
A product of SEGGER Microcontroller GmbH & Co. KG

embOS

Software version 3.82t
Document UM01024

Revision: 0

CPU & Compiler specifics for
Cortex A8 cores using

CodeSourcery CodeBench IDE

Real Time Operating System

www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER MICROCONTROLLER GmbH & Co. KG (the manufacturer) assumes
no responsibility for any errors or omissions. The manufacturer makes and you
receive no warranties or conditions, express, implied, statutory or in any communica-
tion with you. The manufacturer specifically disclaims any implied warranty of mer-
chantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2011 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
Email: support@segger.com
Internet: http://www.segger.com
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

3

Software and manual versions

his manual describes the current software version. If any error occurs, inform us and
we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: May 31, 2011

Software Manual Date By Description
3.82t 0 110527 TS First version
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

4

embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

5

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on the
display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

6

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.
Starterkits, eval- and trial-versions are
available.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources. The profiling
PC tool embOSView is included.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-
mum memory consumption in RAM and
ROM while maintaining high speed.
Various Device drivers, e.g. for NAND
and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

USB-Stack
USB device stack
A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for microcon-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI
C software components (middleware) for embedded
systems in several industries such as telecom, medi-
cal technology, consumer electronics, automotive
industry and industrial automation.

SEGGER�s intention is to cut software development-
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficent real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER developes and produces program-
ming tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in devel-
opment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

7

Table of Contents
1 Introduction ..9

2 Using embOS with CodeSourcery ...11

2.1 Installation ...12
2.2 First steps ..13
2.3 The sample application Start2Tasks.c ...14
2.4 Stepping through the sample application ..15

3 Cortex A8 specifics ..19

3.1 CPU modes ...20
3.2 Available libraries ..20

4 Stacks ..21

4.1 Task stack for Cortex A8...22
4.2 System stack for Cortex A8...22
4.3 Interrupt stack for Cortex A8...22
4.4 Stack specifics of the Cortex A8 family ...22

5 Stack Checking ..23

5.1 GCC stack checking ...24

6 Interrupts..25

6.1 What happens when an interrupt occurs ...26
6.2 Defining interrupt handlers in "C"...26
6.3 Interrupt handling with vectored interrupt controller.....................................27
6.4 Interrupt stack switching ..32
6.5 Fast interrupt FIQ ..32

7 MMU and cache support..33

7.1 MMU and cache support with embOS..34
7.2 MMU and cache handling for Cortex A8 CPUs...35
7.3 MMU and cache handling program sample...43

8 STOP / WAIT mode ...45

8.1 Saving power ..46

9 Technical data..47

9.1 Memory requirements ..48

10 Files shipped with embOS ...49

10.1 Files included in embOS..50
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

8

embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 1

Introduction
This guide describes how to use embOS Real Time Operating System for the Cortex
A8 series of microcontrollers using CodeSourcery.

How to use this manual

This manual describes all CPU and compiler specifics of embOS using Cortex A8
based controllers with CodeSourcery. Before actually using embOS, you should read
or at least glance through this manual in order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS for
Cortex A8 and CodeSourcery. If you have no experience using embOS, you should
follow this introduction, because it is the easiest way to learn how to use embOS in
your application.
Most of the other chapters in this document are intended to provide you with detailed
information about functionality and fine-tuning of embOS for the Cortex A8 based
controllers using CodeSourcery.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 1 Introduction
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

11
Chapter 2

Using embOS with CodeSourcery
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 2 Using embOS with CodeSourcery
2.1 Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder of
your choice. When copying, please keep all files in their respective sub directories.
Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserving the
directory structure of the zip-file.

Assuming that you are using CodeSourcery to develop your application, no further
installation steps are required. You will find a prepared sample start workspace,
which you should use and modify to write your application. So follow the instructions
of the next heading First steps on page 13.

You should do this even if you do not intend to use CodeSourcery for your application
development in order to become familiar with embOS.

If for some reason you will work with a specific project manager, you should:
Copy either all or only the library-file that you need to your work-directory. Also copy
the entire CPU specific subdirectory and the embOS header file RTOS.h. This has the
advantage that when you switch to an updated version of embOS later in a project,
you do not affect older projects that use embOS also.
embOS does in no way rely on any project manager or debugger, it may be used in
any environment supporting GNU Tools for Cortex A8 without any problem.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

13
2.2 First steps
After installation of embOS (See �Installation� on page 12.) you are able to create
your first multitasking application. You received several ready to go sample start
workspaces and projects and every other files needed in the subfolder "Start". It is a
good idea to use one of them as a starting point for all of your applications.

