
emFloat

� Small code size, high performance

� Plug-and-play: Can easily replace default floating point
library, delivering better performance with less code.

� Flexible licensing, for integration into user applications
or toolchains.

� C-Variant can be used on any 8/16/32/64-bit CPU.

� Hand-coded, assembly-optimized variants for RISC-V
and Arm

� Fully reentrant

� No heap requirements

emFloat, 
emRun & emRun++

emRun

� High performance, with time-critical routines written in
assembly language

� Significant code size reduction

� Configurable for high speed or small size

� Includes SEGGER's optimized floating-point library emFloat

� Designed for use with various toolchains

� EABI compatible functions

� Minimum RAM usage

� No heap requirements

� No viral licensing, no attribution clause

Key features

 Performance tuning

Runtime library performance can have a huge impact on 

application speed. emRun’s highly advanced low-level 

implementations can also be fine-tuned for speed or size. With 

assembly optimized variants, performance can be even more 

optimized by using the target platform to its full potential.

Memory requirements

emRun offers significant savings in flash memory, partly by 

having some functions are hand-coded in assembly language, 

but mostly through a structure that minimizes internal library 

dependencies.

 Library verification

We created a verification test suite to test emRun. It checks the 

entire functionality of all library functions, including the entire 

floating point library with all corner cases.

Modern C++ features

emRun++ implements classes and functions to C++ standards. 

It also supplements the language features and incorporates the 

complete feature set of the C++17 standard defined by ISO.

 Exception handling

C++ defines the use of exceptions. In C, avoiding a fault requires 

manual recovery and that an error be passed up to all callers. 

Low-level support

C++ compilers define an application binary interface (ABI) which, 

for example, defines how objects are arranged, how name 

mangling works, or how virtual functions are implemented.

 www.segger.com/emrun

emRun ++

� Comprehensive C++ standard library

� Compatibility with common C++ standards, C++17

� Complete integration with emRun

� Dynamic memory management, optimized for
embedded systems

� Exception handling, including target unwinding on all
supported targets

Dynamic memory allocation

Modern C++ applications rely on dynamic memory allocation. 

Objects are present in memory only while they are being used.

https://www.segger.com/products/development-tools/runtime-library/
https://www.segger.com/products/development-tools/runtime-library/

