Memory Dialog
	Save Memory Data
	Load Memory Data
	Fill Memory

	Instruction Trace Export Dialog
	Exemplary Output

	Project Load Diagnostics Dialog
	Project Load Diagnostics
	Suggested Fix-Ups
	Buttons

	Snapshot Dialog
	Load Snapshot
	Save Snapshot
	Memory Selection
	Register Selection

	Semihosting Settings Dialog
	System Variable Editor
	Opening the System Variable Editor
	Editing System Variables Programmatically
	Applying Changes

	Trace Settings Dialog
	Opening the Trace Settings Dialog
	Applying Changes

	User Preference Dialog
	Opening the User Preference Dialog
	Dialog Components
	General Application Settings
	Call Stack Window Settings
	Call Graph Window Settings
	Code Profile Window Settings
	Console Window Settings
	Data Sampling Window Settings
	Disassembly Window Settings
	Instruction Trace Window Settings
	Power Sampling Window Settings
	Source Viewer Settings
	Table Window Settings
	Terminal Window Settings
	Timeline Window Settings
	Appearance Settings
	Specifying User Preferences Programmatically

	Quick Find Widget
	Search Modes
	Text Search Options

	Quick Watch Dialog
	Context Menu

	Debug Information Windows
	Breakpoints/Tracepoints Window
	Breakpoint Properties
	Breakpoint Dialog
	Derived Breakpoints
	Vector Catches
	Context Menu
	Editing Breakpoints and Vector Catches Programmatically
	Table Window

	Call Graph Window
	Overview
	Setup
	Table Columns
	Uncertain Values
	Recursive Call Paths
	Function Pointer Calls
	Table Window
	Context Menu
	Call Graph Window Preferences

	Call Stack Window
	Overview
	Table Columns
	Call Site Parameter Values
	Instruction Based Call Stack Unwinding
	Unwinding Stop Reasons
	Active Call Frame
	Context Menu
	Settings
	Table Window

	Code Profile Window
	Setup
	Overview
	Code Coverage
	Color Bars

	Program Load
	Execution Counters
	Filters
	Adding and Removing Profile Filters
	Adding and Removing Coverage Filters
	Filtering Code Alignment Instructions
	Observing the List of Active Filters

	Context Menu
	User Preference Settings
	Selective Tracing
	Table Window

	Console Window
	Command Prompt
	Message Types
	Command Feedback Messages
	Error Messages
	J-Link/J-Trace Messages
	Script Messages

	Message Colors
	Context Menu
	Command Help
	Console Window Preferences

	Data Sampling Window
	Hardware Requirements
	Sampling Frequency
	Data Limit
	Window Layout
	Setup View
	Signal Statistics
	Context Menu

	Samples View
	Context Menu

	Timeline
	Data Sampling Window Preferences

	Disassembly Window
	Assembly Code
	Execution Counters
	Key Bindings
	Context Menu
	Disassembly Plugin
	Offline Disassembly
	Code Window
	Disassembler Options
	Appearance Settings

	Find Results Window
	Find Result Tabs
	Supported Text Search Locations
	Match Highlighting
	Context Menu

	Functions Window
	Function Properties
	Inline Expanded Functions
	Context Menu
	Breakpoint Indicators
	Function Display Names
	Table Window

	Global Data Window
	Table Window
	Data Breakpoint Indicator
	Context Menu

	Instruction Trace Window
	Setup
	Instruction Row
	Instruction Stack
	Trace Blocks
	Call Frames
	Backtrace Highlighting
	Text Search
	Key Bindings
	Context Menu
	Instruction Trace Window Preferences
	Selective Tracing
	Limitations

	Local Data Window
	Overview
	Auto Mode
	Data Breakpoint Indicator
	Context Menu
	Table Window

	Memory Window
	Window Layout
	Base Address
	Setting the Base Address

	Drag & Drop
	Toolbar
	Memory Dialog
	Change Level Highlighting
	Periodic Update
	User Input
	Copy and Paste
	Context Menu
	Multiple Instances