To get your first multitasking application running, you should proceed as follows:

� Create a work directory for your application, for example C:\Work
� Copy the whole folder "Start" which is part of your embOS distribution into your

work directory
� Clear the read only attribute of all files in the new "Start" folder
� Start CodeSourcery and set the workspace e.g. to the "Start\BoardSupport\TI\"

folder.

After building the start project your screen should look like follows:

For latest information you should open the Start\ReadMe.txt file.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 2 Using embOS with CodeSourcery
2.3 The sample application Start2Tasks.c
The following is a printout of the sample application Start2Tasks.c. It is a good
startingpoint for your application. (Please note that the file actually shipped with
your port of embOS may look slightly different from this one)
What happens is easy to see:
After initialization of embOS; two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then suspend
for the specified time and continue execution.

File : Start2Tasks.c
Purpose : Skeleton program for OS
--------------END-OF-HEADER----------------------------
*/

#include "RTOS.H"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/**
*
* main
*
**/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

15
2.4 Stepping through the sample application
embOS comes with debugger settings but CodeSourcery cannot use project relative
paths there. Please modify there the paths for "Config" and "Settings file".
Config:
embOS_CA8_CS\CPU\Start\BoardSupport\TI\OMAP3517\Setup/evmam35xx.xml
Settings file:
embOS_CA8_CS\CPU\Start\BoardSupport\TI\OMAP3517\Setup\AM3517.ini

You can start the CodeSourcery debugger with shortcut F11.
In some debuggers, you may look at the startup code and have to set a breakpoint at
main. Now you can step through the program.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library; you can therefore only step into it in
disassembly mode. It initializes the relevant OS-Variables. Because of the previous
call of OS_IncDI(), interrupts are not enabled during execution of OS_InitKern().
OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its pri-
mary purpose is to initialize the hardware required to generate the timer-tick-inter-
rupt for embOS. Step through it to see what is done.
OS_Start() should be the last line in main, since it starts multitasking and does not
return.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 2 Using embOS with CodeSourcery
Before you step into OS_Start(), you should set two break points in the two tasks as
shown below.

As OS_Start() is part of the embOS library, you can step through it in disassembly
mode only. You may press GO, step over OS_Start(), or step into OS_Start() in dis-
assembly mode until you reach the highest priority task.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

17
If you continue stepping, you will arrive in the task with lower priority:

Continuing to step through the program, there is no other task ready for execution.
embOS will therefore start the idle-loop, which is an endless loop which is always
executed if there is nothing else to do (no task is ready, no interrupt routine or timer
executing).
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 2 Using embOS with CodeSourcery
You will arrive there when you step into the OS_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit*.c. You may also set a breakpoint there before
you step over the delay in LPTask.

If you set a breakpoint in one or both of our tasks, you will see that they continue
execution after the given delay. If you inspect the system variable OS_Global.Time,
you can see how much time has expired in the target system.
However, when using a simulator, OS_Global.Time will not increment, because no
timer interrupt is generated. As a result, the program will stick in the idle loop
instead of stopping in one of the tasks again.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

19
Chapter 3

Cortex A8 specifics
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 3 Cortex A8 specifics
3.1 CPU modes
embOS supports nearly all memory and code model combinations that GNU Cortex
A8 C-Compiler supports.

3.2 Available libraries
embOS for CodeSourcery compiler comes with 28 different libraries, one for each
CPU mode / CPU core / endian mode and library type combination.
The libraries are named as follows:

libosca8<m><e><LibMode>.a

Example:

libosca8ALR.a is the library for a project using ARM mode, little endian mode and
release build library type.

Parameter Meaning Values

m CPU mode
A: ARM mode
T: Thumb2 mode

e Endian mode
L: Little
B: Big

LibMode Library mode

XR: Extreme Release
R: Release
S: Stack check
D: Debug
SP: Stack check + profiling
DP: Debug + profiling
DT: Debug + trace
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 4

Stacks
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 4 Stacks
4.1 Task stack for Cortex A8
All embOS tasks execute in system mode. Every embOS task has its own individual
stack which can be located in any memory area. The required stacksize for a task is
the sum of the stack-size used by all functions for local variables and parameter
passing, plus basic stack size.
The basic stack size is the size of memory required to store the registers of the CPU
plus the stack size required by embOS-routines.
For the Cortex A8, this minimum basic task stack size is about 68 bytes.

4.2 System stack for Cortex A8
The embOS system executes in supervisor mode. The minimum system stack size
required by embOS is about 136 bytes (stack check & profiling build). However, since
the system stack is also used by the application before the start of multitasking (the
call to OS_Start()), and because software-timers and "C"-level interrupt handlers
also use the systemstack, the actual stack requirements depend on the application.
The size of the system stack can be changed by modifying "SVC_STACK_SIZE" in
your *.ld linker script file.

4.3 Interrupt stack for Cortex A8
If a normal hardware exception occurs, the Cortex A8 core switches to IRQ
mode,which uses a separate stack pointer. To enable support for nested inter-
rupts,execution of the ISR itself in a different CPU mode than IRQ mode is necessary.
embOS switches to supervisor mode after saving scratch registers, LR_irq and
SPSR_irq onto the IRQ stack.
As a result, only registers mentioned above are saved onto the IRQ stack. Forthe
interrupt routine itself, the supervisor stack is used. The size of the interrupt stack
can be changed by modifying "IRQ_STACK_SIZE" in your *.ld linker script file.
Every interrupt requires 28bytes on the interrupt stack.
The maximum interrupt stack size required by the application can be calculated as
the Maximum interrupt nesting level * 28 bytes. For task switching from within an
interrupt handler, it is required, that the end address of the interrupt stack is aligned
to an 8 byte boundary. This alignment is forced during stack pointer initialization in
the startup routine. Therefore, an additional margin of about 8 bytes should be
added to the calculated maximum interrupt stack size. For standard applications, we
recommend at least 92 to 128 bytes of IRQ stack.

4.4 Stack specifics of the Cortex A8 family
Interrupts require space on the supervisor and interrupt stack. The interrupt stack is
used to store contents of scratch registers, the ISR itself uses supervisor stack. The
Supervisor stack is also used during startup, main(),embOS internal functions and
software timers.
All other stacks are not initialized and not used by embOS. If required by the applica-
tion, the startup function and linker command files have to be modifiedto initialize
the stacks.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

23
Chapter 5

Stack Checking
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 5 Stack Checking
5.1 GCC stack checking
Most applications written in C use a buffer, which is a memory block that holds sev-
eral instances of the same data type, normally character arrays, on the stack to tem-
porarily hold the intermediate results of string operations. A stack-smashing attack
overflows such a buffer by providing a longer string than the actual size of the buffer.
This causes the destruction of the contents beyond the buffer, where such contents
may include the return address of the caller function and function pointers.

The GCC approach is based on a protection method that automatically inserts protec-
tion code into an application at compilation time. It places a random canary between
any stack allocated character buffers and the return pointer. It then validates that
the canary has not been dirtied by an overflowed buffer before the function returns.
It can also reorder local variables to protect local pointers from being overwritten in
a buffer overflow.

The GCC Compiler enables stack checking with the options "-fstack-protector" and "-
fstack-protector-all". The �-fstack-protector� option only protects functions with
character arrays while the �-fstack-protector-all� option protects all functions.

You can use GCC stack checking with embOS for Cortex A8 CPUs without any
restrictions.

Please be aware that GCC stack checking needs additional space on the task stacks.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

25
Chapter 6

Interrupts
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 6 Interrupts
6.1 What happens when an interrupt occurs
� The CPU-core receives an interrupt request
� As soon as the interrupts are enabled, the interrupt is executed
� The CPU switches to the Interrupt stack
� The CPU saves PC and flags in registers LR_irq and SPSR_irq
� The CPU jumps to the vector address 0x18
� embOS IRQ_Handler: save scratch registers
� embOS IRQ_Handler: save LR_irq and SPSR_irq
� embOS IRQ_Handler: switch to supervisor mode
� embOS IRQ_Handler: execute OS_irq_handler (defined in RTOSInit_*.c)
� embOS IRQ_Handler: check for interrupt source and execute timer interrupt,

serial communication or user ISR.
� embOS IRQ_Handler: switch to IRQ mode
� embOS IRQ_Handler: restore LR_irq and SPSR_irq
� embOS IRQ_Handler: pop scratch registers
� Return from interrupt.