	Memory Usage Window
	Window Layout
	Setup
	Supplying Memory Segment Information

	Interaction
	Scrolling
	Zooming

	Context Menu

	SmartView Window
	SmartView Plugin Concept
	Available SmartView Plugins

	Selecting Pages
	Context Menu

	Power Sampling Window
	Hardware Requirements
	Setup
	Sampling Frequency
	Data Limit
	Timeline
	Context Menu
	Power Sampling Window Preferences

	Registers Window
	SVD Files
	Register Groups
	Bit Fields
	Processor Operating Mode
	Register Display
	Context Menu
	Table Window
	Multiple Instances

	RTOS Window
	RTOS Plugin
	RTOS Informational Views
	Task Context Activation
	Context Menu
	Available RTOS Plugins

	Source Files Window
	Source File Information
	Unresolved Source Files
	Context Menu
	Table Window

	Source Viewer
	Supported File Types
	Execution Counters
	Opening and Closing Documents
	Editing Documents
	Document Tab Bar
	Tab Bar Context Menu
	Tab Selection Widget

	Document Header Bar
	Symbol Tooltips
	Expression Tooltips
	Expandable Source Lines
	Key Bindings
	Syntax Highlighting
	Source Line Numbers
	Context Menu
	Font
	Code Window
	Source Viewer Preferences

	Terminal Window
	Supported IO Techniques
	Terminal Input
	Terminal Prompt

	Ansi Escape Sequences
	Logging
	Control Character Handling
	Terminal Window Limit
	Context Menu
	Terminal Window Preferences

	Timeline Window
	Overview
	Navigating the Window with the Mouse
	Hardware Requirements
	Setup
	Code Pane
	Sample Cursor
	Positioning the Sample Cursor
	Pinning the Sample Cursor

	Hover Cursor
	Time Reference Points
	Graph Legends
	Toolbar
	Context Menu
	Settings
	Clear Event
	Set Offset To Code

	Watched Data Window
	Adding Expressions
	Local Variables
	Live Watches
	Quick Watches
	Context Menu
	Multiple Instances
	Table Window

	Debugging With Ozone
	Project Files
	Project File Example
	Opening Project Files
	Creating Project Files
	Programmability
	Project Settings
	Program File
	Target Device
	Connection Settings
	RTOS Plugin
	Source File Resolution Settings
	Required Project Settings

	Project Load Diagnostics
	User Files

	Program Files
	Supported Program File Types
	Symbol Information
	Opening Program Files
	Data Encoding

	Starting the Debug Session
	Connection Mode
	Download & Reset Program
	Attach to Running Program
	Attach & Halt Program
	Setting the Connection Mode

	Initial Program Operation
	Reprogramming the Startup Sequence

	Register Initialization
	Overview
	Register Reset Values
	Manual Register Initialization
	Project-Default Register Initialization

	Startup Completion Point
	Specifying the Startup Completion Point

	Symbol or PC to Stop Target during Startup
	Specifying the Symbol or PC to Stop Target during Startup

	Debugging Controls
	Reset
	Reset Mode

	Step
	Stepping Expanded Source Code Lines
	Context Aware Stepping

	Resume
	Halt
	Run To
	Set Next Statement
	Set Next PC

	Breakpoints
	Source Breakpoints
	Editing Source Breakpoints

	Instruction Breakpoints
	Editing Instruction Breakpoints

	Derived Breakpoints
	Advanced Breakpoint Properties
	Permitted Implementation Types
	Flash Breakpoints
	Breakpoint Callback Functions
	Offline Breakpoint Modification

	Data Breakpoints
	Data Breakpoint Attributes
	Editing Data Breakpoints

	Program Inspection
	Execution Point
	Static Program Entities
	Data Symbols
	Symbol Tooltips
	Call Stack
	Target Registers
	Target Memory
	Default Memory Access Width

	Inspecting a Running Program
	Live Watches
	Data Trace
	Streaming Trace
	Power Trace

	Downloading Program Files
	Download Behavior Comparison
	Script Callback Behavior Comparison
	Avoiding Script Function Recursions
	Downloading Bootloaders
	Target Download Addresses