When using an Cortex A8 derivate with vectored interrupt controller, please ensure
that IRQ_Handler is called from every interrupt. The interrupt vector itself may then
be examined by the "C"-level interrupt handler in RTOSInit_*.c.

6.2 Defining interrupt handlers in "C"
Interrupt handlers called from embOS interrupt handler in RTOSInit*.c are just nor-
mal "C"-functions which do not take parameters and do not return any value.
The default C interrupt handler OS_irq_handler() in RTOSInit*.c first calls
OS_Enterinterrupt() or OS_EnterNestableInterrupt() to inform embOS that
interrupt code is running. Then this handler examines the source of interrupt and
calls the related interrupt handler function.
Finally the default interrupt handler OS_irq_handler() in RTOSInit*.c calls
OS_LeaveInterrupt() or OS_LeaveNestableInterrupt() and returns to the primary
interrupt handler OS_IRQ_SERVICE().
Depending on the interrupting source, it may be required to reset the interrupt pend-
ing condition of the related peripherals.

Example of a "simple" interrupt-routine
void _OS_Systick(void) {
 TISR = 0x01;
 TCRR = 0;
 OS_HandleTick();
}

embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

27
6.3 Interrupt handling with vectored interrupt control-
ler

For Cortex A8 derivates with built in vectored interrupt controller delivers additional
functions to install and setup interrupt handler functions.
When using an Cortex A8 derivate with vectored interrupt controller, please ensure
that IRQ_Handler() is called from every interrupt. This is default when startup code
and hardware initialization delivered with embOS is used.
The interrupt vector itself will then be examined by the "C"-level interrupt handler
OS_irq_handler() in RTOSInit*.c.
You should not program the interrupt controller for IRQ handling directly. You should
use the functions delivered with embOS.

The reaction to an interrupt with vectored interrupt controller is as follows:

� embOS IRQ_Handler() is called by CPU or interrupt controller.
� IRQ_Handler() saves registers and switches to supervisor mode.
� IRQ_Handler() calls OS_irq_handler() (in RTOSInit*.c).
� OS_irq_handler() examines the interrupting source by reading the interrupt

vector from the interrupt controller.
� OS_irq_handler() informs embOS that interrupt code is running by a call of

OS_EnterNestableInterrupt() which re-enables interrupts.
� OS_irq_handler() calls the interrupt handler function which is addressed by the

interrupt vector.
� OS_irq_handler() resets the interrupt controller to re-enable acceptance of new

interrupts.
� OS_irq_handler() calls OS_LeaveNestableInterrupt() which disables inter-

rupts and informs embOS that interrupt handling finished.
� OS_irq_handler() returns to IRQ_Handler().
� IRQ_Handler() restores registers and performs a return from interrupt.

Please note, that different Cortex A8 CPUs may have different versions of
vectored interrupt controller hardware and usage of embOS supplied func-
tions varies depending on the type of interrupt controller. Please refer to the
samples delivered with embOS which are used in the CPU specific RTOSInit
module.

To handle interrupts with vectored interrupt controller, embOS offers the following
functions:
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 6 Interrupts
6.3.1 OS_ARM_InstallISRHandler(): Install an interrupt han-
dler

Description

OS_ARM_InstallISRHandler() is used to install a specific interrupt vector when Cor-
tex A8 CPUs with vectored interrupt controller are used.

Prototype

OS_ISR_HANDLER* OS_ARM_InstallISRHandler (int ISRIndex,
 OS_ISR_HANDLER* pISRHandler);

Return value

OS_ISR_HANDLER*: the address of the previous installed interrupt function, which was
installed at the addressed vector number before.

Additional information

This function just installs the interrupt vector but does not modify the priority and
does not automatically enable the interrupt.

Parameter Description

ISRIndex
Index of the interrupt source, normally the interrupt vector num-
ber.

pISRHandler Address of the interrupt handler function.
Table 6.1: OS_ARM_InstallISRHandler() parameter list
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

29
6.3.2 OS_ARM_EnableISR(): Enable specific interrupt
Description

OS_ARM_EnableISR() is used to enable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller.

Prototype

void OS_ARM_EnableISR(int ISRIndex)

Additional information

This function just enables the interrupt inside the interrupt controller. It does not
enable the interrupt of any peripherals. This has to be done elsewhere.

For Cortex A8 CPUs with VIC type interrupt controller, this function just
enables the interrupt vector itself. To enable the hardware assigned to that
vector, you have to enable the hardware interrupt enable switch also.

Parameter Description

ISRIndex Index of the interrupt source which should be enabled.
Table 6.2: OS_ARM_EnableISR() parameter list
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 6 Interrupts
6.3.3 OS_ARM_DisableISR(): Disable specific interrupt
Description

OS_ARM_DisableISR() is used to disable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller which is not of the VIC type.

Prototype

void OS_ARM_DisableISR(int ISRIndex);

Additional information

This function just disables the interrupt controller. It does not disable the interrupt of
any peripherals. This has to be done elsewhere.

When using an Cortex A8 CPU with built in interrupt controller of VIC type,
please use OS_ARM_DisableISRSource() to disable a specific interrupt.

Parameter Description

ISRIndex Index of the interrupt source which should be disabled.
Table 6.3: OS_ARM_DisableISR() parameter list
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

31
6.3.4 OS_ARM_ISRSetPrio(): Set priority of specific interrupt
Description

OS_ARM_ISRSetPrio() is used to set or modify the priority of a specific interrupt
source by programming the interrupt controller.

Prototype

int OS_ARM_ISRSetPrio(int ISRIndex,
 int Prio);

Return value

Previous priority which was assigned before the call of OS_ARM_ISRSetPrio().

Additional information

This function sets the priority of an interrupt channel by programming the interrupt
controller. Please refer to CPU specific manuals about allowed priority levels.

This function can not be used to modify the interrupt priority for interrupt
controllers of the VIC type. The interrupt priority with VIC type controllers
depends on the interrupt vector number and can not be changed.

Parameter Description

ISRIndex Index of the interrupt source which should be modified.
Prio The priority which should be set for the specific interrupt.

Table 6.4: OS_ARM_ISRSetPrio() parameter list
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 6 Interrupts
6.4 Interrupt stack switching
Since Cortex A8 core based controllers have a separate stack pointer for interrupts,
there is no need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source compatibility
to other processors only and have no functionality. The Cortex A8 interrupt stack is
used for primary interrupt handler.

6.5 Fast interrupt FIQ
FIQ interrupt can not be used with embOS functions, it is reserved for high speed
user functions.
FIQ is never disabled by embOS.
Never call any embOS function from an FIQ handler.
Do not assign any embOS interrupt handler to FIQ.

When you decide to use FIQ, please ensure that FIQ stack is initialized during
startup and an interrupt vector for FIQ handling is included in your applica-
tion.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

33
Chapter 7

MMU and cache support
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 7 MMU and cache support
7.1 MMU and cache support with embOS
embOS comes with functions to support the MMU and cache of Cortex A8 CPUs which
allow virtual-to-physical address mapping with sections of one MByte and cache con-
trol. The MMU requires a translation table which can be located in any data area, RAM
or ROM, but has to be aligned at a 16Kbyte boundary.

The alignment may be forced by a #pragma or by the linker file. A translation table in
RAM has to be set up during run time. embOS delivers API functions to set up this
table. Assembly language programming is not required.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

35
7.2 MMU and cache handling for Cortex A8 CPUs
Cortex A8 CPUs with MMU and cache have separate data and instruction caches.
embOS delivers the following functions to setup and handle the MMU and caches.

Function Description

OS_ARM_MMU_InitTT() Initialize the MMU translation table.
OS_ARM_MMU_AddTTEntries() Add address entries to the table.
OS_ARM_MMU_Enable() Enable the MMU.
OS_ARM_ICACHE_Enable() Enable the instruction cache.
OS_ARM_DCACHE_Enable() Enable the data cache.
OS_ARM_DCACHE_CleanRange() Clean memory range in data cache.
OS_ARM_DCACHE_InvalidateRange() Invalidate memory range in data cache.

Table 7.1: MMU and cache handling for Cortex A8 CPUs
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 7 MMU and cache support
7.2.1 OS_ARM_MMU_InitTT()
Description

OS_ARM_MMU_InitTT() is used to initialize an MMU translation table which is located
in RAM. The table is filled with zero, thus all entries are marked invalid initially.