	Terminal IO
	Real-Time Transfer
	RTT Configuration

	SWO
	SWO Configuration

	Semihosting

	Semihosting
	Supported Architectures
	Enabling Semihosting
	Supported Operations
	Input Operations
	Unsafe Operations
	Semihosting Configuration
	Starting and Stopping Semihosting
	Generic Semihosting

	Working With Expressions
	Areas of Application
	Operands
	Operators
	Type Casts

	Locating Missing Source Files
	Causes for Missing Source Files
	Missing File Indicators
	File Path Resolution Sequence
	Operating System Specifics

	Setting Up The Instruction Cache
	Setting Up Trace
	Trace Features Overview
	Target Requirements
	Target Requirements for ETB Trace
	Target Requirements for ETM Trace

	Debug Probe Requirements
	Trace Settings

	Selective Tracing
	Overview
	Hardware Requirements
	Tracepoints
	Scope

	Advanced Program Analysis And Optimization Hints
	Program Performance Optimization
	Scenario

	Debug Snapshots
	Use Cases
	Supported Architectures
	Default System Restore
	Advanced System Restore
	The Scope of Snapshots

	Remote Debugging
	Remote Debugging Over LAN
	Remote Debugging Over The Internet

	Debugging via GDB Server
	Automatically starting GDB Server
	3rd Party Debug Probe Support
	GDB Remote Protocol Log
	GDB server types

	Messages And Notifications
	Message Format
	Message Codes
	Logging Sinks
	Debug Console
	Application Logfile
	Other Logfiles

	File Path Arguments
	Other Debugging Activities
	Finding Text Occurrences
	Saving And Loading Memory
	Relocating Symbols
	Closing the Debug Session
	Interworking with External Applications

	Scripting Interface
	Project Script
	Script Language
	Script Structure
	Script Functions Overview
	Event Handler Functions
	User Functions
	Debugger API Functions
	Process Replacement Functions
	DebugStart
	TargetConnect
	TargetDownload
	TargetReset

	Executing Script Functions

	Disassembly Plugin
	Script Language
	Loading the Plugin
	Script Functions Overview
	Debugger API
	Writing the Disassembly Plugin
	init
	printInstAsm
	getInstInfo

	The Flags Parameter
	Flags on ARM
	Flags on RISC-V

	RTOS Awareness Plugin
	Script Language
	Loading the Plugin
	Script Functions Overview
	Debugger API
	Writing the RTOS Plugin
	init
	update
	getregs
	getname
	getOSName
	gettls
	getContextSwitchAddrs
	Iterating the Task List
	Computing The Stack Usage
	Convenience Methods

	Compatibility with Embedded Studio

	SmartView Plugin
	Script Language
	Loading the Plugin
	Script Functions Overview
	Debugger API
	Writing the SmartView Plugin
	init
	getName
	getPages
	getColHeaders (PageName)
	getFirstRow (PageName) / getNextRow (PageName)
	onTargetChanged
	General Remarks

	Snapshot Programming
	Snapshot Commands
	OnSnapshotSave
	OnSnapshotLoad

	Incorporating a Bootloader into Ozone's Startup Sequence
	Automation Socket Interface

	Appendix
	Value Descriptors
	Frequency Descriptor
	Source Code Location Descriptor
	Color Descriptor
	Font Descriptor
	System Register Descriptor
	ARM AArch32
	ARM AArch64

	System Constants
	Host Interfaces
	Target Interfaces
	Boolean Value Constants
	Value Display Formats
	Memory Access Widths
	Access Types
	Connection Modes
	Reset Modes
	Breakpoint Implementation Types
	Disassembler Option Flags
	Trace Sources
	Tracepoint Operation Types
	Newline Formats
	Trace Timestamp Formats
	Code Profile Export Options
	Disassembly Export Options
	Session Save Flags
	Snapshot Save Flags
	ELF Config Flags
	Clear Events
	Destination Address Ranges for Download
	Unwinding Information Source
	GDB Server Type
	Font Identifiers
	Color Identifiers
	User Preference Identifiers
	System Variable Identifiers