Prototype
void OS_ARM_MMU_InitTT (unsigned int * pTranslationTable);

Additional Information

This function does not need to be called, if the translation table is located in ROM.

Parameter Description

pTranslationTable Points to the base address of the translation table.
Table 7.2: OS_ARM_MMU_InitTT() parameter list
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

37
7.2.2 OS_ARM_MMU_AddTTEntries()
Description

OS_ARM_MMU_AddTTEntries() is used to add entries to the MMU address translation
table. The start address of the virtual address, physical address, area size and cache
modes are passed as parameter.

Prototype
void OS_ARM_MMU_AddTTEntries (unsigned int * pTranslationTable,
 unsigned int CacheMode,
 unsigned int VIndex,
 unsigned int PIndex,
 unsigned int NumEntries);

Additional Information

This function does not need to be called, if the translation table is located in ROM.
The function adds entries for every section of one MegaByte size into the translation
table for the specified memory area.

Parameter Description

pTranslationTable Points to the base address of the translation table.

CacheMode

Specifies the cache operating mode which should be used for
the selected area. May be one of the following modes:
OS_ARM_CACHEMODEA7_NC_NB - non cacheable, non bufferable
OS_ARM_CACHEMODEA7_C_NB - cacheable, non bufferable
OS_ARM_CACHEMODEA7_NC_B - non cacheable, bufferable
OS_ARM_CACHEMODEA7_C_B - cacheable, bufferable

VIndex
Virtual address index, which is the start address of the virtual
memory address range with MBytes resolution.
VIndex = (virtual address >> 20)

PIndex
Physical address index, which is the start address of the phys-
ical memory area range with MBytes resolution.
PIndex = (physical address >> 20)

NumEntries Specifies the size of the memory area in MBytes.
Table 7.3: OS_ARM_MMU_AddTTEntries() parameter list
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 7 MMU and cache support
7.2.3 OS_ARM_MMU_Enable()
Description

OS_ARM_MMU_Enable() is used to enable the MMU which will then perform the
address mapping.

Prototype
void OS_ARM_MMU_Enable (unsigned int * pTranslationTable);

Additional Information

As soon as the function was called, the address translation is active. The MMU table
has to be setup before calling OS_ARM_MMU_Enable().

Parameter Description

pTranslationTable Points to the base address of the translation table.
Table 7.4: OS_ARM_MMU_Enable() parameter list
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

39
7.2.4 OS_ARM_ICACHE_Enable()
Description

OS_ARM_ICACHE_Enable() is used to enable the instruction cache of the CPU.

Prototype
void OS_ARM_ICACHE_Enable (void);

Additional Information

As soon as the function was called, the instruction cache is active. It is CPU imple-
mentation defined whether the instruction cache works without MMU. Normally, the
MMU should be setup before activating instruction cache.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 7 MMU and cache support
7.2.5 OS_ARM_DCACHE_Enable()
Description

OS_ARM_DCACHE_Enable() is used to enable the data cache of the CPU.

Prototype
void OS_ARM_DCACHE_Enable (void);

Additional Information

The function must not be called before the MMU translation table was set up correctly
and the MMU was enabled. As soon as the function was called, the data cache is
active, according to the cache mode settings which are defined in the MMU transla-
tion table. It is CPU implementation defined whether the data cache is a write
through, a write back, or a write through/write back cache. Most modern CPUs will
have implemented a write through/write back cache.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

41
7.2.6 OS_ARM_DCACHE_CleanRange()
Description

OS_ARM_DCACHE_CleanRange() is used to clean a range in the data cache memory to
ensure that the data is written from the data cache into the memory.

Prototype
void OS_ARM_DCACHE_CleanRange (void * p,
 unsigned int NumBytes);

Additional Information

Cleaning the data cache is needed, when data should be transferred by a DMA or
other BUS master that does not use the data cache. When the CPU writes data into a
cacheable area, the data might not be written into the memory immediately. When
then a DMA cycle is started to transfer the data from memory to any other location or
peripheral, the wrong data will be written.

Before starting a DMA transfer, a call of OS_ARM_DCACHE_CleanRange() ensures, that
the data is transferred from the data cache into the memory and the write buffers are
drained.

The cache is cleaned line by line. Cleaning one cache line takes approximately 10
CPU cycles. As each cache line covers 64 bytes, the total time to invalidate a range
may be calculated as:

t = (NumBytes / 64) * (10 [CPU clock cycles] + Memory write time).

The real time depends on the content of the cache. If data in the cache is marked as
dirty, the cache line has to be written to memory. The memory write time depends on
the memory BUS clock and memory speed. If data has to be written to memory, the
required cycles for this memory operation has to be added to the 10 CPU clock cycles
for every 64 bytes to be cleaned.

Parameter Description

p
Points to the base address of the memory area that should be
updated.

NumBytes Number of bytes which have to be written from cache to memory.
Table 7.5: OS_ARM_DCACHE_CleanRange() parameter list
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER 7 MMU and cache support
7.2.7 OS_ARM_DCACHE_InvalidateRange()
Description

OS_ARM_DCACHE_InvalidateRange() is used to invalidate a memory area in the data
cache. Invalidating means, mark all entries in the specified area as invalid. Invalida-
tion forces re-reading the data from memory into the cache, when the specified area
is accessed again.

Prototype
void OS_ARM_DCACHE_InvalidateRange (void * p,
 unsigned int NumBytes);

Additional Information

This function is needed, when a DMA or other BUS master is used to transfer data
into the main memory and the CPU has to process the data after the transfer.

To ensure, that the CPU processes the updated data from the memory, the cache has
to be invalidated. Otherwise the CPU might read invalid data from the cache instead
of the memory.

Special care has to be taken, before the data cache is invalidated. Invalidating a data
area marks all entries in the data cache as invalid. If the cache contained data which
was not written into the memory before, the data gets lost. Unfortunately, only com-
plete cache lines can be invalidated.

Therefore, it is requires, that the base address of the memory area has to be located
at a 64 byte boundary and the number of bytes to be invalidated has to be a multiple
of 64 bytes.

The debug version of embOS will call OS_Error() with error code
OS_ERR_NON_ALIGNED_INVALIDATE, if one of these restrictions is violated.

The cache is invalidated line by line. Invalidating one cache line takes approximately
10 CPU cycles. As each cache line covers 64 bytes, the total time to invalidate a
range may be calculated as:

t = (NumBytes / 64) * 10 [CPU clock cycles].

Parameter Description

SourceIndex Index of the interrupt channel which should be disabled.
Table 7.6: OS_ARM_DCACHE_InvalidateRange() parameter list
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

43
7.3 MMU and cache handling program sample
The MMU und cache handling has to be set up before the data segments are initial-
ized. Otherwise a virtual address mapping would not work. The startup code calls the
__low_level_init() function before sections are initialized.

It is a good idea to initialize memory access, the MMU table and the cache control
during __low_level_init(). The following sample is an excerpt from one
__low_level_init() function which is part of an RTOSInit.c file:

/***
*
* MMU and cache configuration
*
* The MMU translation table has to be aligned to 16KB boundary
* and has to be located in uninitialized data area
*/
static unsigned int _TranslationTable [0x1000];
__low_level_init(void) {
 //
 // Initialize SDRAM
 //
 _InitSDRAM();
 //
 // Init MMU and caches
 //
 OS_ARM_MMU_InitTT (&_TranslationTable[0]);
 //
 // SDRAM, the first MB remapped to 0 to map vectors to correct address,
 //cacheable, bufferable
 OS_ARM_MMU_AddTTEntries (&_TranslationTable[0],
 OS_ARM_CACHEMODEA7_C_B,
 0x000, 0x200, 0x001);
 // Internal SRAM, original address, NON cachable, NON bufferable
 OS_ARM_MMU_AddTTEntries (&_TranslationTable[0],
 OS_ARM_CACHEMODEA7_NC_NB,
 0x003, 0x003, 0x001);
 OS_ARM_MMU_Enable (&_TranslationTable[0]);
 OS_ARM_ICACHE_Enable();
 OS_ARM_DCACHE_Enable();
 return 1;
}

Other samples are included in the CPU specific RTOSInit*.c files delivered with
embOS.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 7 MMU and cache support
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

45
Chapter 8

STOP / WAIT mode
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 8 STOP / WAIT mode
8.1 Saving power
In case your controller does support some kind of power saving mode, it should be
possible to use it also with embOS, as long as the timer keeps working and timer
interrupts are processed. To enter that mode, you usually have to implement some
special sequence in function OS_Idle(), which you can find in embOS module
RTOSIinit_*.c.
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