	Command Line Arguments
	Project Generation
	Appearance and Logging
	Configuration

	Directory Macros
	Environment Variables

	Startup Sequence Flow Chart
	Errors and Warnings
	Minidumps
	Action Tables
	Breakpoint Actions
	Code Profile Actions
	Debug Actions
	Edit Actions
	ELF Actions
	Export Actions
	File Actions
	Find Actions
	Help Actions
	J-Link Actions
	OS Actions
	Process Actions
	Project Actions
	Register Actions
	Script Actions
	Show Actions
	Snapshot Actions
	Target Actions
	Timeline Actions
	Tools Actions
	Toolbar Actions
	Trace Actions
	Utility Actions
	Window Actions
	Watch Actions

	User Actions
	File Actions
	File.Close
	File.CloseAll
	File.CloseAllButThis
	File.CloseAllUnedited
	File.Exit
	File.Find
	File.Load
	File.NewProject
	File.NewProjectWizard
	File.Open
	File.OpenRecent
	File.OpenProjectInEditor
	File.Reload
	File.SaveAll
	File.SaveProjectAs
	File.Save
	File.SaveAs
	File.SaveCopyAs
	File.SelectInExplorer

	Find Actions
	Find.Text
	Find.TextInFiles
	Find.TextInTrace
	Find.Function
	Find.GlobalData
	Find.SourceFile

	Tools Actions
	Tools.DebugSettings
	Tools.TraceSettings
	Tools.Preferences
	Tools.SysVars
	Tools.SemihostingSettings

	Edit Actions
	Edit.Preference
	Edit.SysVar
	Edit.Find
	Edit.Color
	Edit.Font
	Edit.DisplayFormat
	Edit.RefreshRate
	Edit.MemZone

	Export Actions
	Export.CodeProfile
	Export.Disassembly
	Export.DataGraphs
	Export.PowerGraphs
	Export.Trace

	Window Actions
	Window.Show
	Window.Close
	Window.CloseAll
	Window.SetDisplayFormat
	Window.ShowFullScreen
	Window.Add
	Window.Insert
	Window.Insert
	Window.Remove
	Window.Clear
	Window.ExpandAll
	Window.Export
	Window.CollapseAll
	Window.WaitForUpdateComplete

	Toolbar Actions
	Toolbar.Show
	Toolbar.Close
	Toolbar.AddCustomButton
	Toolbar.RemoveCustomButton
	Toolbar.EnableCustomButton
	Toolbar.DisableCustomButton
	Toolbar.PressButton

	Utility Actions
	Util.Error
	Util.Log
	Util.LogHex
	Util.Sleep

	Script Actions
	Script.Exec
	Script.DefineConst

	Show Actions
	Show.Memory
	Show.MemoryMap
	Show.Source
	Show.ValueSource
	Show.ValueDisassembly
	Show.ValueData
	Show.Data
	Show.Disassembly
	Show.Definition
	Show.Declaration
	Show.CallGraph
	Show.InstTrace
	Show.Line
	Show.PC
	Show.PCLine
	Show.NextResult
	Show.PrevResult

	Snapshot Actions
	Snapshot.SaveReg
	Snapshot.SaveU32
	Snapshot.ReadReg
	Snapshot.ReadU32
	Snapshot.LoadReg
	Snapshot.LoadU32

	Debug Actions
	Debug.Start
	Debug.Stop
	Debug.Disconnect
	Debug.Connect
	Debug.SetConnectMode
	Debug.Continue
	Debug.Halt
	Debug.Reset
	Debug.SetResetMode
	Debug.StepInto
	Debug.StepOver
	Debug.StepOut
	Debug.SetNextPC
	Debug.SetNextStatement
	Debug.RunTo
	Debug.Download
	Debug.ReadIntoInstCache
	Debug.IsHalted
	Debug.LoadSnapshot
	Debug.SaveSnapshot

	Help Actions
	Help.About
	Help.UserGuide
	Help.ReleaseNotes
	Help.LicenseManager
	Help.Commands