47
Chapter 9

Technical data
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 9 Technical data
9.1 Memory requirements
These values are neither precise nor guaranteed but they give you a good idea of the
memory-requirements. They vary depending on the current version of embOS. Using
Cortex A8 with ARM mode, the minimum ROM requirement for the kernel itself is
about 2.500 bytes. In the table below, you find the minimum RAM size for embOS
resources. The sizes depend on selected embOS library mode; the table below is for
a release build.

embOS resource RAM [bytes]
Task control block 32
Resource semaphore 8
Counting semaphore 4
Mailbox 20
Software timer 20
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

49
Chapter 10

Files shipped with embOS
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 10 Files shipped with embOS
10.1 Files included in embOS

Any additional files shipped serve as example.

Directory File Explanation
root *.pdf Generic API and target specific documentation

root embOSView.exe
Utility for runtime analysis, described in generic
documentation

root Release.html Version control document
Start\BoardSupport*\Appli-
cation\

. Sample programs to serve as a start

Start\BoardSup-
port*\Setup\

. CPU specific hardware routines for various CPUs

Start\BoardSupport*\ make
Sample MAKEFILE that can be used with the GNU
make tool

Start\BoardSup-
port*\Setup\

Startup.s Generic stack/RAM initialization file

Start\Inc\ BSP.h
Include file for BoardSupport packages, to be
included in every "C"-file using BSP-functions

Start\Inc\ OS_Config.h
Include file for embOS library mode configuration,
included by RTOS.h

Start\Inc\ RTOS.h
Include file for embOS, to be included in every "C"-
file using embOS-functions

Start\Lib\ os*.a embOS libraries
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

51
Index
F
FIQ ..32

I
Installation ...12
Interrupt stack 22, 32
Interrupts, FIQ32
IRQ_STACK ...22

M
Memory models20
Memory requirements48

O
OS_ARM_DisableISR()30
OS_ARM_EnableISR()29
OS_ARM_InstallISRHandler()28
OS_ARM_ISRSetPrio()31

S
Stacks .. 21, 23

CSTACK ...22
Interrupt stack22
System stack22

STOP / WAIT mode45
Syntax, conventions used 5
System stack22
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

52 Index
embOS for Cortex A8 and CodeSourcery © 2011 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Introduction
	Using embOS with CodeSourcery
	2.1 Installation
	2.2 First steps
	2.3 The sample application Start2Tasks.c
	2.4 Stepping through the sample application

	Cortex A8 specifics
	3.1 CPU modes
	3.2 Available libraries

	Stacks
	4.1 Task stack for Cortex A8
	4.2 System stack for Cortex A8
	4.3 Interrupt stack for Cortex A8
	4.4 Stack specifics of the Cortex A8 family

	Stack Checking
	5.1 GCC stack checking

	Interrupts
	6.1 What happens when an interrupt occurs
	6.2 Defining interrupt handlers in "C"
	6.3 Interrupt handling with vectored interrupt controller
	6.3.1 OS_ARM_InstallISRHandler(): Install an interrupt handler
	6.3.2 OS_ARM_EnableISR(): Enable specific interrupt
	6.3.3 OS_ARM_DisableISR(): Disable specific interrupt
	6.3.4 OS_ARM_ISRSetPrio(): Set priority of specific interrupt

	6.4 Interrupt stack switching
	6.5 Fast interrupt FIQ

	MMU and cache support
	7.1 MMU and cache support with embOS
	7.2 MMU and cache handling for Cortex A8 CPUs
	7.2.1 OS_ARM_MMU_InitTT()
	7.2.2 OS_ARM_MMU_AddTTEntries()
	7.2.3 OS_ARM_MMU_Enable()
	7.2.4 OS_ARM_ICACHE_Enable()
	7.2.5 OS_ARM_DCACHE_Enable()
	7.2.6 OS_ARM_DCACHE_CleanRange()
	7.2.7 OS_ARM_DCACHE_InvalidateRange()

	7.3 MMU and cache handling program sample

	STOP / WAIT mode
	8.1 Saving power

	Technical data
	9.1 Memory requirements

	Files shipped with embOS
	10.1 Files included in embOS

	Index