	Process Actions
	Process.Exec

	Project Actions
	Project.SetDevice
	Project.SetFlashLoader
	Project.SetHostIF
	Project.SetTargetIF
	Project.SetTIFSpeed
	Project.SetJTAGConfig
	Project.SetBPType
	Project.SetCorePlugin
	Project.SetDisassemblyPlugin
	Project.SetOSPlugin
	Project.SetSmartViewPlugin
	Project.SetRTT
	Project.AddRTTSearchRange
	Project.SetTraceSource
	Project.ConfigSemihosting
	Project.SetTracePortWidth
	Project.SetTraceTiming
	Project.ConfigSWO
	Project.SetMemZoneRunning
	Project.AddSvdFile
	Project.AddFileAlias
	Project.AddRootPath
	Project.AddPathSubstitute
	Project.AddSearchPath
	Project.SetJLinkScript
	Project.SetJLinkLogFile
	Project.RelocateSymbols
	Project.SetConsoleLogFile
	Project.SetTerminalLogFile
	Project.ConfigDisassembly
	Project.DisableSessionSave
	Project.SetSWO

	Code Profile Actions
	Profile.Exclude
	Profile.Include
	Profile.Reset
	Coverage.Exclude
	Coverage.Include
	Coverage.ExcludeNOPs

	Register Actions
	Register.Addr

	Target Actions
	Target.EraseChip
	Target.SetReg
	Target.GetReg
	Target.WriteU32
	Target.WriteU16
	Target.WriteU8
	Target.ReadU32
	Target.ReadU16
	Target.ReadU8
	Target.SetAccessWidth
	Target.FillMemory
	Target.FillMemoryEx
	Target.SaveMemory
	Target.LoadMemory
	Target.SetEndianess
	Target.LoadMemoryMap
	Target.AddMemorySegment
	Target.PowerOn

	Timeline Actions
	Timeline.Reset

	J-Link Actions
	Exec.Connect
	Exec.Reset
	Exec.Download
	Exec.Command
	Exec.AddCommandOnOpen

	OS Actions
	OS.AddContextSwitchSymbol

	Breakpoint Actions
	Break.Set
	Break.SetEx
	Break.SetOnSrc
	Break.SetOnSrcEx
	Break.SetType
	Break.Clear
	Break.ClearOnSrc
	Break.Enable
	Break.Disable
	Break.EnableOnSrc
	Break.DisableOnSrc
	Break.Edit
	Break.SetOnData
	Break.ClearOnData
	Break.ClearAll
	Break.ClearAllOnData
	Break.EnableOnData
	Break.DisableOnData
	Break.EditOnData
	Break.SetOnSymbol
	Break.OnChange
	Break.ClearOnSymbol
	Break.EnableOnSymbol
	Break.DisableOnSymbol
	Break.EditOnSymbol
	Break.SetCommand
	Break.SetCmdOnAddr
	Break.SetVectorCatch

	ELF Actions
	Elf.GetBaseAddr
	Elf.GetFileClass
	Elf.GetEntryPointPC
	Elf.GetEntryFuncPC
	Elf.GetExprValue
	Elf.GetEndianess
	Elf.SetConfig
	Elf.PrintSectionInfo

	Trace Actions
	Trace.SetPoint
	Trace.ClearPoint
	Trace.EnablePoint
	Trace.DisablePoint
	Trace.ClearAllPoints
	Trace.Reset

	Watch Actions
	Watch.Add
	Watch.Insert
	Watch.Remove
	Watch.Quick

	JavaScript Classes
	Threads Class
	Threads.add
	Threads.add2
	Threads.clear
	Threads.newqueue
	Threads.shown
	Threads.setColumns
	Threads.setColumns2
	Threads.setColor
	Threads.setSortByNumber

	Debug Class
	Debug.enableOverrideInst
	Debug.evaluate
	Debug.getSymbol

	TargetInterface Class
	TargetInterface.findByte
	TargetInterface.findNotByte
	TargetInterface.peekBytes
	TargetInterface.peekWord
	TargetInterface.pokeWord
	TargetInterface.getRegister
	TargetInterface.setRegister
	TargetInterface.message

	Support
	Glossary

